(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau) I OO O

(10) International Publication Number

WO 2008/151013 A2

CH, CN, CO,CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,

(43) International Publication Date
11 December 2008 (11.12.2008)

(51) International Patent Classification:
GOG6F 12/00 (2006.01)

(21) International Application Number:
PCT/US2008/065312

(22) International Filing Date: 30 May 2008 (30.05.2008)

ZA, 7M, 7ZW.
(25) Filing Language: English
(84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:

11/809,514 1 June 2007 (01.06.2007) US

(71) Applicant (for all designated States except US): MI-

CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).
Declarations under Rule 4.17:

8/151013 A2 I 00 0O 0 R O A

(72)

(81)

Inventors: CALLLAHAN, David; One Microsoft Way,
Redmond, Washington 98052-6399 (US). GROVER,
Vinod K.; One Microsoft Way, Redmond, Washington
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: EFFICIENTLY LOCATING TRANSACTIONAL CODE BLOCKS IN A TRANSACTIONAL MEMORY SYSTEM

1% 100

REMOVABLE
STORAGE g
COMPUTING DEVICE 108
v NON-REMOVABLE %
STORAGE
104 110
By S
 aveTET MEMORY 102 OUTPUT DEVICE(S
SYSTEM MEMORY .) w. "
VOLATILE PROCESSING UNIT
INPUT DEVICE(S) |« 112 115
NON-VOLATILE S
OTHER s | OmHER
COMMUNICATION | COMPUTERS/
200 CONNECTION(S) APPLICATIONS
.. TRANSACTIONAL
- MEMORY
APPLICATION
FIG. 1

(57) Abstract: Various technologies and techniques are disclosed for creating and/or locating transactional code blocks in a trans-

@ actional memory system. A user such as a software developer can decorate a particular function with an identifier to indicate that the

& particular function is transaction-safe. A normal version and a transactional version are then created for each function of a software

@ application that is marked as transaction-safe. A normal version is created for each function that is not marked as transaction-safe.
pp

=
=

For the normal version of each function that is marked as transaction-safe, a stub pointer in the normal version is pointed to the
transactional version. The proper version of the function is then called depending on the execution context.

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

EFFICIENTLY LOCATING TRANSACTIONAL CODE BLOCKS IN
A TRANSACTIONAL MEMORY SYSTEM
BACKGROUND
[001] Software transactional memory (STM) is a concurrency control mechanism
analogous to database transactions for controlling access to shared memory in
concurrent computing. A transaction in the context of transactional memory is a
piece of code that executes a series of reads and writes to shared memory. STM is
used as an alternative to traditional locking mechanisms. Programmers put a
declarative annotation (e.g., atomic) around a code block to indicate safety
properties they require and the system automatically guarantees that this block
executes atomically with respect to other protected code regions. The software
transactional memory programming model prevents lock-based priority-inversion
and deadlock problems.
[002] Software transactional memory (STM) systems can take certain sequential
programs and allow for portions of those programs to be executed concurrently
(e.g., in parallel) using transactions. The source code for these sequential programs
1s typically written by programmers using one of various types of programming
languages. The source code is typically enclosed in one or more functions that
contain the logic that is later executed by a computer. The term “function” is used
broadly herein as covering functions, methods, procedures, statement blocks,
and/or other portions of logic that are executed by a computer. With software
transactional memory systems, every function that can be called from a
transactional context must have two versions, one that can be called from
transactions and one that can be called from non-transactions. Determining which
version of the function to call is context dependent. This determination must be
done at runtime for calls to virtual functions or through function pointers.
SUMMARY
[003] Various technologies and techniques are disclosed for creating and/or
locating transactional code blocks in a transactional memory system. A user such
as a software developer can decorate a particular function with an identifier to

indicate that the particular function is transaction-safe. A normal version and a

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

transactional version are then created for each function of a software application
that is marked as transaction-safe. A normal version is created for each function
that is not marked as transaction-safe. For the normal version of each function that
1s marked as transaction-safe, a stub pointer in the normal version is pointed to the
transactional version. The proper version of the function is then called depending
on the application context.
[004] In one implementation, a compiler generates the transactional and non-
transactional version of the functions for use with the transactional memory system.
At compile time, a stub pointer is allocated for each function in a software
application. For each respective function that is not marked as a transaction-sate
function, a normal version of the respective function is generated, and the stub
pointer 1s filled in with an entry point of a runtime error routine. For each
respective function that is marked as a transaction-safe function, code is created for
a normal version and a transactional version of the respective function that is
transaction-safe. Then, in the stub pointer for the normal version, an entry point is
filled to the transactional version. In a stub pointer for the transactional version, an
entry point is filled to the runtime error routine.
[005] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[006] Figure 1 is a diagrammatic view of a computer system of one
implementation.
[007] Figure 2 is a diagrammatic view of a transactional memory application of
one implementation operating on the computer system of Figure 1.
[008] Figure 3 is a high-level process flow diagram for one implementation of the
system of Figure 1.
[009] Figure 4 is a process flow diagram for one implementation of the system of

Figure 1 illustrating the stages involved in using a code generator to generate code

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

for transactional and non-transactional function and fill in the stub pointers as part
of the compile and/or linking process.
[010] Figure 5 is a diagram for one implementation of the system of Figure 1
illustrating the decision tree for choosing the proper version of the function to call
depending on execution context.
[011] Figure 6 is a logical diagram for one implementation that illustrates two
hypothetical functions, one with just a normal version and the other with a normal
version and a transactional version.

DETAILED DESCRIPTION
[012] For the purposes of promoting an understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the
drawings and specific language will be used to describe the same. It will
nevertheless be understood that no limitation of the scope is thereby intended. Any
alterations and further modifications in the described embodiments, and any further
applications of the principles as described herein are contemplated as would
normally occur to one skilled in the art.
[013] The system may be described in the general context as a transactional
memory system, but the system also serves other purposes in addition to these. In
one implementation, one or more of the techniques described herein can be
implemented as features within a framework program such as MICROSOFT®
NET Framework, or from any other type of program or service that provides
platforms for developers to develop software applications. In another
implementation, one or more of the techniques described herein are implemented as
features with other applications that deal with developing applications that execute
in concurrent environments.
[014] In one implementation, a transactional memory system is provided that
programmatically creates two versions of each function that is marked as
transaction-safe: a normal version of the function and a transactional version of the
function. For functions that are not marked as transaction safe, only a normal
version is created and a stub pointer at the entry point of the normal version is

pointed to an error routine. Then, for functions that are marked as transaction-safe,

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

a stub pointer of the entry point of the normal version is pointed to the transactional
version of the function. A stub pointer at the entry point of the transactional
version is pointed to an error routine. For functions that are not marked as
transaction-safe, the stub pointer at the entry point of the normal version points to
the error routine. The proper version of the function is then called depending on the
execution context.

[015] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In its most basic configuration, computing device 100
typically includes at least one processing unit 102 and memory 104. Depending on
the exact configuration and type of computing device, memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration is illustrated in Figure 1 by
dashed line 106.

[016] Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 1 by removable storage 108 and non-
removable storage 110. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[017] Computing device 100 includes one or more communication connections

114 that allow computing device 100 to communicate with other

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

computers/applications 115. Device 100 may also have input device(s) 112 such as
keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)
111 such as a display, speakers, printer, etc. may also be included. These devices
are well known in the art and need not be discussed at length here. In one
implementation, computing device 100 includes transactional memory application
200. Transactional memory application 200 will be described in further detail in
Figure 2.

[018] Turning now to Figure 2 with continued reference to Figure 1, transactional
memory application 200 operating on computing device 100 is illustrated.
Transactional memory application 200 is one of the application programs that
reside on computing device 100. However, it will be understood that transactional
memory application 200 can alternatively or additionally be embodied as computer-
executable instructions on one or more computers and/or in different variations
than shown on Figure 1. Alternatively or additionally, one or more parts of
transactional memory application 200 can be part of system memory 104, on other
computers and/or applications 115, or other such variations as would occur to one
in the computer software art.

[019] Transactional memory application 200 includes program logic 204, which 1s
responsible for carrying out some or all of the techniques described herein.
Program logic 204 includes logic for providing a transactional memory system 206;
logic for allowing a user/developer to decorate functions of a software application
with an attribute or other identifier to indicate the function is transaction-safe 208;
logic for creating two versions (e.g., a normal version and a transactional version)
for each function that is marked as transaction-safe 210; logic for creating one
version (e.g., a normal version) for each function that is not marked as transaction-
safe 212; logic for allocating a stub pointer for each function (e.g., before the
beginning of the code section or other place) 214; logic for making the stubs point
to the right places (e.g., the transactional version or the runtime error routine) 216;
and other logic for operating the application 220. In one implementation, program
logic 204 is operable to be called programmatically from another program, such as

using a single call to a procedure in program logic 204.

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

[020] Turning now to Figures 3-6 with continued reference to Figures 1-2, the
stages for implementing one or more implementations of transactional memory
application 200 are described in further detail. Figure 3 is a high level process flow
diagram for transactional memory application 200. In one form, the process of
Figure 3 is at least partially implemented in the operating logic of computing
device 100. The process begins at start point 240 with providing a transactional
memory system (e.g., a software transactional memory system) (stage 242). The
system allows a user/developer to decorate a particular function with an attribute or
other identifier to indicate the function is transaction-safe (stage 244). The
compiler and/or linker create two versions of the particular function: one for use
without transactions (e.g., the normal version) and one for use with transactions
(e.g., the transactional version) (stage 246). In the normal version, the system
stores a stub pointer points to the transactional version of the particular function
(stage 248). In one implementation, the stub pointer(s) described herein are stored
before the respective compiled function body text. In other implementations, the
stub pointer can be stored in other locations, so long as it is associated with a
respective version of the function. In the transactional version, the system stores a
stub pointer that points to a runtime error routine (stage 249). The proper version
of the function is called depending on execution context (stage 250). The process
ends at end point 252.

[021] Figure 4 illustrates one implementation of the stages involved in using a
code generator to generate code for transactional and non-transactional functions
and to fill in the stub pointers as part of the compile/and or linking process. In one
form, the process of Figure 4 is at least partially implemented in the operating logic
of computing device 100. The process begins at start point 270 with the code
generator allocating an extra pointer (e.g., the stub pointer) for each function at
compile time (stage 272). For each function (i.e., while there are more functions)
(decision point 274), various tasks are performed. For example, if the function is
not marked as being a transaction-safe function (decision point 276), then the

system generates the normal version (i.e., regular code) for the function, and fills in

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

the stub pointer of the normal version with the entry point of the runtime error
routine (stage 286).

[022] If the function is marked as a transaction-safe function (decision point 276),
the system creates code for the normal version F and its transactional version FT
(stage 278). The system then allocates a stub pointer for the transactional version
and the normal version of the function F (stage 280). In the stub for the normal
version, the entry point of the transactional version is filled (stage 282). In the stub
for the transactional version, the entry point of a runtime error routine 1s filled
(stage 284). These stages are repeated appropriately for each function. Then, for
each call site, the system makes the proper call depending on the context (stage
288). The call site decision process is described in further detail in Figure 5. The
process ends at end point 290.

[023] Turning now to Figure 5, a diagram 300 for one implementation of the
system of Figure 1 illustrates a possible decision tree for choosing the proper
version of the function to call depending on execution context. In one form, the
decision process of Figure 5 is at least partially implemented in the operating logic
of computing device 100. For a direct call 306 in a non-transactional context 302,
the entry point of the normal version is called directly for the function 312. For a
direct call 306 in a transactional context 304, the entry point of the transactional
version is called for the function 314. For a pointer call 308 in a non-transactional
context 302, the call is the same as before 316. For a pointer call 308 in a
transactional context 304, the address of the word pointing to the stub function is
computed from the dereference of the function pointer value and then that address
is used in the call 318. The stub is populated with a pointer to entry point of the
transactional version and therefore the correct version is executed. A virtual or
interface call 310 in a non-transactional context 302 is not affected, and is the same
as before 320. A virtual or interface call 310 in the transactional context 304
performs the vtable lookup and then computes the stub function entry point of the
transactional version of the function 322. The computed entry point is then used to

make the call.

10

15

20

WO 2008/151013 PCT/US2008/065312

[024] Figure 6 is a logical diagram 400 for one implementation that illustrates two
hypothetical functions, one with just a normal version and the other with a normal
version and a transactional version. The “BAR” function 402 is a function that was
not marked as transaction-safe in the source code. Thus, the entry pointer 412 to
the function 402 points to the error routine 410. The “FOO” function 414 was
marked as transaction-safe in the original source code, so a normally compiled
version (the normal version) 1s provided 406, along with the transactional version
408. The entry point 414 of the normal version of FOO 406 points to the
transactional version of FOO 408. The entry point 416 of the transactional version
of FOO 408 points to the error routine 410. In one implementation, this error
routine is embedded in the stubs (entry points) of these functions to allow errors to
be caught at runtime when inappropriate use is encountered.

[025] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specitic
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[026] For example, a person of ordinary skill in the computer software art will
recognize that the client and/or server arrangements, user interface screen content,
and/or data layouts as described in the examples discussed herein could be
organized differently on one or more computers to include fewer or additional

options or features than as portrayed in the examples.

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

What is claimed is:
1. A computer-readable medium having computer-executable instructions for
causing a computer to perform steps comprising:

provide a transactional memory system (206);

create a normal version and a transactional version of each function of a
software application that is marked as transaction-safe (210);

create a normal version of each function that is not marked as transaction-
safe (212); and

for the normal version of each function that is marked as transaction-safe,
point a stub pointer of the normal version to the transactional version (216).
2. The computer-readable medium of claim 1, wherein the stub pointer is
allocated before a beginning of a code section of the normal version of each
function (214).
3. The computer-readable medium of claim 1, wherein for each function that is
not marked as transaction-safe, point the stub pointer of the normal version to an
error routine (216).
4, The computer-readable medium of claim 1, wherein the transactional
version of each function that is marked as transaction-safe has a stub pointer that
points to an error routine (284).
S. The computer-readable medium of claim 1, wherein the normal version of
each function that is not marked as transaction-safe has a stub pointer that points to
an error routine (286).
6. A method for locating transactional code blocks in a transactional memory
system comprising the steps of:

providing a transactional memory system (242);

allowing a user to decorate a particular function with an identifier to indicate
that the particular function is transaction-safe (244);

creating two versions of the particular function, a normal function for use
without transactions and a transactional function for use with transactions (246);

and

10

15

20

25

30

WO 2008/151013 PCT/US2008/065312

storing a stub pointer in the normal function that points to the transactional
function (248).
7. The method of claim 6, further comprising:

calling a proper version of the particular function depending on execution
context (250).
8. The method of claim 7, wherein if the execution context is a non-
transactional context with a direct call to the particular function, then the normal
function is called (250).
0. The method of claim 7, wherein if the execution context is a transactional
context with a direct call to the particular function, then the transactional function is
called (250).
10. The method of claim 7, wherein if the execution context is a non-
transactional context with a pointer call to the particular function, then the pointer
call operates as normal (316).
11. The method of claim 7, wherein if the execution context is a transactional
context with a pointer call to the particular function, then a stub size is subtracted
from a de-reference of a function pointer value to calculate a resulting value, and
then the resulting value is called (318).
12. The method of claim 7, wherein if the execution context is a non-
transactional context with a virtual call to the particular function, then the virtual
call operates as normal (320).
13. The method of claim 7, wherein if the execution context is a transactional
context with a virtual call to the particular function, then a vtable lookup is
performed and an entry point computed for the stub pointer of the transactional
function, and then the computed entry point is used to make the virtual call (322).
14. The method of claim 6, wherein the identifier is an attribute (244).
15. The method of claim 6, wherein a compiler creates the two versions of the
particular function (246).
16. The method of claim 6, wherein the stub pointer that points to the

transactional function is stored at the beginning of the normal function (248).

10

10

15

20

WO 2008/151013 PCT/US2008/065312

17. A computer-readable medium having computer-executable instructions for
causing a computer to perform the steps recited in claim 6 (200).
18. A method for creating transactional and non-transactional versions of
functions for use in a transactional memory system comprising the steps of:
at compile time, allocating a stub pointer for each function of a plurality of
functions in a software application (272);
for each respective function of the plurality of functions that is not marked
as a transaction-safe function, generating a normal version of the respective
function that is not transaction-safe, and filling in the stub pointer with an entry
point of a runtime error routine (286); and
for each respective function of the plurality of functions that is marked as a
transaction-safe function, perform a process comprising the steps of:
creating code for a normal version and a transactional version of the
respective function that is transaction-safe (278);
in the stub pointer for the normal version, filling an entry point of the
transactional version (282); and
in a stub pointer for the transactional version, filling an entry point of
a runtime error routine (284).
19. The method of claim 18, further comprising:
for each call site in each function in the software application, make proper
function calls depending on a context (288).
20. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 18 (200).

11

PCT/US2008/065312

WO 2008/151013

1/6

SNOILYII1ddv
/SH43LNdNOD
d3H10

/

Gl1

E

NOILYDI1ddY
AJONIN
TYNOILOVSNYYHL 4/
A (SINOILOINNOD 002
NOILYDINNIINOD
{Hvx Y3HLO
! N JLYTOA-NON
21, (S)301A3Q LNdNI
1INN ONISSID0Yd JLYIOA
m
4 (3)301A3A LNALNO ol \. AYONIN W3LSAS
a
0Ll .
d 39VH01S
379YAONIY-NON
301A3d ONILNAINOD
504 d JOVHOLS
319vAONIY

001 901

PCT/US2008/065312

WO 2008/151013

2/6

02
NOILYOIddV FHL ONILVH3d0 d04 J19071H3aHLO

912
(INILNOY HOHY3 IWILNNY
JH1 ¥O NOISHIA NOILOVSNVYL FHL '9°3) ST0V1d LHOMY FHL OL LNIOd SANLS FHL ONIMYIN HO4 D190

vie
(30¥1d ¥3HL0 ¥O NOILO3S 30D
3H1 40 ONINNIO3G FHL 340439 "9'3) NOILONNA HOVI 404 ¥3LNIOd 9NLS ¥ ONILYIO TV HO4 1901

21C 34VS-NOILOVSNVYL SY AIMdvI
LON SI LYHL NOILONN4 HOV3 ¥O4 (NOISHAA TYIWHON V "9'3) NOISHIA ANO ONILYIHD ¥04 21901

01Z 34VS-NOILOVSNVYL SV AIMYVI SI LYHL NOILONNS HOV3
H04 (NOISHIA TYNOILOVSNYYHL ¥ ANY NOISHIA TYNHON V '9°3) SNOISHIA OML ONILYTFHO HO4 21907

802
34VS-NOILOVSNVHL SI NOILONNS 3HL F1VIIANI O1 d3141LN3dl 43HLO HO FLNAIdLLY NV HLIM
NOILVYIIddV FdVML40S V 40 SNOILONNS F1vH023d OL H3d013A3A/H3ASN V ONIMOTIV 404 J1901

902
W3LSAS AJOWIN TYNOILOVSNYHL ¥V ONIAIAOHd 04 J190T

v0¢
J190TNVHO0dd

002
NOILVYII'lddV AJOW3N TVNOILOVSNYHL

¢ Ol

WO 2008/151013 PCT/US2008/065312

3/6

START
240

PROVIDE A TRANSACTIONAL MEMORY SYSTEM (E.G. SOFTWARE
TRANSACTIONAL MEMORY SYSTEM)
242

/
ALLOW A USER/DEVELOPER TO DECORATE A PARTICULAR FUNCTION
WITH AN ATTRIBUTE OR OTHER IDENTIFIER TO INDICATE THE
FUNCTION IS TRANSACTION-SAFE
244

v

THE COMPILER AND/OR LINKER CREATES TWO VERSIONS OF THE
PARTICULAR FUNCTION: ONE FOR USE WITHOUT TRANSACTIONS
(NORMAL VERSION) AND ONE FOR USE WITH TRANSACTIONS
(TRANSACTIONAL VERSION)

246

v

IN THE NORMAL VERSION, THE SYSTEM STORES A STUB POINTER
(E.G. BEFORE THE COMPILED FUNCTION BODY TEXT) THAT POINTS TO
THE TRANSACTIONAL VERSION OF THE PARTICULAR FUNCTION
248

/

IN THE TRANSACTIONAL VERSION, THE SYSTEM STORES A STUB
POINTER THAT POINTS TO A RUNTIME ERROR ROUTINE
249

'

THE PROPER VERSION OF THE FUNCTION IS CALLED DEPENDING ON
EXECUTION CONTEXT
250

FIG. 3 j
END
252

WO 2008/151013 PCT/US2008/065312

476

START
270

AT COMPILE TIME, THE CODE GENERATOR ALLOCATES AN EXTRA
POINTER (E.G. THE STUB POINTER) BEFORE THE BEGINNING OF THE
CODE SECTION FOR EACH FUNCTION 272

NO

MORE FUNCTIONS? 274

YES

NO

IS THE FUNCTION MARKED AS A TRANSACTION-SAFE FUNCTION? 276

YES

CREATE CODE FOR THE NORMAL VERSION F AND ITS TRANSACTIONAL
VERSION FT 278

v

ALLOCATE A STUB POINTER FOR THE TRANSACTIONAL VERSION AND
THE NORMAL VERSION OF THE FUNCTION F 280

v

IN THE STUB FOR THE NORMAL VERSION, FILL THE ENTRY POINT OF
THE TRANSACTIONAL VERSION 282

v

IN THE STUB FOR THE TRANSACTIONAL VERSION, FILL IN THE ENTRY
POINT OF A RUNTIME ERROR ROUTINE 284

GENERATE REGULAR CODE FOR THE NORMAL VERSION, AND FILL IN
THE STUB POINTER OF THE NORMAL VERSION WITH THE ENTRY POINT
OF THE RUNTIME ERROR ROUTINE 286

FOR EACH CALL SITE, MAKE THE PROPER CALL DEPENDING ON THE
CONTEXT
288

END
FIG. 4 290

PCT/US2008/065312

WO 2008/151013

5/6

¢ee

\

0ce

\

¢ ol

0L

)

80¢€

((J ‘o)dnyoo8|geIA Jo} ANLS) 11eD

() ‘o)dnyo03|gelA 8D

(1<-0 ||e2 "6°8) 2D [enIA

gl (X, 404 9NLS) I1.D

ae— (X,) 11D

((x,) 11eo 6-8) ||eD JsjuIod

/

rie—>= 14[€Q

ce—> 41D

(11120 "68) |2 108417

JX8JU0D) uonoesue. |

JX8JUOD) UoIjoBSUR) | UON

)

L

v0€

E

¢0g

90¢

00€

PCT/US2008/065312

o
<

6/6

WO 2008/151013

g0v 90
(NOISH3IA
a3711dnoD
TYNOILOVSNYYL)
E / .
() ouy3 o7 (2%

N
i

<

90l

(NOISH3A
a37dino?
ATIVINYON)
Hvd

»/ 00¥

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - claims
	Page 11 - claims
	Page 12 - claims
	Page 13 - drawings
	Page 14 - drawings
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings

