发明名称
X 射线断层扫描方法和系统

摘要
一种 X 射线断层扫描方法，所述方法包括：通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描；利用平板探测器接收所述被检测对象的 X 射线，获得多角度的 X 射线投影图像；采集所述 X 射线投影图像的数据，并对采集到的数据进行重建得到所述被检测对象的断层图像。采用该方法，既能提高空间分辨率又能提高扫描速度。此外，还提供一种 X 射线断层扫描系统。
1. 一种 X 射线断层扫描方法，所述方法包括：
通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描；
利用平板探测器接收透过所述被检测对象的 X 射线，获得多角度的 X 射线投影图像；
采集所述 X 射线投影图像的数据，并对采集到的数据进行重建得到所述被检测对象的断层图像。

2. 根据权利要求 1 所述的方法，其特征在于，所述多焦点 X 射线源包含多个发射源点，在扫描过程中使用部分发射源点，扫描模式包括单模和非单模模式。

3. 根据权利要求 2 所述的方法，其特征在于，所述多焦点 X 射线源还包括阴极和阳极靶，其中所述阴极对应所述位置具有旋转角度，所述阳极靶的多个靶面分别与对应的阴极方向相同且所有靶面倾角相同，所述发射源点发射出的 X 射线光轴朝向扫描中心点。

4. 根据权利要求 3 所述的方法，其特征在于，所述通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描的步骤之后，还包括：
根据所述发射源点与所述扫描中心点之间的距离调节所述发射源点的 mAs 值。

5. 根据权利要求 2 或 3 所述的方法，其特征在于，所述多焦点 X 射线源还包括限束器，所述通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描，所述限束器控制所述发射源点发射出的 X 射线覆盖所述平板探测器的成像区域，且限束器的 X 射线边界在所述被检测对象的边缘。

6. 根据权利要求 1 所述的方法，其特征在于，所述多焦点 X 射线源通过金属腔体封装，所述通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描的步骤之前，还包括：
通过冷却机械泵与分子泵将所述金属腔体内抽至高真空；
检测所述金属腔体内的真空度是否小于预设值；
若是，则关闭所述金属腔体的闸板阀，开启分子泵，维持所述金属腔体内的真空度。

7. 一种 X 射线断层扫描系统，其特征在于，所述系统包括：
扫描模块，用于通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描；
图像获取模块，用于利用平板探测器接收透过所述被检测对象的 X 射线，获得多角度的 X 射线投影图像；
成像模块，用于采集所述 X 射线投影图像的数据，并对采集到的数据进行重建得到所述被检测对象的断层图像。

8. 根据权利要求 7 所述的系统，其特征在于，所述多焦点 X 射线源包含多个发射源点，在扫描过程中使用部分发射源点，扫描模式包括均单模和非单模模式。

9. 根据权利要求 8 所述的系统，其特征在于，所述多焦点 X 射线源还包括阴极和阳极靶，其中所述阴极对应所述位置具有旋转角度，所述阳极靶的多个靶面分别与对应的阴极方向相同且所有靶面倾角相同，所述发射源点发射出的 X 射线光轴朝向扫描中心点。

10. 根据权利要求 9 所述的系统，其特征在于，所述系统还包括：
调节模块，用于根据所述发射源点与所述扫描中心点之间的距离调节所述发射源点的 mAs 值。

11. 根据权利要求 8 或 9 所述的系统，其特征在于，所述多焦点 X 射线源还包括限束器，所述系统还包括：
 限束模块，用于通过所述限束器控制所述发射源点发射出的 X 射线覆盖所述平板探测器成像区域，且限束后的 X 射线边界在所述被检测对象的边缘。

12. 根据权利要求 7 所述的系统，其特征在于，所述多焦点 X 射线源通过金属腔体封装，所述系统还包括：
 真空控制模块，用于通过控制机械泵与分子泵将所述金属腔体内抽至高真空；
 检测模块，用于检测所述金属腔体内的真空度是否小于预设值；
 所述真空控制模块还用于若所述金属腔体内的真空度小于预设值，则关闭所述金属腔体的闸板阀，开启离子泵，维持所述金属腔体内的真空度。
X 射线断层扫描方法和系统

技术领域
0001 本发明涉及 X 射线断层扫描技术领域，特别是涉及一种 X 射线断层扫描方法和系统。

背景技术
0002 乳腺癌是危险女性健康的最常见疾病之一，钼靶片 X 射线检查是目前乳腺癌早期筛查的最常规手段。由于钼靶片 X 射线检查获得的是重叠的二维图像，缺少深度信息，导致产生较多的假阳性或假阴性。X 射线断层扫描作为一种新的成像技术，可以获得三维的图像信息，有效克服了组织重叠导致的误诊。
0003 现有的 X 射线断层扫描系统，为了能够多尺度的用 X 射线扫描，将一个 X 射线管安装在一个旋转机架上，并且使得该 X 射线管沿着一个预设的弧形运动。X 射线管工作在间歇运动模式时，X 射线管每旋转到一个新的投影位置后会停下并进行 X 射线曝光，曝光结束后继续进行至下一个投影位置。由于 X 射线管的加速与减速会引起机械的不稳定，从而限制了 X 射线管的运动速度，使得扫描时间较长。若想缩短扫描时间，提高扫描速度，可以使 X 射线管工作在连续运动模式。但是，由于扫描速度越高，X 射线管在曝光期间的运动距离就越大，由此引起的焦斑模糊面积也就越大。由此使得扫描系统的空间分辨率降低。如果降低扫描速度，可以减小焦斑模糊面积，但较长的扫描时间又容易引起病人运动，同样导致图像的模糊。因此，在 X 射线断层扫描技术中如何实现既能提高空间分辨率又能提高扫描速度，成为目前急需解决的问题。

发明内容
0004 基于此，有必要针对上述技术问题，提供一种既能提高空间分辨率又能提高扫描速度的 X 射线断层扫描方法和系统。
0005 一种 X 射线断层扫描系统，所述方法包括：
0006 通过控制多焦斑 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦斑 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描；
0007 利用平板探测器接收透过所述被检测对象的 X 射线，获得多角度的 X 射线投影图像；
0008 采集所述 X 射线投影图像的数据，并对采集到的数据进行重建得到所述被检测对象的断层图像。
0009 一种 X 射线断层扫描系统，所述系统包括：
0010 扫描模块，用于通过控制多焦斑 X 射线源的场发射单元的阴极与栅极间的电压，控制所述多焦斑 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描；
0011 图像获取模块，用于利用平板探测器接收透过所述被检测对象的 X 射线，获得多角度的 X 射线投影图像；
0012 成像模块，用于采集所述 X 射线投影图像的数据，并对采集到的数据进行重建得
到所述被检测对象的断层图像。
[0013] 上述 X 射线断层扫描方法和系统，通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，来控制多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描，利用平板探测器接收透过被检测对象的 X 射线，获得多角度的 X 射线投影图像，采集 X 射线投影图像的数据，并对采集到的数据进行重建得到被检测对象的断层图像。由于采用多焦点 X 射线源从不同发射源点位置发射 X 射线，消除了由于单焦点 X 射线源的机械运动而引入的焦斑模糊，由此提高了空间分辨率，而且 X 射线管无需从一个位置运动至另一个位置，节省了扫描时间，从而提高了扫描速度。

附图说明
[0014] 图 1 为一个实施例中 X 射线断层扫描方法的流程图；
[0015] 图 2 为一个实施例中 X 射线断层扫描方法的应用环境图；
[0016] 图 3 为一个实施例中多焦点 X 射线源正面方向示意图；
[0017] 图 4 为一个实施例中扫描模式示意图；
[0018] 图 5 为一个实施例中多焦点 X 射线源阴极分布示意图；
[0019] 图 6 为一个实施例中多焦点 X 射线源侧面视图；
[0020] 图 7 为一个实施例中探测结果示意图；
[0021] 图 8 为一个实施例中 X 射线断层扫描系统的结构示意图；
[0022] 图 9 为又一个实施例中 X 射线断层扫描系统的结构示意图；
[0023] 图 10 为又一个实施例中 X 射线断层扫描系统的结构示意图；
[0024] 图 11 为另一个实施例中 X 射线断层扫描系统的的结构示意图。

具体实施方式
[0025] 为了使本发明的目的、技术方案及优点更加清楚明白，以下结合附图及实施例，对本发明进行进一步详细说明。应理解，此处描述的具体实施例仅仅用以解释本发明，并不用于限定本发明。
[0026] 在一个实施例中，如图 1 所示，提供了一种 X 射线断层扫描方法，该方法包括：
[0027] 步骤 102，通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，控制多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描。
[0028] 多焦点 X 射线源为线阵排列的多个场发射单元，具体的可采用线阵的多焦点碳纳米管 X 射线源。场发射单元中包含阴极、栅极和阳极，当阴极与栅极间的电压高于预设阈值，阴极产生电子发射，通过阳极高压对发射的电子束加速，电子束轰击阳极的靶面就是阳极靶，即可产生 X 射线。当阴极与栅极间的电压低于预设阈值，电子发射停止，也就不再产生 X 射线。这种基于场致发射的冷阴极 X 射线源形成发射源点。阳极高压可根据被检测对象来决定，例如产生乳腺成像用的 X 射线，阳极高压为 10 ～ 50kV。阳极可采用多种形状，优选尖形阳极，所有发射源点可共用阳极。阳极通过电极引线连接至高压源。
[0029] 对每一个场发射单元的阴极与栅极间施加不同的电压，即可控制不同发射源点的发射与关闭，从而实现发射源点位置的改变。例如，欲使第 n 个发射源点位置处发射 X 射线，只需使得第 n 个发射源点位置的阴极与栅极间的电压大于预设阈值电压，而其它
发射源点位置的阴极与栅极间的电压都小于预设阈值电压即可。可采用 MOS 址效应管（Metal-Oxide-Semiconductor Field-Effect-Transistor，简称 MOSFET，即金属氧化物半
导体的场效应晶体管）来控制发射源点的发射与关闭。通过预设每个发射源点的工作时间
及个数，多个发射源点可分时工作，由此降低了阳极靶的热负荷，能够延长 X 射线管的使用寿
命。

步骤 104，利用平板探测器接收透过被检测对象的 X 射线，获得多角度的 X 射线投
影图像。

平板探测器位于多焦点 X 射线源下方，接收透过被检测对象的 X 射线，由于多焦
点 X 射线源从不同发射源点位方向被检测对象发射 X 射线，由此使得接收到的 X 射线形成多
角度的 X 射线投影图像。如图 2 所示，为一个实施例中的 X 射线层断扫描方法的应用环境。
多焦点 X 射线源 202 向被检测对象 206 发射 X 射线进行扫描，被检测对象 206 通过压迫板
204 进行固定，平板探测器 208 位于被检测对象 206 下方，接收透过压迫板和被检测对象的
X 射线，形成多角度 X 射线投影图像。多焦点 X 射线源 202、压迫板 204 和平板探测器 208
之间通过立柱 210 进行固定，并根据不同被检测对象的高度进行垂直移动。

步骤 106，采集 X 射线投影图像的数据，并对采集到的数据进行重建得到被检测对象
的断层图像。

采集 X 射线投影图像的数据，可根据 X 射线在被检测对象的辐射效应，调整采集视
角图像的数目。例如，在乳腺断层成像中，可采集 10～20 个视角图像的数据。对采集到的
data 进行恢复重建，得到被检测对象的断层图像。

本实施例中，通过控制多焦点 X 射线源的场发射单元的阴极与栅极间的电压，来
控制多焦点 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描，利用平板探
测器接收透过被检测对象的 X 射线，获得多角度的 X 射线投影图像，采集 X 射线投影图像
的数据，并对采集到的数据进行重建得到被检测对象的断层图像。由于采用多焦点 X 射线源
从不同发射源点位置发射 X 射线，消除了由于单焦点 X 射线源的机械运动而引入的焦斑模
糊，由此提高了空间分辨率，而且 X 射线管无需从一个位置运动至另一个位置，节省了扫描
时间，从而提高了扫描速度。此外，多个发射源点可分时工作，由此降低了阳极靶的热负荷，
能够延长 X 射线管的使用寿命。

在其中一个实施例中，多焦点 X 射线源包含多个发射源点，在扫描过程中使用部分发
射源点，扫描模式包括均匀模式和非均匀模式。

本实施例中，多焦点 X 射线源包含多个发射源点，发射源点呈直线分布，平行于平
板探测器的平面，并且相对扫描中心点为等角度分布，也就是相邻发射源点之间相对扫描
中心点的角度相同。如图 3 所示，为一个实施例中多焦点 X 射线源英文方向示意图。多焦
点 X 射线源 302 包含 N 个发射源点，其中 N>30。每个发射源点发射的 X 射线均为光束即 X
射线束，每束 X 射线束均有一条光轴，N 条光轴交汇在平板探测器 304 的正上方形成扫描中
心点 O。相邻发射源点之间相对扫描中心点的角度为 θ，N 个发射源点相对扫描中心点
0 的总转角为 θ，如 θ 为 1°，θ 为 N°。发射源点到平板探测器 304 的距离为 SDD，如
65～70mm，发射源点到扫描中心点的距离为 SSD，如 60～65mm。

在每次扫描过程中仅使用部分发射源点，也就是多焦点 X 射线源的发射源点数目
多于实际扫描过程中使用到的发射源点数目。所使用的部分发射源点的数目由被检测对象

的平均密度决定。由于扫描过程中使用的 X 射线的辐射总剂量保持不变，被检测对象的平均密度越大，单个发射源点发射出的 X 射线剂量就越大，所使用的部分发射源点的数目随之减少，即投影数随之减少。

[0038] 多焦斑 X 射线源的扫描模式包括均匀模式和非均匀模式，其中，非均匀模式包括中间密两边稀疏非均匀模式和中间稀疏两边密非均匀模式。如图 4 所示，为一个实施例中为扫描模式的示意图。其中，黑色圆点为中心发射源点，白色圆点为发射源点，发射源点相对中心发射源点呈对称分布。其中，扫描模式 1 为均匀模式，相对扫描中心点，每隔预设角度的发射源点进行扫描，并预设扫描次数。如预设角度为 2°，扫描次数为 15 次。扫描模式 2 为中间密两边稀疏非均匀模式，相对扫描中心点，发射源点之间的角度间隔从一侧的发射源点到中心发射源点依次预设由大到小的角度，角度间隔可部分相同，并预设扫描次数。例如，预设由大到小的角度依次为 4°，3°，2°，1°，1°，1°，1°，扫描次数为 15 次。扫描模式 3 为中间稀疏两边密模式，相对扫描中心点，发射源点之间的角度间隔从一侧的其他发射源点到中心发射源点依次预设由小到大的角度，角度间隔可部分相同，并预设扫描次数。例如，预设由大到小的角度依次为 1°，1°，1°，2°，2°，3°，4°，扫描次数为 15 次。扫描模式 2 在横向平面内，即平行于平板探测器的平面内，比扫描模式 1 和扫描模式 3 具有更高的空间分辨率。扫描模式 3 在纵向平面内，即垂直于平板探测器的平面内，比扫描模式 1 和扫描模式 2 具有更高的空间分辨率。扫描模式 1 的成像性能介于扫描模式 2 和扫描模式 3 之间。因此，对应不同的扫描模式，可满足不同的成像需求。

[0039] 在一个实施例中，多焦斑 X 射线源还包括阴极和阳极靶，其中所述阴极对应所在位置具有旋转角度，所述阳极靶的多个靶面分别与对应的阴极方向相同且所有靶面倾角相同，所述发射源点发射出的 X 射线光轴朝向扫描中心点。

[0040] 本实施例中，多焦斑 X 射线源还包括多个阴极和阳极靶。多焦斑 X 射线源包括多个发射源点，每个发射源点包含一个可独立控制的阴极，阴极可采用整体式结构或多段式结构，如 3 段式结构。每个阴极具有一定形状的发射面积，如椭圆形。每个阴极对应其所在的靶面旋转一定角度，阳极的旋转角度可不同，中心发射源点对应的阴极即中心阴极不旋转。如图 5 所示，为一个实施例中多焦斑 X 射线源阴极分布图。其中每个阴极对应所在的位置具有旋转角度 β，中心阴极不旋转。以中心阴极为中心，两侧阴极呈对称分布。中心阴极两侧的第一顺位阴极旋转 1°，中心阴极两侧第二顺位阴极旋转 2°，以此类推，中心阴极两侧的第 N 顺位阴极旋转 N°。

[0041] 阳极靶为多个分立的靶片嵌入一个条形的阳极座中，确保每个靶面与其对应的阴极方向相同且所有靶面倾角相同。由此使得所有发射源点发出的 X 射线束的光轴都朝向扫描中心点，提高了 X 射线分布的均匀性，进而提高了空间分辨率。

[0042] 此外，多焦斑 X 射线源还包括栅极与聚焦极，栅极与聚焦极均为整体式结构。具体的可以是多个圆孔阵列的整体式结构，圆孔数目等于阴极数目。阴极发射的电子束经过聚焦后在阳极靶上的轰击面积称作焦点。焦点越小，成像效果越好。通过调整施加到聚焦极上的电压可改变阴极、栅极、聚焦极与阳极这些电极之间的电场分布，从而改变焦点的大小和形状。

[0043] 在一个实施例中，通过控制多焦斑 X 射线源的场发射单元的阴极与栅极间的电压，控制多焦斑 X 射线源从不同发射源点位置向被检测对象发射 X 射线进行扫描的步骤之
后，还包括：根据发射源点与扫描中心点之间的距离调节发射源点的 mAs 值。
[0044] 本实施例中，mAs 值即管电流每秒，也就是 X 射线的辐射剂量，mAs 值越低，X 射线的辐射剂量就越大。发射源点到扫描中心点的距离可用 SOD 来表示。由于发射源点到扫描
中心点的距离的平方与 mAs 值成反比，即 SOD^2*mAs = K，其中 K 为预设值。SOD 增大，mAs 值
即减小，反之 SOD 减小，mAs 值即增大。由此可调节 X 射线的辐射剂量。
[0045] 在一个实施例中，多焦点 X 射线源还包括限束器，通过控制多焦点 X 射线源的场发射
单元的阴极与栅极间的电压，控制多焦点 X 射线源从不同发射源点位置向被检测对象发射
X 射线进行扫描的步骤之后，还包括：通过限束器控制发射源点发射出的 X 射线覆盖平板
探测器成像区域，且限束后的 X 射线边界在被检测对象的边界。
[0046] 本实施例中，多焦点 X 射线源的焦点下方，X 射线出射窗上方设置有限束器，具
体的可采用多孔限束器，每个发射源点出射的 X 射线通过限束器上的限束孔向外发射，通过
对限束器进行调节控制，使得从每个发射源点发射出的 X 射线覆盖平板探测器的成像区域，
并且限束后的 X 射线边界在被检测对象的边界，由此最大限度地减少了对被检测对象
非必要的辐射。
[0047] 在另一个实施例中，多孔限束器上的开有限束孔，限束孔可采用不同的形状，如小
的长方形。限束孔的形状和尺寸决定了限束器的效果。多焦点 X 射线源采用线阵结构，线
阵的焦点位于平板探测器边界正上方，使得限束后的 X 射线边界在被检测对象的边缘垂直
向下，避免了 X 射线斜入射对被检测对象非必要的辐射。
[0048] 如图 6 所示，为多焦点 X 射线源的侧面视图。从侧面看，线阵焦点位于平板探测器
边界正上方，使得线束后的 X 射线边界在被检测对象的边缘垂直向下。多焦点 X 射线源 602
相对于平板探测器 606 的平面具有旋转角度 α，α 可以在 5° ～ 15° 之间，通过限束器 604
限束后使得阴极侧 602a 的 X 射线比阳极侧 602b 的 X 射线更多的覆盖于平板探测器 606 的
成像区域，由此克服了足跟效应的影响，获得了更好的 X 射线光强分布均匀性。足跟效应又
称阳极效应，是指高速电子轰击阳极靶时会进入一定的深度，产生的 X 射线在不同的出射
方位会经历不同的衰减，使得不同方位的 X 射线强度不一致。有效焦点小，X 射线量少，成
像质量就好；反之，有效焦点大，X 射线量多，成像质量就差。
[0049] 如图 7 所示，描述了足跟效应的影响。靠阴极侧的 X 射线由于在扫描过程中比阳
极侧的 X 射线经历的路径短，因此出射强度更大，X 射线的均匀性更好。
[0050] 在一个实施例中，多焦点 X 射线源通过金属腔体封装，通过控制多焦点 X 射线源的
场发射单元的阴极与栅极间的电压，控制多焦点 X 射线源从不同发射源点位置向被检测对
象发射 X 射线进行扫描的步骤之前，还包括：通过控制机械泵与分子泵将金属腔体内抽至
高真空，检测金属腔体内的真空度是否小于预设值；若是，则关闭金属腔体的闸板阀，开启
离子泵，维持金属腔体内的真空度。
[0051] 本实施例中，多焦点 X 射线源通过金属腔体封装，可进行拆卸。只有当金属腔体
内的真空度达到一定程度，多焦点 X 射线源才能开启工作。金属腔体内包含机械泵、分子泵
和离子泵等部件，金属腔体首次关闭时，通过控制机械泵与分子泵将金属腔体内抽至高真空，
若检测金属腔体内的真空度小于预设值，如小于 10^-7 毫米汞柱的真空度，则关闭金属腔体
的闸板阀，开启离子泵，维持金属腔体内的真空度，为多焦点 X 射线源发射 X 射线做好准备。
当金属腔体打开时，通过控制放气阀对金属腔体进行充气。
在一个实施例中，如图8所示，提供了一种X射线断层扫描系统，包括扫描模块802、图像获取模块804和成像模块806，其中：

扫描模块802，用于通过控制多焦点X射线源的场发射单元的阴极与栅极间的电压，控制多焦点X射线源从不同发射源点位置向被检测对象发射X射线进行扫描。

图像获取模块804，用于利用平板探测器接收透过被检测对象的X射线，获得多角度的X射线投影图像。

成像模块806，用于采集X射线投影图像的数据，并对采集到的数据进行重建得到被检测对象的断层图像。

在一个实施例中，多焦点X射线源包含多个发射源点，在扫描过程中使用部分发射源点，扫描模式包括均匀模式和非均匀模式。

在一个实施例中，多焦点X射线源还包括阴极和阳极靶，其中阴极对应所在位置具有旋转角度，阳极靶的多个靶面分别与对应的阴极方向相同且所有靶面倾角相同，发射源点发射出的X射线光轴朝向扫描中心点。

在一个实施例中，如图9所示，X射线断层扫描系统还包括调节模块808，用于根据发射源点与扫描中心点之间的距离调节发射源点的mAs值。

在一个实施例中，如图10所示，多焦点X射线源还包括限束器，X射线断层扫描系统还包括：限束模块810，用于通过限束器控制发射源点发射出的X射线覆盖平板探测器成像区域，且限束后的X射线边界在被检测对象的边缘。

在一个实施例中，多焦点X射线源通过金属腔体封装，如图11所示，X射线断层扫描系统还包括：真空控制模块812和检测模块814，其中：

真空控制模块812，用于通过控制机械泵与分子泵将金属腔体内抽至高真空。

检测模块814，用于检测金属腔体内的真空度是否小于预设值。

真空控制模块812还用于调节金属腔体内的真空度大于预设值，关闭金属腔体的闸板阀，开启离子泵，维持金属腔体内的真空度。

以上所述实施例仅表达了本发明的几种实施方式，其描述较为具体和详细，但并不能因此而理解为对本发明专利范围的限制。应当指出的是，对于本领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干变形和改进，这些都属于本发明的保护范围。因此，本发明专利的保护范围应以所附权利要求为准。
通过控制多焦斑X射线源的场发射单元的阴极与栅极间的电压，控制，多焦斑X射线源从不同发射源点位置向被检测对象发射X射线进行扫描。

利用平板探测器接收透过被检测对象的X射线，获得多角度的X射线投影图像。

采集X射线投影图像的数据，并对采集到的数据进行重建得到被检测对象的断层图像。

图 1
图 2

图 3

扫描模式 1：均匀模式

扫描模式 2：中间密两边疏模式

扫描模式 3：中间疏两边密模式

图 4
图7

图8

图9