Title: INFANT NUTRITION FOR IMPROVING FATTY ACID COMPOSITION OF BRAIN MEMBRANES LATER IN LIFE

Abstract: The present invention relates to infant nutrition, in particular to infant nutrition comprising special lipid globules for improvement of the fatty acid composition in brain membranes later in life.
Infant nutrition for improving fatty acid composition of brain membranes later in life

FIELD OF THE INVENTION:
The present invention relates to infant nutrition, in particular to infant nutrition comprising special lipid globules for improvement of the fatty acid composition in brain membranes later in life.

BACKGROUND OF THE INVENTION
Breast-feeding is the preferred method of feeding infants. However, there are circumstances that make breast-feeding impossible or less desirable. In those cases infant formulae are a good alternative. The composition of modern infant formulae is adapted in such a way that it meets many of the special nutritional requirements of the fast growing and developing infant.

Still it seems that improvements can be made towards the constitution of infant milk formulae. Early nutrition administered during the specific period of infancy when rapid growth and development of the body occurs has an imprinting or programming effect and therefore has long term metabolic consequences. Breast fed infants have a decreased chance of becoming obese later in life. Breast-fed infants score better on visual and developmental tests than do formula-fed infants and have an improved neurodevelopment compared to formula fed infants. Also long term links have been reported between breast milk feeding and cognitive ability or neurological status later in life.

This difference in neurodevelopment between breast and bottle fed infants has mainly been attributed to the presence of long chain polyunsaturated fatty acids (LC-PUFA) such as docosahexaenoic acid (DHA) and arachidonic acid (ARA) in breast milk. Most current infant milk formulae therefore now also comprise such LC-PUFA. It has also been found that such LC-PUFA are better incorporated into membranes when they are present in the diet in the form of phospholipids instead of triglycerides.

WO 2008/005033 discloses infant formula comprising fat, protein, carbohydrate, vitamins, and minerals, including gangliosides, phospholipids, (lipid-bound) sialic acid, docosahexaenoic acid, and arachidonic acid for early brain development such as accelerating neural migration.

WO 2005/051091 discloses a specific blend of glycerophospholipids in combination with sphingomyelin and/or cholesterol, which blend resembles that of human breast milk and is present as a fat globule for
use in the manufacture of infant formulae. The blend is claimed to be beneficial for the development of
cognitive and vision functions of the fetus, infants and children.
WO 2009/057121 discloses a method for improving, promoting or maintaining the development of brain
and retina in an infant comprising administering a composition comprising at least one triglyceride, at
least one phospholipid and at least one long chain poly-unsaturated fatty acid (LC-PUFA); wherein at
least about 1% of the LC-PUFA in the composition is conjugated to said at least one phospholipid.
WO 2009/051502 discloses the use of one or more complex lipids including gangliosides to achieve
particular health benefits including maintaining or increasing cognitive development or maintaining or
increasing growth in a foetal, infant or child subject.
US 2008-292724 discloses that upon administration of a composition that comprises: a) a lipid fraction
comprising at least one of docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and
eicosapentaenoic acid (EPA); b) a protein fraction comprising proteinaceous material from non-human
origin which provide at least cysteine and/or taurine; and c) a mineral fraction comprising at least one of
manganese and molybdeni, the health of these persons improves. Membrane function of cells
improves, which allows efficient treatment of disorders, amongst which cognitive dysfunction and other
diseases of the nervous system, neuropathies.
WO 2009/138680 discloses that the presence of at least 30% milk fat in conjunction with a vegetable oil
in infant nutrition can be used amongst others to increase DHA accumulation in brain membranes, and
ameliorating brain development and cognitive function. Optionally milk phospholipids are present.
WO 2008/081934 discloses an agent for facilitating the development of the brain in an infant, which
comprises an effective amount of a milk-derived phospholipid or a sphingomyelin.
WO 2007/073193 discloses that in IMF with low levels of n6 PUFA, necessary to prevent obesity later in
life, the incorporation of the small amount of n6 (LC-)PUFA into neurological cell membranes is more
efficient by providing lipidic membrane components such as cholesterol, phospholipids and/or
sphingolipids.

Benoit et al, 2010, Food Chem, 120:684-691, discloses that PC is an efficient carrier for DHA accretion in
membranes and that in this respect also the specific structurisation of most PL in human milk, in the
native milk fat globule membrane, which cannot be copied in infant formula, may be of functional
significance for the infant.
SUMMARY OF THE INVENTION

Using a rat animal model the inventors found that even after a long period during which all the animals were on the same Western style diet, the effects of a previous early diet administered during infancy were still present with regard to the fatty acid profile of the brain membranes. Since fatty acid accretion of the brain and turnover in the brain is a continuous process throughout life, it was unexpected that such long term early diets effects were observed. These effects are indicative for altered fat handling, ultimately resulting in improved fatty acid availability. The most surprising finding however, was that this effect was observed with infancy diets with a similar fat composition, only differing in the architecture of the dietary lipid globules. Effects on long term brain fatty acid composition were observed regarding the size of the lipid globules and also regarding the presence and location of phospholipids. Best results were obtained with an early diet comprising large lipid globules coated with phospholipids resulting in a long term increased percentage of n3 and n6 PUFA and n3 and n6 LC-PUFA in brain membranes, in particular DHA, indicative for increased membrane fluidity. The lipid globules have to be both increased in size surrounded by a coating comprising phospholipids in order to see improved long term effect on brain fatty acid composition compared to lipid globules as present in standard IMF.

The present invention therefore relates to infant nutrition comprising lipid in the form of large lipid globules, coated with polar lipids including phospholipids, for use in the development of cognitive or behavioural performances, including fine motor skills and visual acuity.

DETAILED DESCRIPTION

The present invention thus concerns a method for i) increasing brain membrane fluidity, ii) increasing brain membrane PUFA, iii) increasing brain membrane LC-PUFA, iv) increasing brain membrane n6-LC-PUFA, v) increasing brain membrane n6 PUFA, vi) increasing brain membrane n3 PUFA, vii) increasing brain membrane n3 LC-PUFA, viii) increasing brain membrane ARA, ix) increasing brain membrane DHA, said method comprising administering to a human subject a nutritional composition comprising a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and b) 0.5 to 20 wt.% phospholipids based on total lipid and/or b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
c1) a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
c2) a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

In one embodiment the present method is non-therapeutic.

The present invention can also be worded as the use of a composition comprising lipid, or the use of lipid, for the manufacture of a nutritional composition for

i) increasing brain membrane fluidity,

ii) increasing brain membrane PUFA,

iii) increasing brain membrane LC-PUFA,

iv) increasing brain membrane n6-LC-PUFA,

v) increasing brain membrane n6 PUFA,

vi) increasing brain membrane n3 PUFA,

vii) increasing brain membrane n3 LC-PUFA,

viii) increasing brain membrane ARA,

ix) increasing brain membrane DHA in a human subject, said nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and

b) 0.5 to 20 wt.% phospholipids based on total lipid and/or

b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,

and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have

c1) a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
c2) a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

The present invention can also be worded as a nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and

b) 0.5 to 20 wt.% phospholipids based on total lipid and/or

b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,

and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
cl) a volume-weighted mode diameter above 1.0 µιη, preferably between 1.0 and 10 µιη, and/or
c2) a diameter of 2 to 12 µιη in an amount of at least 45, more preferably at least 55 volume % based on total lipid,
for use in i) increasing brain membrane fluidity, ii) increasing brain membrane PUFA, iii) increasing brain membrane LC-PUFA, iv) increasing brain membrane n6 PUFA, vi) increasing brain membrane n3 PUFA, vii) increasing brain membrane n3 LC-PUFA, viii) increasing brain membrane ARA, ix) increasing brain membrane DHA in a human subject.

In one embodiment the present invention is for the prevention and/or treatment of a disorder associated with decreased brain membrane fluidity and/or associated with decreased brain membrane PUFA content and/or LC-PUFA content. In one embodiment, the disorder is a psychiatric, psychological and/or neurobiological disorder. In one embodiment the present invention is for amelioration of i) cognitive performance, ii) behavioural performance, iii) visual acuity, iv) fine motor skills.

In one aspect, the present invention thus concerns a method for treatment and/or prevention of attention deficiency, ADHD, dyslexia, autism, depression, bipolar depression, anxiety, schizophrenia, OCD, bulimia, abuse of alcohol or drugs, borderline personality disorder, panic disorder, social phobia, learning difficulties, mild cognitive impairment, said method comprising administering to a human subject a nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and
b) 0.5 to 20 wt.% phospholipids based on total lipid and/or
b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
cl) a volume-weighted mode diameter above 1.0 µιη, preferably between 1.0 and 10 µιη, and/or
c2) a diameter of 2 to 12 µιη in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

The present invention can also be worded as the use of a composition comprising lipid, or the use of lipid, for the manufacture of a nutritional composition for treatment and/or prevention of attention
deficiency, ADHD, dyslexia, autism, depression, bipolar depression, anxiety, schizophrenia, OCD, bulimia, abuse of alcohol or drugs, borderline personality disorder, panic disorder, social phobia, learning difficulties, mild cognitive impairment in a human subject, said nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and

b) 0.5 to 20 wt.% phospholipids based on total lipid and/or

b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,

and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have

c) a volume-weighted mode diameter above 1.0 µm, preferably between 1.0 and 10 µm, and/or

c2) a diameter of 2 to 12 µm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

The present invention can also be worded as a nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and

b) 0.5 to 20 wt.% phospholipids based on total lipid and/or

b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,

and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have

c) a volume-weighted mode diameter above 1.0 µm, preferably between 1.0 and 10 µm, and/or

c2) a diameter of 2 to 12 µm in an amount of at least 45, more preferably at least 55 volume % based on total lipid,

for use in treatment and/or prevention of attention deficiency, ADHD, dyslexia, autism, depression, bipolar depression, anxiety, schizophrenia, OCD, bulimia, abuse of alcohol or drugs, borderline personality disorder, panic disorder, social phobia, learning difficulties, mild cognitive impairment in a human subject.

In one aspect, the present invention concerns a method for amelioration of i) cognitive performance, ii) behavioural performance, iii) visual acuity, iv) fine motor skills, said method comprising administering to a human subject a nutritional composition comprising
a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and
b) 0.5 to 20 wt.% phospholipids based on total lipid and/or
b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
c) a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
c2) a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

In one embodiment of this aspect, the method is non-therapeutic.

The invention can also be worded as the use of a composition comprising lipid, or the use of lipid, for the manufacture of a nutritional composition for amelioration of i) cognitive performance, ii) behavioral performance, iii) visual acuity, iv) fine motor skills in a human subject, said nutritional composition comprising
a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and
b) 0.5 to 20 wt.% phospholipids based on total lipid and/or
b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
c) a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
c2) a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

The present invention can also be worded as a nutritional composition comprising
a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and
b) 0.5 to 20 wt.% phospholipids based on total lipid and/or
b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
c1) a volume-weighted mode diameter above 1.0 µm, preferably between 1.0 and 10 µm, and/or
c2) a diameter of 2 to 12 µm in an amount of at least 45, more preferably at least 55 volume % based on
the composition comprises at least 75 wt. %, more preferably at least 85 wt.% triglycerides based on total lipids.

For sake of clarity it is noted that the present invention is defined in terms of specific ingredients, hence
the vegetable lipids and phospholipids and polar lipids and by the way these ingredients are assembled,
for use in amelioration of i) cognitive performance, ii) behavioural performance, iii) visual acuity, iv) fine
motor skills in a human subject.

Throughout the description wherever the phrase 'the present composition' is used it is to be understood
that this refers to the composition that is used in the method according to the present invention or in
other words for the use to achieve the specified effect(s).

Lipid component
The present composition comprises lipid. The lipid provides preferably 30 to 60% of the total calories of
the composition. More preferably the present composition comprises lipid providing 35 to 55% of the
total calories, even more preferably the present composition comprises lipid providing 40 to 50% of the
total calories. When in liquid form, e.g. as a ready-to-feed liquid, the composition preferably comprises
2.1 to 6.5 g lipid per 100 ml, more preferably 3.0 to 4.0 g per 100 ml. Based on dry weight the present
composition preferably comprises 10 to 50 wt.%, more preferably 12.5 to 40 wt.% lipid, even more
preferably 19 to 30 wt.% lipid.

Lipids include polar lipids (such as phospholipids, glycolipids, sphingomyelin, and cholesterol),
monoglycerides, diglycerides, triglycerides and free fatty acids. Preferably the composition comprises at
least 75 wt. %, more preferably at least 85 wt.% triglycerides based on total lipids.
The lipid of the present invention comprises vegetable lipids. The presence of vegetable lipids advantageously enables an optimal fatty acid profile, high in (poly)unsaturated fatty acids and/or more reminiscent to human milk fat. Using lipids from cow's milk alone, or other domestic mammals, does not provide an optimal fatty acid profile. Preferably the composition comprises at least one, preferably at least two lipid sources selected from the group consisting of linseed oil (flaxseed oil), rape seed oil (such as colza oil, low erucic acid rape seed oil and canola oil), salvia oil, perilla oil, purslane oil, lingonberry oil, sea buckthorn oil, hemp oil, sunflower oil, high oleic sunflower oil, safflower oil, high oleic safflower oil, olive oil, black currant seed oil, echium oil, coconut oil, palm oil and palm kernel oil. Preferably the present composition comprises at least one, preferably at least two lipid sources selected from the group consisting of linseed oil, canola oil, coconut oil, sunflower oil and high oleic sunflower oil. Commercially available vegetable lipids are typically offered in the form a continuous oil phase. When in liquid form, e.g. as a ready-to-feed liquid, the composition preferably comprises 2.1 to 6.5 g vegetable lipid per 100 ml, more preferably 3.0 to 4.0 g per 100 ml. Based on dry weight the present composition preferably comprises 10 to 50 wt.%, more preferably 12.5 to 40 wt.% vegetable lipid, even more preferably 19 to 30 wt.%. Preferably the composition comprises 50 to 100 wt.% vegetable lipids based on total lipids, more preferably 70 to 100 wt.%, even more preferably 75 to 97 wt.%. It is noted therefore that the present composition also may comprise non-vegetable lipids. Suitable and preferred non-vegetable lipids are further specified below.

Polar lipids

The present invention comprises polar lipids. Polar lipids are amphipathic of nature and include glycerophospholipids, glycosphingolipids, sphingomyelin and/or cholesterol. More preferably the composition comprises phospholipids (the sum of glycerophospholipids and sphingomyelin). Polar lipids in the present invention relate to the sum of glycerophospholipids, glycosphingolipids, sphingomyelin and cholesterol. According to the present invention polar lipids are present as a coating of the lipid globule. By 'coating' it means that the outer surface layer of the lipid globule comprises polar lipids, whereas these polar lipids are virtually absent in the core of the lipid globule. The presence of polar lipids as a coating or outer layer of the lipid globule in the diet administered early in life was found to advantageously result in increased incorporation of n3 and n6 (LC-)PUFA in brain cell membranes later in life.
The present composition preferably comprises glycerophospholipids. Glycerophospholipids are a class of lipids formed from fatty acids esterified at the hydroxyl groups on carbon-1 and carbon-2 of the backbone glycerol moiety and a negatively-charged phosphate group attached to carbon-3 of the glycerol via an ester bond, and optionally a choline group (in case of phosphatidylcholine, PC), a serine group (in case of phosphatidylserine, PS), an ethanolamine group (in case of phosphatidylethanolamine, PE), an inositol group (in case of phosphatidylinositol, PI) or a glycerol group (in case of phosphatidylglycerol, PG) attached to the phosphate group. Lysophospholipids are a class of phospholipids with one fatty acyl chain. Preferably the present composition contains PC, PS, PI and/or PE, more preferably at least PC.

The present composition preferably comprises phosphosylipids, preferably sphingomyelin. Sphingomyelins have a phosphorylcholine or phosphorylethanolamine molecule esterified to the 1-hydroxy group of a ceramide. They are classified as phospholipid as well as sphingolipid, but are not classified as a glycerophospholipid nor as a glycosphingolipid.

The present composition preferably comprises glycosphingolipids. The term glycosphingolipids as in the present invention particularly refers to glycolipids with an amino alcohol sphingosine. The sphingosine backbone is O-linked to a charged headgroup such as ethanolamine, serine or choline backbone. The backbone is also amide linked to a fatty acyl group. Glycosphingolipids are ceramides with one or more sugar residues joined in a β-glycosidic linkage at the 1-hydroxyl position. Preferably the present composition contains gangliosides, more preferably at least one ganglioside selected from the group consisting of GM3 and GD3.

Sphingolipids are in the present invention defined as the sum of sphingomyelin and glycosphingolipids.

Phospholipids are in the present invention defined as the sum of sphingomyelin and glycerophospholipids. Preferably the phospholipids are derived from milk lipids. Preferably the weight ratio of phospholipids : glycosphingolipids is from 2:1 to 10:1, more preferably 2:1 to 5:1.

Preferably the present composition comprises phospholipids. Preferably the present composition comprises 0.5 to 20 wt.% phospholipids based on total lipid, more preferably 0.5 to 10 wt.%, more preferably 1 to 10 wt.%, even more preferably 2 to 10 wt.% even more preferably 3 to 8 wt.%
phospholipids based on total lipid. Preferably the present composition comprises 0.1 to 10 wt.%
glycosphingolipids based on total lipid, more preferably 0.5 to 5 wt.%, even more preferably 2 to 4 wt%.
Preferably the present composition comprises 0.5 to 10 wt.% (glycosphingolipids plus phospholipids)
based on total lipid, more preferably 1.0 to 10 wt.% (glycosphingolipids plus phospholipids) based on
total lipid.

The present composition preferably comprises cholesterol. The present composition preferably comprises at least 0.005 wt.% cholesterol based on total lipid, more preferably at least 0.02 wt.%, more
preferably at least 0.05 wt.%, even more preferably at least 0.1 wt%. Preferably the amount of
cholesterol does not exceed 10 wt.% based on total lipid, more preferably does not exceed 5 wt.%, even
more preferably does not exceed 1 wt.% of total lipid.

Preferably the present composition comprises 0.6 to 25 wt.% polar lipids based on total lipid, wherein
the polar lipids are the sum of phospholipids, glycosphingolipids, and cholesterol, more preferably 0.6 to
12 wt.%, more preferably 1 to 10 wt.%, even more preferably 2 to 10 wt%, even more preferably 3.0 to
10 wt.% polar lipids based on total lipid, wherein the polar lipids are the sum of phospholipids,
glycosphingolipids, and cholesterol.

Preferred sources for providing the phospholipids, glycosphingolipids and/or cholesterol are egg lipids,
milk fat, buttermilk fat and butter serum fat (such as beta serum fat). A preferred source for phospholipids, particularly PC, is soy lecithin and/or sunflower lecithin. The present composition preferably comprises phospholipids derived from milk. Preferably the present composition comprises phospholipids and glycosphingolipids derived from milk. Preferably also cholesterol is obtained from milk. Preferably the polar lipids are derived from milk. Polar lipids derived from milk include the polar
lipids isolated from milk lipid, cream lipid, butter serum lipid (beta serum lipid), whey lipid, cheese lipid
and/or buttermilk lipid. The buttermilk lipid is typically obtained during the manufacture of buttermilk.
The butter serum lipid or beta serum lipid is typically obtained during the manufacture of anhydrous
milk fat from butter. Preferably the phospholipids, glycosphingolipids and/or cholesterol are obtained
from milk cream. The composition preferably comprises phospholipids, glycosphingolipids and/or
cholesterol from milk of cows, mares, sheep, goats, buffalos, horses and camels. It is most preferred to
use a lipid extract isolated from cow's milk. The use of polar lipids from milk fat advantageously
comprises the polar lipids from milk fat globule membranes, which are more reminiscent to the situation in human milk. Polar lipids derived from fat milk advantageously improve brain fatty acid composition to a larger extent than polar lipids from other sources. The polar lipids are located on the surface of the lipid globule, i.e. as a coating or outer layer. A suitable way to determine whether the polar lipids are located on the surface of the lipid globules is laser scanning microscopy as given in example 1. The concomitant use of polar lipids derived from domestic animals milk and triglycerides derived from vegetable lipids therefore enables to manufacture coated lipid globules with a coating more similar to human milk, while at the same time providing an optimal fatty acid profile. Suitable commercially available sources for milk polar lipids are BAEF, SM2, SM3 and SM4 powder of Corman, Salibra of Glanbia, and LacProdan MFG M-10 or PL20 from Aria. Preferably the source of milk polar lipids comprises at least 4 wt.% phospholipids based on total lipid, more preferably 7 to 75 wt.%, most preferably 20 to 70 wt.% phospholipids based on total lipid. Preferably the weight ratio phospholipids to protein is above 0.10, more preferably above 0.20, even more preferably above 0.3. Preferably at least 25 wt.%, more preferably at least 40 wt.%, most preferably at least 75 wt.% of the polar lipids is derived from milk polar lipids.

Fatty acid composition

Herein LA refers to linoleic acid and/or acyl chain (18:2 n6); ALA refers to a-linolenic acid and/or acyl chain (18:3 n3); LC-PUFA refers to long chain polyunsaturated fatty acids and/or acyl chains comprising at least 20 carbon atoms in the fatty acyl chain and with 2 or more unsaturated bonds; DHA refers to docosahexaenoic acid and/or acyl chain (22:6, n3); EPA refers to eicosapentaenoic acid and/or acyl chain (20:5 n3); ARA refers to arachidonic acid and/or acyl chain (20:4 n6); DPA refers to docosapentaenoic acid and/or acyl chain (22:5 n3). Medium chain fatty acids (MCFA) refer to fatty acids and/or acyl chains with a chain length of 6, 8 or 10 carbon atoms.

LA preferably is present in a sufficient amount in order to promote a healthy growth and development, yet in an amount as low as possible in view of an unwanted high n6/n3 ratio. The composition therefore preferably comprises less than 15 wt.% LA based on total fatty acids, preferably between 5 and 14.5 wt.%, more preferably between 6 and 10 wt.%. Preferably the composition comprises over 5 wt.% LA based on fatty acids. Preferably ALA is present in a sufficient amount to promote a healthy growth and development of the infant. The present composition therefore preferably comprises at least 1.0 wt.%
ALA based on total fatty acids. Preferably the composition comprises at least 1.5 wt.% ALA based on total fatty acids, more preferably at least 2.0 wt.%. Preferably the composition comprises less than 10 wt.% ALA, more preferably less than 5.0 wt.% based on total fatty acids. The weight ratio LA/ALA should be well balanced ensuring a normal growth and development. Therefore, the present composition preferably comprises a weight ratio of LA/ALA between 2 and 15, more preferably between 2 and 7, more preferably between 4 and 7, more preferably between 3 and 6, even more preferably between 4 and 5.5, even more preferably between 4 and 5.

The present composition preferably comprises at least 3 wt.% MCFA based on total fatty acids, more preferably at least 10 wt.%, even more preferably 15 wt.%. The present composition advantageously comprises less than 50 wt.% MCFA based on total fatty acids, more preferably less than 40 wt.%, even more preferably less than 25 wt.%.

Preferably the present composition comprises n3 LC-PUFA, since efficient incorporation of n3 LC-PUFA in brain membranes improve fluidity thereof. More preferably, the present composition comprises EPA, DPA and/or DHA, even more preferably DHA. Since a low concentration of DHA, DPA and/or EPA is already effective and normal growth and development are important, the content of n3 LC-PUFA in the present composition, preferably does not exceed 15 wt.% of the total fatty acid content, preferably does not exceed 10 wt.%, even more preferably does not exceed 5 wt.%. Preferably the present composition comprises at least 0.2 wt.%, preferably at least 0.5 wt.%, more preferably at least 0.75 wt.%, n3 LC-PUFA of the total fatty acid content. In one embodiment the present composition preferably comprises DHA in an amount of 0.1 to 0.6 wt.% based on total fatty acid content.

As the group of n6 fatty acids, especially arachidonic acid (ARA) and LA as its precursor, counteracts the group of n3 fatty acids, especially DHA and EPA and ALA as their precursor, the present composition comprises relatively low amounts of ARA. The n6 LC-PUFA content preferably does not exceed 5 wt.%, more preferably does not exceed 2.0 wt.%, more preferably does not exceed 0.75 wt.%, even more preferably does not exceed 0.5 wt.%, based on total fatty acids. Nevertheless, since according to the present invention incorporation into brain membranes is improved, still an advantageous effect on brain membrane fluidity can be obtained. Since ARA is important in infants for optimal functional membranes, especially membranes of brain tissues, the amount of n6 LC-PUFA is preferably at least 0.02 wt.% more
preferably at least 0.05 wt.%, more preferably at least 0.1 wt.% based on total fatty acids, more preferably at least 0.2 wt.%. The presence of ARA is advantageous in a composition low in LA since it remedies LA deficiency. The presence of, preferably low amounts, of ARA is beneficial in nutrition to be administered to infants below the age of 6 months, since for these infants the infant formula is generally the only source of nutrition. In one embodiment the present composition preferably comprises ARA in an amount of 0.1 to 0.6 wt.% based on total fatty acid content.

Preferably in addition to the vegetable lipid, a lipid selected from fish oil (preferably tuna fish oil) and single cell oil (such as algal, microbial oil and fungal oil) is present. These sources of oil are suitable as LC-PUFA sources. Preferably as a source of n3 LC-PUFA single cell oil, including algal oil and microbial oil, is used, since these oil sources have an advantageous EPA/DHA ratio. More preferably fish oil (even more preferably tuna fish oil) is used as a source of n3 LC-PUFA since fish oil has a higher EPA concentration. Thus in one embodiment the present composition further comprises at least one lipid selected from the group consisting of fish oil, marine oil, algal oil, fungal oil and microbial oil.

Process for obtaining polar lipid coated lipid globules

The present composition comprises lipid globules. The lipid globule size can be manipulated by adjusting process steps by which the present composition is manufactured. A suitable and preferred way to obtain lipid globules coated with polar lipids is to increase the amount of polar lipids compared to amounts typically present in infant formula and to have these polar lipids present during the homogenization process, wherein the mixture of aqueous phase and oil phase is homogenized. Typical amounts of phospholipids / polar lipids in infant formula are about 0.15 wt.% / 0.2 wt.% based on total fat. The amount of phospholipids is increased to at least 0.5 wt %, more preferably at least 1.0 wt.% based on total fat or the amount of polar lipids is increased to at least 0.6 wt.%, more preferably at least 1.0 wt.% based on total fat. In standard infant milk formula, the lipid fraction (usually comprising vegetable fat, a small amount of polar lipids and fat soluble vitamins) is mixed into the aqueous fraction (usually comprising water, skimmed milk, whey, digestible carbohydrates such as lactose, water soluble vitamins and minerals and optionally non-digestible carbohydrates) by homogenization. If no homogenization was to take place, the lipid part would cream very quickly, i.e. separate from the aqueous part and collect at the top. Homogenization is the process of breaking up the fat phase into smaller sizes so that it
no longer quickly separates from the aqueous phase but is maintained in a stable emulsion. This is accomplished by forcing the milk at high pressure through small orifices.

The process comprises the following steps:

1. Mixing ingredients
The ingredients of the composition are mixed, e.g. preferably blended. Basically a lipid phase, comprising the vegetable lipids, and an aqueous phase are added together. The ingredients further comprise polar lipids, more preferably phospholipids. The ingredients of the aqueous phase may comprise water, skimmed milk (powder), whey (powder), low fat milk, lactose, water soluble vitamins and minerals. Preferably the aqueous phase comprises non-digestible oligosaccharides. Preferably the aqueous phase is set at a pH between 6.0 and 8.0, more preferably pH 6.5 to 7.5. Preferably the polar lipids, in particular the phospholipids, are derived from milk. Advantageously, having polar lipids present in the aqueous mixture before homogenization results in an efficient coating of the lipid globules, consisting essentially of triglycerides, with a coating of polar lipids.

2. Preferably the lipid phase comprises 50 to 100 wt.% vegetable lipids based on total weight of the lipid phase. Instead of in the aqueous phase, the polar lipids, more preferably the phospholipids, may also be present in the lipid phase or in both phases. Alternatively the polar lipids may be added separately to an aqueous and lipid phase. Preferably, the weight ratio of phospholipid to total lipid is from 0.5 to 20 wt.%, more preferably from 0.5 to 10 wt.%, even more preferably 3 to 8 wt.%. Preferably the weight ratio of polar lipids to total lipid is 0.6 to 25 wt.%, more preferably from 0.6 to 12 wt.%

The aqueous and lipid phase are preferably heated before adding together, preferably at a temperature of 40 °C to 80 °C, more preferably 55 °C to 70 °C, even more preferably 55 °C to 60 °C. The mixture is also kept at this temperature and blended. A suitable way for blending is using an Ultra-Turrax T50 for about 30 - 60 s at 5000 - 10000 rpm. Subsequently demi-water may be added to this blend, to obtain the desired dry matter %. A desired dry matter % is for example 15%. Alternatively, the lipid phase is injected to the aqueous phase immediately prior to homogenization.

Minerals, vitamins, and stabilizing gums may be added at various points in the process depending on their sensitivity to heat. Mixing can for instance be performed with a high shear agitator. In the process of the present invention, skimmed milk (casein) is preferably not present in this step and added to the composition after homogenization of the fat fraction into the aqueous fraction (comprising compounds such as whey, whey protein, lactose).
2 Pasteurization

Preferably the mixture is then pasteurized. Pasteurization involves a quick heating step under controlled conditions which microorganisms cannot survive. A temperature of 60 to 80°C, more preferably 65 to 75°C, held for at least 15 s, usually adequately reduces vegetative cells of microorganisms. Several pasteurization methods are known and commercially feasible. Alternatively this step can also be performed before mixing as in step 1 and/or be replaced by the heating step to 60°C in step 1.

3 Homogenization

Subsequently the optionally pasteurized mixture comprising vegeta ble lipids, polar lipids and an aqueous phase is homogenized. Homogenization is a process which increases emulsion uniformity and stability by reducing the size of the lipid globules in the mixture. This process step can be performed with a variety of mixing equipment, which applies high shear to the product. This type of mixing breaks the lipid globules into smaller globules. The mixture obtained is preferably homogenized in two steps, for example at 250 to 50 bar, respectively, so a total pressure of 300 bar in order to obtain small, stable lipid globules.

In case the size of the lipid globules is preferred to be larger the homogenization steps are performed under much lower pressures. For example 60°C at 5 to 100, preferably 30-100, bar and 5 to 50 bar respectively, with a total pressure of 35 to 150 bar. Alternatively, the mixture obtained is preferably homogenized in two steps at a lower temperature, between 15 and 40°C, preferably about 20°C at 5 to 50 and 5 to 50 bar respectively, with a total pressure of 5 to 100 bar. This is remarkably lower than standard pressures, which typically are 250 to 50 bar, respectively, so a total pressure of 300 bar. It will be dependent on the specific homogenizer used, which pressure to apply. A suitable way is to use a pressure of 100 bar in the first step and 50 bar in the second step in a Niro Suavi NS 2006 H Homogenizer at a temperature of 60°C. A suitable way is to use a pressure of 5 bar in the first step and 20 bar in the second step in a Niro Suavi NS 2006 H Homogenizer at a temperature of 20°C.

Subsequently optionally other ingredients, not being lipid, may be added.

4 Sterilization

Subsequently, the emulsion obtained in step 3 is preferably sterilized. Preferably sterilization takes place in-line at ultra high temperature (UHT) and/or in appropriate containers to obtain a formula in the form of a sterile liquid. A suitable way for UHT treatment is a treatment at 120-130°C for at least 20 s. Alternatively this sterilization step 4 is performed before the homogenization step 3. Preferably the composition obtained by the above process is spray dried afterwards.
Alternatively, the emulsion obtained in step 3 is concentrated by evaporation, subsequently sterilized at
ultra high temperature and subsequently spray dried to give a spray dried powder which is filled into
appropriate containers.

5 The difference in coating of the lipid globules can further be derived from the zeta potential \(\zeta \). Zeta
potential \(\zeta \) measures the difference in millivolts (mV) in electrokinetic potential between the
tightly bound layer around the surface and the distant zone of electroneutrality and is a measure of the
magnitude of the repulsion or attraction between particles in a dispersion. Its value is also related to the
stability of colloidal dispersions. A high absolute zeta potential will confer stability, i.e. the solution or
dispersion will resist aggregation.

Lipid globule size

According to the present invention, lipid is present in the composition in the form of lipid globules,
emulsified in the aqueous phase. The lipid globules comprise a core and a coating. The core comprises
vegetable fat and preferably comprises at least 90 wt.% triglycerides and more preferably essentially
consists of triglycerides. The coating comprises phospholipids and/or polar lipids. Not all phospholipids
and/or polar lipids that are present in the composition need necessarily be comprised in the coating, but
preferably a major part is. Preferably more than 50 wt.%, more preferably more than 70 wt.%, even
more preferably more than 85 wt.%, most preferably more than 95 wt.% of the phospholipids and/or
polar lipids that are present in the composition are comprised in the coating of lipid globules. Not all
vegetable lipids that are present in the composition need necessarily be comprised in the core of lipid
globules, but preferably a major part is, preferably more than 50% wt.%, more preferably more than 70
wt.%, even more preferably more than 85 wt.%, even more preferably more than 95 wt.%, most
preferably more than 98 wt.% of the vegetable lipids that are present in the composition are comprised
in the core of lipid globules. In one embodiment the lipid globules of the present invention preferably
have

1. a volume-weighted mode diameter above 1.0 \(\mu \text{m} \), preferably above 3.0 \(\mu \text{m} \), more preferably 4.0
\(\mu \text{m} \) or above, preferably between 1.0 and 10 \(\mu \text{m} \), more preferably between 2.0 and 8.0 \(\mu \text{m} \), even more
preferably between 3.0 and 8.0 \(\mu \text{m} \), most preferably between 4.0 \(\mu \text{m} \) and 8.0 \(\mu \text{m} \) and/or

2. a size distribution in such a way that at least 45 volume %, preferably at least 55 volume %, even
more preferably at least 65 volume %, even more preferably at least 75 volume % has a diameter
between 2 and 12 µm. More preferably at least 45 volume %, preferably at least 55 volume %, even more preferably at least 65 volume %, even more preferably at least 75 volume %, has a diameter between 2 and 10 µm. Even more preferably at least 45 volume %, preferably at least 55 volume %, even more preferably at least 65 volume %, even more preferably at least 75 volume %, has a diameter between 4 and 10 µm.

In another preferred embodiment the lipid globules of the present invention preferably have

1. a volume-weighted mode diameter below 1.0 µm, and preferably in the range of 0.2-0.7 µm, more preferably in the range of 0.3-0.6 µm, and

2. a size distribution in such a way that less than 45 volume %, has a diameter between 2 and 12 µm, preferably a size distribution wherein more than 55 volume % of the lipid globules has a diameter of less than 2 µm, more preferably a size distribution in such a way that less than 35 volume %, has a diameter between 2 and 12 µm, even more preferably a size distribution wherein more than 65 volume % of the lipid globules has a diameter of less than 2 µm.

The percentage of lipid globules is based on volume of total lipid. The mode diameter relates to the diameter which is the most present based on volume of total lipid, or the peak value in a graphic representation, having on the X-as the diameter and on the Y-as the volume (%).

The volume of the lipid globule and its size distribution can suitably be determined using a particle size analyzer such as a Mastersizer (Malvern Instruments, Malvern, UK), for example by the method described in Michalski et al. 2001, Lait 81:787-796.

Digestible carbohydrate component

The composition preferably comprises digestible carbohydrate. The digestible carbohydrate preferably provides 30 to 80% of the total calories of the composition. Preferably the digestible carbohydrate provides 40 to 60% of the total calories. When in liquid form, e.g. as a ready-to-feed liquid, the composition preferably comprises 3.0 to 30 g digestible carbohydrate per 100 ml, more preferably 6.0 to 20, even more preferably 7.0 to 10.0 g per 100 ml. Based on dry weight the present composition preferably comprises 20 to 80 wt.%, more preferably 40 to 65 wt.% digestible carbohydrate.
Preferred digestible carbohydrate sources are lactose, glucose, sucrose, fructose, galactose, maltose, starch and maltodextrin. Lactose is the main digestible carbohydrate present in human milk. The present composition preferably comprises lactose. The present composition preferably comprises digestible carbohydrate, wherein at least 35 wt.%, more preferably at least 50 wt.%, more preferably at least 75 wt.%, even more preferably at least 90 wt.%, most preferably at least 95 wt.% of the digestible carbohydrate is lactose. Based on dry weight the present composition preferably comprises at least 25 wt.% lactose, preferably at least 40 wt.%.

Non-digestible oligosaccharides

The non-digestible oligosaccharide is preferably selected from the group consisting of fructo-oligosaccharides (such as inulin), galacto-oligosaccharides (such as transgalacto-oligosaccharides or beta-galacto-oligosaccharides), gluco-oligosaccharides (such as gentio-, nigero- and cyclodextrin-oligosaccharides), arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides, fuc-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomannanoligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides. Preferably the composition comprises gum acacia on combination with a non-digestible oligosaccharide.

Preferably the present composition comprises fructo-oligosaccharides, galacto-oligosaccharides and/or galacturonic acid oligosaccharides, more preferably galacto-oligosaccharides, most preferably transgalacto-oligosaccharides. In a preferred embodiment the composition comprises a mixture of transgalacto-oligosaccharides and fructo-oligosaccharides. Preferably the present composition comprises galacto-oligosaccharides with a DP of 2-10 and/or fructo-oligosaccharides with a DP of 2-60. The galacto-oligosaccharide is preferably selected from the group consisting of transgalacto-oligosaccharides, lacto-N-tetraose (LNT), lacto-N-neotetraose (neo-LNT), fucosyl-lactose, fucosylated LNT and fucosylated neo-LNT. In a particularly preferred embodiment the present method comprises the administration of transgalacto-oligosaccharides \(([\text{galactose}]_n \cdot \text{glucose}; \text{wherein } n \text{ is an integer between } 1 \text{ and } 60, \text{i.e. } 2, 3, 4, 5, 6, ..., 59, 60; \text{preferably } n \text{ is selected from } 2, 3, 4, 5, 6, 7, 8, 9, \text{ or } 10) \).
Transgalacto-oligosaccharides (TOS) are for example sold under the trademark Vivinal™ (Borculo Domo Ingredients, Netherlands). Preferably the saccharides of the transgalacto-oligosaccharides are β-linked. Fructo-oligosaccharide is a non-digestible oligosaccharide comprising a chain of β linked fructose units with a DP or average DP of 2 to 250, more preferably 10 to 100. Fructo-oligosaccharide includes inulin, levan and/or a mixed type of polyfructan. An especially preferred fructo-oligosaccharide is inulin. Fructo-oligosaccharide suitable for use in the compositions is also already commercially available, e.g. Raftiline® HP (Orafti).

Uronic acid oligosaccharides are preferably obtained from pectin degradation. Uronic acid oligosaccharides are preferably galacturonic acid oligosaccharides. Hence the present composition preferably comprises a pectin degradation product with a DP between 2 and 100. Preferably the pectin degradation product is prepared from apple pectin, beet pectin and/or citrus pectin. Preferably the composition comprises transgalacto-oligosaccharides, fructo-oligosaccharides and a pectin degradation product. The weight ratio transgalacto-oligosaccharide : fructo-oligosaccharide : pectin degradation product is preferably (20 to 2) : 1 : (1 to 3), more preferably (12 to 7) : 1 : (1 to 2).

Preferably, the composition comprises 80 mg to 2 g non-digestible oligosaccharides per 100 ml, more preferably 150 mg to 1.50 g, even more preferably 300 mg to 1 g per 100 ml. Based on dry weight, the composition preferably comprises 0.25 wt.% to 20 wt.%, more preferably 0.5 wt.% to 10 wt.%, even more preferably 1.5 wt.% to 7.5 wt.%. A lower amount of non-digestible oligosaccharides will be less effective in providing a beneficial prebiotic effect, whereas a too high amount will result in side-effects of bloating and abdominal discomfort.

Protein component

The present composition preferably comprises proteins. The protein component preferably provides 5 to 15% of the total calories. Preferably the present composition comprises a protein component that provides 6 to 12% of the total calories. More preferably protein is present in the composition below 9% based on calories, more preferably the composition comprises between 7.2 and 8.0% protein based on total calories, even more preferably 7.3 and 7.7% based on total calories. The protein concentration in a nutritional composition is determined by the sum of protein, peptides and free amino acids. Based on dry weight the composition preferably comprises less than 12 wt.% protein, more
preferably between 9.6 to 12 wt.%, even more preferably 10 to 11 wt.%. Based on a ready-to-drink liquid product the composition preferably comprises less than 1.5 g protein per 100 ml, more preferably between 1.2 and 1.5 g, even more preferably between 1.25 and 1.35 g.

The source of the protein should be selected in such a way that the minimum requirements for essential amino acid content are met and satisfactory growth is ensured. Hence protein sources based on cows' milk proteins such as whey, casein and mixtures thereof and proteins based on soy, potato or pea are preferred. In case whey proteins are used, the protein source is preferably based on acid whey or sweet whey, whey protein isolate or mixtures thereof and may include α-lactalbumin and β-lactoglobulin.

More preferably, the protein source is based on acid whey or sweet whey from which casein-glyco-macropetide (CGMP) has been removed. Removal of CGMP from sweet whey protein advantageously reduces the threonine content of the sweet whey protein. A reduced threonine content is also advantageously achieved by using acid whey. Optionally the protein source may be supplemented with free amino acids, such as methionine, histidine, tyrosine, arginine and/or tryptophan in order to improve the amino acid profile. Preferably α-lactalbumin enriched whey protein is used in order to optimize the amino acid profile. Using protein sources with an optimized amino acid profile closer to that of human breast milk enables all essential amino acids to be provided at reduced protein concentration, below 9% based on calories, preferably between 7.2 and 8.0% based on calories and still ensure a satisfactory growth. If sweet whey from which CGMP has been removed is used as the protein source, it is preferably supplemented by free arginine in an amount of from 0.1 to 3 wt.% and/or free histidine in an amount of from 0.1 to 1.5 wt.% based on total protein.

Preferably the composition comprises at least 3 wt.% casein based on dry weight. Preferably the casein is intact and/or non-hydrolyzed.

Nutritional composition

The present composition is preferably particularly suitable for providing the daily nutritional requirements to a human with an age below 36 months, particularly an infant with the age below 24 months, even more preferably an infant with the age below 18 months, most preferably below 12 months of age. Hence, the nutritional composition is for feeding or is used for feeding a human subject.

The present composition comprises a lipid, and preferably a protein and preferably a digestible
carbohydrate component wherein the lipid component preferably provides 30 to 60% of total calories, the protein component preferably provides 5 to 20%, more preferably 5 to 15 wt.% of the total calories and the digestible carbohydrate component preferably provides 25 to 75% of the total calories. Preferably the present composition comprises a lipid component providing 35 to 50% of the total calories, a protein component provides 6 to 12% of the total calories and a digestible carbohydrate component provides 40 to 60% of the total calories. The amount of total calories is determined by the sum of calories derived from protein, lipids and digestible carbohydrates.

The present composition is not human breast milk. The present composition comprises vegetable lipids. The compositions of the invention preferably comprise other fractions, such as vitamins, minerals according to international directives for infant formulae.

In one embodiment the composition is a powder suitable for making a liquid composition after reconstitution with an aqueous solution, preferably with water. Preferably the composition is a powder to be reconstituted with water. It was surprisingly found that the size and the coating with polar lipids of the lipid globules remained the same after the drying step and subsequent reconstitution.

In order to meet the caloric requirements of the infant, the composition preferably comprises 50 to 200 kcal/100 ml liquid, more preferably 60 to 90 kcal/100 ml liquid, even more preferably 60 to 75 kcal/100 ml liquid. This caloric density ensures an optimal ratio between water and calorie consumption. The osmolarity of the present composition is preferably between 150 and 420 mOsmol/l, more preferably 260 to 320 mOsmol/l. The low osmolarity aims to reduce the gastrointestinal stress. Stress can induce adipocyte formation.

Preferably the composition is in a liquid form, with a viscosity below 35 mPa.s, more preferably below 6 mPa.s as measured in a Brookfield viscometer at 20°C at a shear rate of 100 s⁻¹. Suitably, the composition is in a powdered form, which can be reconstituted with water to form a liquid, or in a liquid concentrate form, which should be diluted with water. When the composition is in a liquid form, the preferred volume administered on a daily basis is in the range of about 80 to 2500 ml, more preferably about 450 to 1000 ml per day.
Infant

The composition of the present invention is preferably for use in infants. Because of the benefits for the developing child, it is advantageous to establish the present fatty acid programming effect of n3 and n6 (LC-)PUFA incorporation in brain membranes early in life. Hence the present composition is preferably administered to the human subject during the first 3 years of life. In one embodiment of the use according to the present invention, the nutritional composition is for feeding or is used for feeding a human subject with an age between 0 and 36 months. The present composition is advantageously administered to a human of 0-24 months, more preferably to a human of 0-18 months, most preferably to a human of 0-12 months.

Preferably the composition is to be used in infants which are prematurely born or which are small for gestational age. These infants experience after birth a catch up growth, which requires extra attention on proper fat handling. Preferably the composition is to be used in infants which are large for gestational age, since in these infants proper allocation of ingested fat is required.

Application

The present composition is preferably administered orally to the infant. The present invention is preferably considered to be of benefit for cognitive and/or behavioural performances at the age above 36 months and for the general condition of the brain later in life. In one embodiment the present method is for achieving the effects described herein when said human subject has an age above 36 months, preferably when said human subject has an age above 5 years, particularly above 13 years, more particularly above 18 years. In one embodiment the present method or the present nutritional composition is for feeding a human subject with an age between 0 and 36 months and for achieving the effects described herein when said human subject has an age above 36 months, preferably when said human subject has an age above 5 years, particularly above 13 years, more particularly above 18 years.

In one embodiment the present method is for increasing brain membrane fluidity, increasing brain membrane PUFA, increasing brain membrane LC-PUFA, increasing brain membrane n6-LC PUFA, increasing brain membrane n6 PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane ARA, increasing brain membrane DHA of a human subject, but also for amelioration of cognitive performance, behavioural performance, visual acuity, fine motor skills, in a human subject, when said human subject has an age above 36 months, preferably when said human subject has an age above 5 years, particularly above 13 years, more particularly above 18 years.
subject has an age above 5 years, particularly above 13 years, more particularly above 18 years. In one embodiment the present method or the present nutritional composition is for feeding a human subject with an age between 0 and 36 months and for increasing brain membrane fluidity, increasing brain membrane PUFA, increasing brain membrane 6-LC PUFA, increasing brain membrane n6 PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane n6 LC PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane ARA, increasing brain membrane DHA of a human subject, but also for amelioration of cognitive performance, behavioural performance, visual acuity, fine motor skills, in a human subject, when said human subject has an age above 36 months, preferably at the age above 5 years, particularly above 13 years, more particularly above 18 years. In one embodiment increasing brain membrane fluidity, increasing brain membrane PUFA, increasing brain membrane LC-PUFA, increasing brain membrane n6-LC PUFA, increasing brain membrane n6 PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane ARA, increasing brain membrane DHA and amelioration of cognitive performance, behavioural performance, visual acuity, fine motor skills occurs later in life. With later in life is meant an age exceeding the age at which the diet is taken, preferably with at least one year.

The inventors surprisingly found that when mice during infancy and childhood were fed a food composition comprising lipid globules coated with polar lipids, a different and significant effect on brain membrane composition later in life was observed compared to mice which during infancy and childhood had been fed a food composition having a similar fatty acid composition, but no polar lipids, in particular present in the form of a coating. At day 42, which is a time point corresponding to childhood in a human setting, no significant differences were observed in growth (weight) between the groups, but from day 42 both groups were fed a Western style diet which was high in fat. Surprisingly at day 98, which is a time point corresponding to early adulthood in humans, the mice, which had previously consumed the food composition of the present invention before turning to the Western style diet, had a significantly increased amount of brain membrane n3 PUFA, n6 PUFA, n3 LC-PUFA, n6 LC-PUFA, ARA and DHA than mice which had received a control composition. Consequently, the present finding can be put to use for prevention and/or treatment of a disorder associated with decreased brain membrane fluidity and/or associated with decreased brain membrane PUFA content and/or LC-PUFA content. More in particular, the present finding can be put to use for prevention and/or treatment of a psychiatric, psychological and/or neurobiological disorder. Specific effects the present finding which can be expected more early
in life reside in the amelioration of visual acuity and/or fine motor skills. Also the present finding is of benefit for amelioration of cognitive performance and/or behavioural performance. To even further specify the benefits of the present finding of an for altered fat handling, ultimately resulting in improved fatty acid availability especially in brain cell membranes, the present invention is for the treatment and/or prevention of attention deficiency, attention deficit hyperactivity disorder (ADHD), dyslexia, autism, depression, bipolar depression, anxiety, schizophrenia, obsessive compulsive disorder (OCD), bulimia, abuse of alcohol or drugs, borderline personality disorder, panic disorder, social phobia, learning difficulties, mild cognitive impairment. As a non-optimal brain fatty acid composition ids considered to be very important for developing ADHD, dyslexia and autism, the present invention is preferably for the treatment and/or prevention of one selected from the group consisting of ADHD, dyslexia and, autism.

In this document and in its claims, the verb "to comprise" and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition, reference to an element by the indefinite article "a" or "an" does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article "a" or "an" thus usually means "at least one".

Example 1: Process for preparing an IMF with lipid globules differing in architecture.

An infant formula was prepared comprising per kg powder about 4800 kcal, 248 g lipid, 540 g digestible carbohydrates, 55 g non-digestible oligosaccharides and 103 g protein.

The composition was prepared using, a vegetable oil blend, demineralised whey powder, lactose, non-digestible oligosaccharides (galacto-oligosaccharides and long chain fructo-oligosaccharides in a weight ratio of 9/1). Vitamins, minerals, and trace elements as known in the art were used. For diet 3 to 6 also a butter milk serum powder comprising polar lipids from milk origin was used. An aqueous phase was prepared mixing all components, besides inulin and the oil blend and for diet 3 and 5 also the butter milk serum, in water, at room temperature, by stirring. Potassium hydroxide was used to set the pH at 6.8-7.0. The dry weight matter of the mixture was about 27%. The mixture was heated to 60 °C. The vegetable oil blend was also heated to 60 °C and added to the water phase and blended with an Ultra-Turrax T50 for about 30 - 60 s at 5000 - 10000 rpm.
Subsequently the oil-water mixture was homogenised at a pressure of 100 bar in a first step and 50 bar in a second step in a Niro Suavi NS 2006 H Homogenizer for diet 1, 3 and 5. For diet 2 and 3 and 4 this mixture was homogenized in two steps at a pressure of 5 and 20 bar, respectively. The temperature was 60 °C. The product was UHT treated at 125 °C for 30 s. The product was dried to a powder by spray drying. Long chain inulin was blended dry into the powder. For diet 3 and 4 also butter milk serum powder was dry blended into the powder.

The amount of vegetable glycerophospholipids was 0.2 wt.% based on total fat for diet 1 and 2. Diet 1 and 2 did not contain sphingolipids and cholesterol. Diet 3 and 4 comprised about 1.83 wt.% glycerophospholipids based on total fat, of which about 90% derived from the butter milk powder and about 10% already present in the standard IMF derived from vegetable oils, and further comprised milk derived sphingolipids of which the majority (about 0.47 wt.% based on total fat) was sphingomyelin; the rest being glycosphingolipids. Diet 3 and 4 comprised about 0.05 wt.% milk derived cholesterol based on total fat. Diet 5 and 6 comprised half of the amount of milk derived polar lipids based on total fat of diet 3 and 4.

The size of the lipid globules was measured with a Mastersizer 20000 (Malvern Instruments, Malvern UK) and shown in Table 1. Coating of the lipid globules with polar lipids in diet 5 and 6 and absence of coating in diet 1, 2, 3 and 4 was confirmed by confocal laser scanning microscopy method. It was checked with confocal laser scanning microscopy that the larger lipid globules of the present invention were coated with phospholipids, before spray drying and after reconstitution of the spray dried powder with water. In both cases the lipid globules of diet 4 and 6 were covered with a layer of phospholipids. As fluorescent probes Annexin V Alexa Fluor 488 (In Vitrogen molecular probes) for labeling the phospholipids, and Nile Red (Sigma-Aldrich) for labeling triglycerides, were used. After labeling the milk samples Vectrashield mounting medium (Vector laboratories inc., Burliname USA) for reducing particle movement and photo-bleaching was added. Observations were made using a Zeiss Laser Scanning Microscope with excitation wavelengths of 488/543/633 nm and emission filters set at band pass 505-530, and band pass 560-615. Also the size of the lipid globules was the same before drying and after reconstitution of the spray dried powder with water.
Table 1: Lipid globule characteristics of different milks

<table>
<thead>
<tr>
<th>IMF</th>
<th>Volume Mode diameter μm</th>
<th>Volume % with a diameter between 2 and 12 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, Standard IMF (small lipid globules)</td>
<td>0.5</td>
<td>5.1</td>
</tr>
<tr>
<td>2, Experimental IMF (large lipid globules)</td>
<td>4.0</td>
<td>72.2</td>
</tr>
<tr>
<td>3, Experimental IMF (small lipid globules, free polar lipids)</td>
<td>0.4</td>
<td>3.9</td>
</tr>
<tr>
<td>4, Experimental IMF (large lipid globules, free polar lipids)</td>
<td>5.0</td>
<td>74.8</td>
</tr>
<tr>
<td>5, Experimental IMF (small lipid globules, coated with polar lipids)</td>
<td>0.5</td>
<td>4.3</td>
</tr>
<tr>
<td>6, Experimental IMF (large lipid globules, coated with polar lipids)</td>
<td>4.3</td>
<td>70.3</td>
</tr>
</tbody>
</table>

After 5 months storage at room temperature the size of the lipid globules in diet 1, 3 and 5 had not changed, with a volume mode diameter of 0.5, 0.4 and 0.5 respectively. Also the volume mode diameter of diet 2, 4 and 6 were rather stable being 4.8 μm, 7.9 μm and 6.6 μm, respectively.

Example 2:

Offspring of C57/BL6 dams were weaned from day 15 on. The experimental weaning diets were continued until day 42. From day 42 to day 98 all pups were ad libitum fed the same diet based on AIN-93G diet with an adjusted lipid fraction (containing 10 wt.% lipid of which 50 wt.% lard and 1 % cholesterol, based on total lipid), which is representative for a Western style diet.

The experimental diets that were used for weaning were:

1) an infant milk formula (IMF) based control diet. This diet comprised 282 g standard IMF (IMF 1 of example 1) per kg, with the lipid globule size as mentioned in example 1. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.

2) an IMF based experimental diet. This diet comprised 282 g experimental IMF (IMF 2 of example 1) per kg, with the lipid globule size as mentioned in example 1. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.
3) an IMF based experimental diet. This diet comprised 282 g experimental IMF (IMF 3 of example 1) per kg, with the lipid globule size as mentioned in example 1 and comprising phospholipids in free form. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.

4) an IMF based experimental diet. This diet comprised 282 g experimental IMF (IMF 4 of example 1) per kg, with the lipid globule size as mentioned in example 1 and comprising phospholipids in free form. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.

5) an IMF based experimental diet. This diet comprised 282 g experimental IMF (IMF 5 of example 1) per kg, with the lipid globule size as mentioned in example 1 and with phospholipids present as a coating around the lipid globules. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.

6) an IMF based experimental diet. This diet comprised 282 g experimental IMF (IMF 6 of example 1) per kg, with the lipid globule size as mentioned in example 1 and with phospholipids present as a coating around the lipid globules. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.

At day 42, all mice switched to a "Western style diet" comprising 4016 kJ per 100 g, 10 wt.% lipid, 1 wt.% cholesterol based on total fat, 60 wt% digestible carbohydrates, 4.75 wt.% fibres, and 17.9 wt.% protein, until day 98.

The fatty acid composition of the experimental diets was very similar in respect of saturated, mono-unsaturated, poly unsaturated and long chain poly unsaturated fatty acids, with calculated linoleic acid (LA) of 14 wt% in diet 1 and 2, and 13.2 wt% in diet 3, 4, 5 and 6, based on total fatty acids, with alpha-linoleic acid (ALA) of 2.6 wt% in diet 1 and 2 and 2.5 wt% in diet 3, 4, 5 and 6, based on total fatty acids and with LA/ALA ratio of 5.4 in diet 1 and 2 and 5.3 in diet 3, 4, 5 and 6, respectively. The amount of DHA was 0.2 wt.% in all 6 diets, and the amount of ARA was 0.35 wt.% in diet 1 and 2 and 0.36 wt.% in diet 3, 4, 5 and 6. In the Western style diet the amount of LA was 11.9 wt%, the amount of ALA was 1.3 wt.%, based on total fatty acids and the ratio LA/ALA was 9.15.
The mice were weighed twice a week. The food intake was determined once a week during the entire experiment. To determine body composition (i.e., fat mass (FM) and fat-free mass (FFM)) DEXA scans (Dual Energy X-ray Absorbiometry) were performed under general anesthesia at 6, 10 and 14 weeks of age, 42, 70, and 98 days after birth respectively, by densitometry using a PIXIImus imager (GE Lunar, Madison, WI, USA). At the age of 98 days the male mice were sacrificed and organs including brains were dissected and weighed. Of each brain, 1 hemisphere was homogenized (Ultra-Turrax T25 basic, IKA, VWR international i) in 50 volumes of ice cold deionized water (MiliQ). Subsequently, brain fatty acid (FA) profile was quantified by means of gas chromatograph ic analysis. 1 ml brain homogenate was extracted according to the procedure of Bligh & Dyer (dichloromethane / methanol extraction). The lipids were converted into methyl esters with concentrated sulfuric acid in methanol. The fatty acid methyl esters (FAME) were extracted from the methanol solution with hexane and analyzed on a gas chromatograph (GC) equipped with a flame ionization detector (FID).

Results:

At day 98, the FA profile of the brains was determined. Table 2 shows the genera l FA profile of the brains (SFA, MUFA, PUFA, LCPU FA, n3, n6, n6/n3-ratio, n3 LC-PUFA, n6 LC-PUFA, n6/n3 LC-PUFA ratio) and Table 3 shows the profile of specific LC-PUFA's (DHA, EPA, ARA, ALA, C22:4 n6, C22:5 n-3 and C22:5 n-6).

When differences between individual programming diets were compared, no effects of programming diet were found on % SFA and % MUFA, but the % of all other parameters in the FA profile were affected: PUFA, LC-PUFA, n6 PUFA's, n3 PUFA's, n6/n3 PUFA ratio, n6 LC-PUFA's, n3 LC-PUFA's, and n6/n3 LC-PUFA ratio. Many of these effects were related to the somewhat different brain FA profile of animals that were raised on the large lipid globule diet without phospholipids (diet 2) compared to the other diets. Diet 2 resulted in lower PUFA, LC-PUFA, n6 PUFA, n3 PUFA, n6 and n3 LC-PUFA than the other diets (p<0.05).
Table 2: Fatty acid composition of brain membranes later in life after an early diet with different lipid globules

<table>
<thead>
<tr>
<th>Diet</th>
<th>Diet 1</th>
<th>Diet 2</th>
<th>Diet 3</th>
<th>Diet 4</th>
<th>Diet 5</th>
<th>Diet 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small lipid globules</td>
<td>Large lipid globules</td>
<td>Small lipid globules, free polar lipids</td>
<td>Large lipid globules, free polar lipids</td>
<td>Small lipid globules, coated with polar lipids</td>
<td>Large lipid globules, coated with polar lipids</td>
</tr>
<tr>
<td>SFA</td>
<td>40.23±0.39</td>
<td>41.17±0.46</td>
<td>40.43±0.50</td>
<td>40.06±0.48</td>
<td>40.25±0.42</td>
<td>40.06±0.35</td>
</tr>
<tr>
<td>MUFA</td>
<td>24.25±0.37</td>
<td>25.09±0.44</td>
<td>24.11±0.40</td>
<td>24.91±0.37</td>
<td>24.31±0.61</td>
<td>23.81±0.54</td>
</tr>
<tr>
<td>PUFA</td>
<td>25.79±0.17</td>
<td>24.59±0.38</td>
<td>26.02±0.33</td>
<td>25.59±0.23</td>
<td>25.75±0.56</td>
<td>26.34±0.35</td>
</tr>
<tr>
<td>LC-PUFA</td>
<td>24.53±0.19</td>
<td>23.40±0.39</td>
<td>24.92±0.34</td>
<td>24.42±0.24</td>
<td>24.61±0.58</td>
<td>25.16±0.38</td>
</tr>
<tr>
<td>n6</td>
<td>11.29±0.13</td>
<td>10.89±0.12</td>
<td>11.53±0.16</td>
<td>11.19±0.12</td>
<td>11.34±0.19</td>
<td>11.48±0.20</td>
</tr>
<tr>
<td>n3</td>
<td>14.40±0.10</td>
<td>13.59±0.28</td>
<td>14.24±0.22</td>
<td>14.18±0.14</td>
<td>14.19±0.28</td>
<td>14.64±0.17</td>
</tr>
<tr>
<td>n6/n3</td>
<td>0.78±0.010</td>
<td>0.80±0.011</td>
<td>0.81±0.013</td>
<td>0.79±0.008</td>
<td>0.80±0.009</td>
<td>0.78±0.010</td>
</tr>
<tr>
<td>n6 LC</td>
<td>10.60±0.11</td>
<td>10.30±0.12</td>
<td>10.99±0.15</td>
<td>10.61±0.12</td>
<td>10.77±0.27</td>
<td>10.84±0.21</td>
</tr>
<tr>
<td>n3 LC</td>
<td>13.83±0.12</td>
<td>12.99±0.29</td>
<td>13.70±0.24</td>
<td>13.59±0.15</td>
<td>13.63±0.30</td>
<td>14.10±0.20</td>
</tr>
<tr>
<td>n6/n3 LC</td>
<td>0.77±0.007</td>
<td>0.80±0.012</td>
<td>0.80±0.014</td>
<td>0.78±0.007</td>
<td>0.79±0.007</td>
<td>0.77±0.010</td>
</tr>
</tbody>
</table>

Furthermore, the n6/n3 ratio in the brains of diet 3 fed animals was higher than diet 1 (p=0.043) (PL effect) and diet 4 (p=0.083) (size effect). The n6/n3 LC-PUFA ratio was higher in the brains of the animals that received the diet 5 diet compared to diet 1 (p=0.082) (PL coating effect) and the diet 6 (p=0.093) (size effect).

The % of the specific LCPUFA's DHA, EPA, ARA, ALA, C22:4 n-6, C22:5 n-3 and C22:5 n-6 is depicted in Table 3. LA was not detected in the brain.

There was no effect of programming diet on % of ALA, ARA and C22:5 n3. The % of C22:5 n6 was affected by programming diet (p<0.001), the % of C22:5 n6 was lower in the diet 1 and diet 2 groups than in the groups with diet 3-6 (p<0.001), which emphasizes that adding PL to the diet results in higher % C22:5 n6. There was also an effect of programming diet on % of C22:4 n6 (p=0.003), the % of C22:4 n6 was higher in animals from the diet 3 group than from the diet 1 group (p=0.059 trend) and diet 4 group.
The % of DHA was affected by diet as well (p=0.038), the % of DHA in the brains of animals in the diet 2 group was lower than that of diet 1 (p=0.008), diet 4 (p=0.086, trend) and diet 6 (p=0.001), the diet 6 group was also higher than diet 4 (p=0.091, trend). For the % of EPA, a significant effect of diet was also present (p=0.050), the % of EPA was lower in the diet 1 group than in the diet 3 group (z=-1.815, p=0.069 TREN D), diet 4 group (p=0.033), diet 5 group (p=0.029) and diet 6 group (p=0.074 trend) group. There was also a difference in the % of EPA between the diet 2 group and diet 4 group (p=0.050), these effects emphasize the previously described effect of PL in the diet on EPA.

Table 3:

<table>
<thead>
<tr>
<th>Diet</th>
<th>Diet 1</th>
<th>Diet 2</th>
<th>Diet 3</th>
<th>Diet 4</th>
<th>Diet 5</th>
<th>Diet 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small lipid globules</td>
<td>Large lipid globules</td>
<td>Small lipid globules, free polar lipids</td>
<td>Large lipid globules, free polar lipids</td>
<td>Small lipid globules, coated with polar lipids</td>
<td>Large lipid globules, coated with polar lipids</td>
</tr>
<tr>
<td>C18:3 n3 (ALA)</td>
<td>0.47±0.02</td>
<td>0.49±0.02</td>
<td>0.45±0.02</td>
<td>0.48±0.02</td>
<td>0.46±0.03</td>
<td>0.44±0.03</td>
</tr>
<tr>
<td>C18:2 n6 LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20:4 n6 (ARA)</td>
<td>7.62±0.12</td>
<td>7.40±0.12</td>
<td>7.86±0.13</td>
<td>7.58±0.11</td>
<td>7.66±0.22</td>
<td>7.71±0.18</td>
</tr>
<tr>
<td>C20:5 n3 (EPA)</td>
<td>0.006±0.003</td>
<td>0.006±0.003</td>
<td>0.021±0.008</td>
<td>0.032±0.011</td>
<td>0.023±0.007</td>
<td>0.016±0.005</td>
</tr>
<tr>
<td>C22:6 n3 (DHA)</td>
<td>13.40±0.13</td>
<td>12.52±0.30</td>
<td>13.25±0.24</td>
<td>13.08±0.15</td>
<td>13.17±0.32</td>
<td>13.64±0.12</td>
</tr>
<tr>
<td>C22:4 n6 (DTA)</td>
<td>2.22±0.03</td>
<td>2.20±0.02</td>
<td>2.30±0.03</td>
<td>2.23±0.02</td>
<td>2.29±0.04</td>
<td>2.23±0.04</td>
</tr>
<tr>
<td>C22:5 n6 (DPA)</td>
<td>0.04±0.01</td>
<td>0.05±0.01</td>
<td>0.19±0.01</td>
<td>0.17±0.02</td>
<td>0.17±0.01</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>C22:5 n3 (DPA)</td>
<td>0.14±0.019</td>
<td>0.16±0.006</td>
<td>0.15±0.008</td>
<td>0.16±0.004</td>
<td>0.15±0.005</td>
<td>0.17±0.005</td>
</tr>
</tbody>
</table>
In a strategy to use large lipid globules for achieving an effect on obesity later in life, it was found that brain membrane fatty acid composition was not improved compared to standard infant milk formula. Also standard IMF in terms of lipid globule size wherein the lipid globules had a phospholipid coating showed no improvement in brain membrane fatty acid composition. However, only in the case of using large lipid globules, coated with phospholipids or polar lipids, an improvement in brain membrane fatty acid composition in terms of (LC-)PUFA content was observed, while the advantageous effect on obesity later in life was also achieved as well as the advantageous effect on bone mineral accretion.

Thus advantageously the diet with large lipid globules coated with phospholipids and/or polar lipids further showed strong improved effects on long term effects of obesity, visceral adiposity, lean body mass, bone mineral content and bone mineral density compared with a diet comprising small lipid globules covered mainly with protein.

Overall, the FA profile in the brains of mice exposed early in life to diet 6 with large lipid globules coated with polar lipids, was the best with the highest % of PUFA (both n3 and n6) and LC-PUFA (both n3 and n6), and thus an improved fluidity, and a relatively low n6/n3 PUFA and low n6/n3 LC-PUFA ratio. These effects were especially prominent compared to large lipids without PL (diet 2). A diet with large lipid globules with free PL (diet 4) showed intermediate effects, indicating that the location of the PL as a coating around the lipid globule plays a role. When small lipid globules were used these effects were much less clear. No effect of free PL and coating was observed with free PL or PL coating in small lipid globules and due to slightly increased n6 (LC)-PUFA in the presence of PL n6/n3 (LC)-PUFA ratios were slightly increased in the presence of PL which is not desired. Furthermore, the n3-PUFA in diet group 6 beneficially had the highest amount of DHA and EPA, with relatively lower amounts of EPA and ALA. It can be concluded that both the lipid globules have to be increased in size and they have to be surrounded by a coating comprising phospholipids in order to see improved long term effect on brain FA composition compared to lipid globules as present in standard IMF.
CLAIMS

1) Use of a composition comprising lipid for the manufacture of a nutritional composition for i) increasing brain membrane fluidity, ii) increasing brain membrane PUFA, iii) increasing brain membrane LC-PUFA, iv) increasing brain membrane n6 LC-PUFA, v) increasing brain membrane n6 PUFA, vi) increasing brain membrane n3 PUFA, vii increasing brain membrane n3 LC-PUFA, viii) increasing brain membrane ARA, ix) increasing brain membrane DHA, in a human subject, said nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and
b) 0.5 to 20 wt.% phospholipids based on total lipid and/or
b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of
phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
cl) a volume-weighted mode diameter above 1.0 µm, preferably between 1.0 and 10 µm, and/or
c2) a diameter of 2 to 12 µm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.

2) Use of a composition comprising lipid for the manufacture of a nutritional composition for amelioration of i) cognitive performance, ii) behavioural performance, iii) visual acuity, iv) fine motor skills, in a human subject, said nutritional composition comprising

a) 10 to 50 wt.% vegetable lipids based on dry weight of the composition, and
b) 0.5 to 20 wt.% phospholipids based on total lipid and/or
b2) 0.6 to 25 wt.% of polar lipids based on total lipids, wherein polar lipids are the sum of
phospholipids, glycosphingolipids and cholesterol,
and said composition comprising lipid globules with a core comprising said vegetable lipids and a coating comprising said phospholipids or polar lipids, wherein said lipid globules have
cl) a volume-weighted mode diameter above 1.0 µm, preferably between 1.0 and 10 µm, and/or
c2) a diameter of 2 to 12 µm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.
3) The use according to claim 1, for the prevention and/or treatment of a disorder associated with decreased brain membrane fluidity and/or associated with decreased brain membrane PUFA content and/or LC-PUFA content.

4) The use according to claim 3, wherein the disorder is a psychiatric, psychological and/or neurobiological disorder.

5) The use according to claim 3 or 4, for treatment and/or prevention of attention deficiency, ADHD, autism, dyslexia, depression, bipolar depression, anxiety, schizophrenia, OCD, bulimia, abuse of alcohol or drugs, borderline personality disorder, panic disorder, social phobia, learning difficulties, mild cognitive impairment, in a human subject.

6) The use according to any one of claims 1-5, wherein the composition comprises n3 LC-PUFA in an amount of at least 0.2 wt.% of the total fatty acid content and that does not exceed 15 wt.% of the total fatty acid content.

7) The use according to any one of claims 1-6, wherein the composition comprises DHA in an amount of 0.1 to 0.6 wt.% based on total fatty acid content.

8) The use according to any one of claims 1-7, wherein the composition comprises n6 LC-PUFA in an amount of at least 0.02 wt.% of the total fatty acid content and that does not exceed 5 wt.% of the total fatty acid content.

9) The use according to any one of claims 1-8, wherein the composition comprises ARA in an amount of 0.1 to 0.6 wt.% based on total fatty acid content.

10) The use according to any one of claims 1-9, wherein the nutritional composition comprises linoleic acid (LA) and alpha-linolenic acid (ALA) in a weight ratio LA : ALA between 4 and 7.

11) The use according to any one of claims 1-10, wherein the composition is for feeding a human subject with an age between 0 and 36 months.
12) Use according to any one of claims 1-11, which is for increasing brain membrane fluidity, increasing brain membrane PUFA, increasing brain membrane LC-PUFA, increasing brain membrane n6-LC PUFA, increasing brain membrane n6 PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane n6-LC PUFA, increasing brain membrane n6 PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane ARA, increasing brain membrane DHA, amelioration of cognitive performance, behavioural performance, visual acuity, fine motor skills when said human subject has reached an age above 36 months, preferably when said human subject has an age above 5 years.

13) Use according to any one of claims 1-12, wherein the composition is for feeding a human subject with an age between 0 and 36 months and which is for increasing brain membrane fluidity, increasing brain membrane PUFA, increasing brain membrane LC-PUFA, increasing brain membrane n6-LC PUFA, increasing brain membrane n6 PUFA, increasing brain membrane n3 PUFA, increasing brain membrane n3 LC-PUFA, increasing brain membrane ARA, increasing brain membrane DHA, amelioration of cognitive performance, behavioural performance, visual acuity, fine motor skills when said human subject has reached an age above 36 months, preferably when said human subject has reached an age above 5 years.

14) The use according to any one of claims 1-13, wherein the composition is a powder suitable for making a liquid composition after reconstitution with an aqueous solution, preferably with water.
INTERNATIONAL SEARCH REPORT

International application No:
PCT/NL2010/050142

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A23D7/01</th>
<th>A23D9/05</th>
<th>A23J7/O0</th>
<th>A23L1/00</th>
<th>A23L1/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td>A23L1/30</td>
<td>A61K31/201</td>
<td>A61K31/683</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| A23D | A23J | A23L | A61K |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal
- BIOSIS
- COMPENDEX
- FSTA
- IBM-TDB
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>page 27, paragraph 3; table 5,6 page 42, paragraph 3 - page 43, paragraph 1 page 32, paragraph 1</td>
<td>5, 7, 9</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

| [X] | See patent family annex |

Date of the actual completion of the international search

10 February 2011

Date of mailing of the international search report

02/03/2011

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Granet, Nicolas

*Special categories of cited documents:

- **“X”** document defining the general state of the art which is not considered to be of particular relevance
- **“E”** earlier document but published on or after the international filing date
- **“L”** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **“O”** document referring to an oral disclosure, use, exhibition or other means

Further details can be found in the document.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAKRIDES M; NEUMANN M A; BYARD R W; SIMMER K; GIBSON R A: "Fatty aci d composi tio n of brain , retina, and erythrocytes i n breast- and formul a-fed infants", AMERICAN JOURNAL OF CLINICAL NUTRITION UNITED STATES, vol. 60, no. 2, 1994, pages 189-194, XP002620896, the whole document</td>
<td>1-14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2010027258 A1</td>
<td>11-03-2010</td>
<td>WO 2010027259 A1</td>
</tr>
<tr>
<td>WO 2005051091 A1</td>
<td>09-06-2005</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2006114790 A2</td>
<td>02-11-2006</td>
<td>BR PI0607666 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101316521 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1898722 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009011075 A1</td>
</tr>
</tbody>
</table>