(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

3 May 2001 (03.05.2001) PCT WO 01/31497 Al
(51) International Patent Classification’: GO6F 17/30, (74) Agents;: WEBBER, David, Brian et al.; Davies Collison
HO4L 12/56, HO4N 7/26 Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU).
(21) International Application Number: PCT/AU00/01296 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA,BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
(22) International Filing Date: 20 October 2000 (20.10.2000) DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(25) Filing Language: English LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM,
(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(30) Priority Data: (84) Designated States (regional): ARIPO patent (GH, GM,
PQ 3603 22 October 1999 (22.10.1999) AU KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Burasian
PQ 8661 7 July 2000 (07.07.2000) AU patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(71) Applicant (for all designated States except US): AC- IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
TIVESKY, INC. [US/US]; Suite 101, 730 Bair Island CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
Road, Redwood City, CA 94063 (US).
Published:
=== (72) Inventor; and — With international search report.
=== (75) Inventor/Applicant (for US only): GONZALEZ, Ruben — Before the expiration of the time limit for amending the
— [AU/AU]; 6 Herrington Close, Arundel Hills, QLD 4214 claims and to be republished in the event of receipt of
r— (AU). amendments.
— [Continued on next page]
E (54) Title: AN OBJECT ORIENTED VIDEO SYSTEM
— encoding phase server player client
—_— compressed
= 51 50 object data
= hl
= raw object| . | compressed dynamic media .| decoding L] output
— data | encoder =P 1iact data composition > engine devices
— ‘ 76/ 62 J 61 /
— compressed
—— object data
— T
< 5
~
O\ (57) Abstract: A method of generating an object oriented interactive multimedia file, including encoding data comprising at least
‘: one of video, text, audio, music and/or graphics elements as a video packet stream, text packet stream, audio packet stream, music
o packet stream and/or grahics packet stream respectively, combining the packet streams into a single self-contained object, said object
~~ containing its own control information, placing a plurality of the objects in a data stream, and grouping one or more of the data streams
; in a single contiguous self-contained scene, the scene including format definition as the initial packet in a sequence of packets. An
encoder for executing the method is provided together with a player or decoder for parsing and decoding the file, which can be
O wirelessly streamed to a portable computer device, such as a mobile phone or a PDA. The object controls provide rendering and

interactive controls for objects allowing users to control dynamic media composition, such as dictating the shape and content of
interleaved video objects, and control the objects received.

=

wO 01/31497 A1 000 OO0 OO

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-1-

AN OBJECT ORIENTED VIDEO SYSTEM

Field of the Invention

The present invention relates to a video encoding and processing method, and in
particular, but not exclusively, to a video encoding system which supports the coexistence
of multiple arbitrarily-shaped video objects in a video scene and permits individual
animations and interactive behaviours to be defined for each object, and permits dynamic
media composition by encoding object oriented controls into video streams that can be
decoded by remote client or standalone systems. The client systems may be executed on a
standard computer or on mobile computer devices, such as personal digital assistants
(PDAs), smart wireless phones, hand-held computers and wearable computing devices
using low power, general purpose CPUs. These devices may include support for wireless

transmission of the encoded video streams.

Background

Recent technology improvements have resulted in the introduction of personal mobile
computing devices, which are just beginning to include full wireless communication
technologies. The global uptake of wireless mobile telephones has been significant, but
still has substantial growth potential. It has been recognised that there have not been any
video technology solutions that have provided the video quality, frame rate or low power
consumption for potential new and innovative mobile video processes. Due to the limited
processing power of mobile devices, there are currently no suitable mobile video solutions
for processes utilising personal computing devices such as mobile video conferencing,
ultra-thin wireless network client computing, broadcast wireless mobile video, mobile

video promotions or wireless video surveillance.

A serious problem with attempting to display video on portable handheld devices such as
smart phones and PDAs is that in general these have limited display capabilities. Since
video is generally encoded as using continuous colour representation which requires true
colour (16 or 24 bit) display capabilities for rendering, severe performance degradation

results when an 8 bit display is used. This is due to the quantisation and dithering

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-2.

processes that are performed on the client to convert the video images into an 8 bit format
suitable for display on devices using a fixed colour map, which reduces quality and

introduces a large processing overhead.

Computer based video conferencing currently uses standard computer workstations or PCs
connected through a network including a physical cable connection and network computer
communication protocol layers. An example of this is a videoconference between two PCs
over the Internet, with physically connected cables end to end, using the TCP/IP network
communication protocols. This kind of video conferencing has a physical connection to
the Internet, and also uses large, computer-based video monitoring equipment. It provides
for a videoconference between fixed locations, which additionally constrains the
participants to a specific time for the conference to ensure that both parties will be at the

appropriate locations simultaneously.

Broadcast of wireless textual information for personal handheld computers or smart-
phones has only recently become feasible with advances in new and innovative wireless
technologies and handheld computing devices. Handheld computing devices and mobile
telephones are able to have wireless connections to wide area networks that can provide
textual information to the user device. There is currently no real-time transmission of
video to wireless handheld computing devices. This lack of video content connectivity
tends to limit the commercial usefulness of existing systems, especially when one
considers the inability of “broadcast” systems to target specific users for advertising
purposes. One important market issue for broadcast media in any form is the question of
advertising and how it is to be supported. Effective advertising should be specifically
targeted to users and geographic locations, but broadcast technologies are inherently
limited in this regard. As a consequence, “niche” advertisers of specialty products would

be reluctant to support such systems.

Current video broadcast systems are unable to embed targeted advertising because of the
considerable processing requirements needed to insert advertising material into video data
streams in real time during transmission. The alternate method of pre-compositing video

prior to transmission is too tedious as recognised by the present inventor to be performed

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-3-

on a regular basis. Additionally, once the advertising is embedded into the video stream,
the user is unable to interact with the advertising which, reduces the effectiveness of the
advertising. Significantly, it has been recognised that more effective advertising can be

achieved though interactive techniques.

Most video encoders/decoders exhibit poor performance with cartoons or animated
content; however, there is more cartoon and animated content being produced for the
Internet than video. It has been recognised that there is a need for a codec which enables

efficient encoding of graphics animations and cartoons as well as video.

Commercial and domestic security-based video surveillance systems have to date been
achieved using closed circuit monitoring systems with video monitoring achieved in a
central location, requiring the full-time attention of a dedicated surveillance guard. Video
monitoring of multiple locations can only be achieved at the central control centre using
dedicated monitoring system equipment. Security guards have no access to video from

monitored locations whilst on patrol.

Network-based computing using thin client workstations involves minimal software
processing on the client workstation, with the majority of software processing occurring
on a server computer. Thin client computing reduces the cost of computer management
due to the centralisation of information and operating software configuration. Client
workstations are physically wired through standard local area networks such as 10 Base T
Ethernet to the server computer. Client workstations run a minimal operating system,
enabling communication to a backend server computer and information display on the
client video monitoring equipment. Existing systems, however, are constrained. They are
typically limited to specific applications or vendor software. For example, current thin
clients are unable to simultaneously service a video being displayed and a spreadsheet

application.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-4-

In order to directly promote product in the market, sales representatives can use video
demonstrations to illustrate product usage and benefits. Currently, for the mobile sales
representative, this involves the use of cumbersome dedicated video display equipment,
which can be taken to customer locations for product demonstrations. There are no mobile
handheld video display solutions available, which provide real-time video for product and

market promotional purposes.

Video brochures have often been used for marketing and advertising. However, their
effectiveness has always been limited because video is classically a passive medium. It has
been recognised that the effectiveness of video brochures would be dramatically improved
if they could be made interactive. If this interactivity could be provided intrinsically within
a codec, this would open the door to video-based e-commerce applications. The
conventional definition for interactive video includes a player that is able to decompress a
normal compressed video into a viewing window and interpret some metadata which
defines buttons and invisible “hot regions” to be overlaid over the video, typically
representing hyperlinks where a user’s mouse click will invoke some predefined action. In
this typical approach, the video is stored as a separate entity from the metadata, and the
nature of interaction is extremely limited, since there is no integration between the video

content and the external controls that are applied.

The alternative approach for providing interactive video is that of MPEG4, which permits
multiple objects, however this approach finds difficulty running on todays typical desktop
computer such as a Pentium III 500 Mhz Computer having 128 Mb RAM. The reason
being that the object shape information is encoded separately from the object
colour/luminance information generating additional storage overhead, and that the nature
of the scene description (BIFS) and file format having been taken in part from virtual
reality markup language (VRML) is very complex. This means that to display each video
frame for a video object three separate components have to be fully decoded; the
luminance information, the shape/transparency information and the BIFS. These then have
to be blended together before the object can be displayed. Given that the DCT based video

codec itself is already very computationally intensive, the additional decoding

10

15

20

25

WO 01/31497 PCT/AU00/01296

-5-

requirements introduce significant processing overheads in addition to the storage

overheads.

The provision of wireless access compatibilities to personal digital assistants (PDAs)
permits electronic books to be freed from their storage limitations by enabling real-time
wireless streaming of audio-visual content to PDAs. Many corporate training applications
need audiovisual information to be available wirelessly in portable devices. The nature of
audiovisual training materials dictates that they be interactive and provide for non-linear
navigation of large amounts of stored content. This cannot be provided with the current

state of the art.

Objects of the invention

An object of the invention is to overcome the deficiencies described above. Another
object of the invention is to provide software playback of streaming video, and to display
video on a low processingpower, mobile device such as a general-purpose handheld
devices using a general purpose processor, without the aid of specialised DSP or custom

hardware.

A further object of the invention is to to provide a high performance low complexity
software video codec for wirelessly connected mobile devices. The wireless connection
may be provided in the form of a radio network operating in CDMA, TDMA, FDMA
transmission modes over packet swithced or circuit switched networks as used in GSM,

CDMA, GPRS, PHS,UMTS, IEEE 802.11 etc networks.

A further object of the invention is to send colour prequantisation data for real-time colour
quantisation on clients with 8 bit colour displays (mapping any non-stationary three-
dimensional data onto a single dimension) when using codecs.that use continuous colour

representations.

A further object of the invention is to support multiple arbitrary shaped video objects in a

single scene with no extra data overhead or processing overhead.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-6-

A further object of the invention is to integrate audio, video, text, music and animated

graphics seamlessly into a video scene.

A further object of the invention is to attach control information directly to objects in a
video bitstream to define interactive behavior, rendering, composition, digital rights

management information, and interpretation of compressed data for objects in a scene.

A further object of the invention is to interact with individual objects in the video and

control rendering, and the composition of the content being displayed.

Yet another object of the invention is to provide interactive video possessing the capability
of modifying the rendering parameters of individual video objects, executing specific
actions assigned to video objects when conditions become true, and the ability to modify
the overall system status and perform non-linear video navigation. This is achieved

through the control information that is attached to individual objects.

Another object of the invention is to provide interactive non-linear video and composite
media where the system is capable of responding in one instance to direct user interaction
with hyperlinked objects by jumping to the specified atget scene. In another instance the
path taken through given portions of the video is indirectly determined by user interaction
with other not directly related objects. For example the system may track what scenes have
been viewed previously and automatically determine the next scene to be displayed based

on this history.

Interactive tracking data can be provided to the server during content serving. For
downloaded content, the interactive tracking data can be stored on the device for later
synchronization back to the server. Hyperlink requests or additional information requests
selected during replay of content off-line will be stored and sent to the server for
fulfillment on next synchronization (asynchronous uploading of forms and interaction

data).

A further object of the invention is to provide the same interactive control over object
oriented video whether the video data is being streamed from a remote server or being
played offline from local storage. This allows the application of interactive video in the

following distribution alternatives; streaming (“pull”), scheduled (“push”), and download.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-7-

It provides for automatically and asynchronous uploading of forms and interaction data

from a client device when using download or scheduled distribution model,

An object of the invention to animate the rendering parameters of audio/visual objects
within a scene. This includes, position, scale, orientation, depth, transparency, colour, and
volume. The invention aims to achieve this through defining fixed animation paths for
rendering parameters, sending commands from a remote server to modify the rendering
parameters, and changing the rendering parameters as a direct or indirect consequence of

user interaction, such as activating an animation path when a user clicks on an object.

Another object of the invention is to define behaviours to individual audio-visual objects
that are executed when users interact with objects, wherein the behaviours include
animations, hyper-linking, setting of system states/variables, and control of dynamic

media composition.

Another object of the invention is to conditionally execute immediate animations or
behavioural actions on objects. These conditions may include the state of system variables,
timer events, user events and relationships between objects (e.g., overlapping), the ability
to delay these actions until conditions become true, and the ability to define complex
conditional expressions. It is further possible to retarget any control from one object to

another so that interaction with one object affects another rather than itself.

Another object of the invention includes the ability to create video menus and simple
forms for registering user selections. Said forms being able to be automatically uploaded

to a remote server synchronously if online or asynchronously if the system off-line.

An object of the invention is to provide interactive video, which includes the ability to
define loops; such as looping the play of an individual object’s content or looping of

object control information or looping entire scenes.

Another object of the invention is to provide multi-channel control where subscribers can
change the viewed content stream to another channel such as to/from a unicast (packet
switched connection) session from/to a multicast (packet or circuit switched) channel. For
example interactive object behaviour may be used to implement a channel changing

feature where interacting with an object executes changing channels by changing from a

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-8-

packet switched to circuit switched connections in devices supporting both connection
modes and changing between unicast and broadcast channels in a circuit switched

connection and back again.

Another object of the invention is to provide content personalisation through dynamic
media composition (“DMC”) which is the process of permitting the actual content of a
displayed video scene to be changed dynamically, in real-time while the scene is being
viewed, by inserting, removing or replacing any of the arbitrary shaped visual/audio video

objects that the scene includes, or by changing the scene in the video clip.

An example would be an entertainment video containing video object components, which
relate to the subscribers user profile. For example in a movie scene, a room could contain
golf sporting equipment rather than tennis. This would be particularly useful in advertising
media where there is a consistent message but with various alternative video object

components.

Another object of the invention is to enable the delivery and insertion of a targeted in-
picture interactive advertising video object with or without interactive behaviour into a
viewed scene as an embodiment of the dynamic media process.. The advertising object
may be targeted to the user based on time of day, geographic location, user profile etc.
Furthermore, the invention aims to allow for the handling of various kinds of immediate or
delayed interactive response to user interaction (eg a user click) with said object including
removal of advertisement, performing a DMC operation such as immediately replacing the
advertising object with another object or replacing the viewed scene with a new one,
registering the user for offline follow-up actions, and jumping to a new hyperlink
destination or connection at the end of the current video scene / session, or and changing
the transparency of the advertising object or making it go away or disappear. Tracking of
user interaction with advertisment objects when these are provided in a real-time
streaming scenario further permits customisation of targetting purposes or evaluation of

advertising effectiveness.

Another object of the invention is to subsidise call charges associated with wireless
network or smartphone use through advertising by automatically displaying a sponsor’s

video advertising object for a sponsored call during or at the end of a call. Alternatively,

10

15

20

25

WO 01/31497 PCT/AU00/01296

-9.

displaying an interactive ivdeo object prior to, during or after the call offering sponsorship

if the user performs some interaction with the object.

An object of the invention is to provide a wireless interactive e-commerce system for
mobile devices using audio and visual data in online and off-line scenarios. The e-
commerce include marketing / promotional purposes using either hyper-linked in-picture
advertising or interactive video brochures with nonliner navigation, or direct online
shopping where individual sale items can be created as objects so that users may interact

with them such as dragging them into shopping baskets etc.

An object of the invention includes a method and system to freely provide to the public,
(or at subsidised cost), memory devices such as compact flash or memory stick or a
memory devices having some other form factor that contains interactive video brochures
with advertising or promotional material or product information. The memory devices are
preferably read only devices, although other types of memory can be used. The memory
devices may be configured to provide a feedback mechanism to the producer, using either
online communication, or by writing some data back on to the memory card which is then
deposited at some collection point. Without using physical memory cards, this same
objective may be accomplised using local wireless distribution by pushing information to
devices following negotiation with the device regarding if the device is prepared to receive

the data and the quantity receivable.

An object of the invention is to send to users when in download, interactive video
brochures, videozines and video (activity) books so that they can then interact with the
brochures including filling out forms, etc. If present in the video brochure and actioned or
interacted by a user, user data/forms these will then be asynchronously uploaded to the
originating server when the client becomes online again. If desired, the uploading can be
performed automatically and/or asynchronously. These brochures may contain video for
training/educational, marketing or promotional, product information purposes and the
collected .user interaction information may be a test, survey, request for more information,
purchase order etc. The interactive video brochures, videozines and video (activity) books

may be created with in-picture advertising objects.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-10 -

A further object of the invention is to create unique video based user interfaces for mobile

devices using our object based interactive video scheme.

A further object of the invention is to provide video mail for wirelessly connected mobile
users where electronic greeting cards and messages may be created and customised and

forwarded among subscribers.

A further object of the invention is to provide local broadcast as in sports arenas or other
local environments such as airports, shopping malls with back channel interactive user

requests for additional information or e-commerce transactions.

Another object of the invention is to provide a method for voice command and control of

online applications using the interactive video systems.

Another object of the invention is to provide a wireless ultrathin clients to provide access
to remote computing servers via wireless connections. The remote computing server may

be a privately owned computer or provided by an application service provider.

Still another object of the invention is to provide videoconferencing including multiparty

video conferencing on low-end wireless devices with or without in-picture advertising.

Another object of the invention is to provide a method of video surveillance, whereby a
wireless video surveillance system inputs signals from video cameras, video storage
devices, cable TV and broadcast TV, streaming internet video for remote viewing on a
wirelessly connected PDA or mobile phone.Another object of the invention is to provide a

traffic monitoring service using a street traffic camera.

Summary of the Invention

System/Codec Aspects

The invention provides the ability to stream and/or run video on low-power mobile
devices in software, if desired. The invention further provides the use of a quadtree-based
codec for colour mapped video data. The invention further provides using a quadtree-
based codec with transparent leaf representation, leaf colour prediction using a FIFO,

bottom level node type elimination, along with support for arbitrary shape definition.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-11-

The invention further includes the use of a quadtree based codec with nth order
interpolation for non-bottom leaves and zeroth order interpolation on the bottom level
leaves and support for arbitrary shape definition. Thus, features of various embodiments of

the invention may include one or more of the following features:

sending colour prequantisation information to permit real-time client side colour

quantisation;

using a dynamic octree datastructure to represent the mapping of a 3D data spacing into an

adaptive codebook for vector quantisation;

the ability to seamlessly integrating audio, video, text, music and animated graphics into a

wireless streaming video scene;

supporting multiple arbitrary shaped video objects in a single scene. This feature is
implemented with no extra data overhead or processing overhead, for example by

encoding additional shape information separate from luminance or texture information;

basic file format constructs, such as file entity hierarchy, object data streams, separate
specification of rendering, definition and content parameters, directories, scenes, and

object based controls;
the ability to interact with individual objects in wireless streaming video;

the ability to attach object control data to objects in the video bit streams to control

interaction behaviour, rendering parameters, composition etc;

the ability to embed digital rights management information into video or graphic
animation data stream for wireless streaming based distribution and for download and play

based distribution;

the ability to creating video object user interfaces (“VUI’s”) instead of conventional

graphic user interfaces (GUI’s); and/or

the ability to use an XML based markup language (“IAVML”) or similar scripts to define
object controls such as rendering parameters and programmatic control of DMC functions

in multimedia presentations.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-12-

Interaction Aspects
The invention further provides a method and system for controlling user interaction and
animation (self action) by supporting
- amethod and system for sending object controls from a streaming server to modify
data content or rendering of content.
- embedding object controls in a data file to modify data content or rendering of
content.
- the client may optionally execute actions defined by the object controls based on
direct or indirect user interaction.
The invention further provides the ability to attach executable behaviours to objects,
including: animation of rendering parameters, for audio/visual objects in video scenes.
hyperlinks, starting timers, making voice calls, dymaic media composition actions,
changing system states (e.g., pause/play), changing user variables (e.g., setting a boolean

flag).

The invention also provides the ability to activate object behaviours when users
specifically interact with objects (e.g., click on an object or drag anobject) when user
events occur (paused button pressed, or key pressed), or when system events occur (e.g.,

end of scene reached).

The invention further provides a method and system for assigning conditions to actions
and behaviours these conditions include timer events (e.g., timer has expired), user events
(e.g., key pressed), system events (e.g., scene 2 playing), interaction events (e.g., user
clicked on object), relationships between objects (e.g., overlapping), user variables (e.g.,

boolean flag set), and system status (e.g., playing or paused, streaming or standalone play).

Moreover, the invention provides the ability to form complex conditional expressions
using AND-OR plane logic, waiting for conditions to become true before execution of
actions, the ability to clear waiting actions, the ability to retarget consequences of
interactions with objects and other controls from one object to another, permit objects to
be replaced by other objects while playing based on user interaction, and/or permit the

creation or instantiation of new objects by interacting with an existing object.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-13-

The invention provides the ability to define looping play of object data (i.e., frame
sequence for individual objects), object controls (i.e., rendering parameters), and entire

scenes (restart frame sequences for all objects and controls).

Further, the invention provides the ability to create forms for user feedback or menus for
user control and interaction in streaming mobile video and the ability to drag video objects

on top of other objects to effect system state changes.

Dynamic Media Composition

The invention provides the ability to permit the composition of entire videos by modifying
scenes and the composition of entire scenes by modifying objects. This can be performed
in the case of online streaming, playing video off-line (stand-alone), and hybrid.
Individual in-picture objects may be replaced by another object, added to the current

scene, and deleted from the current scene.

DMC can be performed in the three modes including fixed, adaptive, and user mediated.
A local object library for DMC support can be used to store objects for use in DMC, store
objects for direct playing, that can be managed from a streaming server (insert, update,
purge), and that can be queried by the server. Additionally the a local object library for
DMC support has versioning control for library objects, automatic expiration of non
persistent library objects, and automatic object updating from the server. Furthermore, the
invention includes multilevel access control for library objects, supports a unique ID for
each library object, has a history or status of each library object, and can enable the

sharing of specific media objects between two users.

Further Applications

The invention provides ultrathin clients that provide access to remote computing servers
via wireless connections, permit users to create, customise and send electronic greeting
cards to mobile smart phones, the use of processing spoken voice commands to control the
video display, the use of interactive streaming wireless video from a server for

training/educational purposes using non-linear navigation, streaming cartoons/graphic

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

.14 .-

animation to wireless devices, wireless streaming interactive video e-commerce

applications, targeted in-picture advertising using video objects and streaming video.

In addition, the invention allows the streaming of live traffic video to users. This can be
performed in a number of alternative ways including where the user dials a special phone
number and then selects the traffic camera location to view within the region handled by
the operator/exchange, or where a user dials a special phone number and the user’s
geographic location (derived from GPS or cell triangulation) is used to automatically
provide a selection of traffic camera locations to view. Another alternative exists where
the user can register for a special service where the service provider will call the user and
automatically stream video showing the motorists route that may have a potential traffic
jam. Upon registering the user may elect to nominate a route for this purpose, and may
assist with determining the route. In any case the system could track the user’s speed and
location to determine direction of travel and route being followed, it would then search its
list of monitored traffic cameras along potential routes to determine if any sites are
congested. If so, the system would call the motorist and present the traffic view. Stationary
users or those travelling at walking speeds would not be called. Alternatively given a
traffic camera indicating congestion the system may search through the list of registered

users that are travelling on that route and alert them.

The invention further provides to the public, either for free or at a subsidised cost, memory
devices such as compact flash memory, memory stick, or in any other form factor such as
a disc that contain interactive video brochures with advertising or promotional material or
product information. The memory devices are preferably read only memories for the user,
although other types of memories such as read/write memories can be used, if desired.
The memory devices may be configured to provide a feedback mechanism to the producer,
using either online communication, or by writing some data back on to the memory

memory device which is then deposited at some collection point.

Without using physical memory cards or other memory devices, this same process can be
accomplished using local wireless distribution by pushing information to devices
following negotiation with the device regarding if the device is prepared to receive the

data, and if so, what quantity is receivable. Steps involved may include: a) a mobile

10

15

20

25

WO 01/31497 PCT/AU00/01296

-15 -

device comes into range of a local wireless network (this may be an IEEE 802.11 or
bluetooth, etc. type of network), it detects a carrier signal and a server connection request.
If acccepted, the client alerts the user by means of an audible alarm or some other method
to indicate that it is initiating the transfer; b) if the user has configured a mobile device to
accept these connection requests, then the connection is established with the server else
the request is rejected; c) the client sends to the server configuration information
including device capabilities such as display screen size, memory capacity and CPU
speed, device manufacturer/model and operating system; d) the server receives this
information and selects the correct data stream to send to the client. If none is suitable then
the connection is terminated; e) after the information is transferred the server closes the
connection and the client alerts the user to the end of transmission; and f) if the
transmission is unduly terminated due to a lost connection before the transmission is
completed, the client cleans up any memory used and reinitialises itself for new

connection requests.

Statements of the Invention

In accordance with the present invention there is provided a method of generating an

object oriented interactive multimedia file, including:

encoding data comprising at least one of video, text, audio, music and/or graphics
elements as a video packet stream, text packet stream, audio packet stream, music

packet stream and/or graphics packet stream respectively;

combining said packet streams into a single self-contained object, said object

containing its own control information;
placing a plurality of said objects in a data stream; and

grouping one or more of said data streams in a single contiguous self-contained

scene, said scene including format definition as the initial packet in a sequence of packets.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-16 -

The present invention also provides a method of mapping in real time from a non-

stationary three-dimensional data set onto a single dimension, comprising the steps of:
pre-computing said data; encoding said mapping;
transmitting the encoded mapping to a client; and

said client applying said mapping to the said data.

The present invention also provides a system for dynamically changing the actual content

of a displayed video in an object-oriented interactive video system comprising:

a dynamic media composition process including an interactive multimedia file
format including objects containing video, text, audio, music, and/or graphical data
wherein at least one of said objects comprises a data stream, at least one of said data

streams comprises a scene, at least one of said scenes comprises a file;
a directory data structure for providing file information;

selecting mechanism for allowing the correct combination of objects to be

composited together;

a data stream manager for using directory information and knowing the location of

said objects based on said directory information; and

control mechanism for inserting, deleting, or replacing in real time while being

viewed by a user, said objects in said scene and said scenes in said video.

The present invention also provides an object oriented interactive multimedia file,

comprising:
a combination of one or more of contiguous self-contained scenes;

each said scene comprising scene format definition as the first packet, and a group

of one or more data streams following said first packet;

WO 01/31497 PCT/AU00/01296

-17-

each said data stream apart from first data stream containing objects which may be
optionally decoded and displayed according to a dynamic media composition process as

specified by object control information in said first data stream; and

each said data stream including one or more single self-contained objects and

5 demarcated by an end stream marker; said objects each containing it’s own control
information and formed by combining packet streams; said packet streams formed by
encoding raw interactive multimedia data including at least one or a combination of video,
text, audio, music, or graphics elements as a video packet stream, text packet stream, audio

packet stream, music packet stream and graphics packet stream respectively.

10

The present invention also provides a method of providing a voice command operation of
a low power device capable of operating in a streaming video system, comprising the

following steps:
capturing a user’s speech on said device;
15 compressing said speech;
inserting encoded samples of said compressed speech into user control packets;

sending said compressed speech to a server capable of processing voice

commands;
said server performs automatic speech recognition;
20 said server maps the transcribed speech to a command set;
said system checks whether said command is generated by said user or said server;

if said transcribed command is from said server, said server executes said

command;

if said transcribed command is from said user said system forwards said command

25 to said user device; and

said user executes said command.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-18 -

The present invention also provides an image processing method, comprising the step of:
generating a colour map based on colours of an image;
determining a representation of the image using the colour map; and
determining a relative motion of at least a section of the image which is

represented using the colour map.

The present invention also provides a method of determining an encoded representation of
an image comprising: analyzing a number of bits utilized to represent a colour;
representing the colour utilizing a first flag value and a first predetermined number

of bits, when the number of bits utilized to represent the colour exceeds a first value; and
representing the colour utilizing a second flag value and a second predetermined

number of bits, when the number of bits utilized to represent the colour does not exceed a

first value.

The present invention also provides an image processing system, comprising means for
generating a colour map based on colours of an image;
means for determining a representation of the image using the colour map; and
means for determining a relative motion of at least a section of the image which is

represented using the colour map.

The present invention also provides an image encoding system for determining an encoded
representation of an image comprising:

means for analyzing a number of bits utilized to represent a colour;

means for representing the colour utilizing a first flag value and a first
predetermined number of bits, when the number of bits utilized to represent the colour
exceeds a first value; and

means for representing the colour utilizing a second flag value and a second
predetermined number of bits, when the number of bits utilized to represent the colour

does not exceed a first value.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-19-

The present invention also provides a method of processing objects, comprising the steps
of:

parsing information in a script language;

reading a plurality of data sources containing a plurality of objects in the form of at
least one of video, graphics, animation, and audio;

attaching control information to the plurality of objects based on the information in
the script language; and

interleaving the plurality of objects into at least one of a data stream and a file.

The present invention also provides a system for processing objects, comprising:

means for parsing information in a script language;

means for reading a plurality of data sources containing a plurality of objects in the
form of at least one of video, graphics, animation, and audio;

means for attaching control information to the plurality of objects based on the
information in the script language; and

means for interleaving the plurality of objects into at least one of a data stream and

a file.

The present invention also provides a method of remotely controlling a computer,
comprising the step of:

performing a computing operation at a server based on data;

generating image information at the server based on the computing operation;

transmitting, via a wireless connection, the image information from the server to a
client computing device without transmitting said data;

receiving the image information by the client computing device; and

displaying the image information by the client computing device.

The present invention also provides a system for remotely controlling a computer,

comprising:

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-20-

means for performing a computing operation at a server based on data;

means for generating image information at the server based on the computing
operation;

means for transmitting, via a wireless connection, the image information from the
server to a client computing device without transmitting said data;

means for receiving the image information by the client computing device; and

means for displaying the image information by the client computing device.

The present invention also provides a method of transmitting an electronic greeting card,
comprising the steps of:

inputting information indicating features of a greeting card;

generating image information corresponding to the greeting card;

encoding the image information as an object having control information;

transmitting the object having the control information over a wireless connection;

receiving the object having the control information by a wireless hand-held
computing device;

decoding the object having the control information into a greeting card image by
the wireless hand-held computing device; and

displaying the greeting card image which has been decoded on the hand-held

computing device.

The present invention also provides a system transmitting an electronic greeting card,
comprising:

means for inputting information indicating features of a greeting card;

means for generating image information corresponding to the greeting card;

means for encoding the image information as an object having control information;

means for transmitting the object having the control information over a wireless
connection,;

means for receiving the object having the control information by a wireless hand-

held computing device;

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

221 -

means for decoding the object having the control information into a greeting card
image by the wireless hand-held computing device; and
means for displaying the greeting card image which has been decoded on the hand-

held computing device.

The present invention also provides a method of controlling a computing device,
comprising the steps of:

inputting an audio signal by a computing device;

encoding the audio signal;

transmitting the audio signal to a remote computing device;

interpreting the audio signal at the remote computing device and generating
information corresponding to the audio signal;

transmitting the information corresponding to the audio signal to the computing
device;

controlling the computing device using the information corresponding to the audio

signal.

The present invention also provides a system for controlling a computing device,
comprising:

inputting an audio signal by a computing device;

encoding the audio signal;

transmitting the audio signal to a remote computing device;

interpreting the audio signal at the remote computing device and generating
information corresponding to the audio signal;

transmitting the information corresponding to the audio signal to the computing
device; and

controlling the computing device using the information corresponding to the audio

signal.

The present invention also provides a system for performing a transmission, comprising:

10

15

20

25

WO 01/31497 PCT/AU00/01296

-2

means for displaying an advertisement on a wireless hand-held device;
means for transmitting information from the wireless hand-held device; and
means for receiving a discounted price associated with the information which has

been transmitted because of the display of the advertisement.

The present invention also provides a method of providing video, comprising the steps of:
determining whether an event has occurred; and
obtaining a video of an area transmitting to a user by a wireless transmission the

video of the area in response to the event.

The present invention also provides a system for providing video, comprising:
means for determining whether an event has occurred;
means for obtaining a video of an area; and
means for transmitting to a user by a wireless transmission the video of the area in

response to the event.

The present invention also provides an object oriented multimedia video system capable of
supporting multiple arbitrary shaped video objects without the need for extra data

overhead or processing overhead to provide video object shape information.

The present invention also provides a method of delivering multimedia content to wireless
devices by server initiated communications wherein content is scheduled for delivery at a
desired time or cost effective manner and said user is alerted to completion of delivery via

device’s display or other indicator.

The present invention also provides an interactive system wherein stored information can
be viewed offline and stores user input and interaction to be automatically forwarded over

a wireless network to a specified remote server when said device next connects online.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-23-

The present invention also provides a video encoding method, including:
encoding video data with object control data as a video object; and
generating a data stream including a plurality of said video object with respective

video data and object control data.

The present invention also provides a video encoding method, including:

quantising colour data in a video stream based on a reduced representation of
colours;

generating encoded video frame data representing said quantised colours and
transparent regions; and

generating encoded audio data and object control data for transmission with said

encoded video data.

The present invention also provides a video encoding method, including:

(1) selecting a reduced set of colours for each video frame of video data;

(ii) reconciling colours from frame to frame;

(iii) executing motion compensation;

(iv) determining update areas of a frame based on a perceptual colour difference
measure;

(v) encoding video data for said frames into video objects based on steps (i) to
(iv); and

(vi) including in each video object animation, rendering and dynamic

composition controls.

The present invention also provides a wireless streaming video and animation system,
including:
(1) a portable monitor device and first wireless communication means;
(i) a server for storing compressed digital video and computer animations and
enabling a user to browse and select digital video to view from a library of

available videos; and

10

15

20

25

30

WO 01/31497

(iii)

PCT/AU00/01296

=24 -

at least one interface module incorporating a second wireless

communication means for transmission of transmittable data from the server to the

portable monitor device, the portable monitor device including means for receiving

said transmittable data, converting the transmittable data to video images

displaying the video images, and permitting the user to communicate with the

server to interactively browse and select a video to view.

The present invention also provides a method of providing wireless streaming of video and

animation including at least one of the steps of:

(@

(b)

©
(d)

downloading and storing compressed video and animation data from a
remote server over a wide area network for later transmission from a local
server;

permitting a user to browse and select digital video data to view from a
library of video data stored on the local server;

transmitting the data to a portable monitor device; and

processing the data to display the image on the portable monitor device.

The present invention also provides a method of providing an interactive video brochure

including at least one of the steps of:

(@

creating a video brochure by specifying (i) the various scenes in the
brochure and the various video objects that may occur within each scene,
(ii) specifying the preset and user selectable scene navigational controls and
the individual composition rules for each scene, (iii) specifying rendering
parameters on media objects, (iv) specifying controls on media objects to
create forms to collect user feedback, (v) integrating the compressed media

streams and object control information into a composite data stream.

The present invention also provides a method of creating and sending video greeting cards

to mobile devices including at least one of the steps of:

(@

permitting a customer to create the video greeting card by (i) selecting a

10

15

20

25

WO 01/31497 PCT/AU00/01296

=25 -

template video scene or animation form a library, (ii) customising the
template by adding user supplied text or audio objects or selecting video
objects from a library to be inserted as actors in the scene;

(b) obtaining from the customer (i) identification details, (ii) preferred delivery
method, (iii) payment details, (iv) the intended recipient's mobile device
number; and

(c) queuing the greeting card depending on the nominated delivery method
until either bandwidth becomes available or off peak transport can be
obtained, polling the recipient's device to see if it is capable of processing

the greeting card and if so forwarding to the nominated mobile device.

The present invention also provides a video decoding method for decoding the encoded

data.

The present invention also provides a dynamic colour space encoding method to permit
further colour quantisation information to be sent to the client to enable real-time client

based colour reduction.

The present invention also provides a method of including targeted user and/or local video

advertising.

The present invention also includes executing an ultrathin client, which may be wireless,

and which is able to provide access to remote servers.

The present invention also provides a method for multivideo conferencing.

The present invention also provides a method for dynamic media composition.

WO 01/31497 PCT/AU00/01296

-26 -

The present invention also provides a method for permitting users to customise and

forward electronic greeting cards and post cards to mobile smart phones.

The present invention also provides a method for error correction for wireless streaming of

multimedia data.

The present invention also provides systems for executing any one of the above methods,

respectively.

10

15

WO 01/31497 PCT/AU00/01296

-27-

The present invention also provides server software for permitting users to a method for

error correction for wireless streaming of video data.

The present invention also provides a computer software for executing steps of any one of

the above methods, respectively.

The present invention also provides a video on demand system. The present invention
also provides a video security system. The present invention also provides an interactive

mobile video system.

The present invention also provides a method of processing spoken voice commands to

control the video display.

The present invention also provides software including code for controlling object oriented
video and/or audio. Advantageously, the code may include IAVML instructions, why may
be based on XML.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-28 -

Brief Description of Drawings

Preferred embodiments of the present invention are hereinafter described, by way

of example only, with reference to the accompanying drawings, wherein:

Figure 1 is a simplified block diagram of an object oriented multimedia system of

one embodiment of the present invention;

Figure 2 is a schematic diagram illustrating the three major packet types
interleaved into an object oriented data stream of the embodiment illustrated in

Figure 1;

Figure 3 is a block diagram illustrating the three phases of data processing in an

object oriented multimedia player embodiment of the present invention;

Figure 4 is a schematic diagram showing the hierarchy of object types in an

object oriented data file according to the present invention;

Figure 5 is a diagram showing a typical packet sequence in a data file or stream

according to the present invention;

Figure 6 is a diagram illustrating the information flow between client and server

components of an object oriented multimedia player according to the present

invention;

Figure 7 is a block diagram showing the major components of an object oriented

multimedia player client according to the present invention;

10

15

20

25

WO 01/31497 PCT/AU00/01296

-29.

Figure 8 is a block diagram showing the functional components of an object

oriented multimedia player client according to the present invention;

Figure 9 is a flow chart describing the major steps in the multi-object client

rending process according to the present invention,

Figure 10 is a block diagram of a preferred embodiment of the client rendering

engine according to the present invention;

Figure 11 is a block diagram of a preferred embodiment of the client interaction

engine according to the present invention;

Figure 12 is a component diagram describing an embodiment of an interactive

multi-object video scene with DMC functionality.

Figure 13 is a flow chart describing the major steps in the process the client
performs in playing an interactive object oriented video according to the present

invention;

Figure 14 is a block diagram of the local server component of an interactive

multimedia player according to the present invention;

Figure 15 is a block diagram of a remote streaming server according to the

present invention;

Figure 16 Is a flow chart describing the main steps executed by a client

performing dynamic media composition according to the present invention,

10

15

20

25

WO 01/31497 PCT/AU00/01296

-30 -

Figure 17 Is a flow chart describing the main steps executed by a server client

performing dynamic media composition according to the present invention;

Figure 18 is a block diagram of an object-oriented video encoder according to

the present invention;

Figure 19 is a flow chart of the main steps executed by a video encoder

according to the present invention;

Figure 20 is a block diagram of an input colour processing component of a video

encoder according to the present invention;

Figure 21 is a block diagram of the components of a region update selection

process used in a video encoder according to the present invention,;

Figure 22 is a diagram of three fast motion compensation methods used in video

encoding;

Figure 23 is a diagram of the tree splitting method used in a video encoder

according to the present invention;

Figure 24 is a flow chart of the main stages performed to encode the data

resulting from the video compression process according to the present invention;,

Figure 25 is a flow chart of the steps for encoding the colour map update

information according to the present invention;

Figure 26 is a flow chart of the steps to encode the quad tree structure data for

normal predicted frames according to the present invention;

10

15

20

25

WO 01/31497 PCT/AU00/01296

-31 -

Figure 27 is a flow chart of the steps to encode the leaf colour in the quad tree

data structure according to the present invention,

Figure 28 is a flow chart of the main steps executed by a video encoder to

compress video key frames according to the present invention;

Figure 29 is a flow chart of the main steps executed by a video encoder to
compress video using the alternate encoding method according to the present

invention;

Figure 30 is a flow chart of the main involved in the prequantisation process to
perform real-time colour (vector) quantisation in real-time at the client according to

the present invention;

Figure 31 is a flow chart of the main steps in the voice command process

according to the present invention;

Figure 32 is a block diagram of an ultra-thin computing client Local Area wireless

Network (LAN) system according to the present invention;

Figure 33 is a block diagram of an ultra-thin computing client Wide Area wireless

Network (WAN) system according to the present invention;,

Figure 34 is a block diagram of an ultra-thin computing client Remote LAN server

system according to the present invention;

Figure 35 is a block diagram of an multiparty wireless videoconferencing system

according to the present invention;

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-32-

Figure 36 is a block diagram of one embodiment of an interactive ‘video on
demand’ system, with targeted in-picture user advertising, according to the

present invention;

Figure 37 is a flow chart of the main steps involved in the process of delivering
and handling one embodiment of an interactive in-picture targeted user

advertisement according to the present invention;

Figure 38 is a flow chart of the main steps involved in the process of playing and
handling one embodiment of an interactive video brochure according to the

present invention;

Figure 39 is a flow chart of a sequence of possible user interactions in one

embodiment of an interactive video brochure according to the present invention;

Figure 40 is a flow chart of the main steps involved in push or pull based

distribution of video data according to the present invention;

Figure 41 is a block diagram of an interactive ‘video on demand’ system

according to the present invention, with remote server based digital rights
management functions including user authentication, access control, billing and

usage metering;

Figure 42 is a flow chart of the main steps of the process that player software
performs in playing on demand streaming wireless video according to the present

invention;

Figure 43 is a block diagram of a video security/surveillance systems according

to the present invention

10

15

20

25

WO 01/31497 PCT/AU00/01296

-33-

Figure 44 is a block diagram of an electronic greeting card system and service

according to the present invention.

Figure 45 is a flow chart of the main steps involved in creating and sending a

personalised electronic video greeting card or video E-mail to a mobile telephone

according to the present invention;

Figure 46 is a block diagram showing the centralised parametric scene

description used in the MPEG4 standard;

Figure 47 is a block diagram showing the main steps in providing colour
quantisation data to a decoder for real time colour quantisation according to the

present invention;

Figure 48 is a block diagram showing the main components of an object library

according to the present invention;

Figure 49 is a flowchart of the main steps of a video decoder according to the

present invention;

Figure 50 is a flowchart of the main steps involved in decoding a quad tree

encoded video frame according to the present invention.

Figure 51 is a flowchart of the main steps involved in decoding a leaf colour of a

quad tree according to the present invention.

WO 01/31497

PCT/AU00/01296

-34 -

Detailed Description of the Invention

Glossary of Terms

Bit Stream

Data Stream

Dynamic Media Composition
File

In Picture Object

Media Object

Object

Packet Stream

Scene

Stream

Video Object

Acronyms

A sequence of bits transmitted from a server to a client,
but may be stored in memory.

One or more interleaved Packet Streams.

Changing the composition of a multi-object multimedia
presentation in real time.

An object oriented multimedia file.

An overlayed video object within a scene.

A combination of one or more interleaved media types
including audio, video, vector graphics, text and music.
A combination of one or more interleaved media types
including audio, video, vector graphics, text and music.
A sequence of data packets belonging to one object
transmitted from a server to a client but may be stored in
memory.

The encapsulation of one or more Streams, comprising a
multi-object multimedia presentation.

A combination of one or more interleaved Packet
Streams, stored in an object oriented multimedia file.

A combination of one or more interleaved media types

including audio, video, vector graphics, text and music.

WO 01/31497 PCT/AU00/01296

-35-
The following acronyms are used herein:
FIFO First In First Out Buffer.
IAVML Interactive Audio Visual Mark-up Language
PDA Personal Digital Assistant
DMC Dynamic Media Composition
IME Interaction Management Engine
DRM Digital Rights Management
ASR Automatic Speech Recognition
PCMCIA Personal Computer Memory Card International

Association

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-36-

General System Architecture

The processes and algorithms described herein form an enabling technology platform for
advanced interactive rich media applications such as E-commerce. The great advantage of
the methods described is that they can be executed on very low processing power devices
such as mobile phones and PDAs in software only, if desired. This will become more
apparent from the flow chart and accompanying descriptions as shown in Figure 42. The
specified video codec is fundamental to this technology as it enables the ability to provide
advanced iject oriented interactive processes in low power, mobile video systems. An
important advantage of the system exists in its low overhead. These advanced object
oriented interactive processes enable a new level of functionality, user experience and

applications than have heretofore been possible on wireless devices.

Typical video players such as MPEG1/2, H.263 players present a passive experience to
users. They read a single compressed video data stream and play it by performing a
single, fixed decoding transformation on the received data. In contrast, an object oriented
video player, as described herein, provides advanced interactive video capabilities and
allows dynamic composition of multiple video objects from multiple sources to customise
the content that users experience. The system permits not only multiple, arbitrary-shaped
video objects to coexist, but also determines what objects may coexist at any moment in
real-time, based on either user interaction or predefined settings. For example, a scene in a
video may be scripted to have one of two different actors perform different things in a

scene depending on some user preference or user interaction.

To provide such flexibility, an object oriented video system has been developed including
an encoding phase, a player client and server, as shown in Figure 1. The encoding phase
includes an encoder 50, which compresses raw multimedia object data 51 into a
compressed object data file 52. The server component includes a programmable, dynamic

media composition component 76, which multiplexes compressed object data from a

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-37-

number of encoding phases together with definition and control data according to a given
script, and sends the resulting data stream to the player client. The player client includes a
decoding engine 62, which decompresses the object data stream and renders the various

objects before sending them to the appropriate hardware output devices 61.

Referring to Figure 2, the decoding engine 62 performs operations on three interleaved
streams of data: compressed data packets 64, definition packets 66, and object control
packets 68. The compressed data packets 64 contain the compressed object (e.g., video)
data to be decoded by an applicable encoder/decoder (‘codec’). The methods for encoding
and decoding video data are discussed in a later section. The definition packets 66 convey
media format and other information that is used to interpret the compressed data packets
64. The object control packets 68 define object behaviour, rendering, animation and

interaction parameters.

Figure 3 is a block diagram illustrating the three phases of data processing in an object
oriented multimedia player. As shown, three separate transforms are applied to the object
oriented data to generate a final audio-visual presentation via a system display 70 and an
audio subsystem. A ‘dynamic media composition’ (DMC) process 76 modifies the actual
content of the data stream and sends this to the decoding engine 62. In the decoding engine
62, a normal decoding process 72 extracts the compressed audio and video data and sends
it to a rendering engine 74 where other transformations are applied, including geometric
transformations of rendering parameters for individual objects, (e.g., translation). Each

transformation is individually controlled through parameters inserted into the data stream.

The specific nature of each of the final two transformations depends on the output of the
dynamic media composition process 76, as this determines the content of the data stream
passed to the decoding engine 62. For example, the dynamic media composition process
76 may insert a specific video object into the bit stream. In this case, in addition to the
video data to be decoded, the data bit stream will contain configuration parameters for the

decoding process 72 and the rendering engine 74.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-38 -

The object oriented bit stream data format permits seamless integration between different
kinds of media objects, supports user interaction with these objects, and enables
programmable control of the content in a displayed scene, whether streaming the data

from a remote server or accessing locally stored content.

Figure 4 is a schematic diagram showing the hierarchy of object types in an object
oriented multimedia data file. The data format defines a hierarchy of entities as follows: an
object oriented data file 80 may contain one or more scenes 81. Each scene may contain
one or more streams 82 which contain one or more separate simultaneous media objects
52. The media objects 52 may be of a single media element 89 such as video 83, audio 84,
text 85, vector graphics (GRAF) 86, music 87 or composites of such elements 89. Multiple
instances of each of the above said media types may simultaneously occur together with
other media types in a single scene. Each object 52 can contain one or more frames 88
encapsulated within data packets. When more than one media object 52 is present in a
scene 81, the packets for each are interleaved. A single media object 52 is a totally self-
contained entity that has virtually no dependencies. It is defined by a sequence of packets
including one or more definition packets 66, followed by data packets 64 and any control
packets 68 all bearing the same object identifier number. All packets in the data file have
the same header information (the baseheader) which specifies the object that the packet
corresponds to, the type of data in the packet, the number of the packet in a sequence and
the amount of data (size) the packet contains. Further details of the file format are

described in a later section.

The distinction with the MPEG4 system will be readily observed. Refering to Figure 46,
MPEG#4 relies on a centralised parametric scene description in the form of the Binary
Format for Scenes (BIFS) 01a, which is a hierarchical structure of nodes that can contain
the attributes of objects and other information. BIFS 0la is borrowed directly from the
very complex Virtual Reality Markup Language (VRML) Grammar. In this approach, the
centralised BIFS structure Ola is actually the scene itself: it is the fundamental component
in an object oriented video, not the objects themselves. Video object data may be specifed

for use in a scene, but does not serve in defining the scene itself. So, for example, a new

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-39.-

video object cannot be introduced into a scene unless the BIFS structure Ola is first
modified to include a node that references the video data. The BIFS also does not directly
reference any object data streams; instead, a special intermediary independent device
called an object descriptor 01b maps between any OBJ_IDs in the nodes of a BIFS 0la
and the elementary data streams Olc which contain video data. Hence in the MPEG
approach each of these three separate entities 0la, 01b, Olc, are interdependent, so that if
an object stream is copied to another file, it loses any interactive behaviour and any other
control information associated with it. Since MPEG#4 is not object-centric, its data packets
are referred to as atoms which have a common header consisting of only type and packet

size information, but no object identifier.

The format described herein is much simpler, since there is no central structure that
defines what the scene is. Instead, the scene is self-contained and completely defined by
the objects that inhabit the scene. Each object is also self-contained, having attached any
control information that specifies the attributes and interactive behaviour of the object.
New objects can be copied into a scene just by inserting their data into the bitstream, doing
this introduces all of the objects’ control information into the scene as well as their
compressed data. There are virually no interdependencies between media objects or
between scenes. This approach reduces the complexity and the storage and processing

overheads associated with the complex BIFs approach.

In the case of download and play of video data, to allow interactive, object oriented
manipulation of multimedia data, such as the ability to choose which actors appear in a
scene, the input data does not include a single scene with a single “actor” object, but rather
one or more alternative object data streams within each scene that may be selected or
“composited-in” to the scene displayed at run-time, based on user input. Since the
composition of the scene is not known prior to runtime, it is not possible to interleave the

correct object data streams into the scene.

Figure 5 is a diagram showing a typical packet sequence in a data file. A stored scene 81

includes a number of separate selectable streams 82, one for each “actor” object 52 that is

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 40 -

a candidate for the dynamic media composition process 76, referred to in Figure 3. Only
the first stream 82 in a scene 81 contains more than one (interleaved) media object 52. The
first stream 82 within a scene 81 defines the scene structure, the constituent objects and
their behaviour. Additional streams 82 in a scene 81 contain optional object data streams
52. A directory 59 of streams is provided at the beginning of each scene 81 to enable

random access to each separate stream 82.

While the bit stream is capable of supporting advanced interactive video capabilities and
dynamic media composition, it supports three implementation levels, providing various
levels of functionality. These are:

1. Passive media: Single-object, non-interactive player

2. Interactive media: Single-object, limited interaction player

3. Object-oriented active media: Multi-object, fully interactive player

The simplest implementation provides a passive viewing experience with a single instance
of media and no interactivity. This is the classic media player where the user is limited to

playing, pausing and stopping the playback of normal video or audio.

The next implementation level adds interaction support to passive media by permitting the
definition of hot regions for click-through behaviour. This is provided by creating vector
graphic objects with limited object control functionality. Hence the system is not literally a
single object system, although it would appear so to the user. Apart from the main media
object being viewed transparent, clickable vector graphic objects are the other types of
objects permitted. This allows simple interactive experiences to be created such as non-

linear navigation, etc.

The final implementation level defines the unrestricted use of multiple objects and full
object control functionality, including animations, conditional events, etc., and uses the
implementation of all of the components in this architecture. In practice, the differences

between this level and the previous may only be cosmetic.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-41 -

Figure 6 is a diagram illustrating the information flow (or bit stream) between client and
server components of an object-oriented multimedia system. The bit stream supports client
side and server side interaction. Client side interaction is supported via a set of defined
actions that may be invoked through objects that cause modification of the user
experience, shown herein as object control packets 68. Server side interaction support is
where user interaction, shown here as user control packets 69, is relayed from a client 20
to a remote server 21 via a back channel, and provides mediation of the service/content
provision to online users, predominantly in the form of dynamic media composition.
Hence an interactive media player to handle the bit stream has a client-server architecture.
The client 20 is responsible for decoding compressed data packets 64, definition packets
66 and object control packets 68 sent to it from the server 21. Additionally the client 20 is
responsible for object synchronisation, applying the rendering transformations,
compositing the final display output, managing user input and forwarding user control
back to the server 21. The server 21 is responsible for managing, reading, and parsing
partial bit streams from the correct source(s), constructing a composite bit stream based on
user input with appropriate control instructions from the client 20, and forwarding the bit
stream to the client 20 for decoding and rendering. This server side Dynamic Media
Composition, illustrated as component 76 of Figure 3, permits the content of the media to
be composited in real-time, based on user interaction or predefined settings in a stored

program script.

The media player supports both server side and client side interaction/functionality when
playing back data stored locally, and also when the data is being streamed from a remote
server 21. Since it is the responsibility of the server component 21 to perform the DMC
and manage sources, in the local playback case the server is co-located with the client 20,
while being remotely located in the streaming case. Hybrid operation is also supported,

where the client 20 accesses data from local and remotely located source/servers 21.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-42-

Interactive Client

Figure 7 is a block diagram showing the major components of an object oriented
multimedia player client 20. The object oriented multimedia player client 20 is able to
receive and decode the data transmitted by the server 21 and generated by the DMC
process 76 of Figure 3. The object oriented multimedia player client 20 also includes a
number of components to execute the decoding process. The steps of the decoding
process are simplistic when compared to the encoding process, and can be executed
entirely by software compiled on a low power mobile computing device such as a Palm
Pilot Illc or a smart phone. An input data buffer 30 is used to hold the incoming data from
the server 21 until a full packet has been received or read. The data is then forwarded to an
input data switch/demux 32, either directly or via a decryption unit 34. The input data
switch/demux 32 determines which of sub-processes 33, 38, 40, 42 is required to decode
the data, and then forwards the data to the correct component according to the packet type
that executes that sub-process. Separate components 33, 38 and 42 perform vector
graphics, video, and audio decoding respectively. The video and audio decoding modules
38 and 42 in the decoder independently decompress any data sent to them and perform a
preliminary rendering into a temporary buffer. An object management component 40
extracts object behaviour and rendering information for use in controlling the video scene.
A video display component 44 renders visual objects on the basis of data received from
the vector graphics decoder 33, video decoder 38 and the object management component
40. An audio play back component 46 generates audio on the basis of data received from
the audio decoding and object management component 40. A wuser input/control
component 48 generates instructions and controls the video and audio generated by the
display and playback components 44 and 46. The user control component 48 also

transmits control messages back to the server 21.

Figure 8 is a block diagram showing the functional components of an object oriented

multimedia player client 20, including the following:

1. Decoders 43 with optional object stores 39 for the main data paths (a combination

of a plurality of components 33, 38 and 42 of Figure 7)

2. Rendering engine 74 (components 44 and 46 of Figure 7 combined)

10

15

20

25

WO 01/31497 PCT/AU00/01296

-43 -

3. Interaction management engine 41 (components 40 and 48 of Figure 7 combined)
4. Object control 40 path (part of component 40 of Figure 7)

5. Input data buffer 30 and input data switch/demux 32.

6. Optional digital rights management (DRM) engine 45

7. Persistent local object library 75

There are two principle flows of data through the client system 20. Compressed object
data 52 is delivered to the client input buffer 30 from the server 21 or the persistent local
object library 75. The input data switch / demux 32 splits up the buffered compressed
object data 52 into compressed data packets 64, definition packets 66 and object control
packets 68. Compressed data packets 64 and definition packets 66 are individually routed
to the appropriate decoder 43 based on the packet type as identified in the packet header.
Object control packets 68 are sent to the object control component 40 to be decoded.
Alternatively, the compressed data packets 64, definition packets 66 and object control
packets 68 may be routed from the input data switch/demux 32 to the object library 75 for
persistent local storage, if an object control packet is received specifying library update
information. One decoder instance 43 and object store 39 exists for each media object and
for each media type. Hence there are not only different decoders 43 for each media type,
but if there are three video objects in a scene, then there will be three instances of video
decoders 43. Each decoder 43 accepts the appropriate compressed data packets 64 and
definition packets 66 sent to it and buffers the decoded data in the object data stores 39.
Each object store 39 is responsible for managing the synchronisation of each media object
in conjunction with the rendering engine 74; if the decoding is lagging the (video) frame
refresh rate, then the decoder 43 is instructed to drop frames as appropriate. The data in
the object stores 39 is read by the rendering engine 74 to compose the final displayed
scene. Read and write access to the object data stores 39 is asynchronous such that the
decoder 43 may only update the object data store 39 at a slow rate, while the rendering
engine 74 may be reading that data at a faster rate, or vice versa, depending on the overall

media synchronisation requirements. The rendering engine 74 reads the data from each of

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-44 -

the object stores 39 and composes both the final display scene and the acoustic scene,
based on rendering information from the interaction management engine 41. The result of
this process is a series of bitmaps that are handed over to the system graphical user
interface 73 to be displayed on the display device 70 and a series of audio samples to be

passed to the system audio device 72.

The secondary data flow through the client system 20 comes from the user via the
graphical user interface 73, in the form of User Events 47, to the interaction management
engine 41, where the user events are split up, with some of them being passed to the
rendering engine 74 in the form of rendering parameters, and the rest being passed back
through a back channel to the server 21 as user control packets 69; the server 21 uses these
to control the dynamic media composition engine 76. To decide where or if user events are
to passed to other components of the system, the interaction management engine 41 may
request the rendering engine 74 to perform hit testing. The operation of the interaction
management engine 41 is controlled by the object control component 40, which receives
instructions (object control packets 68) sent from the server 21 that define how the
interaction management engine 41 interprets user events 47 from the graphical user
interface 73, and what animations and interactive behaviours are associated with
individual media objects. The interaction management engine 41 is responsible for
controlling the rendering engine 74 to carry out the rendering transformations.
Additionally, the interaction management engine 41 is responsible for controlling the

object library 75 to route library objects into the input data switch/demux 32.

The rendering engine 74 has four main components as shown in Figure 10. A bitmap
compositor 35 reads bitmaps from the visual object store buffers 53 and composites them
into the final display scene raster 71. A vector graphic primitive scan converter 36 renders
the vector graphic display list 54 from the vector graphic decoder onto the display scene
raster 71. An audio mixer 37 reads the audio object stores 55 and mixes the audio data
together before passing the result to the audio device 72. The sequence in which the

various object store buffers 53 to 55 are read and how their content is transformed onto the

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-45-

display scene raster 71 is determined by rendering parameters 56 from the interaction
management engine 41. Possible transformations include Z-order, 3D orientation, position,
scale, transparency, colour, and volume. To speed up the rendering process, it may not be
necessary to render the entire display scene, but only a portion of it. The fourth main
component of the rendering engine is the Hit Tester 31, which performs object hit testing
for user pen events as directed by the user event controller 41c of the interaction

management engine 41.

The display scene should be rendered whenever visual data is received from the server 21
according to synchronization information, when a user selects a button by clicking or
drags an object that is draggable, and when animations are updated. To render the scene, it
may be composited into an offscreen buffer (the display scene raster 71), and then drawn
to the output device 70. The object rendering / bitmap compositing process is shown in
Figure 9, beginning at step s101. A list is maintained that contains a pointer to each
media object store containing visual objects. The list is sorted according to Z order at step
s102. Subsequently, at step s103, the bitmap compositer gets the media object with the
lowest Z order. If at step s104 there are no further objects to composite, the video object
rendering process ends at step s118. Otherwise, and always in the case of the first object,
the decoded bitmap is read from the object buffer at step s105. If, at step s106, there are
object rendering controls, then the screen position, orientation and scale are set at step
s107. Specifically, the object rendering controls define the appropriate 2/3D geometric
transform to determine which coordinates the object pixels are mapped to. The first pixel
is read from the object buffer at steps s108, and, if there are more pixels to process at s109,
reads the next pixel from the object buffer at step s110. Each pixel in the object buffer is
processed individually. If| at step s111, the pixel is transparent (pixel value is 0xFE), then
the rendering process ignores the pixel and returns to step s109 to begin processing the
next pixel in the object buffer. Otherwise, if the pixel is unchanged (pixel value is 0xFF)
at step s112, then a background colour pixel is drawn to the display scene raster at step
s113. However, if the pixel is neithier transparent nor unchanged, and alpha blending is

not enabled at step s114, the object colour pixel is drawn to the display scene raster at step

10

15

20

25

WO 01/31497 PCT/AU00/01296

-46 -

s115. If alpha blending is enabled at step s114, then an alpha blending composition
process is performed to set the defined level of transparency for the object. However,
unlike traditional alpha blending processes that need to separately encode the mixing
factor for every pixel in a bitmap, this approach does not make use of an alpha channel.
Instead, it utilizes a single alpha value specifying the degree of opacity of the entire
bitmap in conjunction with embedded indication of transparent regions in the actual
bitmap representation. Thus, when the new alpha blending object pixel colour is
calculated at step s116, it is drawn to the display scene raster at step s117. This concludes
the processing for each individual pixel, thus control returns to step s109, to begin
processing the next pixel in the object buffer. If no pixels remain to be processed at step
s109, the process returns to step s104 to begin processing the next object. The bitmap
compositor 35 reads each video object store in sequence according to the Z-order
associated with each media object, and copies it to the display scene raster 71. If no Z
order has been explicitly assigned to objects, the z order value for an object can be taken
to be the same as the object ID. If two objects have the same Z order, they are drawn in

order of ascending object IDs.

As described, the bitmap compositor 35 makes use of the three region types that a video
frame can have: colour pixels to be rendered, areas to be made transparent, and areas to
remain unchanged. The colour pixels are appropriately alpha blended into the display
scene raster 71, and the unchanged pixels are ignored so the display scene raster 71 is
unaffected. The transparent pixels force the corresponding background display scene pixel
to be refreshed. This can be performed when the pixel of the object in question is
overlaying some other object by simply doing nothing, but if the pixel is being drawn
directly over the scene background, then that pixel needs to be set to the scene background

colour.

If the object store contains a display list in place of a bitmap, then the geometric transform
is applied to each of the coordinates in the display list, and the alpha blending is performed

during the scan conversion of the graphics primitives specified within the display list.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-47 -

Refering to Figure 10, the bitmap compositor 35 supports display scene rasters with
different colour resolutions, and manages bitmaps with different bit depths. If the display
scene raster 71 has a depth of 15,16 or 24 bits, and a bitmap is a colour mapped 8 bit
image, then the bitmap compositor 35 reads each colour index value from the bitmap,
looks up the colour in the colour map associated with that particular object store, and
writes the red, green and blue components of the colour in the correct format to the display
scene raster 71. If the bitmap is a continuous tone image, the bitmap compositor 35 simply
copies the colour value of each pixel into the correct location on the display scene raster
71. If the display scene raster 71 has a depth of 8 bits and a colour look up table, the
approach taken depends on the number of objects displayed. If only one video object is
being displayed, then its colour map is copied directly into the colour map of the display
scene raster 71. If multiple video objects exist, then the display scene raster 71 will be set
up with a generic colour map, and the pixel value set in the display scene raster 71 will be

the closest match to the colour indicated by the index value in the bitmap.

The hit tester component 31 of the rendering engine 74 is responsible for evaluating when
a user has selected a visual object on the screen by comparing the pen event location
coordinates with each object displayed. This ‘hit testing’ is requested by the user event
controller 41¢ of the interaction management engine 41, as shown in Figure 10, and
utilizes object positioning and transformation information provided by the bitmap
compositor 35 and vector graphic primitive scan convertor 36 components. The hit tester
31 applies an inverse geometric transformation of the pen event location for each object,
and then evaluates the transparency of the bitmap at the resulting inverse-transformed
coordinate. If the evaluation is true, a hit is registered, and the result is returned to the user

event controller 41c of the interaction management engine 41.

The rendering engines’ audio mixer component 37 reads each audio frame stored in the
relevant audio object store in round-robin fashion, and mixes the audio data together
according to the rendering parameters 56 provided by the interaction engine to obtain the

composite frame. For example, a rendering parameter for audio mixing may include

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-48 -

volume control. The audio mixer component 37 then passes the mixed audio data to the

audio output device 72.

The object control component 40 of Figure 8 is basically a codec that reads the coded
object control packets from the switch / demux input stream and issues the indicated
control instructions to the interaction management engine 41. Control instructions may be
issued to change individual objects or system wide attributes. These controls are wide-
ranging, and include rendering parameters, definition of animation paths, creating
conditional events, controlling the sequence of media play including inserting objects from
the object library 75, assigning hyperlinks, setting timers, setting and resetting system state

registers, etc, and defining user-activated object behaviours.

The interaction engine 41 has to manage a number of different processes; the flowchart of
Figure 13 shows the major steps an interactive client performs in playing an interactive
object oriented video. The process begins at step s201. Data packets and control packets
are read at step s202 from the input data source, either the Object Stores 39 of Figure 8, or
the Object Control component 40 of Figure 8. If, at step s203, the packet is a data packet,
the frame is decoded and buffered at step s204. If, however, the packet is an object
control packet, the interaction engine 41 attaches the appropriate action to the object at
step s206. The object is then rendered at step s205. If, at step s207, there has been no user
interaction with an object (i.e. user has not clicked on the object), and, at step s208, no
objects have waiting actions, then the process returns to step s202, and a new packet is
read from the input data source at step s202. However, if at step s208, the object has
waiting actions, or if there was no user interaction, but the object has an attached action at
step s209, the object action conditions are tested at step s210, and if the conditions are
satisfied, then the action is performed at step s211. Otherwise, the next packet is read

from the input data source at step s202.

The interaction engine 41 has no predefined behaviour: all of the actions and conditions

that the interaction management engine 41 may perform or respond to are defined by

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-49 -

ObjectControl packets 68, as shown in Figure 8. The interaction engine 41 may
immediately perform predefined actions unconditionally (such as jumping back to the start
of a scene when the last video frame in the scene is reached), or delay execution until
some system conditions are met (such as a timer event occurring), or it may respond to
user input (such as clicking or dragging an object) with a defined behaviour, either
unconditionally, or subject to system conditions. Possible actions include rendering
attribute changes, animations, looping and non-sequential play sequences, jumping to
hyperlinks, dynamic media composition where a displayed object stream is replaced by
another object, possibly from the persistent local object library 75, and other system

behaviours that are invoked when given conditions or user events become true.

The interaction management engine 41 includes three main components: an interaction
control component 41a, a waiting actions manager 41d, and an animation manager 41b, as
shown in Figure 11. The animation manager 41b includes the Interaction Control
component 41a and the Animation Path Interpolator / Animation List 41b, and stores all
animations that are currently in progress. For each active animation, the manager
interpolates the rendering parameters 56 sent to the rendering engine 74 at intervals
specified by the object control logic 63. When an animation has completed, it is removed
from the list of active animations, the Animation list 41b, unless it is defined to be a
looping animation. The waiting actions manager 41d includes the Interaction Control
component 41d and the Waiting Actions List 41d, and stores all object control actions to
be applied subject to a condition becoming true. The interaction control component 41a
regularly polls the waiting actions manager 41d and evaluates the conditions associated
with each waiting action. If the conditions for an action are met, the interaction control
component 41a will execute the action and purge it from the waiting actions list 41d,
unless the action has been defined as an object behaviour, in which case it remains on the
waiting actions list 41d for further future executions. For condition evaluation, the
interaction management engine 41 employs a condition evaluator 41f, and a state flags
register 4le. The state flags register 41e is updated by the interaction control component
41a, and maintains a set of user-definable system flags. The condition evaluator 41f
performs condition evaluation as instructed by the interaction control component 41a,

comparing the current system state to the system flags in the state flags register 41e on a

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-50-

per object basis, and if the appropriate system flags are set, the condition evaluator 41f
notifies the interaction control component 41a that the condition is true, and that the action
should be executed. If the client is offline (i.e., not connected to a remote server), the
interaction control component 4la maintains a record of all interaction activities
performed (user events, etc). These are temporarily stored in the history / form store 41d

and are sent to the server using user control packets 69 when the client comes online.

Object control packets 68 and hence the object control logic 63 may set a number of user-
definable system flags. These are used to permit the system to have a memory of its
current state, and are stored in the state flags register 41e. For example, one of these flags
may be set when a certain scene or frame in the video is played, or when a user interacts
with an object. User interaction is monitored by the user event controller 41c, receiving as
input user events 47 from the grapical user interface 73. Additionally, the user event
controller 41c may request the rendering engine 74 to perform ‘hit testing’, using the
rendering engines’ hit tester 31. Typically, hit testing is requested for user pen events,
such as user pen click/tap. The user event controller 41c forwards user events to the
interaction control component 41a. This may then be used to determine what scene to play
next in nonlinear videos, or what objects to render in a scene. In an e-commerce
application, the user may drag one or more iconic video objects onto a shopping basket
object. This will then register the intended purchases. When the shopping basket is
clicked, the video will jump to the checkout scene, where a list of all of the objects that
were dragged onto the shopping basket appears, permitting the user to confirm or delete
the items. A separate video object can be used as a button, indicating that the user wishes

to register the purchase order or cancel it.

Object control packets 68 and hence the object control logic 63 may contain conditions
that is satisfied for any specified actions to be executed; these are evaluated by the
condition evaluator 41f. Conditions may include the system state, local or streaming
playback, system events, specific user interactions with objects, etc. A condition may have

the wait flag set, indicating that if the condition isn’t currently satisfied, then wait until it

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-51 -

is. The wait flag is often used to wait for user events such as penUp. When a waiting
action is satisfied, it is removed from the waiting actions list 41d associated with an object.
If the behaviour flag of an Object control packet 68 is set, then the action will remain with

an object in the waiting actions list 41d, even after it has executed.

An Object control packet 68 and hence the object control logic 63 may specify that the
action is to affect another object. In this case, the conditions should be satisfied on the
object specified in the base header, but the action is executed on the other object. The
object control logic may specify object library controls 58, which are forwarded to the
object library 75. For example, the object control logic 63 may specify that a jumpto
(hyperlink) action is to be performed together with an animation, with the conditions being
that a user click event on the object is required, evaluated by the user event controller 41¢
in conjunction with the hit tester 31, and that the system should wait for this to become
true before executing the instruction. In this case, an action or control will wait in the
waiting actions list 41d until it is executed and then it will be removed. A control like this
may, for example, be associated with a pair of running shoes being worn by an actor in a
video, so that when users click on them, the shoes may move around the screen and zoom
in size for a few seconds before the users are redirected to a video providing sales
information for the shoes and an opportunity to purchase or bid for the shoes in an online

auction.

Figure 12 illustrates the composition of a multi-object interactive video scene. The final
scene 90 includes a background video object 91, three arbitary shape “channel change”
video objects 92, and three “channel” video objects 93a, 93b and 93c. An object may be
defined as a “channel changer” 92 by assigning a control with “behaviour”, “jumpto” and
“other” properties, with a condition of user click event. This control is stored in the
waiting actions list 41d until the end of the scene occurs and will cause the DMC to
change the composition of the scene 90 whenever it is clicked. The “channel changing”
object in this illustration would display a miniature version of the content being shown on

the other channel.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-52-

An object control packet 68, and hence the object control logic 63 may have the
animation flag set, indicating that multiple commands will follow rather than a single
command (such as move to). If the animation flag isn’t set, then the actions are
executed as soon as the conditions are satisfied. As often as any rendering changes occur,
the display scene should be updated. Unlike most rendering actions that are driven by
either user events 47 or object control logic 63, animations should force rendering updates
themselves. After the animation is updated, and if the entire animation is complete, it is
removed from the animation list 41b. The animation path interpolator 41b determines
where, between which two control points, the animation is currently positioned. This
information, along with a ratio of how far the animation has progressed between the two
control points (the ‘tweening’ value), is used to interpolate the relevant rendering
parameters 56. The tween value is expressed as a ratio in terms of a numerator and
denominator:
X = x[start] + (x[end] — x[start]) * numerator / denominator

If the animation is set to loop, then the start time of the animation is set to the current time

when the animation has finished, so that it isn’t removed after the update.

The client supports the following types of high-level user interaction: clicking, dragging,
overlapping, and moving. An object may have a button image associated with it that is
displayed when the pen is held down over an object. If the pen is moved a specified
number of pixels when it is down over an object, then the object is dragged (as long as
dragging isn’t protected by the object or scene). Dragging actually moves the object under
the pen. When the pen is released, the object is moved to the new position unless moving
is protected by the object or scene. If moving is protected, then the dragged object moves
back to its original position when the pen is released. Dragging may be enabled so that
users can drop objects on top of other objects (e.g., dragging an item onto a shopping
basket). If the pen is released whilst the pen is also over other objects, then these objects

are notified of an overlap event with the dragged object.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-53-

Objects may be protected from clicks, moving, dragging, or changes in transparency or
depth through object control packets 68. A PROTECT command within an object control
packet 68 may have individual object scope or system scope. If it has system scope, then
all objects are affected by the PROTECT command. System scope protection overrides

object scope protection.

The JUMPTO command has four variants. One permits jumping to a new given scene in a
separate file specified by a hyperlink, another permits replacing a currently playing media
object stream in the current scene with another media object from a separate file or scene
specified by a hyperlink, and the other two variants permit jumping to a new scene within
the same file or replacing a playing media object with another within the same scene
specified by directory indices. Each variant may be called with or without an object
mapping. Additionally, a JUMPTO command may replace a currently playing media

object stream with a media object from the locally stored persistent object library 75.

While most of the interaction control functions can be handled by the client 20 using the
rendering engine 74 in conjunction with the interaction manager 41, some control
instances may need to be handled at a lower level and are passed back to the server 21.
This includes commands for non-linear navigation, such as jumping to hyperlinks and
dynamic scene composition, with the exception of commands.instructing insertion of

objects from the object library 75.

The object library 75 of Figure 8 is a persistent, local media object library. Objects can be
inserted into or removed from this library through special object control packets 68 known
as object library control packets, and Scene Definition packets 66 which have the
ObjLibrary mode bit field set. The object library control packet defines the action to be
performed with the object, including inserting, updating, purging and querying the object
library. The input data switch/demux 32 may route compressed data packets 52 directly to
the object library 75 if the appropriate object library action (for example insert or update)
is defined. As shown in the block diagram of Figure 48, each object is stored in the object

library data store 75g as a separate stream; the library does not support multiple

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-54-

interleaved objects since addressing is based on the library ID that is the stream number.
Hence the library may contain up to 200 separate user objects, and the object library may
be referenced using a special scene number (for example 250). The library also supports
up to 55 system objects, such as default buttons, checkboxes, forms, etc. The library
supports garbage collection, such that an object may be set to expire after a certain time
period, at which time the object is purged from the library. For each object/stream, the
information contained in an object library control packet is stored by the client 20,
containing additional information for the stream/object including the library id 75a,
version information 75b, object persist information 75c, access restrictions 75d, unique
object identifier 75¢ and other state information 75f. The object stream additionally
includes compressed object data 52. The object library 75 may be queried by the
interaction management engine 41 of Figure 8, as directed by the object control

component 40. This is performed by reading and comparing the object identifier values

. sequentially for all objects in the library 75 to find a match against the supplied search

key. The library query results 75i are returned to the interaction management engine 41, to
be processed or sent to the server 21. The object library manager 75h is responsible for

managing all interaction with the object library.

Server Software

The purpose of the server system 21 is to (i) create the correct data stream for the client to
decode and render (ii) to transmit said data reliably to the client over a wireless channel
including TDMA, FDMA or CDMA systems, and (iii) to process user interaction. The
content of the data stream is a function of the dynamic media composition process 76 and
non-sequential access requirements imposed by non-linear media navigation. Both the
client 20 and server 21 are involved in the DMC process 76. The source data for the
composite data stream may come from either a single source or from multiple sources. In
the single source case, the source should contain all of the optional data components that
may be required to composite the final data stream. Hence this source is likely to contain a

library of different scenes, and multiple data streams for the various media objects that are

10

15

20

25

WO 01/31497 PCT/AU00/01296

-55-

to be used for composition. Since these media objects may be composited simultaneously
into a single scene, advanced non-sequential access capabilities are provided on the part of
the server 21 to select the appropriate data components from each media object stream in
order to interleave them into the final composite data stream to send to the client 20. In the
multiple source case, each of the different media objects to be used in the composition can
have individual sources. Having the component objects for a scene in separate sources
relieves the server 21 of the complex access requirements, since each source need only be

sequentially accessed, although there are more sources to manage.

Both source cases are supported. For download and play functionality, it is preferable to
deliver one file containing the packaged content, rather than multiple data files. For
streaming play, it is preferable to keep the sources separate, since this permits much
greater flexibility in the composition process and permits it to be tailored to specific user
needs such as targeted user advertising. The separate source case also presents a reduced

load on server equipment since all file accesses are sequential.

Figure 14 is a block diagram of the local server component of an interactive multimedia
player playing locally stored files. As shown in Figure 14, standalone players need a local

client system 20 and a local single source server system 23.

As shown in Figure 15, streaming players need a local client system 20 and a remote
multi-source server 24. However, a player is also able to play local files and streaming
content simultaneously, so the client system 20 is also able to simultaneously accept data
from both a local server and a remote server. The local server 23 or the remote server 24

may constitute the server 21.

Referring to the simplest case with passive media playback in Figure 14, the local server
23 opens an object oriented data file 80 and sequentially reads its contents, passing the
data 64 to the client 20. Upon a user command performed at user control 68, the file
reading operation may be stopped, paused, continued from its current position, or restarted

from the beginning of the object oriented data file 80. The server 23 performs two

10

15

20

25

WO 01/31497 PCT/AU00/01296

-56 -

functions: accessing the object oriented data file 80, and controlling this access. These can
be generalised into the multiplexer / data source manager 25 and the dynamic media

composition engine 76.

In the more advanced case with local playback of video and dynamic media composition
(Figure 14), it is not possible for the client to merely sequentially read one predetermined
stream with multiplexed objects, because the contents of the multiplexed stream are not
known when the object oriented data file 80 is created. Therefore, the local object oriented
data file 80 includes multiple streams for each scene which are stored contiguously. The
local server 23 randomly accesses each stream within a scene and selects the objects
which need to be sent to the client 20 for rendering. In addition, a persistent object library
75 is maintained by the client 20 and can be managed from the remote server when online.

This is used to store commonly downloaded objects such as checkbox images for forms.

The data source manager/multiplexer 25 of Figure 14 randomly accesses the object
oriented data file 80, reads data and control packets from the various streams in the file
used to compose the display scene, and multiplexes these together to create the composite
packet stream 64 that the client 20 uses to render the composite scene. A stream is purely
conceptual as there is no packet indicating the start of a stream. There is, however, an end
of stream packet to demarcate stream boundaries as shown at 53 in Figure 5. Typically, the
first stream in a scene contains descriptions of the objects within the scene. Object control
packets within the scene may change the source data for a particular object to a different
stream. The server 23 then needs to read more than one stream simultaneously from within
an object oriented data file 80 when performing local playback. Rather than creating
separate threads, an array or linked list of streams can be created. The mutliplexer / data
source manager 25 reads one packet from each stream in a round-robin fashion. At a
minimum, each stream needs to store the current position in the file and a list of

referencing objects.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-57.

In this case, the dynamic media composition engine 76 of Figure 14, upon the receipt of
user control information 68 from the client 20, selects the correct combination of objects
to be composited together, and ensures that the mutliplexer / data source manager 25
knows where to find these objects, based on directory information provided to the
dynamic media composition engine 76 by the multiplexer / data source manager 25. This
may also require an object mapping function to map the storage object identifier with the
run time object identifier, because they can differ depending upon the composition. A
typical situation where this may occur is when multiple scenes in a file 80 may wish to
share a particular video or audio object. Since a file may contain multiple scenes, this can
be achieved by storing shared content in a special “library” scene. Objects within a scene
have object IDs ranging from 0-200, and every time a new scene definition packet is
encountered, the scene is reset with no objects. Each packet contains a base header that
specifies the type of the packet as well as the object ID of the referenced object. An object
ID of 254 represents the scene, whilst an object ID of 255 represents the file. When
multiple scenes share an object data stream, it is not known what object IDs will have
already been allocated for different scenes; hence, it is not possible to preselect the object
IDs in the shared object stream, as these may already be allocated in a scene. One way to
get around this problem is to have unique IDs within a file, but this increases storage space
and makes it more difficult to manage sparse object IDs. The problem is solved by
allowing each scene to use its own object IDs and when a packet from one scene indicates
a jump to another scene, it specifies an object mapping between IDs from each scene.

When packets are read from the new scene, the mapping is used to convert the object IDs.

Object mapping information is expected to be in the same packet as a JUMPTO command.
If this information is not available, then the command is simply ignored. Object mappings
may be represented using two arrays: one for the source object IDs which will be
encountered in the stream, and the other for destination object IDs which the source object
IDs will be converted to. If an object mapping is present in the current stream, then the
destination object IDs of the new mapping are converted using the object mapping arrays

of the current stream. If an object mapping is not specified in the packet, then the new

10

15

20

25

WO 01/31497 PCT/AU00/01296

-58 -

stream inherits the object mapping of the current stream (which may be null). All object
IDs within a stream should be converted. For example, parameters such as: base header
IDs, other IDs, button IDs, copyFrame IDs, and overlapping IDs should all be converted

into the destination object IDs.

In the remote server scenario, shown in Figure 15, the server is remote from the client, so
that data 64 will be streamed to the client. The media player client 20 is designed to
decode packets received from the server 24 and to send back user operations 68 to the
server. In this case, it is the remote server’s 24 responsibility to respond to user operations
(such as clicking an object), and to modify the packet stream 64 being sent to the client. In
this case, each scene contains a single multiplexed stream (composed of one or more

objects).

In this scenario, the server 24 composes scenes in real-time by multiplexing multiple
object data streams based on client requests to construct a single multiplexed packet
stream 64 (for any given scene) that is streamed to the client for playback. This
architecture allows the media content being played back to change, based on user
interaction. For example, two video objects may be playing simultaneously. When the user
clicks or téps on oneg, it changes to a different video object, whilst the other video object
remains unchanged. Each video may come from a different source, so the server opens
both sources and interleaves the bit streams, adding appropriate control information and
forwarding the new composite stream to the client. It is the server’s responsibility to

modify the stream appropriately before streaming it to the client.

Figure 15 is a block diagram of a remote streaming server 24. As shown, the remote server
24 has two main functional components similar to the local server: the data stream
manager 26 and the dynamic media composition engine 76. However, the server
intelligent multiplexer 27 can take input from multiple data stream manager 26 instances,

each having a single data source and from the dynamic media composition engine 76,

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-59.-

instead of from a single manager with multiple inputs. Along with the object data packets
that are multiplexed together from the source(s), the intelligent multiplexer 27 inserts
additional control packets into the packet stream to control the rendering of the component
objects in the composite scene. The remote data stream managers 26 are also simpler, as
they only perform sequential access. In addition to this, the remote server includes an
XML parser 28 to enable programmable control of the dynamic media composition
through an IAVML script 29. The remote server also accepts a number of inputs from the
server operator database 19 to further control and customize the dynamic media
composition process 76. Possible inputs include the time of day, day of the week, day of
the year, geographic location of the client, and a user’s demographic data, such as gender,
age, any stored user profiles, etc. These inputs can be utilized in an IAVML script as
variables in conditional expressions. The remote server 24 is also responsible for passing
user interaction information such as object selections and form data back to the server

operator’s database 19 for later follow up processing such as data mining, etc.

As shown in Figure 15, the DMC engine 76 accepts three inputs and provides three
outputs. The inputs include an XML based script, user input and database information.
The XML script is used to direct the operation of the DMC engine 76 by specifying how
to compose the scene being streamed to the client 20. The composition is mediated by
possible input from the user’s interaction with objects in the current scene that have DMC
control operations attached to them, or from input from a separate database. This database
may contain information relating to time of day/date, the client’s geographic location or
the user’s profile. The script can direct the dynamic composition process based on any
combination of these inputs. This is performed by the DMC process by instructing the data
stream managers to open a connection to and read the appropriate object data requried for
the DMC operation, it also instructs the intelligent multiplexer to modify its interleaving
of object packets received from the data stream managers and the DMC engine 76 to effect
the removal, insertion or replacement of objects in a scene. The DMC engine 76 also
optionally generates and attaches control information to objects according to the object

control specifications for each in the script and provides this to the intelligent multiplexor

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-60 -

for streaming to the client 20 as part of the object. Hence all of the processing is
performed by the DMC engine 76 and no work is performed by the client 20 other than
rendering the self-contained objects according to the parameters provided by any object
control information. The DMC process 76 is capable of altering both objects in a scene

and scenes in videos.

In contrast to this process is the process required to perform similar functionality in
MPEG4. This does not use a scripting language but relies on the BIFS. Hence any
modification of scenes requires the separate modification/insertion of the (i) BIFS, (ii)
object descriptors, (iii) object shape information, and (iii) video object data packets. The
BIFS has to be updated at the client device using a special BIFS-Command protocol. Since
MPEG4 has separate but interdependent data components to define a scene, a change in
composition cannot be achieved by simply multiplexing the object data packets (with or
without control information) into a packet stream, but requires remote manipulation of the
BIFS, multiplexing of the data packets and shape information, and the creation and
transmision of new object descriptor packets. In addition, if advanced interactive
functionality is required for MPEG4 objects, separately written Java programs are sent to

the BIFS for execution by the client, which entails a significant processing overhead.

The operation of the local client performing Dynamic Media Composition (DMC) is
described by the flow chart shown in Figure 16. In step s301, the Client DMC Process
begins and immediately starts providing object compositing information to the data steam
manager, facilitating multi-object video playback as shown in step s302. The DMC
checks the user command list and the availability of further multimedia objects to ensure
the video is still playing (step s303); if there is no more data or the user has stopped video
playback, the Client DMC process ends (step s309). If, at step s303, video playback is to
continue, the DMC process will browse the user command list and object control data for
any initiated DMC actions. As shown in step s304, if no actions are initiated, the process
returns to step s302 and video playback continues. However, if a DMC action has been
initiated at step s304, the DMC process checks the location of the target multimedia

objects, as shown at step s305. If the target objects are stored locally, the local server

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-61 -

DMC process sends instructions to the local data source manager to read the modified
object stream from the local source, as shown in step s306; the process then returns to step
s304 to check for further initiated DMC actions. If the target objects are stored remotely,
the local DMC process sends appropriate DMC instuctions to the remote server, as shown
in step s308. Alternativly, the DMC action may require target objects to be sourced both
locally and remotely, as shown in step s307, thus appropriate DMC actions are executed
by the local DMC process (step s306), and DMC instructions are sent to the remote server
for processing (step s308). It is clear from this discussion that the local server supports
hybrid, multi-object video playback, where source data is derived both locally and

remotely.

The operation of the Dynamic Media Composition Engine 76 is described by the flow
chart shown in Figure 17. The DMC process begins in step s401, and enters a wait state,
step s402, until a DMC request is received. On receipt of a request the DMC engine 76
queries the request type at steps s403, s404 and s405. If at step s403 the request is
determined to be an object Replace action, then two target objects exist: an active target
object and a new target object to be added to the stream. First, the data stream manager is
instructed, at step s406, to delete the active target object packets from the multiplexed
bitstream, and to stop reading the active target object stream from storage. Subsequently,
the datastream manager is instructed, at step s408, to read the new target object stream
from storage, and to interleave these packets into the transmitted multiplex bit stream.
The DMC engine 76 then returns to its wait state at step s402. If at step s403 the request
was not an object Replace action, then at step s404 if the action type is an object remove
action, then one target object exists, which is an active target object. The object Remove
action is processed at step s407, where the data stream manager is instructed to delete the
active target object packets from the multiplex bitstream, and to stop reading the active
target object stream from storage. The DMC engine 76 then returns to its wait state at step
s402. If at step s404 the requested action was not an object Remove action, then at step
s405 if the action is an object Add action, then one target object exists, which is a new

target object. The object Add action is processed at step s408, where the datastream

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-62 -

manager is instructed to read the new target object stream from storage, and to interleave
these packets into the transmitted multiplex bit stream. The DMC engine 76 then returns
to its wait state at step s402. Finally, if the requested DMC action is not an object Replace
action (at step s403), or an object Remove action (at step s404), or an object Add action (at
step s405), then the DMC engine 76 ignores the request and returns to its wait state at step
s402.

Video Decoder

It is inefficient to store, transmit and manipulate raw video data, and so computer video
systems normally encode video data into a compressed format. The section following this
one describes how video data is encoded into an efficient, compressed form. This section
describes the video decoder, which is responsible for generating video data from the
compressed data stream. The video codec supports arbitrary-shaped video objects. It
represents each video frame using three information components: a colour map, a tree
based encoded bitmap, and a list of motion vectors. The colour map is a table of all of the
colours used in the frame, specified in 24 bit precision with 8 bits allocated for each of the
red, green and blue components. These colours are referenced by their index into the
colour map. The bitmap is used to define a number of things including: the colour of
pixels in the frame to be rendered on the display, the areas of the frame that are to be made
transparent, and the areas of the frame that are to be unchanged. Each pixel in each
encoded frame may be allocated to one of these functions. Which of these roles a pixel has
is defined by its value. For example, if an 8 bit colour representation is used, then colour
value 0xFF may be assigned to indicate that the corresponding on screen pixel is not to be
changed from its current value, and the colour value of OXFE may be assigned to indicate
that the corresponding on screen pixel for that object is to be transparent. The final colour
of an on-screen pixel, where the encoded frame pixel colour value indicates it is
transparent, depends on the background scene colour and any underlying video objects.
The specific encoding used for each of these components that makes up an encoded video

frame is described below.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-63 -

The colour table is encoded by first sending an integer value to the bit stream to indicate
the number of table entries to follow. Each table entry to be sent is then encoded by first
sending its index. Following this, a one bit flag is sent for each colour component (Rf, Gf
and Bf) indicating, if it is ON, that the colour component is being sent as a full byte, and if
the flag is OFF that the high order nibble (4 bits) of the respective colour component will
be sent and the low order nibble is set to zero. Hence the table entry is encoded in the
following pattern where the number or C language expression in the parenthesis indicates
the number of bits being sent: R(Rf?8:4), G(Gf? 8: 4), B(Bf?8: 4).

The motion vectors are encoded as an array. First, the number of motion vectors in the
array is sent as a 16 bit value, followed by the size of the macro blocks, and then the array
of motion vectors. Each the entry in the array contains the location of the macro block and
the motion vector for the block. The motion vector is encoded as two signed nibbles, one

each for the horizontal and vertical components of the vector.

The actual video frame data is encoded using a preordered tree traversal method. There are
two types of leaves in the tree: transparent leaves, and region colour leaves. The
transparent leaves indicate that the onscreen displayed region indicated by the leaf will not
be altered, while the colour leaves will force the onscreen region to the colour specified by
the leaf. In terms of the three functions that can be assigned to any encoded pixel as
previously described, the transparent leaves would correspond to the colour value of O0xFF
while pixels with a value of OXFE indicating that the on screen region is to be forced to be
transparent are treated as normal region colour leaves. The encoder starts at the top of the
tree and for each node stores a single bit to indicate if the node is a leaf or a parent. If it is
a leaf, the value of this bit is set to ON, and another single bit is sent to indicate if the
region is transparent (OFF), otherwise it is set to ON followed by a another one bit flag to
indicate if the colour of the leaf is sent as an index into a FIFO buffer or as the actual

index into the colour map. If this flag is set to OFF, then a two bit codeword is sent as the

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-64 -

index of one of the FIFO buffer entries. If the flag is ON, this indicates that the leaf colour
is not found in the FIFO, and the actual colour value is sent and also inserted into the
FIFO, pushing out one of the existing entries. If the tree node was a parent node, then a
single OFF bit is stored, and each of the four child nodes are then individually stored using
the same method. When the encoder reaches the lowest level in the tree, then all nodes are
leaf nodes and the leaf/parent indication bit is not used, instead storing first the
transparency bit followed by the colour codeword. The pattern of bits sent can be
represented as shown below. The following symbols are used: node type (N), transparent

(T), FIFO Predicted colour (P), colour value (C), FIFO index (F)

N(1) --—-off > N(1)[...], N(D[...], N(D[...], N(D)[...]
\----on 2> T(1) --- off
\------on = P(1) --- off > F(2)
\--- on 2 C(x)

Figure 49 is a flowchart showing the principal steps of one embodiment of the video frame
decoding process. The video frame decoding process begins at step s2201 with a
compressed bit stream. A layer identifier, which is used to physically separate the various
information components within the compressed bit stream, is read from the bit stream at
step s2202. If the layer identifier indicates the start of the motion vector data layer, step
s2203 proceeds to step s2204 to read and decode the motion vectors from the bit stream
and perform the motion compensation. The motion vectors are used to copy the
indicated macro blocks from the previously buffered frame to the new locations indicated
by the vectors. When the motion compensation process is complete, the next layer
identifier is read from the bit stream at step s2202. If the layer identifier indicates the start
of the quad tree data layer, step s2205 proceeds to step s2206, and initialises the FIFO
buffer used by the read leaf colour process. Next, the depth of the quad tree is read from
the compressed bit stream at step s2207, and is used to initialize the quad tree quadrant
size. The compressed bitmap quad tree data is now decoded at step s2208. As the quad
tree data is decoded, the region values in the frame are modified according to the leaf

values. They may be overwritten with new colours, set to transparent, or left unchanged.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 65 -

When the quad tree data is decoded, the decode process reads the next layer identifier
from the compressed bit stream at step s2202. If the layer indicates the start of the colour
map data layer, step s2209 proceeds to step s2210 which reads the number of colours to be
updated from the compressed bit stream. If there are one or more colours to update at step
s2211, the first colour map index value is read from the compressed bit stream at step
s2212, and the colour component values are read from the compressed bit stream at step
s2213. Each colour update is in turn read through steps s2211, s2212, and s2213 until all
of the colour updates have been performed, at which time step s2211 proceeds to step
$2202 to read a new layer identifier from the compressed bit stream. If the layer identifier
is an end of data indentifier, step s2214 proceeds to step s2215 and ends the video frame
decoding process. If the layer identifier is unknown through steps s2203, s2205, s2209,
and s2214, the layer identifier is ignored, and the process returns to step s2202 to read the

next layer identifier.

Figure 50 is a flowchart showing the principal steps of one embodiment of a quad tree
decoder with bottom-level node type elimination. This flowchart implements a recursive
method, calling itself recursively for each tree quadrant processed. The quad tree decoding
process begins at step s2301, having some mechanism of recognising the depth and
position of the quadrant to be decoded. If at step s2302 the quadrant is a non-bottom
quadrant, the node type is read from the compressed bit stream at step s2307. If the node
type is a parent node at step s2308, then four recursive calls are in turn made to the quad
tree decoding process for the top left quadrant at step s2309, the top right quadrant and
step 52310, the bottom left quadrant at step s2311, the bottom right quadrant at step s2312;
subsequently this iteration of the decoding process ends at step s2317. The particular
order in which the recursive calls are made for each quadrant is arbitrary, however the
order is the same as the quad tree decomposition process performed by the encoder. If the
node type is a leaf node, the process continues from step s2308 to s2313, and the leaf type
value is read from the compressed bit stream. If the leaf type value indicates a transparent
leaf at step s2314, the decoding process ends at step s2317. If the leaf is not transparent,
the leaf colour is read from the compressed bit stream at step s2315. The leaf read colour

value function employs a FIFO buffer, described herein. Subsequently at step s2316 the

10

15

20

25

WO 01/31497 PCT/AU00/01296

-66 -

image quadrant is set to the appropriate leaf colour value; this may be the background
object colour or the leaf colour as indicated. After the image update is complete, the quad
tree decode function ends this iteration at step s2317. The recursive calls to the quad tree
decode function continue until a bottom level quadrant is reached. At this level there is no
need to include in the compressed bit stream a parent/leaf node indicator, as each node at
this level is a leaf; hence step s2302 proceeds to step s2303 and reads immediately the leaf
type value. If the leaf is not transparent at step s2304, then the leaf colour value is read
from the compressed bit stream at step s2305, and the image quadrant colours are updated
appropriately at step s2306. This iteration of the decoding process ends at step s2317.
The recursive process executions of the quad tree decoding process continue until all leaf

nodes in the compressed bit stream have been decoded.

Figure 51 shows the steps executed in reading a quad tree leaf colour, beginning at step
s2401. A single flag is read from the compressed bit stream at step s2402. This flag
indicates if the leaf colour is to be read from the FIFO buffer or directly from the bit
stream. If, at step 52403, the leaf colour is not to be read from the FIFO, the leaf colour
value is read from the compressed bit stream at step s2404, and is stored in the FIFO
buffer at step s2405. Storing the newly read colour in the FIFO pushes out the least
recently added colour in the FIFO. The read leaf colour function ends at step 52408, after
updating the FIFO. If however the leaf colour is already stored in the FIFO, the FIFO
index codeword is read from the compressed bit stream at step s2406. The leaf colour is
then determined, at step s2407, by indexing into the FIFO, based on the recently read

codeword. The read leaf colour process ends at step s2408.

Video Encoder

To this point, the discussion has focussed on the manipulation of pre-existing video
objects and files which contain video data. The previous section described how
compressed video data is decoded to produce raw video data. In this section, the process of

generating this data is discussed. The system is designed to support a number of different

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-67 -

codecs. Two such codecs are described here; others that may also be used include the

MPEG family and H.261 and H.263 and their successors.

The encoder comprises ten main components, as shown in Figure 18. The components
can be implemented in software, but to enhance the speed of the encoder, all the
components can be implemented in an application-specific integrated circuit (ASIC)
developed specifically to execute the steps of the encoding process. An audio coding
component 12 compresses input audio data. The audio coding component 12 may use
adaptive delta pulse code modulation (ADPCM) according to either ITU specification
G.723 or the IMA ADPCM codec. A scene/object control data component 14 encodes
scene animation and presentation parameters associated with the input audio and video
which determine the relationships and behaviour of each input video object. An input
colour processing component 10 receives and processes individual input video frames and
eliminates redundant and unwanted colours. This also removes unwanted noise from video
images. Optionally, motion compensation is performed on the output of the input colour
processor 10 using the previously encoded frame as a basis. A colour difference
management and synchronisation component 16 receives the output of the input colour
processor 10, and determines the encoding using the optionally motion-compensated,
previously encoded frame as a basis. The output is then provided to both a combined
spatial/temporal coder 18 to compress the video data, and to a decoder 20 which executes
the inverse function to provide the frame to the motion compensation component 11 after
a one frame delay 24. A transmission buffer 22 receives the output of the spatial/temporal
coder 18, the audio coder 12 and the control data component 14. The transmission buffer
22 manages transmission from a video server housing the encoder, by interleaving
encoded data and controlling data rates via feedback of rate information to the combined
spatial / temporal coder 18. If required, the encoded data can be encrypted by an

encryption component 28 for transmission.

The flow chart of Figure 19 describes the main steps executed by the encoder. The video
compression process begins at step s501, entering a frame compression loop (s502 to

s521), and ending at step s522 when, at step s502, there are no video data frames

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-68 -

remaining in the input video data stream. The raw video frame is fetched from the input
data stream in step s503. At this point, it may be desired to perform spatial filtering.
Spatial filtering is performed to lower the bit rate or total bits of the video being generated,
but spatial filtering also lowers the fidelity. If it is determined by step s504 that spatial
filtering is to be performed, a colour difference frame is calculated at step s505 between
the current input video frame and the previously processed or reconstructed video frame.
It is preferable to perform the spatial filtering where there is movement, and the step of
calculating the frame difference indicates where there is movement; if there is no
difference, then there is no movement, and a difference in regions of a frame indicates
movement for those regions. Subsequently, localised spatial filtering is performed on the
input video frame at step s506. This filtering is localised such that only image regions that
have changed between frames are filtered. If desired, the spatial filtering may also be
performed on I frames. This can be carried out using any desired technique including
inverse gradient filtering, median filtering, and/or a combination of these two types of
filtering, for example. If it is desired to perform spatial filtering on a key frame and also
to calculate the frame difference in step S505, the reference frame used to calculate the

difference frame may be an empty frame.

Colour quantisation is performed at step s507 to remove statistically insignificant colours
from the image. The general process of colour quantisation is known with respect to still
images. Example types of colour quantisation which may be utilised by the invention
include, but are not limited to, all techniques described in and referenced by U.S Patent
Nos. 5,432,893 and 4,654,720 which are incorporated by reference. Also incorporated by
reference are all documents cited by and referenced in these patents. Further information
about the colour quantisation step s507 is explained with reference to elements 10a, 10b,
and 10c of Figure 20. If a colour map update is to be performed for this frame, flow
proceeds from step s508 to step s509. In order to achieve the highest quality image, the
colourmap may be updated every frame. However, this may result in too much
information being transmitted, or may require too much processing. Therefore, instead of
updating the colourmap every frame, the colour map may be updated every n frames,

where n is an integer equal to or greater than 2, preferably less than 100, and more

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-69 -

preferably less than 20. Alternatively, the colour map may be updated every n frames on
average, where n is not required to be an integer, but may be any value including fractions
greater than 1 and less than a predetermined number, such as 100 and more preferably less
than 20. These numbers are merely exemplary and, if desired, the colour map may be

updated as often or as infrequently as desired.

When there is a desire to update the colour map, step s509 is performed in which a new
colour map is selected and correlated with the previous frame’s colour map . When the
colour map changes or is updated, it is desirable to keep the colour map for the current
frame similar to the colour map of the previous frame so that there is not a visible

discontinuity between frames which use different colour maps.

If at step s508 no colour map is pending (e.g. there is no need to update the colour map),
the previous frame’s colour map is selected or utilised for this frame. At step s510, the
quantised input image colours are remapped to new colours based on the selected colour
map. Step s510 corresponds to block 10d of Figure 20. Next, frame buffer swapping is
performed in step s511. Frame buffer swapping at step s511 facilitates faster and more
memory efficient encoding. As an exemplary implementation of frame buffer swapping,
two frame buffers may be used. When a frame has been processed, the buffer for this
frame is designated as holding a past frame, and a new frame received in the other buffer
is designated as being the current frame. This swapping of frame buffers allows an

efficient allocation of memory.

A key reference frame, also referred to as a reference frame or a key frame, may serve as a
reference. If step s512 determines that this frame (the current frame) is to be encoded as,
or is designated as, a key frame, the video compression process proceeds directly to step
s519 to encode and transmit the frame. A video frame may be encoded as a key frame for
a number of reasons, including: (i) it is the first frame in a sequence of video frames
following a video definition packet, (ii) the encoder detects a visual scene change in the
video content, or (iii) the user has selected key frames to be inserted into the video packet

stream. If the frame is not a key frame, the video compression process calculates, at step

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-70 -

s513, a difference frame between the current colour map indexed frame and the previous
reconstructed colour map indexed frame. The difference frame, the previous reconstructed
colour map indexed frame, and the current colour map indexed frame are used at step s514
to generate motion vectors, which are in turn used to rearrange the previous frame at step
s515.

The rearranged previous frame and the current frame are now compared at step s516 to
produce a conditional replenishment image If blue screen transparency is enabled at step
s517, step s518 will drop out regions of the difference frame that fall within the blue
screen threshold. The difference frame is now encoded and transmitted at step s519. Step
s519 is explained in further detail below with reference to Figure 24. Bit rate control
parameters are established at step s520, based on the size of the encoded bit stream.
Finally the encoded frame is reconstructed at step s521 for use in encoding the next video

frame, beginning at step s502.

The input colour processing component 10 of Figure 18 performs reduction of statistically
insignificant colours. The colour space chosen to perform this colour reduction is
unimportant as the same outcome can be achieved using any one of a number of different

colour spaces.

The reduction of statistically insignificant colours may be implemented using various
vector quantisation techniques as discussed above, and may also be implemented using
any other desired technique including popularity, median cut, k-nearest neighbour and
variance methods as described in S.J.Wan, P.Prusinkiewicz, S.K.M.Wong, "Variance-
Based Color Image Quantization for Frame Buffer Display.", Color Research and
Application, Vol.15, No.1, Feb 1990, which is incorporated by reference. As shown in
Figure 20, these methods may utilise an initial uniform or non-adaptive quantisation step
10a to improve the performance of the vector quantisation algorithm 10b by reducing the
size of the vector space. The choice of method is made to maintain the highest amount of
time correlation between the quantised video frames, if desired. The input to this process
is the candidate video frame, and the process proceeds by analysing the statistical

distribution of colours in the frame. In 10c, the colours which are used to represent the

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

=71 -

image are selected. With the technology available now for some hand-held processing
devices or personal digital assistants, there may be a limit of simultaneously displaying
256 colours, for example. Thus, 10c may be utilised to select 256 different colours to be
used to represent the image. The output of the vector quantisation process is a table of
representative colours for the entire frame 10c that can be limited in size. In the case of the
popularity methods, the most frequent N colours are selected. Finally, each of the colours

in the original frame is remapped 10d to one of the colours in the representative set.

The colour management components 10b, 10c and 10d of the Input Colour Processing
component 10 manages the colour changes in the video. The input colour processing
component 10 produces a table containing a set of displayed colours. This set of colours
changes dynamically over time, given that the process is adaptive on a per frame basis.
This permits the colour composition of the video frames to change without reducing the
image quality. Selecting an appropriate scheme to manage the adaptation of the colour
map is important. Three distinct possibilities exist for the colour map: it may be static,
segmented and partially static, or fully dynamic. With a fixed or static colour map, the
local image quality will be reduced, but high correlation is preserved from frame to frame,
leading to high compression gains. In order to maintain high quality images for video
where scene changes may be frequent, the colour map should be able to adapt
instantaneously. Selecting a new optimal colour map for each frame has a high bandwidth
requirement, since not only is the colour map updated every frame, but also a large
number of pixels in the image would need to be remapped each time. This remapping also
introduces the problem of colour map flashing. A compromise is to only permit limited
colour variations between successive frames. This can be achieved by partitioning the
colour map into static and dynamic sections, or by limiting the number of colours that are
allowed to vary per frame. In the first case, the entries in the dynamic section of the table
can be modified, which ensures that certain predefined colours will always be available. In
the other scheme, there are no reserved colours and any may be modified. While this

approach helps to preserve some data correlation, the colour map may not be able to adapt

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-72-

quickly enough in some cases to eliminate image quality degradation. Existing approaches

compromise image quality to preserve frame-to-frame image correlation.

For any of these dynamic colour map schemes, synchronisation is important to preserve

temporal correlations. This synchronisation process has three components:

1. Ensuring that colours carried over from each frame into the next are mapped to the
same indices over time. This involves resorting each new colour map in relation to the

current one.

2. A replacement scheme is used for updating the changed colour map. To reduce the
amount of colour flashing, the most appropriate scheme is to replace the obsolete

colour with the most similar new replacement colour.

3. Finally, all existing references in the image to any colour that is no longer supported

are replaced by references to currently supported colours.

Following the input colour processing 10 of Figure 18, the next component of the video
encoder takes the indexed colour frames and optionally performs motion compensation 11.
If motion compensation is not performed, then the previous frame from the frame buffer
24 is not modified by the motion compensation component 11 and is passed directly to the
colour difference management and synchronisation component 16. The preferred motion
compensation method starts by segmenting the video frame into small blocks and
determining all blocks in a video frame where the number of pixels needing to be
replenished or updated and are not transparent exceeds some threshold. The motion
compensation process is then performed on the resultant pixel blocks. First, a search is
made in the neighbourhood of the region to determine if the region has been displaced
from the previous frame. The traditional method for performing this is to calculate the
mean square error (MSE) or sum square error (SSE) metric between the reference region

and a candidate displacement region. As shown in Figure 22, this process can be

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-73 -

performed using an exhaustive search or one of a number of other existing search
techniques, such as the 2D logarithmic 11la, three step 11b or simplified conjugate
direction search 11c. The aim of this search is to find the displacement vector for the
region, often called the motion vector. Traditional metrics do not work with
indexed/colour mapped image representations because they rely on the continuity and
spatio-temporal correlation that continuous image representations provide. With indexed
representations, there is very little spatial correlation and no gradual or continuous change
of pixel colour from frame to frame; rather, changes are discontinuous as the colour index
jumps to new colour map entries to reflect pixel colour changes. Hence a single
index/pixel changing colour will introduce large changes to the MSE or SSE, reducing the
reliability of these metrics. Hence a better metric for locating region displacement is where
the number of pixels that are different in the previous frame compared to the current frame
region is the least if the region is not transparent. Once the motion vector is found, the
region is motion-compensated by predicting the value of the pixels in the region from their
original location in the previous frame according to the motion vector. The motion vector
may be zero if the vector giving the least difference corresponds to no displacement. The
motion vector for each displaced block, together with the relative address of the block, is
encoded into the output bitstream. Following this, the colour difference management
component 16 calculates the perceptual difference between the motion-compensated

previous frame and the current frame.

The colour difference management component 16 is responsible for calculating the
perceived colour difference at each pixel between the current and preceding frame. This
perceived colour difference is based on a similar calculation to that described for the
perceptual colour reduction. Pixels are updated if their colour has changed more than a
given amount. The colour difference management component 16 is also responsible for
purging all invalid colour map references in the image, and replacing these with valid
references, generating a conditional replenishment image. Invalid colour map references
may occur when newer colours displace old colours in the colour map. This information is

then passed to the spatial/temporal coding component 18 in the video encoding process.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-74 -

This information indicates which regions in the frame are fully transparent, and which
need to be replenished, and which colours in the colour map need to be updated. All
regions in a frame not being updated are identified by setting the value of the pixel to a
predetermined value that has been selected to represent non update. The inclusion of this
value permits the creation of arbitrarily shaped video objects. To ensure that prediction
errors do not accumulate and degrade the image quality, a loop filter is used. This forces
the frame replenishment data to be determined from the present frame and the
accumulated previous transmitted data (the current state of the decoded image), rather than
from the present and previous frames. Figure 21 provides a more detailed view of the
colour difference management component 16. The current frame store 16a contains the
resultant image from the input colour processing component 10. The previous frame store
16b contains the frame buffered by the 1 frame delay component 24, which may or may
not have been motion-compensated by the motion compensation component 11. The
colour difference management component 16 is portioned into two main components: the
calculation of perceived colour differences between pixels 16c, and cleaning up invalid
colour map references 16f. The perceived colour differences are evaluated with respect to
a threshold 16d to determine which pixels need to be updated, and the resultant pixels are
optionally filtered 16e to reduce the data rate. The final update image is formed 16g from
the output of the spatial filter 16e and the invalid colour map references 16f and is sent to

the spatial encoder 18.

This results in a conditional replenishment frame which is now encoded. The spatial
encoder 18 uses a tree splitting method to recursively partition each frame into smaller
polygons according to a splitting criteria. A quad tree split 23d method used, as is shown
in Figure 23. In one instance, that of zeroth order interpolation, this attempts to represent
the image 23a by a uniform block, the value of which is equal to the global mean value of
the image. In another instance, first or second order interpolation may be used. If, at some
locations of the image, the difference between this representative value and the real value
exceeds some tolerance threshold, then the block is recursively subdivided uniformly, into
two or four subregions, and a new mean is calculated for each subregion. For lossless

image encoding, there is no tolerance threshold. The tree structures 23d, 23e, 23f are

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-75-

composed of nodes and pointers, where each node represents a region and contains
pointers to any child nodes representing subregions which may exist. There are two types
of nodes: leaf 23b and non-leaf 23c nodes. Leaf nodes 23b are those that are not further
decomposed and as such have no children, instead containing a representative value for
the implied region. Non-leaf nodes 23c do not contain a representative value, since these
consist of further subregions and as such contain pointers to the respective child nodes.

These can also be referred to as parent nodes.

Dynamic Bitmap (Colour) Encoding

The actual encoded representation of a single video frame includes bitmap, colour map,
motion vector and video enhancement data. As shown in Figure 24, the video frame
encoding process begins at step s601. If (s602) motion vectors were generated via the
motion compensation process, then the motion vectors are encoded at step s603. If (s604)
the colour map has changed since the previous video frame, the new colour map entries
are encoded at step s605. The tree structure is created from the bitmap frame at step s606
and is encoded at step s607. If (s608) video enhancement data is to be encoded, the
enhancement data is encoded at step s609. Finally, the video frame encoding process ends

at step s610.

The actual quadtree video frame data is encoded using a preordered tree traversal method.
There may be two types of leaves in the tree: transparent leaves and region colour leaves.
The transparent leaves indicate that the region indicated by the leaf is unchanged from its
previous value (these are not present in video key frames), and the colour leaves contain
the region colour. Figure 26 represents a pre-ordered tree traversal encoding method for
normal predicted video frames with zeroth order interpolation and bottom level node type
elimination. The encoder of Figure 26 begins at step s801, initially adding a quad tree
layer identifier to the encoded bit stream at step s802. Beginning at the top of the tree, step
s803, the encoder gets the initial node. If, at step s804, the node is a parent node, the
encoder adds a parent node flag (a single ZERO bit) to the bit stream at step s805.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-76 -

Subsequently, the next node is fetched from the tree at step s806, and the encoding process
returns to step s804 to encode subsequent nodes in the tree. If at step s804 the node is not a
parent node, i.e., it is a leaf node, the encoder checks the node level in the tree at step
s807. If at step s807 the node is not at the bottom of the tree, the encoder adds a leaf node
flag (a single ONE bit) to the bit stream at step s808. If the leaf node region is transparent
at step s809, a transparent leaf flag (a single ZERO bit) is added to the bit stream at step
s810; otherwise, an opaque leaf flag (single ONE bit) is added to the bit stream at step
s811. The opaque leaf colour is then encoded at step s812, as shown in Figure 27. If,
however, at step s807 the leaf node is at the bottom level of the tree, then bottom level
node type elimination occurs because all nodes are leaf nodes and the leaf/parent
indication bit is not used, such that at step s813 four flags are added to the bit stream to
indicate if each of the four leaves at this level are transparent (ZERO) or opaque (ONE).
Subsequently, if the top left leaf is opaque at step s814, then at step s815 the top left leaf
colour is encoded as shown in Figure 27. Each of steps s814 and s815 are repeated for
each leaf node at this second bottom level, as shown in steps s816 and s817 for the top
right node, steps s818 and s819 for the bottom left node, and steps s820 and s821 for
bottom right node. After the leaf nodes are encoded (from steps s810, s812, s820 or s821)
the encoder checks whether further nodes remain in the tree at step s822. If no nodes
remain in the tree, then the encoding process ends at step s823. Otherwise, the encoding
process continues at step s806, where the next node is selected from the tree and the entire

process restarts for the new node from step s804.

In the special case of video key frames (these are not predicted), these do not have
transparent leaves and a slightly different encoding method is used, as shown in Figure 28.
The key frame encoding process begins at step s1001, initially adding a quad tree layer
identifier to the encoded bit stream at step s1002. Beginning at the top of the tree, step
s1003, the encoder gets the initial node. If, at step s1004, the node is a parent node, the
encoder adds a parent node flag (a single ZERO bit) to the bit stream at step s1005;
subsequently, the next node is fetched from the tree at step s1006, and the encoding
process returns to step s1004 to encode subsequent nodes in the tree. If however at step

s1004 the node is not a parent node, i.e. it is a leaf node, the encoder checks the node level

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-77 -

in the tree at step s1007. If at step s1007 the node is greater than one level from the
bottom of the tree the encoder adds a leaf node flag (a single ONE bit) to the bit stream at
step s1008. The opaque leaf colour is then encoded at step s1009, as shown in Figure 27.
If, however at step s1007 the leaf node is one level from the bottom of the tree, then
bottom level node type elimination occurs because all nodes are leaf nodes and the
leaf/parent indication bit is not used. Thus at step s1010 the top left leaf colour is encoded
as shown in Figure 27. Subsequently, at steps s1011, s1012 and s1013, the opaque leaf
colours are encoded similarly for the top right leaf, bottom left leaf and the bottom right
leaf respectively. After the leaf nodes are encoded (from steps s1009 or s1013) the
encoder checks whether further nodes remain in the tree at step s1014. If no nodes remain
in the tree, then the encoding process ends at step s1015. Otherwise, the encoding process
continues, at step s1006, where the next node is selected from the tree and the entire
process restarts for the new node from step s1004.

The opaque leaf colours are encoded using a FIFO buffer as shown in Figure 27. The leaf
colour encoding process begins at step s901. The colour to be encoded is compared with
the four colours already in the FIFO, if at step s902 it is determined that the colour is in
the FIFO buffer, then a single FIFO lookup flag (single ONE bit) is added to the bit stream
at step s903, followed by, at step s904, a two bit codeword representing the colour of the
leaf as an index into the FIFO buffer. This codeword indexes one of four entries in the
FIFO buffer. For example, index values of 00, 01 and 10 specify that the leaf colour is the
same as the previous leaf, the previous different leaf colour before that, and the previous
one before that respectively. If however at step s902 the colour to be encoded is not
available in the FIFO, a send colour flag (a single ZERO bit) is added to the bit stream at
step s906, followed by N bits, at step s906, representing the actual colour value.
Additionally, the colour is added to the FIFO, pushing out one of the existing entries. The

colour leaf encoding process ends then at step s907.

The colourmap is similarly compressed. The standard representation is to send each index
followed by 24 bits, 8 to specify the red component value, 8 for the green component and

8 for the blue. In the compressed format, a single bit flag indicates if each colour

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-78 -

component is specified as a full 8-bit value, or just as the top nibble with the bottom 4 bits
set to zero. Following this flag, the component value is sent as 8 or 4 bits depending on the
flag. The flowchart of Figure 25 depicts one embodiment of a colour map encoding
method using 8-bit colour map indices. In this implementation, the single bit flags
specifying the resolution of the colour component for all the components of one colour are
encoded prior to the colour components themselves. The colour map update process
begins at step s701. Initially, a colour map layer identifier is added to the bit stream at
step s702, followed by, at step s703, a codeword indicating the number of colour updates
following. At step s704 the process checks a colour update list for additional updates; if
no further colour updates require encoding, the process ends at step s717. If, however,
colours remain to be encoded, then at step s705 the colour table index to be updated is
added to the bit stream. For each colour there are typically a number of components (red,
green and blue, for example), thus step s706 forms a loop condition around steps s707,
s708, s709 and s710, processing each component separately. Each component is read
from the data buffer at step s707. Subsequently, if, at step s708, the component low order
nibble is zero, an off flag (a single ZERO bit) is added to the bit stream at step s709, or if
the low order nibble is non-zero, an on flag (a single ONE bit) is added to the bit stream at
step s710. The process is repeated by returning to step s706, until no colour components
remain. Subsequently, the first component is again read from the data buffer at step s711.
Similarly, step s712 forms a loop condition around steps s713, s714, s715 and s716,
processing each component separately. Subsequently, if, at step s712, the component’s
low order nibble is zero, the component’s high order nibble is added to the bit stream at
step s713. Alternatively, if the low order nibble is non-zero, the component’s 8-bit colour
component is added to the bit stream at step s714. If further colour components remain to
be added at step s715, the next colour component is read from the input data stream at step
s716, and the process returns to step s712 to process this component. Otherwise, if no
components remain at step s715, the colour map encoding process returns to step s704 to

process any remaining colour map updates.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-79 -

Alternate Encoding Method

In the alternate encoding method, the process is very similar to the first as shown in Figure
29 except that the input colour processing component 10 of Figure 18 does not perform
colour reduction, but instead ensures that the input colour space is in YCbCr format,
converting from RGB if required. There is no colour quantisation or colour map
management required, thus steps s507 through s510 of Figure 19 are replaced by a single
colour space conversion step, ensuring the frame is represented in YCbCr colour space.
The motion compensation component 11 of Figure 18 performs “traditional” motion
compensation on the Y component and stores the motion vectors. The conditional
replenishment images are then generated from the inter-frame coding process for each of
the Y, Cb and Cr components using the motion vectors from the Y component. The three
resultant difference images are then compressed independently after down-sampling the
Cb and Cr bitmaps by a factor of two in each direction. The bitmap encoding uses a
similar recursive tree decomposition, but this time for each leaf that is not at the bottom of
the tree, three values are stored: the mean bitmap value for the area represented by the
leaf, and the gradients for the horizontal and vertical directions. The flowchart of Figure
29 depicts the alternate bitmap encoding process, beginning at step s1101. At step s1102
the image component (Y, Cb or Cr) is selected for encoding, then at step s1103 the initial
tree node is selected. If this node, at step s1104, is a parent node, a parent node flag (1 bit)
is added to the bitstream. The next node is then selected from the tree at step s1106, and
the alternate bitmap encoding process returns to step s1104. If at step s1104 the new node
is not at parent node, at step s1107 the nodes depth in the tree is determined. If, at step
s1107, the node is not at the bottom level of the tree, the node is encoded using the non-
bottom leaf node encode method, such that at step s1108 a leaf node flag (1 bit) is added to
the bitstream. Subsequently if at step s1109 the leaf is transparent, a transparent leaf flag
(1 bit) is added to the bitstream. If however the leaf is not transparent, an opaque leaf flag
(1 bit) is added to the bitstream, subsequently at step s1112 the leaf colour mean value is
encoded. The mean is encoded using a FIFO as in the first method by sending a flag and
either the FIFO index in 2 bits or the mean itself in 8 bits. If at step s1113, the region is not

an invisible background region (for use in arbitrary shaped video objects) then the leaf

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 80 -

horizontal and vertical gradients are encoded at step s1114. Invisible background regions
are encoded using a special value for the mean, for example OxFF. The gradients are sent
as a 4 bit quantised value. If, however, at step s1107 it is determined that the leaf node is
on the bottom most level of the tree, then the corresponding leaves are encoded as in the
previous method by sending the bitmap value and no parent/lead indication flag.
Transparent and colour leaves are encoded as before using single bit flags. In the case of
arbitrarily-shaped video, the invisible background regions are encoded by using a special
value for the mean, for example 0xFF, and in this case the gradient values are not sent.
Specifically then at step s1115 four flags are added to the bit stream to indicate if each of
the four leaves at this level are transparent or opaque. Subsequently, if the top left leaf is
opaque at step s1116, then at step s1117 the top left leaf colour is encoded as described
above for opaque leaf colour encoding. Each of steps s1116 and s1117 are repeated for
each leaf node at this bottom level, as shown in steps s1118 and s1119 for the top right
node, steps s1120 and s1121 for the bottom left node, and steps s1122 and s1123 for the
bottom right node. At the completion of leaf node encoding, the encoding process checks
the tree for additional nodes at step s1124, ending at step s1125 if no nodes remain.
Alternatively, the next node is fetched at step s1106, and the process restarts at step s1104.
The reconstruction in this case involves interpolating the values within each region
identified by the leaves using first, second or third order interpolation and then combining
the values for each of the Y, Cb and Cr components to regenerate the 24 bit RGB values
for each pixel. For devices with 8 bit, colour mapped displays, quantisation of the colour is

executed before display.

Encoding of Colour Prequantisation Data

For improved image quality, a first or second order interpolated coding can be used, as in
the alternate encoding method previously described. In this case, not only was the mean
colour for the region represented by each leaf stored, but also colour gradient information
at each leaf. Reconstruction is then performed using quadratic or cubic interpolation to
regenerate a continuous tone image. This may create a problem when displaying

continuous colour images on devices with indexed colour displays. In these situations, the

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-81-

need to quantise the output down to 8 bits and index it in real time is prohibitive. As
shown in Figure 47, in this case the encoder 50 can perform vector quantisation 02b of 24-
bit colour data 02a, generating colour pre-quantisation data. Colour quantisation
information can be encoded using octree compression 02c, as described below. This
compressed colour pre-quantisation data is sent with the encoded continuous tone image to
enable the video decoder/player 38 to perform real-time colour quantisation 02d by
applying the pre-calculated colour quantisation data, thus producing optionally 8-bit
indexed colour video representation 02e¢ in real-time. This technique can also be used
when reconstruction filtering is used that generates a 24-bit result that is to be displayed on
8-bit devices. This problem can be resolved by sending a small amount of information to
the video decoder 38 that describes the mapping from the 24 bit colour result to the 8 bit
colour table. This process is depicted in the flowchart beginning with step s1201 in Figure
30, and includes the main steps involved in the pre-quantisation process to perform real-
time colour quantisation at the client. All frames in the video are processed sequentially
as indicated by the conditional block at step s1202. If no frames remain, then the pre-
quantisation process ends at step s1210. Otherwise at step s1203 the next video frame is
fetched from the input video stream, and then at step s1204 vector pre-quantisation data is
encoded. Subsequently, the non-index based colour video frames are encoded/compressed
at step s1205. The compressed/encoded frame data is sent to the client at step s1206,
which the client subsequently decodes into a full-colour video frame at step s1207. The
vector pre-quantisation data is now used for vector post-quantisation at step s1208, and
finally the client renders the video frame at step s1209. The process returns to step s1202
to process subsequent video frames in the stream. The vector pre-quantisation data
includes a three-dimensional array of size 32x64x32, where the cells in the array contain
the index values for each r,g,b coordinate. Clearly, storing and sending a total of 32x64x32
= 65,536 index values is a large overhead that makes the technique impractical. The
solution is to encode this information in a compact representation. One method, as shown
in the flow chart of Figure 30 beginning at step s1301, is to encode this three dimensional
array of indexes using an octree representation. The encoder 50 of Figure 47 may use this
method. At step 51302, the 3D data set / video frame is read from the input source, such

that Fj(r,g,b) represents all unique colours in the RGB colour space for all j pixels in the

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-82-

video frame. Subsequently at step s1303 N codebook vectors V; are selected to best
represent the 3D data set Fj(r,g,b). A three-dimensional array t[0..Rmax,0..Gmax,0..Bmax] is
created in step s1304. For all cells in array t, the closest codebook vector Vi is determined
in step s1305, and in step s1306 the closest codebook vector for each cell is stored in array
t. If, at step s1307, previous video frames have been encoded such that a previous data
array t exists, then step 1308 determines the differences between the current and previous t
arrays; subsequently, at step s1309, an update array is generated. Then, either the update
array of step s1309 or the full array t is encoded at step s1310 using a lossy octree method.
This method takes the 3D array (cube) and recursively splits it in a similar manner to the
quadtree based representation. Since the vector codebook (Vi) / colour map is free to
change dynamically, this mapping information is also updated to reflect the changes in the
colour map from frame to frame. A similar conditional replenishment method is proposed
to perform this using the index value 255 to represent an unchanged coordinate mapping
and other values to represent update values for the 3D mapping array. Like the spatial
encoder, the process uses a preordered octree tree traversal method to encode the colour
space mapping into the colour table. Transparent leaves indicate that the region of the
colour space indicated by the leaf is unchanged and index leaves contain the colour table
index for the colour specified by the coordinates of the cell. The octree encoder starts at
the top of the tree and for each node stores a single ONE bit if the node is a leaf, or a
ZERO bit if it is a parent. If it is a leaf and the colour space area is unchanged then another
single ZERO bit is stored otherwise the corresponding colour map index is explicitly
encoded as a n bit codeword. If the node was a parent node and a ZERO bit was stored,
then each of the eight child nodes are recursively stored as described. When the encoder
reaches the lowest level in the tree, then all nodes are leaf nodes and the leaf/parent
indication bit is not used, instead storing first the unchanged bit followed by the colour
index codeword. Finally, at step s1311, the encoded octree is sent to the decoder for post
quantising data and at step s1312 the codebook vectors Vi / colour map are sent to the
decoder, thus ending the vector pre-quantisation process at step s1313. The decoder
performs the reverse process , vector post-quantisation, as shown in the flowchart of
Figure 30 beginning at step s1401. The compressed octree data is read at step s1402, and

the decoder regenerates, at step s1403, the three-dimensional array from the encoded

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-83-

octree, as in the 2D quadtree decoding process described. Then, for any 24 bit colour
value, the corresponding colour index can be determined by simply looking up the index
value stored in the 3D array, as represented in step s1404. The vector post-quantisation
process ends at step s1405. This technique can be used for mapping any non-stationary
three-dimensional data onto a single dimension. This is normally a requirement when
vector quantisation is used to select a codebook that will be used to represent an original
multi-dimensional data set. It does not matter at what stage of the process the vector
quantisation is performed. For example, we could directly quadtree encode 24-bit data
followed by VQ or we could VQ the data first and then quadtree encode the result as we
do here. The great advantage of this method is that, in heterogeneous environments, it
permits 24-bit data to be sent to clients which, if capable of displaying the 24 bit data, may
do so, but, if not, may receive the pre-quantisation data and apply this to achieve real-time,

high quality quantisation of the 24-bit source data.

The scene /object control data component 14 of Figure 18 permits each object to be
associated with one visual data stream, one audio data stream and one of any other data
streams. It also permits various rendering and presentation parameters for each object to
be dynamically modified from time to time throughout the scene. These include the
amount of object transparency, object scale, object volume, object position in 3D space,

and object orientation (rotation) in 3D space.

The compressed video and audio data is now transmitted or stored for later transmission as
a series of data packets. There is a plurality of different packet types. Each packet includes
a common base header and a payload. The base header identifies the packet type, the total
size of the packet including payload, what object it relates to, and a sequence identifier.
The following types of packets are currently defined: SCENEDEFN, VIDEODEFN,
AUDIODEFN, TEXTDEFN, GRAFDEFN, VIDEODAT, VIDEOKEY, AUDIODAT,
TEXTDAT, GRAFDAT, OBJCTRL, LINKCTRL, USERCTRL, METADATA,
DIRECTORY, VIDEOENH, AUDIOENH, VIDEOEXTN, VIDEOTRP, STREAMEND,
MUSICDEFN, FONTLIB, OBJLIBCTRL. As described earlier, there are three main types
of packets: definition, control and data packets. The control packets (CTRL) are used to

10

15

20

25

WO 01/31497 PCT/AU00/01296

-84 -

define object rendering transformations, animations and actions to be executed by the
object control engine, interactive object behaviours, dynamic media composition
parameters and conditions for execution or application of any of the preceding, for either
individual objects or for entire scenes being viewed. The data packets contain the
compressed information that makes up each media object. The format definition packets
(DEFN) convey the configuration parameters to each codec, and specify both the format
of the media objects and how the relevant data packets are to be interpreted. The scene
definition packet defines the scene format, specifies the number of objects, and defines
other scene properties. The USERCTRL packets are used to convey user interaction and
data back to a remote server using a backchannel, the METADATA packets contain
metadata about the video, the DIRECTORY packets contain information to assist random

access into the bit stream, and the STREAMEND packets demarcate stream boundaries.

Access Control and Identification

Another component of the object oriented video system is means for

| encrypting/decrypting the video stream for security of content. The key to perform the

decryption is separately and securely delivered to the end user by encoding it using the

RSA public key system.

An additional security measure is to include a universally unique brand/identifier in an
encoded video stream. This takes at least four principal forms:

a. In a videoconferencing application, a single unique identifier is applied to all
instances of the encoded video streams

b. In broadcast video-on-demand (VOD) with multiple video objects in each video
data stream, each separate video object has a unique identifier for the particular video
stream

C. A wireless, ultrathin client system has a unique identifier which identifies the
encoder type as used for wireless ultrathin system server encoding, as well as identifying a

unique instance of this software encoder.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-85 -

d. A wireless ultrathin client system has a unique identifier that uniquely identifies
the client decoder instance in order to match the Internet-based user profile to determine

the associated client user.

The ability to uniquely identify a video object and data stream is particularly
advantageous. In videoconference applications, there is no real need to monitor or log the
teleconference video data streams, except where advertising content occurs (which is
uniquely identified as per the VOD). The client side decoder software logs viewed
decoded video streams (identifier, duration). Either in real-time or at subsequent
synchronisation, this data is transferred to an Internet-based server. This information is
used to generate marketing revenue streams as well as market research/statistics in

conjunction with client personal profiles.

In VOD, the decoder can be restricted to decode broadcast streams or video only when
enabled by a security key. Enabling can be performed, either in real-time if connected to
the Internet, or at a previous synchronisation of the device, when accessing an Internet
authentication/access/billing service provider which provides means for enabling the
decoder through authorised payments. Alternatively, payments may be made for
previously viewed video streams. Similarl to the advertising video streams in the video
conferencing, the decoder logs VOD-related encoded video streams along with the
duration of viewing. This information is transferred back to the Internet server for market

research/feedback and payment purposes.

In the wireless ultrathin client (NetPC) application, real-time encoding, transmission and
decoding of video streams from Internet or otherwise based computer servers is achieved
by adding a unique identifier to the encoded video streams. The client-side decoder is
enabled in order to decode the video stream. Enabling of the client-side decoder occurs
along the lines of the authorised payments in the VOD application or through a secure
encryption key process that enables various levels of access to wireless NetPC encoded
video streams. The computer server encoding software facilitates multiple access levels. In

the broadest form, wireless Internet connection includes mechanisms for monitoring client

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 86 -

connections through decoder validation fed back from the client decoder software to the
computer servers. These computer servers monitor client usage of server application

processes and charge accordingly, and also monitor streamed advertising to end clients.

Interactive Audio Visual Markup Language (IAVML)

A powerful component of this system is the ability to control audio-visual scene
composition through scripting. With scripts, the only constraints on the composition
functions are imposed by the limitations of the scripting language. The scripting language
used in this case is IAVML which is derived from the XML standard. JAVML is the
textual form for specifying the object control information that is encoded into the

compressed bit stream.

IAVML is similar in some respects to HTML, but is specifically designed to be used with
object oriented multimedia spatio-temporal spaces such as audio/video. It may be used to
define the logical and layout structure of these spaces, including hierarchies, it may also be
used to define linking, addressing and also metadata. This is achieved by permitting five
basic types of markup tags to provide descriptive and referential information, etc. These
are system tags, structural definition tags, presentation formatting, and links and content.
Like HTML, IAVML is not case sensitive, and each tag comes in opening and closing

forms which are used to enclose the parts of the text being annotated. For example:
<TAG> some text in here </TAG>

Structural definition of audio-visual spaces uses structural tags and include the following;:

<SCENE> Defines video scenes
<STREAMEND> Demarcate streams within scene
<OBJECT> Defines object instance
<VIDEODAT> Defines video object data
<AUDIODAT > Defines audio object data

WO 01/31497 PCT/AU00/01296

-87-
<TEXTDAT> Defines text object data
<GRAFDAT> Defines vector object data
<VIDEODEFN> Defines video data format
<AUDIODEFN> Defines audio data format
<METADATA> Defines metadata about given object
<DIRECTORY> Defines directory object
<OBJCONTROL> Defines object control data
<FRAME> Defines video frame

The structure defined by these tags in conjunction with the directory and meta data tags

permit flexible access to and browsing of the object oriented video bitstreams.

5 Layout definition of audio-visual objects uses object control based layout tags (rendering
parameters) to define the spatio-temporal placement of objects within any given scene and

include the following:

<SCALE> Scale of visual object

<VOLUME> Volume of audio data

<ROTATION Orientation of object in 3D space
<POSITION> Position of object in 3D space
<TRANSPARENT> Transparency of visual objects
<DEPTH> Change object Z order

<TIME> Start time of object in scene
<PATH> Animation path from start to end time

10 Presentation definition of audio-visual objects uses presentation tags to define the

presentation of objects (format definition) and include the following:

<SCENESIZE> Scene spatial size
<BACKCOLR> Scene background colour

WO 01/31497

PCT/AU00/01296

-88 -
<FORECOLR> Scene foreground colour
<VIDRATE> Video Frame rate

<VIDSIZE> Size of video frame
<AUDRATE> Audio sample rate

<AUDBPS> Audio sample size in bits
<TXTFONT> Text Font type to use
<TXTSIZE> Text font size to use
<TXTSTYLE> Text style (bold, underline, italic)

following types:

Object behaviours and action tags encapsulate the object controls and includes the

<JUMPTO> Replaces current scene or object
<HYPERLINK> Set hyperlink target

<OTHER> Retarget control to another object
<PROTECT> Limit user interaction
<LOOPCTRL> Looping object control
<ENDLOOP> Break loop control

<BUTTON> Define button action
<CLEARWAITING> Terminate waiting actions
<PAUSEPLAY> Play or pause video
<SNDMUTE> Mute sound on/off

<SETFLAG> Set or reset system flag
<SETTIMER> Set timer value and Start counting
<SENDFORM> Send system flags back to server
<CHANNEL> Change the viewed channel

10

15

20

25

WO 01/31497 PCT/AU00/01296

-89-

The hyperlink references within the file permits objects to be clicked on that invoke

defined actions.

Simple video menus can be created using multiple media objects with the BUTTON,
OTHER and JUMPTO tags defined with the OTHER parameter to indicate the current
scene and the JUMPTO parameter indicating the new scene. A persistent menu can be
created by defining the OTHER parameter to indicate the background video object and the
JUMPTO parameter to indicate the replacement video object. A variety of conditions
defined below can be used to customise these menus by disabling or enabling individual

options.

Simple forms to register user selections can be created by using a scene that has a number
of checkboxes created from 2 frame video objects. For each checkbox object, the
JUMPTO and SETFLAG tags are defined. The JUMPTO tag is used to select which frame
image is displayed for the object to indicate if the object is selected or not selected, and the
indicated system flag registers the state of the selection. A media object defined with
BUTTON and SENDFORM can be used to return the selections to the server for storage

or processing.

In cases where there may be multiple channels being broadcast or multicast, the
CHANNEL tag enables transitions between a unicast mode operation and a broadcast or

multicast mode and back.

Conditions may be applied to behaviours and actions (object controls) before they are
executed in the client. These are applied in IAVML by creating conditional expressions by

using either <IF> or <SWITCH> tags. The client conditions include the following types:

<PLAYING> Is video currently playing

<PAUSED> Is video currently paused

<STREAM> Streaming from remote server

WO 01/31497

PCT/AU00/01296

-90 -
<STORED> Playing from local storage
<BUFFERED> Is object frame # buffered
<OVERLAP> Need to be dragged onto what object
<EVENT> What user event needs to happen
<WAIT> Do we wait for conditions to be true
<USERFLAG> Is the given user flag set?
<TIMEUP> Has a timer expired?

<AND> Used to generate expressions

<OR> Used to generate expressions

Conditions that may be applied at the remote server to control the dynamic media

composition process include the following types:

<FORMDATA> User returned form data
<USERCTRL> User interaction event has occurred
<TIMEODAY> Is it a given time

<DAYOFWEEK> What day of the week is it
<DAYOFYEAR> Is it a special day

<LOCATION> Where is the client geographically
<USERTYPE> Class of user demographic?
<USERAGE> What is age of user (range)
<USERSEX> What is the sex of the user (M/F)
<LANGUAGE> What is the preferred language
<PROFILE> Other subclasses of user profile data
<WAITEND> Wait for end of current stream
<AND> Used to generate expressions
<OR> Used to generate expressions

10

15

20

25

WO 01/31497 PCT/AU00/01296

-9] -

An TAVML file will generally have one or more scenes and one script. Each scene is
defined to have a determined spatial size, a default background colour and an optional
background object in the following manner:

<SCENE = “sceneone”>
< SCENESIZE SX = “320", SY="240">
< BACKCOLR ="#RRGGBB” >
<VIDEODAT SRC = “URL">
<AUDIODAT SRC = “URL">
<TEXTDAT > this is some text string
</ SCENE>

Alternatively, the background object may have been defined previously and then just

declared in the scene:

<OBJECT = “backgrnd™>
<VIDEODAT SRC = “URL">
<AUDIODAT SRC = “URL">
<TEXTDAT > this is some text string
<SCALE = “2’>
<ROTATION = “90">
<POSITION= XPOS ="50" YPOS="100">
</OBJECT>
<SCENE>
< SCENESIZE SX = “320", SY="240">
< BACKCOLR ="#RRGGBB” >
<OBJECT = “backgrnd”>
</SCENE>

Scenes can contain any number of foreground objects:

10

15

20

25

WO 01/31497 PCT/AU00/01296

-92.

<SCENE>
< SCENESIZE SX = “320", SY="240">
< FORECOLR ="#RRGGBB" >
< OBJECT = “foregnd_object1”, PATH ="somepath”>
<OBJECT = “foregnd_object2”, PATH ="someotherpath”>
<OBJECT = “foregnd_object3”, PATH ="anypath”>
</SCENE>

Paths are defined for each animated object in a scene:

<PATH = somepath>
< TIME START="0", END="100">
< POSITION TIME=START, XPOS="0", YPOS="100">
< POSITION TIME=END, XPOS="0", YPOS="100">
<INTERPOLATION= LINEAR>

</PATH>

Using IAVML, content creators can textually create animation scripts for object oriented
video and conditionally define dynamic media composition and rendering parameters.
After creation of an JAVML file, the remote server software processes the IAVML script
to create the object control packets that are inserted into the composite video stream that is
delivered to the media player. The server also uses the IAVML script internally to know
how to respond to dynamic media composition requests mediated by user interaction

returned from the client via user control packets.

Streaming Error Correction Protocol

In the case of wireless streaming, suitable network protocols are used to ensure that video

data is reliably transmitted across the wireless link to the remote monitor. These may be

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-93.

connection-oriented, such as TCP, or connectionless, such as UDP. The nature of the
protocol will depend on the nature of the wireless network being used, the bandwidth, and
the channel characteristics. The protocol performs the following functions: error control,

flow control, packetisation, connection establishment, and link management.

There are many existing protocols for these purposes that have been designed for use with
data networks. However, in the case of video, special attention may be required to handle
errors, since retransmission of corrupted data is inappropriate due to the real-time
constraints imposed by the nature of video on the reception and processing of transmitted

data.

To handle this situation the following error control scheme is provided:
(1) Frames of video data are individually sent to the receiver, each with a check
sum or cyclic redundancy check appended to enable the receiver to assess if the
frame contains errors;
(2a) If there was no error, then the frame is processed normally;
(2b) If the frame is in error, then the frame is discarded and a status message is sent
to the transmitter indicating the number of the video frame that was in error;
(3) Upon receiving such an error status message, the video transmitter stops
sending all predicted frames, and instead immediately sends the next available key
frame to the receiver;
(4) After sending the key frame, the transmitter resumes sending normal inter-

frame coded video frames until another error status message is received.

A key frame is a video frame that has only been intra-frame coded but not inter-frame
coded. Inter-frame coding is where the prediction processes are performed and makes
these frames dependent on all the preceding video frames after and including the last key
frame. Key frames are sent as the first frame and whenever an error occurs. The first frame

needs to be a key frame because there is no previous frame to use for inter-frame coding.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-94 -

Voice Command Process

Since wireless devices are small, the ability to enter text commands manually for
operating the device and data processing is difficult. Voice commands have been
suggested as a possible avenue for achieving hands-free operation of the device. This
presents a problem in that many wireless devices have very low processing power, well
below that required for general automatic speech recognition (ASR). The solution in this
case is to capture the user speech on the device, compress it, and send it to the server for
ASR and execution as shown in Figure 31, since in any case the server will be actioning
all user commands. This frees the device from having to perform this complex processing,
since it is likely to be devoting most of its processing resources to decoding and rendering
any streaming audio/video content. This process is depicted by the flowchart of Figure 31,
beginning at step s1501. The process is initiated when the user speaks a command into the
device microphone at step s1502. If, at step s1503, voice commands are disabled, the
voice command is ignored and the process ends at step s1517. Otherwise, the voice
command speech is captured and compressed at step s1504, the encoded samples are
inserted into USERCTRL packets at step s1505, and sent to a voice command server at
step s1506. The voice command server then performs automatic speech recognition at
step s1507, and maps the transcribed speech to a command set at step s1508. If the
transcribed command is not predefined at step s1509, the transcribed test string is sent to
the client at step s1510, and the client inserts the text string into an appropriate text field.
If (step s1509) the transcribed command is predefined, the command type (server or
client) is checked at step s1512. If the command is a server command, it is forwarded to
the server at step s1513, and the server executes the command at step s1514. If the
command is a client command, the command is returned to the client device, step s1515,
and the client executes the command, step s1516, concluding the voice command process

at step s1517.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-95.

Applications

Ultrathin Client Process and Compute Servers

By using an ultra thin client as a means for controlling a remote computer of any kind
from any other kind of personal mobile computing device, a virtual computing network is
created. In this new application, the user’s computing device performs no data processing,
but serves as a user interface into the virtual computing network. All the data processing is
performed by compute servers located in the network. At most, the terminal is limited to
decoding all output and encoding all input data, including the actual user interface display.
Architecturally, the incoming and outgoing data streams are totally independent within the
user terminal. Control over the output or displayed data is performed at the compute server
where the input is data is processed. Accordingly, the graphical user interface (GUI)
decomposes into two separate data streams: the input and the output display component,
which is a video. The input stream is a command sequence that may be a combination of
ASCII characters and mouse or pen events. To a large extent, decoding and rendering the
display data comprises the main function of such a terminal, and complex GUI displays

can be rendered.

Figure 32 shows an ultra thin client system operating in a wireless LAN environment. This
system could equally operate within a wireless WAN environment such as across CDMA,
GSM, PHS or other similar networks. In the wireless LAN environment system, a range
from 300 meters indoors to up to 1 km outdoors is typical. The ultrathin client is a
personal digital assistant or palmtop computer with a wireless network card and antenna to
receive signals. The wireless network card interfaces to the personal digital assistant
through through a PCMCIA slot, a compact flash port or other means. The compute server
may be any computer running a GUI that is connected to the internet or a local area
network with wireless LAN capability. The compute server system can comprise of
Executing GUI Programs (11001) which are controlled by client response (11007) with
the program outputs, including audio and GUI display, being read and encoded with the
Program output video converter (11002). Delivery of the GUI display to the Remote
Control System (11012) can be achieved by first video encoding within 11002 which uses

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 96 -

the OO Video Coding (11004) to convert the GUI display, captured through the GUI
screen reading (11003), and any audio, captured through the Audio reading (11014), to
compressed video using the process described previously for encoding and transmits it to
the ultra thin client. The GUI display may be captured using a GUI screen reading (11003)
which is a standard function in many operating systems such as CopyScreenToDIB() in
Microsoft Windows NT. The ultra thin client receives the compressed video via the Tx/Rx
Buffer (11008 and 11010) and renders it appropriately to the user display using the GUI
Display and Input (11009) after decoding via the OO Video Decoding (11011). Any user
control data is transmitted back to the compute server, where it is interpreted by the
Ultrathin client-to-GUI control interpretation (11006) and used to control the executing
GUI Program (11001) through the Programmatic-GUI control execution (11005). This
includes the ability to execute new programs, terminate programs, perform operating
system functions, and any other functions associated with the running program(s). This
control may be effected through various, in the case of MS Windows NT, the
Hooks/JournalPlaybackFunc() can be used.

For longer range applications, the WAN system of Figure 33 is preferred. In this case, the
compute server is directly connected to a standard telephone interface, Transmission
(11116), for transmitting the signals across a CDMA, PHS, GSM or similar cellular phone
network. The ultra thin client in this case comprises a personal digital assistant with a
modem connected to a phone, Handset and Modem (11115). All other aspects are similar
in this WAN system configuration to those described in Figure 32. In a variation of this
system, the PDA and phone are integrated within a single device. In one instance of this
ultra thin client system, the mobile device has full access to the compute server from any
location whilst within the reach of standard mobile telephony networks such as CDMA,
PHS or GSM. A cabled version of this system may also be used which dispenses with the
mobile phone so that the ultra thin computing device is connected directly to the standard

cabled telephone network through a modem.

The compute server may also be remotely located and connected via an Intranet or the

Internet (11215) to a local wireless transmitter/receiver (11216) as depicted in Figure 34.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-97-

This ultra thin client application is especially relevant in the context of emerging Internet-

based virtual computing systems.

Rich Audio-Visual User Interfaces

In the ultra thin client system where no object control data is inserted into the bit stream,
the client may perform no process other than rendering a single video object to the display
and returns all user interaction to the server for processing. While that approach can be
used to access the graphical user interface of remotely executing processes, it may not be

suitable for creating user interfaces for locally executing processes.

Given the object-based capabilities of the DMC and interaction engine, this overall system
and its client-server model is particularly suited for use as the core of a rich audio-visual
user interface. Unlike typical graphical user interfaces, which are based on the concept of
mostly static icons and rectangular windows, the current system is capable of creating rich
user interfaces using multiple video and other media objects which can be interacted with

to facilitate either local device or remote program execution.

Multipart Wireless VideoConferencing Process

Figure 35 shows a multiparty wireless videoconferencing system involving two or more
wireless client telephony devices. In this application, two or more participants may set up
a number of video communication links among themselves. There is no centralised control
mechanism, and each participant may decide what links to activate in a multiparty
conference. For example, in a three person conference consisting of persons A,B,C, links
may be formed between persons AB, BC and AC (3 links), or alternatively AB and BC but
not AC (2 links). In this system, each user may set up as many simultaneous links to
different participants as they like, as no central network control is required and each link is
separately managed. The incoming video data for each new videoconference link forms a
new video object stream that is fed into the object oriented video decoder of each wireless
device connected in a link relevant to the incoming video data. In this application, the
object video decoder (object oriented Video Decoding 11011) is run in a presentation

mode where each video object is rendered (11303) according to layout rules, based on the

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-98 -

number of video objects being displayed. One of the video objects can be identified as
currently active, and this one may be rendered in a larger size than the other objects. The
selection of which object is currently active may be performed using either automatic
means based on the video object with most acoustic energy (loudness/time) or manually
by the user. Client telephony devices (11313, 11311, 11310, 11302) include personal
digital assistants, handheld personal computers, personal computing devices (such as
notebooks and desktop PCs) and wireless phone handsets. Client telephony devices can
include wireless network cards (11306) and antennae (11308) to receive and transmit
signals. A wireless network card interfaces to the client telephony device through a
PCMCIA slot, a compact flash port or other connection interface. A wireless phone
handset can be used for the PDA wireless connection (11312). A link can be established
across a LAN/Intranet/Internet (11309). Each client telephony device (eg. 11302) may
include a video camera (11307) for digital video capture and one or more microphones for
audio capture. The client telephony device includes the video encoder (OO Video
Encoding 11305) to compress the captured video and audio signals, using the process
described previously, which are then transmitted to one or more other client telephony
devices. The digital video camera may only capture digital video and pass it to the client
telephony device for compression and transmission, or it may also compress the video
itself using a VLSI hardware chip (an ASIC) and pass the coded video to the telephony
device for transmission. The client telephony devices, which contain specific software,
receive the compressed video and audio signals and render them appropriately to the user
display and speaker outputs using the process previously described. This embodiment may
also include direct video manipulation or advertising on a client telephony device, using
the process of interactive object manipulation described previously, which can be reflected
(replicated on the GUI display) through the same means as above to other client telephony
devices participating in the same videoconference. This embodiment may include
transmission of user control data between client telephony devices such as to provide for
remote control of other client telephony devices. Any user control data is transmitted back
to the appropriate client telephony device, where it is interpreted and then used to control
local video image and other software and hardware functions. As in the case of the ultra

thin client system application, there are various network interfaces which can be used.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-99.

Interactive Animation or Video On Demand with Targeted In-
picture User Advertising

Figure 36 is a block diagram of an interactive video on demand system with targeted user
video advertising. In this system, a service provider (; eg. live news, video-on-demand
(VOD) provider, etc.) would unicast or multicast video data streams to individual
subscribers. The video advertising can include multiple video objects which can be
sourced separately. In one instance of the video decoder, a small video advertisement
object (11414) is dynamically composited into the video stream being delivered to the
decoder (11404) to be rendered into the scene being viewed at certain times. This video
advertising object can be changed either from pre-downloaded advertising stored on the
device in a library (11406), or streamed from remote storage (11412) via an online video
server (eg. Video on demand server 11407) capable of dynamic media composition using
Video Object Overlay (11408). This video advertising object can be targeted specifically
to the client device (11402) based on the client owner's (subscriber’s) profile information.
A subscriber’s profile information can have components stored in multiple locations such
as in an online server library (11413) or locally on the client device. For targeted video
based advertising, feedback and control mechanisms for video streams and viewing
thereof are used. The service provider or another party can maintain and operate a video
server that stores compressed video streams (11412). When a subscriber selects a program
from the video server, the provider's transmission system automatically selects what
promotion or advertising data is applicable from information obtained from a subscriber
profile database (11413) which can include information such as subscriber age, gender
geographical location, subscription history, personal preferences, purchasing history, etc.
The advertising data, which can be stored as single video objects, can then be inserted into
the transmission data stream together with the requested video data and sent to the user.
As a separate video object(s), the user can then interact with the advertising video
object(s) by adjusting its presentation/display properties)The user may also interact with
the advertising video object(s) by clicking, or dragging, etc.) on the object to thereby send

a message back to the video server indicating that the user wishes to activate some

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 100 -

function associated with that advertising video object as determined by the service
provider or Advertising object provider. This function may simply entail a request for
further information from the advertiser, placing a video/phone call to the advertiser,
initiate a sales coupon process, initiate a proximity based transaction or some other form
of control. In addition to advertising, this function may be directly used by the service
provider to promote additional video offerings such as other available channels, which
may be advertised as small moving iconic images. In this case, the user action of clicking
on such an icon may be used by the provider to change the primary video data being sent
to the subscriber or send additional data. Multiple video object data streams may be
combined by the video object overlay (11408) into the final composite video data stream
that is transmitted to each client. Each of the separate video object streams that are
combined may be retrieved over the Internet by the video promotion selection (11409)
from different remote sources such as other video servers, web cameras (11410), or
compute servers through either real-time or preprocessed encoding as previously described
(Video Coding, 11411). Again, as in the other system applications of ultra thin clients and

videoconferencing, various preferred network interfaces can be used.

In one embodiment of in-picture advertising, the video advertisement object may be
programmed to operate like a button as shown in Figure 37 which, when selected by a
user, may do one of the following:

o Immediately change the video scene being viewed by jumping to a new scene that
provides more information about the product being advertised or to an online e-
commerce enabled store. For example, it may be used to change “video channels”.

e Immediately change the video advertising object into streaming text information like
subtitles by replacing the object with another that provides more information about the
product being advertised. This does not affect any other video objects in the displayed
scene.

e Removes the video advertising object and sets a system flag indicating that the user
has selected the advertisement, the current video will then play through to the end

normally and then jumpto the indicated advertisement target

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 101 -

¢ Send a message back to the server registering interest in the product being offered for
future asynchronous followup information, which may be via email or as additional
streaming video objects, etc.

e Where the video advertising object is being used for branding purposes only, clicking
on the object may toggle its opacity and make it semitransparent, or enable it to

perform a predefined animation such as rotating in 3D or moving in a circular path.

Another manner of using video advertising objects is to subsidise packet charges or call

charges for users of mobile smart phones by:

e Automatically displaying a sponsor’s video advertising object for an unconditionally
sponsored call during or at the end of the call.

e Displaying an interactive video object prior to, during or after the call offering

sponsorship if the user performs some interaction with the object.

Figure 37Figure 37 shows one embodiment of in-picture advertising the system is . When
an in-picture advertising session is started (Instream Advertising Start S1601) a request for
an audio-visual stream (Request AV data stream from Server S1602) is sent from the
client device (Client) to a server process. The server process (Server) can be local on the
client device or remote on an online server. In response to the request the server begins
streaming the request data (S1603) to the client. The While streaming data is being
received by the client it executes processes to render the data stream, and accepts and
responds to user interaction. Hence the client checks to see if the received data indicates
that the end of the current AV streaming has been reached (S1604). If this is true and
unless unless there is another queued AV data stream (S1605) to be streamed pending
completion of the current stream just ended then the in-picture advertising session can end
(S1606). If queued AV data streams exist then the server commences streaming the new
AV data stream (back to S1603). While in the process of streaming a data stream such that
the end of the AV stream has not been reached (S1604 — NO) and if a current advertising
object is not being streamed then the Server can select (S1608) and insert new advertising
object(s) in the AV stream (S1609) based on parameters including: location, user profile,

etc.. . If the server is in the process of streaming an AV data stream and an advertising

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-102 -

object has been selected and inserted into the AV stream the client decodes the bit stream
as described previously and renders the objects (S1610). Whilst the AV data stream may
continue, the in-picture advertising stream may end (S1611) due to various reasons
including: client interaction, server intervention or end of advertising stream. If the in-
picture advertising stream has ended (S1611 — YES) then reselection of a new in-picture
advertisement may occur through S1608.. If the AV data stream and in-picture advertising
stream continue (S1611 — NO) then the client captures any interaction with the advertising
object. If a user clicks on object the object (S1612 — YES) the client sends notification to
the Server (S1613). The server’s dynamic media compositon program script define what
actions are to be taken in response. These include: no action, delayed (postponed) or
immediate actions (S1614). In the case of no action (S1614 — NONE) the server can
register this fact for future (online or off-line) follow up actions (S1619), this could
include updating user profile information which could be used in targeting similar
advertisements or follow up advertisements. In the case of a delayed action (S1614 —
POSTPONED) then the action to be taken may include registration (S1619) for followup
as per undertaken for S1619 or queuing a new AV data (S1618) for streaming pending the
end of the current AV data stream. In a circumstance when the Server is on the client
device this may be queued and downloaded when the device may next be connected to an
online server. In the case whith a remote online Server then when the current AV stream is
completed, queued streams may then play (S1605 — YES). In the case of an immediate
action (S1614 — IMMEDIATE) then a number of actions could be performed based on the
control information attached to the advertising object including: change animation
parameters for the current advertising object (S1615 — ANIM), replace the current
advertisment object(s) (S1615 — ADVERT) and replace the current AV data stream
(S1617). Animation request changes (S1615 — ANIM) could result in rendering changes
for the object (S1620) such as translation or rotation, and transparency etc. This would be
registered for later followup as per (s1619) In the case of an advertising object change

request (S1615 — ADVERT) a new advertising object could be selected as before (S1608).

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-103 -

In another embodiment, the dynamic media composition capabilities of this video system
may be used to enable viewers to customise their content. An example is where the user
may be able to select from one of a number of characters to be the principal character in a
storyline. In one such case with an animated cartoon, viewers may be able to select from
male or female characters. This selection may be performed interactively from a shared
character set such as for online multi-participant entertainment or may be based on a
stored user profile. Selecting a male character would cause the male character’s
audiovisual media object to be composited into the bit stream to replace that of a female
character. In another example, rather than just selecting the principal character for a fixed
plot, the plot itself may be changed by making selections during viewing that change the
storyline such as by selecting which scene to jumpto display next. A number of alternative
scenes could be available at any given point. Selection Selections may be constrained by
various mechanisms such as the previous selections, video objects selected and position

within the storyline the video is at.

Service providers may provide user authentication and access control to video material,
metering of content consumption and billing of usage. Figure 41 Figure 41 shows one
embodiment of the system where all users could register with the relevant
authentication/access provider (11507) before they are provided access to services (eg.
content services). The authentication/access service could create a ‘unique identifier’ and
‘access information’ for each user (11506). The unique identifier could be automatically
transferred to the client device (11502) for local storage when the client is online (eg. first
access to the service). All subsequent requests by users to stored video content (11510) via
a video content provider (11511) could be controlled with the use of the client system’s
user identifier. In one example of usage a user could be billed a regular subscription fee
which enables access to content for the user by authentication of their unique identifier.
Alternatively in a pay-per-view sitatuin billing information (11508) can be gathered
through usage,. Information about usage such as meteringmay be recorded by the content
provider (11511) and supplied to one or more of Billing Service Provider (11509) and
Access Broker/Metering Provider (11507). Different levels of access can be granted for

different users and different content. Per previous system embodiments wireless access

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 104 -

could be achieved in multiple ways, Figure 41 shows one instance of access for the client
device (11502) through the Tx/Rx Buffer (11505) to the Local Wireless Transmitter
(11513) which provides access to the service providers via a LAN/Intranet or Internet
connection (11513) not excluding wireless WAN access as well. The client device may
liase with the Access Broker/Metering (11507) in real-time to gain access rights to the
content.. An encoded bit stream can be decoded by 11504 as previously described and
rendered to screen with client interaction made possible as previously described (11503).

The access control and or billing service provider can maintain a user usage profile which
may then be sold or licensed to third parties for advertising/promotional purposes. In order
to implement billing and usage control, a suitable encryption method can be deployed, as
previously described. In addition to this, a process for uniquely branding/identifying an

encoded video can be used as described previously.

Video Advertising Brochures

An interactive video file may be downloaded rather than streamed to a device so that it can
be viewed offline or online at any time as shown in Figure 38. A downloaded video file
still preserves all of the interaction and dynamic media composition capabilities that are
provided by the online streaming process previously described. Video brochures may
include menus, advertising objects, and even forms that register user selections and
feedback. The only difference is that, since video brochures may be viewed offline,
hyperlinks attached to the video objects may not designate new targets that are not located
on the device. In this situation, the client device could store all user selections not able to
be serviced from data on the device and forward these to the appropriate remote server the
next time the device is online or synchronised with a PC. Forwarded user selections in this
manner may cause various actions to be performed such as providing further information,
downloading requested scenes or linking to requested URLs. Interactive Video Brochures
can be used for many content types such as Interactive Advertising Brochures, Corporate
Training Content Interactive Entertainment and for interactive online and offline

purchasing of goods and services..

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 105 -

Figure 38Figure 38 shows one possible embodiment of Interactive Video Brochures (IVB)
In this example the IVB (SKY file) data file can be downloaded to the client device
(S1702) upon request (pull from server) or as scheduled (push from server) (S1701). The
download could occur either wirelessly , via synchronisation with a desktop PC or
distributed on media storage technology such as compact flash, or memory stick. The
client’s player would decode the bitstream (as previously described) and render the first
scene from the IVB (S1703). If the player reaches the end of the IVB (§S1705 — YES) then
the IVB will end (S1708). When the player has not reached the end of the IVB it renders
the scene(s) and executes all unconditional object control actions (S1706). The user may
interact with objects as defined by the object controls. If the user does not interact with an
object (S1707 — NO) then the player continues to read from the data file (S1704). If the
user interacts with an object within the scene (S1707 — YES) and the object control action
was to perform a submit a form operation (S1709 — YES) then if the user is online (S1712
— YES) then the form data could be sent to the online server (S1711), otherwise if offline
(S1712 — NO) then the form data could be stored for later upload (S1715) when the device
is back online. If the object’s control action was a JumpTo behaviour (S1713 — YES) and
the control specified a jump to a new scene then the player could seek to the location of
the new scene in the data file (S1710) and continue reading data from there. If the control
specified a jump to another object (S1714 — OBJECT) then this could cause the target
object to be replaced and rendered, by accessing the correct data stream in the scene as
stored in the data file (S1717). If the object’s control action was to change the object’s
animation parameters (S1716 — YES) then the object’s animation parameters would be
could be updated or actioned depending on the parameters specified by the object control
(S1718). If the object’s control action was to perform some other operation on the object
(S1719- YES) and all the conditions specified by the control are met (S1720 — YES) then
the control operation is performed (S1721). If the object selected did not have a control
operation (s1719 — NO or s1720 - NO) then the player can continue reading and rendering
the video scene. In any of these cases, the action request can be logged and notification
can be stored for later upload to the server if offline or transferred directly to the server if

online.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 106 -

Figure 39Figure 39 shows one embodiment of Interactive Video Brochure for advertising
and purchasing applications. The example shown contains forms for online purchasing and
content viewing selection. The IVB is selected and playing commenced (S1801). The
introductory scene could play (S1802) which could consist of multiple objects as shown
(S1803, video object A, video object B, video object C). All video objects could have
various rendering parameter animations defined by their attached control data, for example
A, B and C could move in from the right hand side after the main viewing object has
begun rendered (S1804). The user could interact with any object and initiate an object
control action, for example the user could click on B (S1805) which could have a
“JumpTo” hyper link, control action to stop playing the current scene and start playing the
new scene as indicated by the control parameters (S1806, S1807). This could contain
multiple objects, for example it could obtain a Menu object for navigation control which
the user could select (S1808) to return to the main scene (S1809, S1810). The user could
interact with another object, for example A (S1811), which could have a behaviour to
jump to a another specific scene (S1812, S1813). In the example shown the user could
select the Menu option again (S1814) to return to the main scene (S1815, S1816). Another
user interaction could be to drag object B into the shopping basket shown (S1817) which
can cause the execution of another object control that was conditional on overlapping
objects B and the shopping basket to register a purchase request by setting the state of
appropriate user flag variables (S1818) and also cause object animation or change (S1819,
S1820) based on the dynamic media composition where in the example the shopping
basket is shown full. The user could interact with the shopping basket object (S1821)
which may have a jumpto behaviour to a check out transaction and information scene
(S1822, S1823) which could show purchases requested. The objects displayed in this
scene would be determined by the dynamic media composition based on the value of the
user flag variables. The user may interact with the objects such as to change their purchase
request state on/off by modifying the user flags as defined by the object control parameters
which would cause the dynamic media composition process to show selected or unselected
objects in the scene. The user may alternatively choose to interact with the the buy or
return objects which may have Jumpto new scene control behaviour with the appropriate

scenes as targets, such as the main scene or a scene to. commit the transaction (S1825). A

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 107 -

committed transaction could be stored on the client device if offline for later upload to a
server or could be uploaded to the server in real-time for purchase/credit authorization if
client device online. Selecting the buy object could jump to a confirmation scene (S1827,
S1828) whilst the transaction could be sent through to a server (S1826) with any

remaining video played after transaction completed (S1824).

Distribution Models and DMC Operation

There are numerous distribution mechanism for delivery of a bitstream to a client device
including: download to desktop PC with synchronisation to the client device, wireless
online connection to device and compact media storage devices. Content delivery can be
intiated either by the client device or by the network. The combinations of distribution
mechanism and delivery initiation provide a number of delivery models. One such model
client initiated delivery is on-demand streaming in which one embodiment refered to as on
demand streaming which provides a channel with low bandwidth and low latency (eg.
wireless WAN connection) and the content is streamed in real-time to the client device
where it is viewed as it is streamed. A second model of content delivery is a client initiated
delivery over an online wireless connectionwhere content can be quickly downloaded in
entirety before playing such as using a file transfer protocol, one embodiment provides a
high bandwidth, high latency channel in which the content is delivered immediately and
subsequenty viewed. A third delivery model is a network initiated delivery in which one
embodiment provides low bandwidth and high latency, the device is said to be “always
on” - since the client device can be always online. In this model, the video content can be
trickled down to the device overnight or other off-peak period and buffered in memory for
viewing at a later time. In this model, the operation of the system differs second model
above (client initiated on-demand download) in that users would register a request for
delivery of specific content with a content service provider. This request would then be

used to automatically schedule network initiated delivery by the server to the client

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-108 -

device.When the approprate time for the delivery of the content occurs such as an off-peak
period of network utilisation the server would set up a connection with the client device
and negotitate the transmission parameters and manage the data transfer with the
client.Alternatively the server could send the data in small amounts from time-to-time
using any available residual bandwidth left over in the network from that allocated (for
example in constant rate connections). Users could be made aware that the requested data
has been fully delivered by signalling to users via a visual or audiable indication so that

they can then view the requested data when they are ready.

The player is capable of handling both the push or pull delivery models. One embodiment
of the system operation is shown in Figure 40. A wireless streaming session can be
commenced (S1901) by either the client device (S1903 - PULL) or by the network (S1903
— PUSH). In a client initiated streaming session the client can initiate the stream through
various ways (S1904) such as: entering a URL, hyperlinking from an interactive object or
dialing the phone number of a wireless service provider. A connection request can be sent
to the remote server (S1906) from the client. The server can establish and start a PULL
connection (S1908) which can stream data to the client device (S1910). During streaming
the client decodes and renders the bitstream as well as takes user input as previously
described. As more data is streamed (S1912 — YES) the server continues to stream new
data to the client for decoding and rendering, this process can include interactivity and
DMC functionality as described previously. Normally when there is no more data in the
stream (S1912 — NO) the user can terminate the call from the client device (S1915 —
PULL) but the user may terminate the call at any time. Termination of the call will close
the wireless streaming session otherwise if the user does not terminate the call after the
data has finished streaming the client device may enter an idle state but remain online. In
an example of a network initiated wireless streaming session (S1903 — PUSH) the server
could call the client device (S1902). The client device could automatically answer the call
(S1905) with the client establishing a PUSH connection (S1907). The establishment
process may include negotiation between the server and the client regarding capabilities of
the client device, or configuration or user specific data. The server could then stream data

to the client (§1909) with the client storing the received data for later viewing (S1911).

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 109 -

Whilst more data may need to be streamed (S1912 — YES) this process could continue
either over a very long period of time (low bandwidth trickle stream) or over a shorter
period of time (higher bandwidth download). When the entire data stream or a certain
scripted position is reached within the stream (S1912 — NO) then the client device in this
PUSH connection (S1915 ~PUSH) could signal the user that content was ready for playing
(S1914). After streaming all required content the server could terminate the call or
connection to the client device (S1917) to end the wireless streaming session (S1918). In
another embodiment hybrid operation between PUSH and PULL connections could occur
with a network initiated message to a wireless client device which when received can be
interacted with by the subscriber to commence a PULL connection as described above. In
this way a PULL connection can be prompted by scheduled delivery by the network of
data containing a suitable hyperlink.

These three distribution models are suitable for unicast mode of operation. In the first on
demand model described above, the remote streaming server can perform unrestricted
dynamic media composition and handle user interaction and execute object control actions
etc, in real-time, whereas in the other two models, the local client can handle the user
interaction and perform DMC as the user may view the content offline. Any user
interaction data and form data to be sent to the server can be delivered immediately if the
client is online or at an indeterminate time if offline with subsequent processing

undertaken on the transferred data at an indeterminate time..

Figure 42 is a flowchart depicting one embodiment of the main steps a wireless streaming
player/client performs in playing on demand streaming wireless video, according to the
present invention. The client application begins at step s2001, waiting for a user to enter a
URL or phone number of a remote server, at step s2002. When the user enters the remote
server URL or phone number the software initiates at step s2003 a network connection
with the wireless network (if not already connected). After connection is established the
client software requests data to be streamed from the server at step s2004. The client then
continues processing the on demand streaming video until the user requests a
disconnection, when at step s2005, the software proceeds to step s2007 to initiate a call

disconnect with the wireless network and remote server. Finally the software frees any

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-110 -

resources it may have allocated at step s2009 and the client application ends at step s2011.
Until the user requests the call to be ended step s2005 proceeds to step s2006 checking for
network data received. If no data is received the software returns to step s2005. However
if data is received from the network, the incoming data is buffered at step s2008 until an
entire packet is received. When a complete packet is received step s2010 checks the data
packet for errors, sequence information and synchronisation information. If, at step s2012
the data packet contains errors, or is out of sequence a status message is sent to the remote
server indicating this at step s2013; subsequently returning to step s2005 to check for a
user call disconnect request. If however the packet was received without error step s2012
proceeds to step s2014 and the data packet is passed to the software decoder at step s2014,
and is decoded. The decoded frames are buffered in memory at step s2015 for rendering
at step s2016. Finally the application returns to step s2005 to check for a user call

disconnect and the wireless streaming player application continues.

Apart from unicast, other operating modes include multicast and broadcast. In the case of
a multicast or broadcast, the system/user interaction and DMC capabilities can be
constrained and may operate in a different manner to unicast models. In a wireless
environment, it is likely that multicast and broadcast data will be transmitted in separate
channels. These are not purely logical channels as with packet networks, instead these may
be circuit switched channels. A single transmission is sent from one server to multiple
clients. Hence user interaction data may be returned to the server using separate individual
unicast ‘back channel’ connections for each user. The distinction between multicast and
broadcast is that multicast data may be broadcast only within certain geographical
boundaries such as the range of a radio cell. In one embodiment of a broadcast model
ofdata delivery to client devices, data can be sent to all radio cells within a network, which

broadcast the data over particular wireless channels for client devices to receive.

An example of how a broadcast channel may be used is to transmit a cycle of scenes
containing service directories. Scenes could be categorised to contain a set of hyper-linked
video objects corresponding to other selected broadcast channels, so that users selecting an

object will change to the relevant channel. Another scene may contain a set of hyper-

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-111-

linked video objects pertaining to video-on-demand services, where the user, by selecting
a video object, would create a new unicast channel and switch from the broadcast to that.
Similarly, hyper-linked objects in a unicast on demand channel would be able to change

the bit stream being received by the client to that from a specified broadcast channel

Since a multi or broadcast channel transmits the same data from the server to all the
clients, the DMC is restricted in its ability to customise the scene for each user. The
control of the DMC for the channel in a broadcast model may not be subject to individual
users, in which case it wouldnot possible for individual user interaction to modify the
content of the bit stream being broadcast. Since broadcast relies on real-time streaming, it
is unlikely that the same approach can be for local client DMC as with offline viewing,
where each scene can have multiple object streams and Jump to controls can be executed.
In broadcast models the user, however, is not completely inhibited from interacting with
the scenes, they are still free to modify rendering parameters such as activating
animations, etc, registering object selection with the server, and they are free to select a
new unicast or broadcast channel to jump to by activating any hyperlinks associated with

video objects.

One way in which DMC can be used to customise the user experience in broadcast is to
monitor the distribution of different users currently watching the channel and construct the
outgoing bit stream defining the scene to be rendered based on the average user profile,
For example, the selection of in-picture advertising object may be based on whether
viewers were predominantly male or female. Another manner that the DMC can be used to
customise the user experience in a broadcast situation is to send a composite bit stream
with multiple media objects, without regard for the current viewer distribution. The client
in this case selects from among the objects based on a user profile local to the client to
create the final scene. For example, multiple subtitles in a number of languages may be
inserted into the bit stream defining a scene for broadcasting. The client is then able to
select which language subtitle to render based on special conditions in the object control

data broadcast in the bit stream.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-112 -

Video Monitoring System

Figure 43 shows one embodiment of a video monitoring system which could be used to
monitor in real-time many different environments such as: home property and family,
commercial property and staff, traffic, childcare, weather and special interest locations. In
this example a video camera device (11604) could be used for video capture. The captured
video could be encoded as previously described within 11602 with the ability to combine
additional video objects from either store (11606) or streamed in remotely from a server
using controls (11607) as previously described. The monitoring device (11602) could be:
part of the camera (as in an ASIC implementation), part of a client device (eg. PDA with
camera and ASIC), separate from the camera (eg. separate monitoring encoding device) or
remote from the video capture (eg. a server encoding process with live video feed). The
encoded bitstream can be streamed or downloaded at scheduled times to the client device
(11603) where the bitstream can be decoded (11609) and rendered (11608) as previously
described. In addition to transmitting remote video to wireless handheld devices over short
ranges using wireless LAN interfaces, monitoring devices (11602) are also able to transmit
remote video over long distances using standard wireless network infrastructures such as:
telephone interface over using TDMA, FDMA, or CDMA transmission using PHS,GSM
or other such wireless networks. Other access network architectures can also be used. The
monitoring system can have intelligent functions such as motion detection alarms,
automatic notification and dial out on alarm, recording and retrieval of video segments,
select and switch between multiple camera inputs, and provide for user activation of
multiple digital or analogue outputs at the remote location. Applications of this include
domestic security, child monitoring and traffic monitoring. In this last case live traffic
video is streamed to users and can be performed in a number of alternative ways:
a. The user dials a special phone number and then selects the traffic camera
location to view within the region handled by the operator / exchange.
b. The user dials a special phone number and the users geographic location
(derived from GPS or GSM cell triangulation for example) is used to
automatically provide a selection of traffic camera locations to view with

possible accompanying traffic information. In this method the user may be able

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-113 -

to optionally specify his or her destination, which if provided may be used to
help provide the selection of traffic camera.

c. The user can register for a special service where the service provider will call
the user and automatically stream video showing the motorists route that may
have a potential traffic jam. Upon registering the user may elect to nominate on
or more scheduled routes for this purpose, which may be stored by the system
to assist with predicting the users route possibly in combination with
positioning information from GPS systems or cell triangulation. The system
would track the users speed and location to determine direction of travel and
route being followed; it would then search its list of monitored traffic cameras
along potential routes to determine if any sites are congested. If so then the
system would notify the motorist of any congested routes and present the
traffic view most relevant to the user. Stationary users or those travelling at
walking speeds would not be called. Alternatively given a traffic camera
indicating congestion the system may search through the list of registered users

that are travelling on that route and alert them.

Electronic Greeting Card Service

Figure 44 is a block diagram of one embodiment of an electronic greeting card service for
smart mobile phones 11702 and 11712 and wirelessly connected PDAs. In this system, an
initiating user 11702 can access a greeting card server 11710 either from the Internet
11708 using a Internet connected personal computer 11707 or the mobile phone network
11703 using a mobile smart phone 11706 or wirelessly connected PDA. The Greeting
Card server11710 provides a software interface that permits users to customise a greeting
card template selected from a template library 11711 stored on the server. The templates
are short videos or animations covering a number of themes, such as birthday wishes,
postcards, good luck wishes, etc. The customisation may include the insertion of text and
or audio content to the video and animation templates. After customisation, the user may

pay for the transaction and forward the electronic greeting card to a person’s mobile phone

10

15

20

25

WO 01/31497 PCT/AU00/01296

-114 -

number. The electronic greeting is then passed to the streaming server 11712 to be stored.
Finally the greeting card is forwarded from the streaming media server 11709, via the
wireless phone network 11704 during off peak periods, to the desired user’s 11705 mobile
device 11712. In the case of post cards, specialised template videos can be created for
mobile phone networks in each geographic locations that can only be sent by people
physically within that locality. In another embodiment, users are able to upload a short
video to a remote application service provider which then compresses the video and stores
it for later forwarding to the destination phone number. Figure 45 is a flowchart showing
one embodiment of the major steps a user would perform to generate and send an
electronic greeting card according to the present invention. The process as shown begins
in step s2101, where the user is connected via either the internet or a wireless phone
network to the application service provider ASP. If, at step s2102, the user wants to use
their own video content, the user may capture live video or obtain video content from any
of a number of sources. This video content is stored in a file at step s2103, and is
uploaded, at step s2105, by the user to application service provider and is stored by the
greeting card server. If the user does not want to use their own video content, step s2102
proceeds to step s2104, where the user selects a greeting card / email template from the
template library which is maintained by the ASP. At step s2106 the user may opt to
customize the video greeting card / email, whereby at step s2107 the user selects one or
more video objects from the template library, and the application service provider inserts,
at step 2108, the selected objects into the already selected video data. When the user has
completed customising the electronic greeting card / email, the user enters at step s2109
the destination phone number/address. Subsequently the ASP compresses the data stream
at step s2110 and stores it for forwarding to a streaming media server. The process is now

complete as indicated at step s2111.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-115-

Wireless local loop streaming video and animation system

Another application is for wireless access to corporate audio-visual training materials
stored on a local server, or for wireless access to audio-visual entertainment such as music
videos in domestic environments. One problem encountered in wireless streaming is the
low bandwidth capacity of wide area wireless networks and associated high costs.
Streaming high quality video uses high link bandwidth, so can be a challenge over
wireless networks. An alternate solution to streaming in these circumstances can be to
spool the video to be viewed over a typical wide area network connection to a local
wireless server or and, once this has been fully or partially received, commence wirelessly
streaming the data to the client device over a high capacity local loop or private wireless

network.

One embodiment for this application for this is local wireless streaming of music videos.
A user downloads a music video from the Internet onto a local computer attached to a
wireless domestic network. These music videos can then be streamed to a client device
(eg. PDA or wearable computing device) that also has wireless connectivity. A software
management system running on the local computer server manages the library of videos,
and responds to client user commands from the client device/PDA to control the streaming

Process.

There are four main components to the server side software management system: a
browsing structure creation component; a user interface component; a streaming control
component; and a network protocol component. The browsing structure creation
component creates the data structures that are used to create a user interface for browsing
locally stored videos. In one embodiment, the user may create a number of playlists using
the server software; these playlists are then formatted by the user interface component for
transmission to the client player. Alternatively, the user may store the video data in a
hierarchical file directory structure and the browsing structure component creates the
browsing data structure by automatically navigating the directory structure. The user
interface component formats browsing data for transmission to the client and receives

commands from the client that are relayed to the streaming control component. The user

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-116 -

play back controls may include ‘standard’ functions such as play start, pause stop, loop
etc. In one embodiment, the user interface component formats the browsing data into
HTML, but the user playback controls into a custom format. In this embodiment, the client
user interface includes two separate components: a HTML browser handles the browsing
functions, while the playback control functions are handled by the video decoder/player.
In another embodiment, there is no separation of function in the client software, and the
video decoder/player handles all of the user interface functionality itself. In this case, the
user interface component formats the browsing data into a custom format understood

directly by the video decoder/player.

This application is most suitable for implementation in domestic or corporate applications,
for training or entertainment purposes. For example, a technician may use the
configuration to obtain audio-visual training materials on how to repair or adjust a faulty
device without having to move away from the work area to a computer console in a
separate room. Another application is for domestic users to view high quality audio-visual
entertainment while lounging outside in their patio. The back channel allows user to select
what audio video content they wish to view from a library. The primary advantage is that
the video monitor is portable and therefore the user can move freely around the office or
home. The video data stream can as previously described contain multiple video objects
which can have interactive capabilities. It will be appreciated that this is a significant
improvement over known prior art of electronic books and streaming over wireless

cellular networks.

Object Oriented Data Format

The object oriented multimedia file format is designed to meet the following goals:

o Speed - the files are designed to be rendered at high speed

o Simplicity — the format is simple so that parsing is fast and porting is easy. In addition,
compositing can be performed by simply appending files together.

o Extensibility — The format is a tagged format, so that new packet types can be defined

as the players evolve, while maintaining backwards compatibility with older players.

10

15

20

WO 01/31497 PCT/AU00/01296

-117 -

o Flexibility — There is a separation of data from its rendering definitions, permitting

total flexibility such as changing data rates, and codecs midstream on the fly.

The files are stored in big-endian byte order. The following data types are used:

L Typeii [r o i o o Definition o L e
BYTE 8 bits, unsigned char
WORD 16 bits, unsigned short
DWORD 32 bits, unsigned long
BYTE[] String, byte[0] specifies length up to 254, (255
reserved)
[POINT 12bits unsigned, 12 bits unsigned, (x,y)
DPOINT 8 bits unsigned char, 8 bits unsigned char,
(dx,dy)

The file stream is divided into packets or blocks of data. Each packet is encapsulated
within a container similar to the concept of atoms in Quicktime, but is not hierarchical. A
container consists of a BaseHeader record that specifies the payload type and some
auxiliary packet control information and the size of the data payload. The payload type
defines the various kinds of packet in the stream. The one exception to this rule is the
SystemControl packet used to perform end-to-end network link management. These
packets consist of a BaseHeader with no payload. In this case, the payload size field is
reinterpreted. In the case of streaming over circuit switched networks, a preliminary,
additional network container is used to achieve error resilience by providing for

synchronisation and checksums

There are four main types of packets within the bit stream: data packets, definition
packets, control packets and metadata packets of various kinds. Definition packets are
used to convey media format and codec information that is used to interpret the data
packets. Data packets convey the compressed data to be decoded by the selected

application. Hence an appropriate Definition packet precedes any data packets of each

10

15

20

25

WO 01/31497 PCT/AU00/01296

-118 -

given data type. Control packets that define rendering and animation parameters occur

after Definition but before Data Packets.

Conceptually, the object oriented data can be considered to consist of 3 main interleaved
streams of data. The definition, data, control streams. The metadata is an optional fourth
stream. These 3 main streams interact to generate the final audio-visual experience that is

presented to a viewer.

All files start with a SceneDefinition block which defines the AV scene space into which
any audio or video streams or objects will be rendered. Metadata and directory packets
contain additional information about the data contained by the data and definition packets
to assist browsing of the data packets. If any metadata blocks exist, they occur
immediately after a SceneDefinition packet. A directory packet immediately follows a

Metadata packet or a SceneDefinition packet if there is no Metadata packet.

The file format permits integration of diverse media types to support object oriented
interaction, both when streaming the data from a remote server or accessing locally stored
content. To this end, multiple scenes can be defined and each may contain up to 200
separate media objects simultaneously. These objects may be of a single media type such
as video, audio, text or vector graphics, or composites created from combinations of these

media types.

As shown in Figure 4, the file structure defines a hierarchy of entities: a file can contain
one of more scenes, each scene may contain one of more objects, and each object can
contain one or more frames. In essence, each scene consists of a number of separate
interleaved data streams, one for each object each consisting of a number of frames. Each
stream is consists of one of more definition packets, followed by data and control packets

all bearing the same object_id number.

WO 01/31497

Stream Syntax

Valid Packet Types
The BaseHeader allows for a total of up to 255 different packet types according to

PCT/AU00/01296

-119 -

payload. This section defines the packet formats for the valid packet types as listed in the

5 following table.

"‘Value | DataType .| .. Payload” [+ i . i Commentis: . &

0 SCENEDEFN | SceneDefinition | Defines scene space properties

1 VIDEODEFN | VideoDefinition | Defines video format / codec properties

2 AUDIODEFN | AudioDefinition | Defines audio format / codec properties

3 TEXTDEFN TextDefinition | Defines text format / codec properties

4 GRAFDEFN GrafDefinition | Defines vector graphics format / codec
properties

5 VIDEOKEY VideoKey Video Key Frame data

6 VIDEODAT VideoData Compressed Video data

7 AUDIODAT AudioData Compressed audio data

8 TEXTDAT TextData Text data

9 GRAFDAT GrafData Vector Graphics data

10 | MUSICDAT Music Data Music Score Data

11 OBJCTRL ObjectControl Defines object animation / rendering
properties

12 | LINKCTRL - Used for streaming end to end link
management

13 | USERCTRL UserControl Back channel for user system interaction

14 | METADATA MetaData Contains meta data about AV scene

15 | DIRECTORY [Directory Directory of data or system objects,

16 | VIDEOENH - RESERVED - video enhancement data

17 | AUDIOENH - RESERVED - audio enhancement data

18 | VIDEOEXTN |- Redundant I frames for error correction

19 | VIDEOTERP Video Data Discardable Interpolated video files

WO 01/31497 PCT/AU00/01296

-120 -
20 | STREAMEND .| - Indicates end of stream and the start of a
new stream
21 MUSICDEFN | Music Defin Defines music format
22 | FONTLIB FontLibDefn font library data
23 OBJLIBCTRL | ObjectLibCntrol | object/font library control
255 |- - RESERVED

BaseHeader
Short BaseHeader is for packets that are shorter than 65536 bytes ;

Description | Type': "Comment > { TR e -

Type BYTE Payload packet type [O] can be deﬁnltlon data or control

packet

Obj_id BYTE Object stream ID — what object does this belong to

Seq_no WORD | Frame sequence number, individual sequence for each object

Length WORD | Size of frame to follow in bytes {0 means end of stream}

Long BaseHeader wnll sup ort packets from 64K up to 0 FFFFFFFF byt
Descrlptlonw T

Type BYTE' ? g’Paylokad packét t;/pe [0], can be deﬁnlti(;n, data or co;trol
packet

Obj_id BYTE Object stream ID — what object does this belong to

Seq no WORD | Frame sequence number, individual sequence for each object

Flag WORD | OxFFFF

Length DWOR | Size of frame to follow in bytes

System BaseHeader is for end-to-end network link management
Descrlptlon Type : éComment =

WO 01/31497

PCT/AU00/01296

-121-
Type BYTE | DataType =SYSCTRL
Obj_id BYTE Object stream ID — what object does this belong to
Seq_no WORD | Frame sequence number, individual sequence for each object
Status WORD | StatusType {ACK, NAK, CONNECT, DISCONNECT,
IDLE} +object type

Total size is 6 or 10 bytes

SceneDefinition

 Description . Type C&m:héd(- Sl
Magié BY;FE[4] | ASKY = 0x41534B59 (used for format validatioﬁ)
Version BYTE Version 0x00- current

Compatible [BYTE Version 0x00- current - minimum format playable
Width WORD SceneSpace width (0 = unspecified)

Height WORD SceneSpace height (0 = unspecified)

BackFill WORD RESERVED - Scene Fill Style / colour

NumObjs BYTE How many objects in this scene

Mode BYTE Frame playout mode bitfield

Total size is 14 bytes

MetaData
“Deséription [Typ Gmment ” ,
‘ NumItem .’ WORD Numbér ﬁof scénes/ﬁ'ames in file/scene (0 = unspecified)
SceneSize | DWORD Size in bytes of file/scene/object including (0 =
unspecified)
SceneTime [WORD Playing time of file/scene/object in seconds (0 =
unspecified/static)
BitRate WORD Bit rate of this file/scene/object in kbits /sec
MetaMask | DWORD Bit field specifying what optional 32 meta data tags
follow.
Title BYTE[] Title of video file/scene - whatever you like, byte[0] =

10

WO 01/31497

PCT/AU00/01296

-122 -
length
Creator BYTEJ[] Who created this, byte[0] = length
Date BYTE[8] Creation date in ASCII => DDMMYYYY
Copyright BYTE[]
Rating BYTE XXX, XXX etc
EncoderID | BYTEJ] -
- BYTE -
Directory

This is an array of type WORD or DWORD. The size is given by the Length field in the

BaseHeader packet.
VideoDefinition
Codec BYTE Video Codec Type { RAW, QTREE };
Frate BYTE Frame rate {0 = stop/pause video play} in 1/5 sec
Width WORD Width Of video frame
Height WORD Height Of video frame
Time DWORD Time stamp in 50ms resolution from start of scene (0 =
unspecified)
Total size is 10 bytes

WO 01/31497 PCT/AU00/01296

-123 -
AudioDefinition
Descrlptlon Type . Comment e Vo
Codes— [BYTE | Audio Codes Type [RAW, G755 ADPCM T
Format BYTE Audio Format in bits 7-4, Sample Rate in bits 3-0
Fsize WORD Samples per frame
Time DWORD Time stamp in 50ms resolution from start of scene (0 =
unspecified)

Total size is 8§ bytes

5 TextDefinition

Description | Type - .. ’.'fComment : ‘ L
VTypdeM V BYTE — ’Type in low mbble {TEXT HTML etc} compression in
high nibble
Fontinfo BYTE Font size in low nibble, Front Style in high nibble
Colour WORD Font colour
BackFill WORD Background colour
Bounds WORD Text boundary Box (frame) X in high byte, Y in low byte
Xpos WORD Xpos relative to object origin if defined relative to 0,0
otherwise
Ypos WORD Xpos relative to object origin if defined relative to 0,0
otherwise
Time DWORD Time stamp in 50ms resolution from start of scene (0 =
unspecified)

Total size is 16 bytes

10

WO 01/31497

PCT/AU00/01296

-124 -
GrafDefinition

Deseription.

Type "

o T

XPos relative to objecf ofigin if deﬁﬁed >relativeu to 0,0

Xpos WORD
otherwise

Ypos WORD XPos relative to object origin if defined relative to 0,0
otherwise

FrameRate | WORD Frame delay in 8.8 fps

FrameSize | WORD RESERVED Frame size in twips (1/20 pel)- used for
scaling to fit scene space

Time DWORD Time stamp in 50ms resolution from start of scene

Total size is 12 bytes

VideoKey, VideoData, AudioData, TextData, GrafData and MusicData

Payload - Compressed data
StreamEnd

Dessription. [Type, | Comment
StreamObJs BY"i"E Howymany objects interleaved in the next stream
StreamMode | BYTE RESERVED
StreamSize DWORD | Length of next stream in bytes
Total size is 6 bytes |
UserControl

Event User data Type eg. PENDOWN, KEYEVENT,

PLAYCTRL,

WO 01/31497

PCT/AU00/01296

-125 -
Key BYTE Parameter 1 = Keycode value / Start / Stop / Pause
HiWord WORD Parameter 2 =X position
LoWord WORD Parameter 3 =Y position
Time WORD Timestamp = sequence number of activated object
Data BYTE[]* Optional field for form field data

Total size is 8+

bytes

ObjectControl
Description . |:Type™ . .l Comment "+ ./l oo Sagy R .
ControlMask | BYTE Bit field deﬁmng common Obj ect controls
ControlObject | BYTE (optional) ID of affected object
Timer WORD (optional) Top nibble=timer number, bottom 12
bits = 100ms steps
ActionMask WORD | BYTE | Bit field actions defined in remaining payload
Params Parameters for actions defined by Action bit field
ObjLibCtrl

Description. | Type | ‘Comment -. D R T e T s
Action BYTE What to do w1th thls object

1. INSERT - does not overwrite LibID location

2. UPDATE - overwrites into LibID location

3. PURGE -removes

4. QUERY - returns LibID/Version for Unique ID

object
LibID BYTE Object’s index/number in the library
Version BYTE this object’s version number
Persist/Expi | BYTE Does this get garbage collected or does it stick around, 0
re = remove after session, 1-254 = days before expiry, 255
= persist
Access BYTE | Access control function
Top 4 bits: Who can overwrite or remove this object,

1. any session at will (by LibID)

2. system purge/reset

3. by knowning the unique ID/ libID for object

WO 01/31497

PCT/AU00/01296

-126 -

4. never / RESERVED
Bit 3: Can the user transfer this object to another,
beaming (1=YES)
Bit 2: Can the user directly play this from the library
(Yes=1/No)
Bit 1: RESERVED
Bit 0: RESERVED

UniquelD BYTE[] Ungqiue ID/label for this object
State DWORD?? | Where did you get it from/how, many hops, feeding time
7? else it dies

1. Hop count

2. Source (SkyMail, SkyFile, SkyServer)
3. time since activation

4. # Activations

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 127 -

Semantics

BaseHeader

This is the container for all information packets in the stream.

Type - BYTE
Description — Specifies the type of payload in packet as defined above
Valid Values: enumerated 0 —255, see Payload type table below

Obj_id - BYTE
Description — Object ID — defines scope - what object does this packet belong to.
Also defines the Z-order in steps of 255, that increases towards the viewer.
Up to four different media types can share the same obj_id.
Valid Values: 0 —NumObjs (max 200) NumObjs defined in SceneDefinition
201-253: Reserved for system use
250: Object Library
251: RESERVED
252: Directory of Streams
253: Directory of Scenes
254: This Scene
255: This File

Seq_no - WORD
Description — Frame sequence number, individual sequence for each media type within an
object. Sequence number are restarted after each new SceneDefinition

packet.
Valid Values: 0 — OxFFFF

Flag (optional) - WORD
Description — Used to indicate long baseheader packet.

Valid Values: 0xFFFF

WO 01/31497 PCT/AU00/01296

- 128 -

Length - WORD / DWORD

Used to indicate payload length in bytes, (if flag set packet size = length + OxFFFF).

Valid Values: 0x0001 - OxFFF, If flag is set 0x00000001 — OxFFFFFFFF ()
0 - RESERVED for Endof File / Stream OxFFFF

Status- WORD
Used with SysControl DataType flag, for end to end link management.
Valid Values: enumerated 0 — 65535

ACK Acknow:ﬁ(fgé packet with given obj id and

seq_no

1 NAK Flag error on packet with given obj_id and
seq_no

2 CONNECT Establish client / server connection

3 DISCONNECT Break client / server connection

4 IDLE Link is idle

5-65535 | - RESERVED

SceneDefinition
This defines the properties of the AV scene space into which the video and audio objects

will be played.

Magic - BYTE[4]
Description — used for format validation,
Valid Value: ASKY =0x41534B59

Version - BYTE
Description — used for stream format validation

Valid Range: 0 - 255 (current = 0)

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-129 -

Compatible - BYTE
Description — what is the minimum player that can read this format

Valid Range: 0 - Version

Width - WORD
Description — SceneSpace width in pixels
Valid Range: 0x0000 — OxFFFF

Height - WORD
Description — SceneSpace height in pixels
Valid Range: 0x0000 — OxFFFF

BackFill - (RESERVED) WORD

Description —background scene fill (bitmap, solid colour, gradient)

Valid Range: 0x1000 - OxFFFF solid «colour in 15 bit format
else the low order BYTE defines the object id for a vector object
and the high order BYTE (0 — 15) is an index to gradient fill style table

This vector object definition occurs prior to any data control packets

NumObjs - BYTE
Description — how many data objects are in this scene
Valid Range: 0 — 200 (201-255 reserved for system objects)

Mode - BYTE

Description - Frame playout mode bitfield

Bit: [7] play status - paused = 1, play =0 // continuous play or step through
Bit: [6] RESERVED Zooming - prefer = 1, normal =0 / play zoomed

Bit: [5] RESERVED - data storage - live =1, stored =0 // being streamed ?
Bit: [4] RESERVED streaming - reliable = 1, best try =0 // is streaming reliable
Bit: [3] RESERVED data source - video =1, thinclient =0 // originating source

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-130 -

Bit: [2] RESERVED Interaction -allow =1, disallow =0
Bit: [1] RESERVED
Bit: [0] Library Scene - is this a library scene 1=yes, 0= no

MetaData

This specifies metadata associated with either an entire file, scene or an individual AV
object. Since files can be concatenated, there is no guarantee that a metadata block with
file scope is valid past the last scene it specifies. Simply comparing the file size with the

SCENESIZE field in this Metadata packet however can validate this.

The OBJ_ID field in baseHeader defines the scope of a metadata packet. This scope can
be the entire file (255), a single scene (254), or an individual video object (0-200). Hence
if MetaData packets are present in a file they occur in flocks (packs?) immediately

following SceneDefinition packets.

Numltem — WORD

Description - Number of scenes/frames in file/scene,
For scene scope Numltem contains the number of frames for video object with obj_id=0
Valid Range: 0-65535 (0 = unspecified)

SceneSize - DWORD
Description — Self inclusive size in bytes of file/scene/object including,

Valid Range: 0x0000-0xFFFFFFFF (0 = unspecified)

SceneTime — WORD
Description — Playing time of file/scene/object in seconds,
Valid Range: 0x0000-0xFFFF (0 = unspecified)

BitRate - WORD

Description — bit rate of this file/scene/object in kbits /sec,

10

15

20

25

30

WO 01/31497

- 131 -

Valid Range: 0x0000-0xFFFF (0 = unspecified)

MetaMask — (RESERVED) DWORD

PCT/AU00/01296

Description — Bit field specifying what optional 32 meta data fields follow in order,

Bit Value [31]: Title

Bit Value [30]: Creator

Bit Value [29]: Creation Date
Bit Value [28]: Copyright

Bit Value [27]: Rating

Bit Value [26]: EncoderID

Bit Value [26-27]: RESERVED

Title — (Optional) BYTE]]
Description — String of up to 254 chars

Creator — (Optional) BYTE(]
Description — String of up to 254 chars

Date — (Optional) BYTE[8]
Description — Creation date in ASCII => DDMMYYYY

Copyright — (Optional) BYTE][]
Description — String of up to 254 chars

Rating — (Optional) BYTE
Description — BYTE specifying 0-255

Directory

This specifies directory information for an entire file or for a scene. Since the files can be

concatenated, there is no guarantee that a metadata block with file scope is valid past the

WO 01/31497 PCT/AU00/01296

-132-

last scene it specifies. Simply comparing the file size with the SCENESIZE field in a

Metadata packet however can validate this.

The OBJ_ID field in baseHeader defines the scope of a directory packet. If the value of the
OBJ_ID field is less than 200 then the directory is a listing of sequence numbers (WORD)
for keyframes in a video data object. Else, the directory is a location table of system
objects. In this case the table entries are relative offset in bytes (DWORD) from the start
of the file (for directories of scenes and directories) or scene for other system objects). The
number of entries in the table and the table size can be calculated from the LENGTH field

in the BaseHeader packet.

Similar to MetaData packets if Directory packets are present in a file they occur in flocks

(packs?) immediately following SceneDefinition, or Metadata packets.

VideoDefinition
Codec - BYTE
Description — Compression Type

Valid Values: enumerated 0-255

:Value. -|s:.Codec: - | i s#iiho, s +scomment: o RN e i
0 RAW Uncompressed, the first byte defines colour depth
1 QTREE | Default Video codec

2-255 |- RESERVED

Frate - BYTE

Description — frame playout rate in 1/5 sec (ie max = 51 fps, min = 0.2 fps)

Valid Values: 1 — 255, play / start playing if stopped
0 — stop playing

Width - WORD

WO 01/31497 PCT/AU00/01296

-133 -

Description — how wide in pixels in video frame

Valid Values: 0 - 65535

Height - WORD
Description — how high in pixels in video frame

Valid Values: 0 - 65535

Times — WORD
Description — Time stamp in 50ms resolution from start of scene (0 = unspecified)

Valid Values: 1 — OXFFFFFFFF (0 = unspecified)

AudioDefinition
Codec —BYTE
Description — Compression Type

Valid Values: enumerated 1 (0 = unspecified)

“Value | Codec: | i = <k "Comment '}
0 WAV | Uncompressed
1 G723 | Default Video codec
2 IMA | Interactive Multimedia Association ADPCM
3-255 |- RESERVED
Format - BYTE

Description — This BYTE is split into 2 separate fields that are independently defined. The
top 4 bits define the audio format (Format >> 4) while the bottom 4 bits separate define
the sample rate (Format & 0xOF).

Low 4 Bits, Value: enumerated 0 — 15, Sampling Rate

5

10

WO 01/31497

PCT/AU00/01296

-134 -

‘Value | Samp.Rate | = . -:". .t - U Comment. i cloan W
0 0 0 — stop playing

1 5.5kHz 5.5kHz Very low rate sampling, start playing if

stopped

2 8 kHz Standard 8000 Hz Sampling, start playing if stopped

3 11 kHz Standard 11025 Hz Sampling, start playing if stopped
4 16 kHz 2x 8000 Hz Sampling, start playing if stopped

5 22 kHz Standard 22050 Hz Sampling, start playing if stopped
6 32 kHz 4x 8000 Hz Sampling, start playing if stopped

7 44 kHz Standard 44100 Hz Sampling, start playing if stopped
8-15 RESERVED

Bits 4-5, Value: enumerated 0-3, Format

.Value |- sFormat' 2 55 S 008 UL Comment iR
0 MONOS Monophonic, 8 bits per sample
1 MONO16 Monophonic, 16 bits per sample
2 STEREO8 | Stereophonic, 8 bits per sample
3 STEREO16 | Stereophonic, 16 bits per sample

High 2 Bits (6-7), Value: enumerated 0-3, Special

_codec: [T Ll Comment i T e L
WAV RESERVED (unused)
G.723 RESERVED (unused)
IMA Bits Per Sample (Value + 2)
Fsize - WORD

Description — samples per frame

Valid Values: 0 - 65535

Times -~ WORD

WO 01/31497 PCT/AU00/01296

-135-

Description — Time stamp in 50ms resolution from start of scene (0 = unspecified)

Valid Values: 1 - OxFFFFFFFF (0 = unspecified)

TextDefinition

We need to include writing direction, it can be LRTB, or RLTB or TBRL or TBLR. This
can be done by using a special letter code in the body of the text to indicate the direction,
for example we could use DC1-DC4 (ASCII device control codes 17-20) for this task
We also need to have a font table downloaded at the start with bitmap fonts. Depending on
10 the platform the player is running on the renderer may either ignore the bitmap fonts or
attempt to use the bitmap fonts for rendering the text. If there is no bit map font table or if
it being ignored by the player then the rendering system will automatically attempt to use
the Operating System text output functions to render the text.
Type-BYTE
15 Description — Defines how text data is interpreted in low nibble (Type & 0x0F) and
compression method in high nibble (Type >> 4)

Low 4 Bits, Value: enumerated 0 — 15, Type - interpretation

“Valte |57 Type. |~ Commenth & . = 1Tl
0 PLAIN Plain text — no interpretation
1 TABLE RESERVED - table data

2 FORM Form / Text Field for user input
3 WML RESERVED WAP - WML

4 HTML RESERVED HTML
5-15 - RESERVED

20 High 4 Bit, Value: enumerated 0-15, compression method

. Value | -Codec | .. - .5 ..¥ Comment =i “°F

0 NONE Uncompressed 8 bit ASCII codes

1 TEXT7 RESERVED - 7 Bit Character codes

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 136 -
2 HUFF4 RESERVED - 4 bit Huffman coded ASCII
3 HUFF8 RESERVED - 8 bit Huffman coded ASCII
4 LZW RESERVED - Lepel-Zev-Welsh coded ASCII
5 ARITH RESERVED - Arithmetic coded ASCII
6-15 - RESERVED

FontInfo - BYTE

Description — Size in low nibble (FontInfo & 0xOF) Style in high nibble (FontInfo >>4).
This field is ignored if the Type is WML or HTML.

Low 4 Bits Value: 0 — 15 FontSize

High 4 Bit Values: enumerated 0-15, FontSyle

Colour - WORD

Description — Textface colour

Valid Values: 0x0000 - OxEFFF, colour in 15 bit RGB (R5,G5,B5)
0x8000 — Ox80FF, colour as index into VideoData LUT (0x80FF =

transparent)

0x8100 — OxFFFF RESERVED

BackFill - WORD

Description — Background colour

Valid Values: 0x0000 - OxEFFF, colour in 15 bit RGB (R5,G5,B5)
0x8000 — Ox80FF, colour as index into VideoData LUT (0x80FF =

transparent)

0x8100 — OxFFFF RESERVED

Bounds - WORD

Description — Text boundary box (frame) in character units, Width in the LoByte (Bounds
& 0x0F) and height in the HiByte (Bounds >> 4). The text will be wrapped using the
width and clipped for the height.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 137 -

Valid Values: width = 1-255, height =]1-255,
width = 0 - no wrapping performed,

height = 0 - no clipping performed

Xpos — WORD
Description — pos relative to object origin if defined else relative to 0,0 otherwise
Valid Values: 0x0000-0xFFFF

Ypos — WORD
Description — pos relative to object origin if defined else relative to 0,0 otherwise

Valid Values; 0x0000-0xFFFF

NOTE: Colours in the range of 0x80F0 - 0x80FF are not valid colour indexes into
VideoData LUTs since they only support up to 240 colours. Hence they are interpreted as
per the following table. These colours should be mapped into the specific device/OS
system colours as best possible according to the table. In the standard Palm OS UI only 8
colours are used and some of these colours are similar to the other platforms but not
identical, this is indicated with an asterix. The missing 8 colours will have to be set by the

application.

GrafDefinition
This packet contains the basic animation parameters. The actual graphic object definitions

are contained in the GrafData packets, and the animation control in the objControl packets.

Xpos - WORD

Description — XPos relative to object origin if defined relative to 0,0 otherwise
Valid Values:

Ypos - WORD

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-138 -

Description — XPos relative to object origin if defined relative to 0,0 otherwise
Valid Values:

FrameRate - WORD

Description — Frame delay in 8.8 fps

Valid Values:

FrameSize - WORD

Description — Frame size in twips (1/20 pel)— used for scaling to fit scene space
Valid Values:

FrameCount -WORD

Description — How-many frames in this animation

Valid Values:

Time - DWORD

Description — Time stamp in 50ms resolution from start of scene

Valid Values:

VideoKey, VideoData, VideoTrp and AudioData
These packets contain codec specific compressed data. These packets contain codec

specific compressed data.

Buffer sizes should be determined from the information conveyed in the VideoDefn and
AudioDefn packets. Beyond the TypeTag VideoKey packets are similar to VideoData
packets, differing only in their ability to encode transparency regions - VideoKey frames
have no transparency regions. The distinction in type definition makes keyframes visible
at the file parsing level to facilitate browsing. VideoKey packets are an integral
component of a sequence of VideoData packets; they are typically interspersed among
them as part of the same packet sequence. VideoTrp packets represent frames that are

non-essential to the video stream, thus they may be discarded by the Sky decoding engine

TextData
Textdata packets contain the ASCII character codes for text to be rendered. Whatever

Serif system font are available one the client device should be used to render these fonts.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-139-

Serif fonts are to be used since proportional fonts require additional processing to render.
In the case where the specified Serif system font style is not available, then the closest

matching available font should be used.

Plain text is rendered directly without any interpretation. White space characters other than
LF (new line) characters and spaces and other special codes for tables and forms as
specified below are totally ignored and skipped over. All text is clipped at scene

boundaries.

The bounds box defines how text wrapping functions. The text will be wrapped using the
width and clipped if it exceeds the height. If the bounds width is O then no wrapping

occurs. If the height is 0 then no clipping occurs.

Table data is treated similarly as Plain text with the exception of LF that is used to denote

end of rows and the CR character that is used to denote columns breaks.

WML and HTML is interpreted according to their respective standards, and the font style
specified in this format is ignored. Images are not supported in WML and HTML.

To obtain streaming text data new TextData packets are sent to update the relevant object.
Also in normal text animation the rendering of TextData can be defined using

ObjectControl packets.

GrafData
This packet contains all of the graphic shape and style definitions used for the graphics
animation. This is a very simple animation data type. Each shape is defined by a path,

some attributes and a drawing style. One graphic object may be composed of an array of

WO 01/31497 PCT/AU00/01296

- 140 -

paths in any one GraphData packet. Animation of this graphic object can occur by clearing
or replacing individual shape records array entires in the next frame, adding new records

to the array can also be performed using the CLEAR and SKIP path types.

GraphData Packet
Descrlptlon Typei: ;| Comment: TRk
NumShapes BYTE Number of shape records to follow
Primitives SHAPERecor | Array of Shape Definitions
d]
ShapeRecord
Descnptmn \‘Type R ’Comment RTC RS - 3
Path BYTE Sets the path of the shape + DELETE operatlon
Style BYTE Defines how path is interpreted and rendered
Offset [POINT
Vertices DPOINT]] Length of array given in Path low nibble
FillColour | WORDI] Number of entries depend on fill style and # vertices
LineColour | WORD Optional field determined by style field
Path—-BYTE

Description — Sets the path of the shape in the high nibble and the # vertices in low nibble
Low 4 Bits Value: 0 — 15: number of vertices in poly paths
High 4 Bits Value: ENUMERATED: 0 — 15 defines the path shape

~Value ' |:z:Path. - %+ 5 /o.Comment - B by,

0 CLEAR Deletes SHAPERECORD deﬁmtlon from array

1 SKIP Skips this SHAPERECORD in the array

2 RECT Description — topleft corner, bottom right corner
Valid Values: (0..4096, 0..4096), [0..255, 0..255]...

10

15

20

WO 01/31497

PCT/AU00/01296

- 141 -

3 POLY Description — # points, initial xy value, array of relative pt coords
Valid Values: 0..255, (0..4096, 0..4096), [0..255,
0..255]...

4 ELLIPS | Description — centre coord, major axis radius, minor

E axis radius

Valid Values: (0..4096, 0..4096), 0..255, 0..255

5-15 RESERVED

Style - BYTE

Description — Defines how path is interpreted
Low 4 Bits Value: 0 — 15 line thickness
High 4 Bits: BITFIELD: path rendering parameters. The default is not draw the shape at

all so that it operates as an invisible hot region.

Bit [4]: CLOSED - If bit set then path is closed

Bit [5]: FILLFLAT - Default is no fill — if both fills then do nothing
Default is no fill — if both fills then do nothing

Bit [6]: FILLSHADE -
Bit [7): LINECOLOR -

UserControl

Default is no outline

These are used to control the user-system and user-object interaction events. They are used

as a back channel to return user interaction back to a server to effect server side control.

However if the file is not being streamed these user interactions are handled locally by the

client. A number of actions can be defined for user-object control in each packet. The

following actions are defined in this version. The user-object interactions need not be

specified except to notify the server that one has occurred since the server knows what

actions are valid.

10

15

WO 01/31497 PCT/AU00/01296

-142 -

Pen events (up, down ove, dbllik) Set 2D postn, visibili (lfoter)

Keyboard events Play / Pause system control

Play control (play, pause, frame advance, | Hyperlink - Goto # (Scene, frame, label,
stop) URL)

Return Form Data Hyperlink - Goto next/prev, (scene, frame)

Hyperlink - Replace object (self, other)

Hyperlink — Server Defined

The user-object interaction depends on what actions are defined for each object when they
are clicked on by the user. The player may know these actions through the medium of
ObjectControl messages. If it does not, then they are forwarded to an online server for
processing. With user-object interaction the identification of the relevant object is
indicated in the BaseHeader obj id field. This applies to OBJCTRL and FORMDATA
event types. For user-system interaction the value of the obj_id field is 255. The Event
type in UserControl packets specifies the interpretation of the key, HiWord and LoWord
data fields.

Event—-BYTE
Description — User Event Type
Valid Values: enumerated 0-255

“Value | EventType | .~ . . Comment
0 PENDOWN User has put pen down on touch screen

1 PENUP User has lifted pen up from touch screen

2 PENMOVE User is dragging pen across touch screen

3 PENDBLCLK | User has double clicked touch screen with pen

WO 01/31497

PCT/AU00/01296

- 143 -
4 KEYDOWN User has pressed a key
5 KEYUP User has pressed a key
6 PLAYCTRL User has activated a play/pause/stop control
button
7 OBJCTRL User has clicked/activated an AV object
8 FORMDATA User is returning form data
9-255 |- RESERVED

key, HiWord and LoWord - BYTE, WORD, WORD

Description — parameter data for different event types

5 Valid Values: The interpretation of these fields is as follows

| PENDOWN Izey code if key é}lleld down - X pZéitién) Yposmor; —
PENUP Key code if key held down X position Y position
PENMOVE Key code if key held down X position Y position
PENDBLCL | Key code if key held down X position Y position
K
KEYDOWN | Key code Unicode Key code | 2" key held down
KEYUP Key code Unicode Key code | 2™ key held down
PLAYCTRL | Stop=0, Start=1, pause =2 RESERVED RESERVED
OBJCTRL Pen Event ID Keycode if key | RESERVED
held down
FORMDATA | RESERVED Length of data field | RESERVED
Time - WORD

Description — Time of user event = sequence number of activated object
10 Valid Values: 0-OxFFFF

10

WO 01/31497

- 144 -

Data — (RESERVED - OPTIONAL)
Description — Text strings from form object

Valid Values: 0...65535 bytes in length

play to the start of the file/stream.

ObjectControl

ObjectControl packets are used to define the object-scene and system-scene interaction.

15 defined in this version

PCT/AU00/01296

Note: In the case of the PLAYCTRL events that pausing repeatedly when play is already

paused should invoke a frame advance response from the server. Stopping should reset

They also specifically define how objects are rendered and how scenes are played out. A
new OBJCTRL packet is used for each frame to coordinate individual object layout. A

number of actions can be defined for an object in each packet. The following actions are

Set 2D/3D position Goto # (Scene, frame, label, URL)
Set 3D Rotation Goto next, previous, (scene, frame)
Set scale/size factor Play / Pause

Set visibility Mute audio

Set label/title (for use as in tool tips)

IF (scene, frame, object) THEN DO

(action)

Set background colour (nil =

transparent)

Set tweening value (for animations)

Begin /end / duration / repeat (loop)

10

15

20

25

WO 01/31497

PCT/AU00/01296

- 145 -

implicit

e ControlMask - BYTE

o]

Description — Bit field — The control mask defines controls common to
Object level and System level operations. Following the ControlMask is an
optional parameter indicating the object id of the affected object. If there is
no affected object ID specified then the affected object id is the object id of
the base header. The type of ActionMask (object or system scope)
following the ControlMask is determined by the affected object id.
» Bit: [7] CONDITION - What is needed to perform these actions
» Bit: [6] BACKCOLR - Set colour of object background
* Bit: [5] PROTECT - limit user modification of scene objects
s Bit: [4] JUMPTO - replace the source stream for an
object with another
* Bit: [3] HYPERLINK - sets hyperlink target
= Bit: [2] OTHER - object id of the affected object will
follow(255=system)
» Bit: [1] SETTIMER - Set a timer and start counting down
» Bit: [0] EXTEND - RESERVED for future expansion

e ControlObject — BYTE (Optional)

O

O

Description: Object ID of affected object. Is included if bit 2 of
ControlMask is set.
Valid values: 0 - 255

e Timer — WORD (Optional)

o

o

O

Description: Top nibble=timer number, bottom 12 bits = time setting
Top nibble, valid values: 0-15 timer number for this object.

Bottom 12 bits valid range: 0-4096 time setting in 100ms steps

10

15

20

25

30

WO 01/31497

PCT/AU00/01296

- 146 -

e ActionMask [OBJECT scope] - WORD

o Description — Bit field - This defines what actions are specified in this

record and the parameters to follow. There are two versions of this one for

object the other for system scope. This field defines actions that apply to

media objects.

o Valid Values: For objects each one of the 16 bits in the ActionMask

identifies an action to be taken. If a bit is set, then additional associated

parameter values follow this field.

Bit: [15] BEHAVIOR - indicates that this action and conditions

remain with the
object even after the actions have been

executed

Bit: [14] ANIMATE - multiple control points defining path will

follow

Bit: [13] MOVETO - set screen position

Bit: [12] ZORDER - set depth

Bit: [11] ROTATE - 3D Orientation

Bit: [10] ALPHA — Transparency

Bit: [9] SCALE — Scale / size

Bit: [8] VOLUME - set loundness

Bit: [7] FORECOLR - set/ change foreground colour

Bit: [6] CTRLLOOP - repeat the next # actions (if set else

ENDLOOP)

Bit: [S] ENDLOOP - if looping control/animation then break it

Bit: [4] BUTTON - define penDown image for button

Bit: [3] COPYFRAME — copies the frame from object into

this object (checkbox)

Bit: [2] CLEAR_WAITING_ACTIONS - clears waiting actions

Bit: [1] OBJECT _MAPPING- specifies the object mapping

between streams

Bit: [0] ACTIONEXTEND - Extended Action Mask follows

10

15

20

25

30

WO 01/31497

PCT/AU00/01296

- 147 -

e ActionExtend [OBJECT scope] - WORD

O

Description — Bit field - RESERVED

e ActionMask [SYSTEM scope] -BYTE

o)

Description — Bit field - This defines what actions are specified in this
record and the parameters to follow. There are two versions of this one for
object the other for system scope. This field defines actions that have scene
wide scope.
Valid Values: For systems each one of the 16 bits in the ActionMask
identifies an action to be taken. If a bit is set then additional associated
parameter values follow this field

= Bit: [7] PAUSEPLAY- if playing pause indefinitively

» Bit: [6] SNDMUTE - if sounding then mute if muted then sound

= Bit: [S] SETFLAG - Sets user assignable system flag value

= Bit: [4] MAKECALL - change/open the physical channel

= Bits: [3] SENDDTMF- Send DTMF tones on voice call

= Bits: [2-0] - RESERVED

e Params — BYTE array

o

Description — Byte array. Most of the actions defined in the above bit fields
use additional parameters. The parameters used as indicated by the bit field
value being set are specified here in the same order as the bit field from top
(15) to bottom (0) and order of masks, ActionMask then [Object/System]
Mask (except for the affected object id which has already been specified
between the two). These parameters may include optional fields, these are

shown as yellow rows in the tables below.

CONDITION bit — Consists of one or more state records chained together,
each record can also have an optional frame number field after it. The

conditions within each record are logically ANDed together. For greater

WO 01/31497

PCT/AU00/01296

- 148 -

flexibility additional records can be chained through bit 0 to create logical

OR conditions. In addition to this, multiple, distinct definition records may

exist for any one object creating multiple conditional control paths for each

object.

Param |~

Type .

5

- Comment:: , i

State

WORD

What is neédea (to perform these actlons blt-ﬁeld

(logically ANDed)

e Bit: [15] playing // continuous playing

e Bit: [14] paused // playing is paused

e Bit: [13] stream // streaming from remote server

e Bit: [12] stored // playing from local storage

e Bit: [11] buffered // is object frame # buffered? (true if
stored)

e Bit: [10] overlap // what object do we need to be
dropped on?

e Bit: [9] event // what user event needs to be
happening

e Bit: [8] wait /l do we wait for conditions
to become true

e Bit: [7] userflags // tests user flags which follow

e Bit: [6] TimeUp // Timer has expired

e Bit: [5-1] RESERVED

e Bit: [0] OrState // OrState condition record follow

Frame

WORD

(optional) frame number for bit 11 condition

Object

BYTE

(optional) object ID for bit 10 condition, invisible objects

can be used

Event

WORD

High BYTE: the event field from the UserControl Packet
Low BYTE: the key field from the UserControl Packet,
OxFF ignore keys, 0x00 no key being pressed

User

DWOR

High WORD: mask indicating which flags to check

WO 01/31497

PCT/AU00/01296

- 149 -
flags [(D Low WORD: mask indicating the values of user flags (set
' | or not set) | R

TimeU | BYTE | High nibble: RESERVED

p -| Low nibble: timer id number (0-15)-

State WORD Same bit field as-the previous state field, but is logically

ORed with it -
WORD

o ANIMATE bit set — If the animate bit is set then animation parameters

follow specifying the times and interpolation of the animation. The animate
bit also affects the number of MOVETO, ZORDER, ROTATE, ALPHA,

SCALE, and VOLUME parameters that exist in this control. Multiple

values will occur for each parameter, one value for each control point.

" Param:. | Type: . . .Comment = = - -5, L -
AnimCtr | BYTE ngh mbble Number of control pomts - 1
1 Low nibble: path control

¢ Bit [3]: Looping Animation

¢ Bit [2]: RESERVED

e Bits [1..0]: enum, Path type — {0O: linear, 1: Quadratic,

2: Cubic}

Start WORD | Start time of animation, from scene start or condition in
time 50ms steps
Duration | WORD[| Array of durations in 50ms increments, length = control
s] points — 1

o MOVETO bit set

“Param-| . Type il o7y e ed e L Comiment %

Xpos | WOR X posmon to move to, relatlve to current pos
D

Ypos | WOR | Y position to move to, relative to current pos
D

10

WO 01/31497

PCT/AU00/01296

- 150 -

o ZORDER bit set

i Param | <Type;:|.: Tt iy /Comment - ! RIS
Depth | WOR Depth increases away from viewer, values of 0,256, 512 768
D etc reserved

o ROTATE bit set

CParam | Typéss| o bt et s Comment :
Xrot BYTE X axis rotat1on absolute in degrees v 255 /360,

Yrot BYTE | Y axis rotation, absolute in degrees * 255 / 360

Zrot BYTE | Z axis rotation, absolute in degrees * 255/ 360

o ALPHA bit set

'Param

‘Type. |

.. Comment '

alpha

BYTE

Transparency O = transparent 255 = fully opaque

o SCALE bit set

‘Param | “Type | o ln "Comment :
scale WOR Slze / Scale in 8. 8 ﬁxed 1nt format
D

o VOLUME bit set

- Param.

Type’ | e

~ Comment: .

vol

BYTE

Sound volume 0 = softest 255 = loudest

o BACKCOLR bit set

Param’ | “Type: | - % i h7 & Comment LR S
fillcolr | WOR | Same format as SceneDeﬁmtlon Backcolor (nil =
D transparent)

o PROTECT bit set

Param

" Type "

- Comment-

Protect

BYTE

11m1t user modlﬁcatlon of scene objects b1t ﬁeld b1t set =

10

WO 01/31497

PCT/AU00/01296

-151-

disabled

e Bit: [7] move // prohibit moving objects

e Bit: [6] alpha // prohibit changing alpha value

e Bit: [5] depth // prohibit changing depth value

o Bit: [4] clicks /[disable click through behaviour

e Bit: [3] drag // disable dragging of objects
e Bit: [2..0] // RESERVED

o CTRLLOOQP bit set

~Param| "

Type ...

qComment: . oA St

Repeat

BYTE

Repeat the next # actlons for this object — clicking on Ob_]CCt

to break loop

o SETFLAG bit set

“Param:-

~ ypey. .t

i Comment. -

Flag

BYTE

Top mbble —#ﬂag number bottom mbble if tt'ue set‘ﬂag else

reset flag,

o HYPERLINK bit set

SParam#%:| i Type: .| BE - on L niiComment:, ! |) ol
hLink | BYTE | Sets hyperhnk target URL for click through
(

o JUMPTO bit set

<Param:. i Type |0 " et G Commient? Y L 5
scene | BYTE Goto scene # 1f value OxFF goto hyperhnk (250 = hbrary)
stream | BYTE | [optional] Stream # if value = 0 then read optional object id
object | BYTE | [optional] object id #

o BUTTON bit set

. Param ..

- Type

chhy ol oYCommente Bent

scene

BYTE

scene # (250 = 11brary)

WO 01/31497

PCT/AU00/01296

-152 -

stream

BYTE | Stream # if value = 0 then read optional object id

object

BYTE | [optional] object id #

o COPYFRAME bit set

Param .

Type |57

s o - o Py
Wt L 3. .

object

BYTE Frame will be copred from the Ob_] ect w1th this 1d

o OBJECTMAPPING bit set — when an object jumps to another stream the

5 stream may use different object ids to the current scene. Hence an object

mapping is specified in the same packet containing a JUMPTO command.

g

]

~ Param- | Type' G T Comiment
Objects | BYTE Number of objects to be mapped
Mappin | WORDJ | Array of words, length = objects

High BYTE: object id being used in the stream we are
jumping to
Low BYTE: object id of the current scene which the new

object ids will be mapped to.

o MAKECALL bit set

“Param’’| Type s U7 Rl S Comment: . . s uY gL
channe | DWORD Phone number of new channel
1

10 o SENDDTMEF bit set
sParam | 455 Type o AfL 0 NS 30l Commenth T
DTMF | BYTE[] DTMF string to be sent on channel

Notes:

e There are no parameters for the PAUSEPLAY and SNDMUTE actions as these are

binary flags.

15 * Button states can be created by having an extra image object that is set to be initially transparent.
When the user clicks down on the button object, this is then replaced with the invisible object that is
set to visible using the button behaviour field and reverts to the original state when the pen is lifted.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-153 -

ObjLibControl

ObjLibCtrl packets are used to control the persistent local object library that the player
maintains. In one sense the local object library may be considered to store resources. A
total of 200 user objects and 55 system objects can be stored in each library. During
playback the object library can be directly addressed by using object_id = 250 for the
scene. The object library is very powerful and unlike the font library supports both

persistence and automatic garbarge collection..

The Objects are inserted into the object library through a combination of ObjLibCtrl
packets and SceneDefn packets which have the ObjLibrary bit set in the Mode bit field [bit
0]. Setting this bit in the SceneDefn packet tells the player that the data to follow is not to
be played out directly but is to be used to populate the object library. The actual object
data for the library is not packaged in any special manner it still consists of definition
packets and data packets. The difference is that there is now an associated ObjLibCtrl
packet for each object that instructs the player what to do with the object data in the scene.
Each ObjLibCtrl packet contains management information for the object with the same
obj_id in the base header. A special case of ObjLibCtrl packets are those that have
object_id in the base header set to 250. These are used to convey library system

management commands to the player.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 154 -

The present invention described herein may be conveniently implemented using a
conventional general purpose digital computer or microprocessor programmed according
to the teachings of the present specification, as will be apparent to those skilled in the
computer art. Appropriate software coding can readily be prepared by skilled
programmers based on the teachings of the present disclosure, as will be apparent to those
skilled in the software art. The invention may also be implemented by the preparation of
application specific integrated circuits or by interconnecting an appropriate network of
conventional component circuits, as will be readily apparent to those skilled in the art. It
is to be noted that this invention not only includes the encoding processes and systems
disclosed herein, but also includes corresponding decoding systems and processes which
may be implemented to operate to decode the encoded bit streams or files generated by the
encoders in basically the opposite order of encoding, eluding certain encoding specific

steps.

The present invention includes a computer program product or article of manufacture
which is a storage medium including instructions which can be used to program a
computer or computerized device to perform a process of the invention. The storage
medium can include, but is not limited to, any type of disk including floppy disks, optical
discs, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs,
magnetic or optical cards, or any type of media suitable for storing electronic instructions.
The invention also includes the data or signal generated by the encoding process of the
invention. This data or signal may be in the form of an electromagnetic wave or stored in

a suitable storage medium.

WO 01/31497 PCT/AU00/01296

- 155 -

Many modifications will be apparent to those skilled in the art without departing from the

spirit and scope of the present invention as herein described

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 156 -

CLAIMS:

1. A method of generating an object oriented interactive multimedia file, including:

encoding data comprising at least one of video, text, audio, music and/or graphics
elements as a video packet stream, text packet stream, audio packet stream, music

packet stream and/or graphics packet stream respectively;

combining said packet streams into a single self-contained object, said object

containing its own control information;
placing a plurality of said objects in a data stream; and

grouping one or more of said data streams in a single contiguous self-contained
scene, said scene including format definition as the initial packet in a sequence of

packets.

2. A method of generating an interactive multimedia file according to claim 1,

including combining one or more of said scenes.

3. A method of generating an interactive multimedia file according to claim 1

wherein a single scene contains an object library.

4. A method of generating an interactive multimedia file according to claim 1
wherein data for configuring customisable decompression transforms is included within

said objects.

5. A method of generating an interactive object oriented multimedia file according to
claim 1 wherein object control data is attached to objects which are interleaved into a
video bit stream, and said object control data controls interaction behaviour, rendering

parameters, composition, and interpretation of compressed data.

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 157 -

6. A method of generating an interactive object oriented multimedia file according to
claim 1 comprising a hierarchical directory structure wherein first level directory data
comprising scene information is included with the first said scene, second level directory
data comprising stream information is included with one or more of said scenes, and
wherein third level directory data comprising information identifying the location of intra-

frames is included in said data stream.

7. A method of generating an object oriented interactive multimedia file, including:

encoding data comprising at least one of video and audio elements as a video

packet stream and audio packet stream respectively;
combining said packet streams into a single self-contained object;
placing said object in a data stream;

placing said stream in a single contiguous self-contained scene, said scene

including format definition; and

combining a plurality of said scenes.

8. A method of generating an interactive object oriented multimedia file according to
claim 1, wherein said object control data takes the form of messages encapsulated within
object control packets and represents parameters for rendering video and graphics objects,
for defining the interactive behaviour of said objects, for creating hyperlinks to and from
said objects, for defining animation paths for said objects, for defining dynamic media
composition parameters, for assigning values to user variables, for redirecting or
retargeting the consequences of interactions with objects and other controls from one
object to another, for attaching executable behaviours to objects, including voice calls and

starting and stop timers, and for defining conditions for the execution of control actions.

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 158 -

9. A method of generating an interactive object oriented multimedia file according to
claim 7, wherein said rendering parameters represent object transparency, scale, volume,
position, z-order, background colour and rotation, where said animation paths affect any of
said rendering parameters, said hyperlinks support non-linear video and links to other
video files, individual scenes within a file, and other object streams within a scene as
targets, said interactive behaviour data includes the pausing of play and looping play,
returning user information back to the server, activating or deactivating object animations,

defining menus, and simple forms that can register user selections.

10.. A method of generating an interactive object oriented multimedia file according to
claim 7, wherein conditional execution of rendering actions or object behaviours is
provided and conditions take the form of timer events, user events, system events,
interaction events, relationships between objects, user variables, and system status such as

playing, pausing, streaming or stand-alone play.

11. A method of mapping in real time from a non-stationary three-dimensional data set

onto a single dimension, comprising the steps of:
pre-computing said data; encoding said mapping;
transmitting the encoded mapping to a client; and

said client applying said mapping to the said data.

12. A method of mapping in real time from a non-stationary three-dimensional data set
onto a single dimension according to claim 11, wherein said data set comprises a colour

video frame and said pre-computing comprises a vector quantisation process;
determining the closest codebook vector for each cell in the mapping process;

performing said encoding using an octree representation;

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 159 -

sending said encoded octree to a decoder; and

said decoder then applying mapping to said data set.

13. An interactive multimedia file format comprising single objects containing video,
text, audio, music, and/or graphical data wherein at least one of said objects comprises a
data stream, and at least one of said data streams comprises a scene, at least one of said

scenes comprises a file, and wherein directory data and metadata provide file information.

14. A system for dynamically changing the actual content of a displayed video in an

object-oriented interactive video system comprising:

a dynamic media composition process including an interactive multimedia file
format including objects containing video, text, audio, music, and/or graphical data
wherein at least one of said objects comprises a data stream, at least one of said data

streams comprises a scene, at least one of said scenes comprises a file;
a directory data structure for providing file information;

selecting mechanism for allowing the correct combination of objects to be

composited together;

a data stream manager for using directory information and knowing the location of

said objects based on said directory information; and

control mechanism for inserting, deleting, or replacing in real time while being

viewed by a user, said objects in said scene and said scenes in said video.

15. A system according to claim 14 including remote server non-sequential access
capability, selection mechanism for selecting appropriate data components from each
object stream, interleaving mechanism for placing said data components into a final
composite data stream, and wireless transmission mechanism for sending said final

composite stream to a client.

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 160 -

16. A system according to claim 14 including remote server non-sequential access
capability, including a mechanism for executing library management instructions
delivered to said system from said remote server, said server capable of querying said
library and receiving information about specific objects contained therein, and inserting,
updating, or deleting the contents of said library; and said dynamic media composition
engine capable of sourcing object data stream simultaneously both from said library and

remote server if required.

17. A system according to claim 14 including a local server providing offline play

mode;
a storage mechanism for storing appropriate data components in local files;

selection mechanism for selecting appropriate data components from separate

sources;

a local data file including multiple streams for each scene stored contiguously

'

within said file;

access mechanism for said local server to randomly access each stream within a

said scene;
selection mechanism for selecting said objects for rendering;

a persistent object library for use in dynamic media composition capable of being
managed from said remote server, said objects capable of being stored in said library with

full digital rights management information;

software available to a client for executing library management instructions
delivered to it from said remote server, said server capable of querying said library and
receiving information about specific objects contained therein, and inserting, updating, or

deleting the contents of said library; and

said dynamic media composition engine capable of sourcing object data stream

simultaneously both from said library and remote server.

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 161 -

18. A system according to claim 14, wherein each said stream includes an end of
stream packet for demarcating stream boundaries, said first stream in a said scene

containing descriptions of said objects within said scene;

object control packets within said scene provide information for interactivity,

changing the source data for a particular object to a different stream;

reading mechanism in said server for reading more than one stream simultaneously

from within a said file when performing local playback; and

mechanism for managing an array or linked list of streams, data stream manager
capable of reading one packet from each stream in a cyclical manner; storage mechanism
for storing the current position in said file; and storage mechanism for storing a list of

referencing objects.

19. A system according to claim 14, wherein data is streamed to a media player client,
said client capable of decoding packets received from the remote server and sending back
user operations to said server, said server responding to user operations such as clicking,
and modifying said data sent to said client, each said scene containing a single multiplexed
stream composed of one or more objects, said server capable of composing scenes in real-
time by multiplexing multiple object data streams based on client requests to construct a
single multiplexed stream for any given scene, and wireless streaming to said client for

playback.

20. A system according to claim 14 including playing mechanism for playing a
plurality of video objects simultaneously, each of said video objects capable of originating
from a different source, said server capable of opening each of said sources, interleaving
the bit streams, adding appropriate control information and forwarding the new composite

stream to said client.

10

15

20

25

WO 01/31497 PCT/AU00/01296

-162 -

21. A system according to claim 14 including a data source manager capable of
randomly accessing said source file, reading the correct data and control packets from said
streams which are needed to compose the display scene, and including a server
multiplexer capable of receiving input from multiple source manager instances with single
inputs and from said dynamic media composition engine, said multiplexer capable of
multiplexing together object data packets from said sources and inserting additional
control packets into said data stream for controlling the rendering of component objects in

the composite scene.

22 A system according to claims 14 including an XML parser to enable

programmable control of said dynamic media composition through IAVML scripting.

23. A system according to claims 14, wherein said remote server is capable of
accepting a number of inputs from the server operator to further control and customize
said dynamic media composition process, said inputs including user profile,

demographics, geographic location, or the time of day.

24. A system according to claims 14, wherein said remote server is capable of
accepting a number of inputs from the server operator to further control and customize
said dynamic media composition process, said inputs including a log of user interaction

such as knowledge of what advertisements have success with a user.

25. An object oriented interactive multimedia file, comprising:
a combination of one or more of contiguous self-contained scenes;

each said scene comprising scene format definition as the first packet, and a group

of one or more data streams following said first packet;

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 163 -

each said data stream apart from first data stream containing objects which may be
optionally decoded and displayed according to a dynamic media composition process as

specified by object control information in said first data stream; and

each said data stream including one or more single self-contained objects and
demarcated by an end stream marker; said objects each containing it’s own control
information and formed by combining packet streams; said packet streams formed by
encoding raw interactive multimedia data including at least one or a combination of video,
text, audio, music, or graphics elements as a video packet stream, text packet stream, audio

packet stream, music packet stream and graphics packet stream respectively.

26. An object-oriented interactive video system including an interactive multimedia

file format according to claim 25 including:

server software for performing said dynamic media composition process, said
process allowing the actual content of a displayed video scene to be changed dynamically
in real-time while a user views said video scene, and for inserting, replacing, or adding

any of said scene’s arbitrary shaped visual/audio video objects; and

a control mechanism to replace in-picture objects by other objects to add or delete
in-picture objects to or from a current scene to perform said process in a fixed, adaptive, or

user-mediated mode.

27. An object oriented interactive multimedia file according to claim 25 including data

for configuring customisable decompression transforms within said scenes.

28. An object-oriented interactive video system including an interactive multimedia

file format according to claim 25 including:

a control mechanism to provide a local object library to support said process, said
library including a storage means for storing objects for use in said process, control

mechanism to enable management of said library from a streaming server, control

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 164 -

mechanism for providing versioning control for said library objects, and for enabling

automatic expiration of non persistent library objects; and

control mechanism for updating objects automatically from said server, for
providing multilevel access control for said library objects, and for supporting a unique

identity, history and status for each of said library objects.

29. An object-oriented interactive video system including an interactive multimedia

file format according to claim 25 including:

a control mechanism for responding to a user click on a said object in a session by

immediately performing said dynamic media composition process; and

control mechanism for registering a user for offline follow-up actions, and for

moving to a new hyperlink destination at the end of said session.

30. A method of real-time streaming of file data in the object oriented file format
according to claim 25, over a wireless network whereby a scene includes only one stream,
and said dynamic media composition engine interleaves objects from other streams at an

appropriate rate into the said first stream.

31. A method of real-time streaming of file data in the object oriented file format
according to claim 25, over a wireless network whereby a scene includes only one stream,
and said dynamic media composition engine interleaves objects from other streams at an

appropriate rate into the said first stream.

32. A method according to claim 30 of streaming live video content to a user where

said other streams include streams which are encoded in real time.

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 165 -

33. A method according to claim 31 of streaming live video content to a user

comprising the following steps:
said user connecting to a remote server; and

said user selecting a camera location to view within a region handled by the

operator/exchange;

34. A method according to claim 31 of streaming live video content to a user

comprising the following steps:
said user connects to a remote server; and

said user’s geographic location, derived from a global positioning system or cell
triangulation, is used to automatically provide a selection of camera locations to view for

assistance with said user’s selection of a destination .

35. A method according to claim 31 of streaming live traffic video content to a user

comprising the following steps:

said user registers for a special service where a service provider calls said user and
automatically streams video showing a motorist’s route that may have a potential problem

area;

upon registering said user may elect to nominate a route for this purpose, and may

assist with determining said route; and

said system tracks said user’s speed and location to determine the direction of
travel and route being followed, said system could then search its list of monitored traffic
cameras along potential routes to determine if any sites are problem areas, and if any
problems exist, said system notifies said user and plays a video to present the traffic

information and situation.

WO 01/31497 PCT/AU00/01296

- 166 -

36. A method of advertising according to claim 26, wherein said dynamic media
composition process selects objects based on a subscriber’s own profile information,

stored in a subscriber profile database.

5 37. A method of providing a voice command operation of a low power device capable

of operating in a streaming video system, comprising the following steps:
capturing a user’s speech on said device;
compressing said speech;
inserting encoded samples of said compressed speech into user control packets;

10 sending said compressed speech to a server capable of processing voice

commands;
said server performs automatic speech recognition;
said server maps the transcribed speech to a command set;
said system checks whether said command is generated by said user or said server;

15 if said transcribed command is from said server, said server executes said

command;

if said transcribed command is from said user said system forwards said command

to said user device; and
said user executes said command.
20

38. A method of providing a voice command operation of a low power device capable

of operating in a streaming video system, according to claim 37, wherein:
said system determines whether transcribed command is pre-defined;

if said transcribed command is not pre-defined, said system sends said transcribed

25 text string to said user; and

said user inserts said text string into an appropriate text field.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-167 -

39. An image processing method, comprising the step of:
generating a colour map based on colours of an image;
determining a representation of the image using the colour map; and
determining a relative motion of at least a section of the image which is

represented using the colour map.

40. A method according to claim 39, further comprising the step of encoding the

representation of the image.

41. A method according to claim 39, further comprising the step of encoding the

relative motion.

42. A method according to claim 39, further comprising the step of encoding the

representation of the image and the relative motion.

43. A method according to claim 39, wherein said generating step comprises

performing a colour quantisation in order to generate the colour map.

44, A method according to claim 43, wherein said generating step further comprises
creating the colour map based on a previously determined colour map of a proximate
frame.

45. A method according to claim 44, wherein said creating step comprises reorganising
the colour map based on the previously determined colour map so that colours of pixels
from the proximate frame which are carried over to a current frame are mapped to same

indexes of the colour map.

46. A method according to claim 44, wherein said creating step comprises correlating

the colour map to the previously determined colour map.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 168 -

47. A method according to claim 39, wherein said step of determining a relative

motion comprises determining a motion vector for the at least a section of the image.

48. An image processing method, comprising creating a quadtree for encoding a

representation of an image.

49. A method according to claim 48, wherein the encoding step comprises creating the

quadtree to have a transparent leaf representation.

50. A method according to claim 49, wherein the encoding step comprises creating the
quadtree to have the transparent leaf representation which is utilized to represent arbitrary

shaped objects.

51. A method according to claim 50, wherein the encoding step comprises creating the

quadtree to have bottom level node type elimination.

52. A method of determining an encoded representation of an image comprising:
analyzing a number of bits utilized to represent a colour;
representing the colour utilizing a first flag value and a first predetermined number
of bits, when the number of bits utilized to represent the colour exceeds a first value; and
representing the colour utilizing a second flag value and a second predetermined
number of bits, when the number of bits utilized to represent the colour does not exceed a

first value.

53. A method according to claim 52, wherein the step of representing the colour
utilizing the first flag value comprises representing the colour using the first
predetermined number of bits which is eight; and

the step of representing the colour utilizing the second flag value comprises

representing the colour using the second predetermined number of bits which is four.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-169 -

54. An image processing system, comprising means for generating a colour map based
on colours of an image;
means for determining a representation of the image using the colour map; and
means for determining a relative motion of at least a section of the image which is

represented using the colour map.

55. A system according to claim 54, further comprising means for encoding the

representation of the image.

56. A system according to claim 54, further comprising means for encoding the

relative motion.

57. A system according to claim 54, further comprising means for encoding the

representation of the image and the relative motion.

58. A system according to claim 54, wherein said means for generating comprises

means for performing a colour quantisation in order to generate the colour map.

59. A system according to claim 58, wherein said means for generating further
comprises means for creating the colour map based on a previously determined colour

map of a proximate frame.

60. A system according to claim 59, wherein said means for creating comprises means
for reorganizing the colour map based on the previously determined color map so that
colours of pixels from the proximate frame which are carried over to a current frame are

mapped to same indexes of the colour map.

61. A system according to claim 59, wherein said means for creating comprises means

for correlating the colour map to the previously determined colour map.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-170 -

62. A system according to claim 54, wherein said means for determining a relative
motion comprises means for determining a motion vector for the at least a section of the

image.

63. An image encoding system comprising means for creating a quadtree for encoding

a representation of an image.

64. A system according to claim 63, wherein the means for encoding comprises means

for creating the quadtree to have a transparent leaf representation.

65. A system according to claim 64, wherein the means for encoding comprises means
for creating the quadtree to have the transparent leaf representation which is utilized to

represent arbitrary shaped objects.

66. A system according to claim 65, wherein the means for encoding comprises means

for creating the quadtree to have bottom level node type elimination.

67. Animage encoding system for determining an encoded representation of an image
comprising:

means for analyzing a number of bits utilized to represent a colour;

means for representing the colour utilizing a first flag value and a first
predetermined number of bits, when the number of bits utilized to represent the colour
exceeds a first value; and

means for representing the colour utilizing a second flag value and a second
predetermined number of bits, when the number of bits utilized to represent the colour

does not exceed a first value.

68. A system according to claim 67, wherein the means for representing the color
utilizing the first flag value comprises representing the color using the first predetermined

number of bits which is eight; and

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-171 -

the step of representing the color utilizing the second flag value comprises

representing the color using the second predetermined number of bits which is four.

69. A method of processing objects, comprising the steps of:

parsing information in a script language;

reading a plurality of data sources containing a plurality of objects in the form of at
least one of video, graphics, animation, and audio;

attaching control information to the plurality of objects based on the information in
the script language; and

interleaving the plurality of objects into at least one of a data stream and a file.

70. A method according to claim 69, further comprising the step of inputting
information from a user, wherein the step of attaching is performed based on the

information in the script language and the information from the user.

71. A method according to claim 69, further comprising the step of inputting control
information selected from at least one of profile information, demographic information,
geographic information, and temporal information, wherein the step of attaching is

performed based on the information in the script language and the control information.

72. A method according to claim 71, further comprising the step of inputting
information from a user, wherein the step of attaching is performed based on the
information in the script language, the control information, and the information from the

User.

73. A method according to claim 72, wherein the step of inputting information from the

user comprises graphically pointing and selecting an object on a display.

74. A method according to claim 69, further comprising the steps of inserting an object

into the at least one of the data stream and file.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-172 -

75. A method according to claim 74, wherein said inserting step comprises inserting an

advertisement into the at least one of the data stream and file.

76. A method according to claim 75, further comprising the step of replacing the

advertisement with a different object.

77. A method according to claim 74, wherein said inserting step comprises inserting a

graphical character into the at least one of the data stream and file.

78. A method according to claim 77, wherein said step of inserting a graphical
character comprises inserting the graphical character based on a geographical location of a

User.

79. A method according to claim 69, further comprising the step of replacing one of
the plurality of objects with another object.

80. A method according to claim 79, wherein said step of replacing one of the plurality
of objects comprises replacing the one of the plurality of objects which is a viewed scene

with a new scene.

81. A method according to claim 69, wherein said step of reading a plurality of data
sources comprises reading a least one of the plurality of data sources which is training

video.

82. A method according to claim 69, wherein said step of reading a plurality of data
sources comprises reading a least one of the plurality of data sources which is an

educational video.

83. A method according to claim 69, wherein said step of reading a plurality of data
sources comprises reading a least one of the plurality of data sources which is a

promotional video.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-173 -

84. A method according to claim 69, wherein said step of reading a plurality of data
sources comprises reading a least one of the plurality of data sources which is an

entertainment video.

85. A method according to claim 69, wherein said step of reading a plurality of data

sources comprises obtaining video from a surveillance camera.

86. A method according to claim 74, wherein said inserting step comprises inserting a
video from a camera for viewing automobile traffic into the at least one of the data stream

and file.

87. A method according to claim 74, wherein said inserting step comprises inserting

information of a greeting card into the at least one of the data stream and file.

88. A method according to claim 74, wherein said inserting step comprises inserting a

computer generated image of a monitor of a remote computing device.

89. A method according to claim 69, further comprising the step of providing the at
least one of a data stream and a file to a user, wherein the at least one of a data stream and

a file include an interactive video brochure.

90. A method according to claim 69, further comprising the step of providing the at
least one of a data stream and a file which includes an interactive form to a user;
electronically filling out the form by the user; and

electronically storing information entered by the user when filling out the form.

91. A method according to claim 90, further comprising the step of transmitting the

information which has been electronically stored.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-174 -

92. A method according to claim 69, wherein the step of attaching control information

comprises attaching control information which indicates interaction behaviour.

93. A method according to claim 69, wherein the step of attaching control information

comprises attaching control information which includes rendering parameters.

94. A method according to claim 69, wherein the step of attaching control information

comprises attaching control information which includes composition information.

95. A method according to claim 69, wherein the step of attaching control information

comprises attaching control information which indicates how to process compressed data.

96. A method according to claim 69, wherein the step of attaching control information

comprises attaching an executable behaviour.

97. A method according to claim 96, wherein the step of attaching an executable

behaviour comprises attaching rendering parameters used for animation.

98. A method according to claim 96, wherein the step of attaching an executable

behaviour comprises attaching a hyperlink.

99. A method according to claim 96, wherein the step of attaching an executable

behaviour comprises attaching a timer.

100. A method according to claim 96, wherein the step of attaching an executable

behaviour comprises attaching a behaviour which allows making a voice call.

101. A method according to claim 96, wherein the step of attaching an executable

behaviour comprises attaching systems states including at least one of pause and play.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-175 -

102. A method according to claim 96, wherein the step of attaching an executable

behaviour comprises attaching information which allows changing of user variables.

103. A system for processing objects, comprising:
means for parsing information in a script language;
means for reading a plurality of data sources containing a plurality of objects in the
form of at least one of video, graphics, animation, and audio;
means for attaching control information to the plurality of objects based on the
information in the script language; and
means for interleaving the plurality of objects into at least one of a data stream and a

file.

104. A system according to claim 103, further comprising means for inputting
information from a user, wherein the means for attaching operates based on the

information in the script language and the information from the user.

105. A system according to claim 103, further comprising means for inputting control
information selected from at least one of profile information, demographic information,
geographic information, and temporal information, wherein the means for attaching

operates based on the information in the script language and the control information.

106. A system according to claim 105, further comprising means for inputting
information from a user, wherein the means for attaching operates based on the
information in the script language, the control information, and the information from the

US€r.

107. A system according to claim 106, wherein the means for inputting information
from the user comprises means for graphically pointing and selecting an object on a

display.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-176 -

108. A system according to claim 103, further comprising means for inserting an object

into the at least one of the data stream and file.

109. A system according to claim 108, wherein said means for inserting comprises

means for inserting an advertisement into the at least one of the data stream and file.

110. A system according to claim 109, further comprising means for replacing the

advertisement with a different object.

111. A system according to claim 108, wherein said means for inserting comprises

means for inserting a graphical character into the at least one of the data stream and file.

112. A system according to claim 111, wherein said means for inserting a graphical
character comprises means for inserting the graphical character based on a geographical

location of a user.

113. A system according to claim 103, further comprising means for replacing one of

the plurality of objects with another object.

114. A system according to claim 113, wherein said means for replacing one of the
plurality of objects comprises means for replacing the one of the plurality of objects which

is a viewed scene with a new scene.

115. A system according to claim 103, wherein said means for reading a plurality of
data sources comprises means for reading a least one of the plurality of data sources which

is a training video.

116. A system according to claim 103, wherein said means for reading a plurality of
data sources comprises means for reading a least one of the phirality of data sources which

is a promotional video.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-177 -

117. A system according to claim 103, wherein said means for reading a plurality of
data sources comprises means for reading a least one of the plurality of data sources which

is an entertainment video.

118. A system according to claim 103, wherein means for reading a plurality of data
sources comprises means for reading a least one of the plurality of data sources which is

an educational video.

119. A system according to claim 103, wherein said means for reading a plurality of

data sources comprises means for obtaining video from a surveillance camera.

120. A system according to claim 107, wherein said means for inserting comprises
means for inserting a video from a camera for viewing automobile traffic into the at least

one of the data stream and file.

121. A system according to claim 107, wherein said means for inserting comprises
means for inserting information of a greeting card into the at least one of the data stream

and file.

122. A system according to claim 107, wherein said means for inserting comprises

inserting a computer generated image of a monitor of a remote computing device.

123. A system according to claim 103, further comprising means for providing the at
least one of a data stream and a file to a user, wherein the at least one of a data stream and

a file includes an interactive video brochure.

124. A system according to claim 103, further comprising means for providing the at
least one of a data stream and a file which includes an interactive form to a user;

means for electronically filling out the form by the user; and

means for electronically storing information entered by the user when filling out

the form.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-178 -

125. A system according to claim 124, further comprising means for transmitting the

information which has been electronically stored.

126. A system according to claim 103, wherein the means for attaching control
information comprises means for attaching control information which indicates interaction

behaviour.

127. A system according to claim 103, wherein the means for attaching control
information comprises means for attaching control information which includes rendering

parameters.

128. A system according to claim 103, wherein the means for attaching control
information comprises means for attaching control information which includes

composition information.

129. A system according to claim 103, wherein the means for attaching control
information comprises means for attaching control information which indicates how to

process compressed data.

130. A system according to claim 103, wherein the means for attaching control

information comprises means for attaching an executable behaviour.

131. A system according to claim 130, wherein the means for attaching an executable

behaviour comprises means for attaching rendering parameters used for animation.

132. A system according to claim 130, wherein the means for attaching an executable

behaviour comprises means for attaching a hyperlink.

133. A system according to claim 130, wherein the means for attaching an executable

behaviour comprises means for attaching a timer.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-179 -

134. A system according to claim 130, wherein the means for attaching an executable

behaviour comprises means for attaching a behaviour which allows making a voice call.

135. A system according to claim 130, wherein the means for attaching an executable

behaviour comprises means for attaching systems states including at least one of pause and

play.

136. A system according to claim 130, wherein the means for attaching an executable
behaviour comprises means for attaching information which allows changing of user

variables.

137. A method of remotely controlling a computer, comprising the step of:
performing a computing operation at a server based on data;
generating image information at the server based on the computing operation;
transmitting, via a wireless connection, the image information from the server to a
client computing device without transmitting said data;
receiving the image information by the client computing device; and

displaying the image information by the client computing device.

138. A method according to claim 137, further comprising the steps of entering, by a
user of the client computing device, input information;

transmitting, via the wireless connection, the input information from the client
computing device to the server;

processing the input information at the server;

altering the image information at the server based on the input information;

transmitting, via the wireless connection, the image information which has been
altered;

receiving the image information which has been altered by the client computing

device; and

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 180 -

displaying the image information which has been altered by the client computing

device.

139. A method according to claim 137, further comprising the step of capturing the
image information at the server, wherein the transmitting step comprises transmitting the

image information which has been captured.

140. A method according to claim 137, wherein the transmitting step comprises
transmitting the image information as a video object having attached thereto control

information.

141. A system for remotely controlling a computer, comprising:

means for performing a computing operation at a server based on data;

means for generating image information at the server based on the computing
operation;

means for transmitting, via a wireless connection, the image information from the
server to a client computing device without transmitting said data;

means for receiving the image information by the client computing device; and

means for displaying the image information by the client computing device.

142. A system according to claim 141, further comprising means for entering, by a user
of the client computing device, input information;

means for transmitting, via the wireless connection, the input information from the
client computing device to the server;

means for processing the input information at the server;

means for altering the image information at the server based on the input
information;

means for transmitting, via the wireless connection, the image information which
has been altered;

means for receiving the image information which has been altered by the client

computing device; and

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 181 -

means for displaying the image information which has been altered by the client

computing device.

143. A system according to claim 141, further comprising means for capturing the
image information at the server,
wherein the means for transmitting comprises:

means for transmitting the image information which has been captured.

144. A system according to claim 139, wherein the means for transmitting comprises
means for transmitting the image information as a video object having attached thereto

control information.

145. A method of transmitting an electronic greeting card, comprising the steps of:
inputting information indicating features of a greeting card;
generating image information corresponding to the greeting card,;
encoding the image information as an object having control information;
transmitting the object having the control information over a wireless connection;
receiving the object having the control information by a wireless hand-held
computing device;
decoding the object having the control information into a greeting card image by
the wireless hand-held computing device; and
displaying the greeting card image which has been decoded on the hand-held

computing device.

146. A method according to claim 145, wherein the step of generating image
information comprises capturing at least one of an image and as series of images as
custom image information, wherein the encoding step further comprises encoding said
custom image as an object having control information, wherein said step of decoding
comprises decoding the object encoded using the image information and decoding the

object encoded using the custom image information, wherein said displaying step

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-182-

comprises displaying image information and the custom image information as the greeting

card.

147. A system transmitting an electronic greeting card, comprising:

means for inputting information indicating features of a greeting card;

means for generating image information corresponding to the greeting card;

means for encoding the image information as an object having control information;

means for transmitting the object having the control information over a wireless
connection,;

means for receiving the object having the control information by a wireless hand-
held computing device;

means for decoding the object having the control information into a greeting card
image by the wireless hand-held computing device; and

means for displaying the greeting card image which has been decoded on the hand-

held computing device.

148. A system according to claim 147, wherein the means for generating image
information comprises means for capturing at least one of an image and as series of
images as custom image information, wherein the means for encoding further comprises
means for encoding said custom image as an object having control information, wherein
said means for decoding comprises means for decoding the object encoded using the
image information and decoding the object encoded using the custom image information,
wherein said means for displaying comprises means for displaying image information and

the custom image information as the greeting card.

149. A method of controlling a computing device, comprising the steps of:
inputting an audio signal by a computing device;
encoding the audio signal;
transmitting the audio signal to a remote computing device;
interpreting the audio signal at the remote computing device and generating

information corresponding to the audio signal;

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-183 -

transmitting the information corresponding to the audio signal to the computing
device;
controlling the computing device using the information corresponding to the audio

signal.

150. A method according to claim 149, wherein said controlling step comprises
controlling the computing device using computer instructions which corresponds to the

information corresponding to the audio signal.

151. A method according to claim 149, wherein said controlling step comprises
controlling the computing device using data which corresponds to the information

corresponding to the audio signal.

152. A method according to claim 149, wherein the step of interpreting the audio signal

comprises performing a speech recognition.

153. A system for controlling a computing device, comprising:

inputting an audio signal by a computing device;

encoding the audio signal,

transmitting the audio signal to a remote computing device;

interpreting the audio signal at the remote computing device and generating
information corresponding to the audio signal;

transmitting the information corresponding to the audio signal to the computing
device; and

controlling the computing device using the information corresponding to the audio

signal.

154. A system according to claim 153, wherein said means for controlling comprises
means for controlling the computing device using computer instructions which

corresponds to the information corresponding to the audio signal.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 184 -

155. A system according to claim 153, wherein said means for controlling comprises
means for controlling the computing device using data which corresponds to “the

information corresponding to the audio signal.

156. A system according to claim 153, wherein said means for interpreting the audio

signal comprises means for performing a speech recognition.

157. A method of performing a transmission, comprising the steps of:
displaying an advertisement on a wireless hand-held device;
transmitting information from the wireless hand-held device; and
receiving a discounted price associated with the information which has been

transmitted because of the display of the advertisement.

158. A method according to claim 157, wherein the displaying step is performed before

the transmitting step.

159. A method according to claim 157, wherein the displaying step is performed during

the transmitting step.

160. A method according to claim 157, wherein the displaying step is performed after

the transmitting step.

161. A method according to claim 157, wherein the step of receiving a discounted price
comprises receiving a discount of an entire cost associated with the information which has

been transmitted.
162. A method according to claim 157, wherein the step of displaying comprises
displaying the object as an interactive object, the method further comprising interacting

with the object by the user; and displaying a video in response to interacting by the user.

163. A system for performing a transmission, comprising:

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-185-

means for displaying an advertisement on a wireless hand-held device; -
means for transmitting information from the wireless hand-held device; and
means for receiving a discounted price associated with the information which has

been transmitted because of the display of the advertisement.

164. A system according to claim 163, wherein the means for displaying the

advertisement operates before the transmitting of information.

165. A system according to claim 163, wherein the means for displaying the
advertisement operates during the transmitting of information. _
166. A system according to claim 163, wherein the means for displaying the

advertisement operates after the transmitting of information.

167. A system according to claim 163, wherein the means for receiving a discounted
price comprises means for receiving a discount of an entire cost associated with the

information which has been transmitted.

168. A system according to claim 163, wherein the means for displaying comprises
means for displaying the object as an interactive object, the system further comprising
means for interacting with the object by the user; and means for displaying a video in

response to interacting by the user.

169. A method of providing video, comprising the steps of:
determining whether an event has occurred; and
obtaining a video of an area transmitting to a user by a wireless transmission the

video of the area in response to the event.

170. A method according to claim 169, wherein the step of determining comprises
selecting a location by the user, wherein the step of transmitting comprises transmitting

the video of the area which corresponds to said location.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 186 -

171. A method according to claim 170, wherein the step of selecting comprises dialing a

phone number corresponding to traffic video.

172. A method according to claim 169, further comprising the step of performing a

determination of the area using a global position system.

173. A method according to claim 169, further comprising the step of performing a

determination of the area based on a cell site utilized by the user.

174. A method according to claim 169, wherein the step of determining comprises
determining that a traffic problem exists on a predefined route, wherein the step of

obtaining video comprises obtaining video which corresponds to the predefined route.

175. A method according to claim 174, wherein the step of transmitting comprises
transmitting the video to the user only when the user is moving greater than a

predetermined speed.

176. A system for providing video, comprising:
means for determining whether an event has occurred;
means for obtaining a video of an area; and
means for transmitting to a user by a wireless transmission the video of the area in

response to the event.

177. A system according to claim 176, wherein the means for determining comprises
means for selecting a location by the user, wherein the means for transmitting comprises

means for transmitting the video of the area which corresponds to said location.

178. A system according to claim 177, wherein the means for selecting comprises

means for dialing a phone number corresponding to traffic video.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 187 -

179. A system according to claim 176, further comprising means for performing a

determination of the area using a global position system.

180. A system according to claim 176, further comprising means for performing a

determination of the area based on a cell site utilized by the user.

181. A system according to claim 176, wherein the means for determining comprises
means for determining that a traffic problem exists on a predefined route, wherein the
means for obtaining video comprises means for obtaining video which corresponds to the

predefined route.

182. A system according to claim 181, wherein the means for transmitting comprises
means for transmitting the video to the user only when the user is moving greater than a

predetermined speed.

183. An object oriented multimedia video system capable of supporting multiple
arbitrary shaped video objects without the need for extra data overhead or processing

overhead to provide video object shape information.

184. A system according to claim 183, wherein said video objects have their own

attached control information.

185. A system according to claim 183, wherein said video objects are streamed from a

remote server to a client.

186. A system according to claim 183, wherein said video object shape is intrinsically

encoded in the representation of the images.

187. A method according to claim 69, wherein the step of attaching control information

comprises attaching conditions for execution of controls.

10

15

20

25

WO 01/31497 PCT/AU00/01296

- 188 -

188. A method according to claim 71 further comprising the steps of obtaining
information from user flags or variables, wherein the step of attaching is performed based
on the information in the script language, the control information, and the information

from said user flags.

189. A method of delivering multimedia content to wireless devices by server initiated
communications wherein content is scheduled for delivery at a desired time or cost
effective manner and said user is alerted to completion of delivery via device’s display or

other indicator.

190. A method according to claim 189, wherein said user registers a request for delivery
of specific content with a content service provider, said request being used to

automatically schedule network initiated delivery to the client device.

191. An interactive system wherein stored information can be viewed offline and stores
user input and interaction to be automatically forwarded over a wireless network to a

specified remote server when said device next connects online.

192. An interactive system according to claim 191, wherein said stored information is

object oriented muiltimedia data which can be navigated non-linearly.

193. A method according to claim 69, wherein said step of reading a plurality of data
sources comprises reading a least one of the plurality of data sources which take the form

of marketing, promotional, product information, entertainment videos videos.

194. A method according to claim 51, wherein the encoding step comprises creating the
quadtree to have leaf node values represented as an index into a FIFO buffer if a flag is

defined true or as the colour value if said the flag is false.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 189 -

195. A system according to claim 66, wherein the means for encoding comprises means
for creating the quadtree to have leaf node values represented as an index into a FIFO

buffer if a flag is defined true or as the colour value if said the flag is false.

196. A method according to claim 51, wherein the encoding step comprises creating the
quadtree to have leaf node values represented as the mean plus horizontal and vertical

gradients.

197. A method according to claim 196, wherein the encoding step comprises creating
the quadtree to have leaf node mean values represented as an index into a FIFO buffer if a

flag is defined true or as the colour value if said the flag is false.

198. A system according to claim 66, wherein the means for encoding comprises
creating the quadtree to have leaf node values represented as the mean plus horizontal and

vertical gradients.

199. A system according to claim 198, wherein the means for encoding comprises
creating the quadtree to have leaf node mean values represented as an index into a FIFO

buffer if a flag is defined true or as the colour value if said the flag is false.

200. A system according to claim 14 including a persistent object library on a portable
client device for use in dynamic media composition said library being capable of being
managed from said remote server, software available to a client for executing library
management instructions delivered to it from said remote server, said server capable of
querying said library and receiving information about specific objects contained therein,
and inserting, updating, or deleting the contents of said library; and said dynamic media
composition engine capable of sourcing object data stream simultaneously both from said
library and remote server, if required, said persistent object library storing object
information including expiry dates, access permissions, unique identifiers, metadata and
state information, said system performing automatic garbage collection on expired objects,

access control, library searching, and various other library management tasks.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-190 -

201. A video encoding method, including:
encoding video data with object control data as a video object; and
generating a data stream including a plurality of said video object with respective

video data and object control data.

202. A video encoding method as claimed in claim 201, including:
generating a scene packet representative of a scene and including a plurality of said

data stream with respective video objects.

203. A video encoding method as claimed in claim 202, including generating a video
data file including a plurality of said scene packet with respective data streams and user

control data.

204. A video encoding method as claimed in claim 201, wherein said video data

represents video frames, audio frames, text and/or graphics.

205. A video encoding method as claimed in claim 201, wherein said video object
comprises a packet with data packets of said encoded video data and at least one object

control packet with said object control data for said video object.

206. A video encoding method as claimed in claim 202, wherein said video data file,

said scene packets and said data streams include respective directory data.

207. A video encoding method as claimed in claim 201, wherein said object control data
represents parameters defining said video object to allow interactive control of said object

within a scene by a user.

208. A video encoding method as claimed in claim 201, wherein said encoding includes
encoding luminance and colour information of said video data with shape data

representing the shape of said video object.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 191 -

209. A video encoding method as claimed in claim 201, wherein said object control data

defines shape, rendering, animation and interaction parameters for said video objects.

210. A video encoding method, including:

quantising colour data in a video stream based on a reduced representation of
colours;

generating encoded video frame data representing said quantised colours and
transparent regions; and

generating encoded audio data and object control data for transmission with said

encoded video data.

211. A video encoding method as claimed in claim 210, including:
generating motion vectors representing colour changes in a video frame of said

stream; said encoded video frame data representing said motion vectors.

212. A video encoding method as claimed in claim 211, including:

generating encoded text object and vector graphic object and music object data for
transmission with said encoded video data; and

generating encoded data for configuring customisable decompression

transformations.

213. A video encoding method as claimed in claim 2, including dynamically generating

said scene packets for a user in real-time based on user interaction with said video objects.

214. A video encoding method as claimed in claim 1, wherein said object control data
represents parameters for (i) rendering video objects, for (ii) defining the interactive
behaviour of said objects, for (iii) creating hyperlinks to and from said objects, for (iv)
defining animation paths for said objects, for (v) defining dynamic media composition
parameters, for (vi) assigning of values to user variables and/or for (vii) defining

conditions for execution of control actions.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

-192 -

215. A video encoding method as claimed in claim 210 or 211, wherein said object

control data represents parameters for rendering objects of a video frame.

216. A video encoding method as claimed in claim 210 or 211, wherein said parameters

represents transparency, scale, volume, position, and rotation.

217. A video encoding method as claimed in claim 210 or 211, wherein said encoded

video, audio and control data are transmitted as respective packets for respective decoding.

218. A video encoding method, including:

@) selecting a reduced set of colours for each video frame of video data;

(i) reconciling colours from frame to frame;

(ili) executing motion compensation;

(iv) determining update areas of a frame based on a perceptual colour difference
measure;

(v) encoding video data for said frames into video objects based on steps (i) to
(iv); and

(vi) including in each video object animation, rendering and dynamic

composition controls.

219. A video decoding method for decoding video data encoded according to a method

as claimed in any one of the preceding claims.

220. A video decoding method as claimed in claim 219, including parsing said encoded
data to distribute object control packets to an object management process and encoded

video packets to a video decoder.

221. A video encoding method as claimed in claim 214, wherein said rendering

parameters represent object transparency, scale, volume, position and rotation.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 193 -

222. A video encoding method as claimed in claim 214, wherein said animation paths

adjust said rendering parameters.

223. A video encoding method as claimed in claim 214, wherein said hyperlinks

represent links to respective video files, scene packets and objects.

224. A video encoding method as claimed in claim 214, wherein said interactive

behaviour data provides controls for play of said objects, and return of user data.

225. A video decoding method as claimed in claim 220 including generating video
object controls for a user based on said object control packets for received and rendered

video objects.

226. A video decoder having components for executing the steps of the video decoding

method as claimed in claim 219.

227. A computer device having a video decoder as claimed in claim 226.

228. A computer device as claimed in claim 227, wherein said device is portable and

handheld, such as a mobile phone or PDA.

229. A dynamic colour space encoding method including executing the video encoding
method as claimed in claim 1 and adding additional colour quantisation information for

transmission to a user to enable said user to select a real-time colour reduction.

230. A video encoding method as claimed in claim 201, including adding targeted user

and/or local video advertising with said video object.

231. A computer device having an ultrathin client for executing the video decoding
method as claimed in claim 219 and adapted to access a remote server including said video

objects.

10

15

20

25

30

WO 01/31497 PCT/AU00/01296

- 194 -

232. A method of multivideo conferencing including executing the video encoding

method as claimed in claim 201.

233. A video encoding method as claimed in claim 201, including generating video

menus and forms for user selections for inclusion in said video objects.

234. A method of generating electronic cards for transmission to mobile phones

including executing said video encoding method as claimed in claim 201.

235. A video encoder having components for executing the steps of the video encoding

method as claimed in any one of claims 201 to 218.

236. A video on demand system including a video encoder as claimed in claim 235.

237. A video security system including a video encoder as claimed in claim 235.

238. An interactive mobile video system including a video decoder as claimed in claim

226.

239. A video decoding method as claimed in 219 including processing voice commands

from a user to control a video display generated on the basis of said video objects.

240. A computer program stored on a computer readable storage medium including
code for executing a video decoding method as claimed in claim 219 and generating a
video display including controls for said video objects, and adjusting said display in

response to application of said controls.

241. A computer program as claimed in claim 240 including IAVML instructions.

10

15

20

25

30

WO 01/31497

242.

243.

PCT/AU00/01296

-195 -

A wireless streaming video and animation system, including:

®
(i)

(iif)

a portable monitor device and first wireless communication means;

a server for storing compressed digital video and computer animations and
enabling a user to browse and select digital video to view from a library of
available videos; and

at least one interface module incorporating a second wireless
communication means for transmission of transmittable data from the
server to the portable monitor device, the portable monitor device including
means for receiving said transmittable data, converting the transmittable
data to video images displaying the video images, and permitting the user
to communicate with the server to interactively browse and select a video

to view.

A wireless streaming video and animation system as claimed in claim 242, wherein

said portable wireless device is a hand held processing device.

244.

A method of providing wireless streaming of video and animation including at

least one of the steps of:

downloading and storing compressed video and animation data from a
remote server over a wide area network for later transmission from a local
server;

permitting a user to browse and select digital video data to view from a
library of video data stored on the local server;

transmitting the data to a portable monitor device; and

processing the data to display the image on the portable monitor device.

A method of providing an interactive video brochure including at least one of the

(a)
(b)
©
C))
245.
steps of:

(2)

creating a video brochure by specifying (i) the various scenes in the
brochure and the various video objects that may occur within each scene,

(ii) specifying the preset and user selectable scene navigational controls and

10

15

20

25

30

WO 01/31497

PCT/AU00/01296

- 196 -

the individual composition rules for each scene, (iii) specifying rendering
parameters on media objects, (iv) specifying controls on media objects to
create forms to collect user feedback, (v) integrating the compressed media

streams and object control information into a composite data stream.

246. A method as claimed in claim 245, including:

(@)

(b)

(©)

d

processing the composite data stream and interpreting the object control
information to display each scene;

processing user input to execute any relevant object controls, such as
navigation through the brochure, activating animations etc, registering and
user selections and other user input;

storing the user selections and user input for later uploading to the provider
of the video brochures network server when a network connection becomes
available; and

at a remote network server, receiving uploads of user selections from
interactive video brochures and processing the information to integrate it

into a customer/client database.

247. A method of creating and sending video greeting cards to mobile devices including

at least one of the steps of:

(@)

®

(©)

permitting a customer to create the video greeting card by (i) selecting a
template video scene or animation form a library, (ii) customising the
template by adding user supplied text or audio objects or selecting video
objects from a library to be inserted as actors in the scene;

obtaining from the customer (i) identification details, (ii) preferred delivery
method, (iii) payment details, (iv) the intended recipient's mobile device
number; and

queuing the greeting card depending on the nominated delivery method
until either bandwidth becomes available or off peak transport can be
obtained, polling the recipient's device to see if it is capable of processing

the greeting card and if so forwarding to the nominated mobile device.

10

15

20

WO 01/31497 PCT/AU00/01296

-197 -

248. A video encoding method as claimed in claim 201, wherein said object control data
includes shape parameters that allow a user to render arbitrary shape video corresponding

to said video object.

249. A video encoding method as claimed in claim 201, wherein said object control data
includes condition data determining when to invoke corresponding controls for said video

object.

250. A video encoding method as claimed in claim 201, wherein said object control data

represents controls for affecting another video object.

251. A video encoding method as claimed in claim 201, including controlling dynamic
media composition of said video objects on the basis of flags set in response to events or

user interactions.

252. A video encoding method as claimed in claim 201, including broadcasting and/or

multicasting said data stream.

WO 01/31497 PCT/AU00/01296
1/46
encoding phase server player client
compressed
51 50 object data
) 3
raw object] d . | compressed dynamic media > decoding .| output
data »| encoder "] object data composition engine 7| devices
76 / 62) 61 /
compressed|
object data |
52
Figure 1
52 Compressed
64 Object Data
________ 62

Definition
Packets

Compressed
Data Packets

Object Control
Packets

Figure 2

SUBSTITUTE SHEET (Rule 26) - RO/AU

System
Display

WO 01/31497

76

PCT/AU00/01296

2146

Decoding Engine

70
Multiple . \ 62 \
Video Dynamic Decoding Rendering
Object Media Process Engine =l System
Data / Composition Display
Sources ﬂ 74
7
DMC Control Format Definition Rendering Parameters
Figure 3
%0 Object Oriented Multimedia File
BN\ / \
1 Z
i SCENE 1 SCENE 2 ved SCENEN SysCirl UserCitrl MetaData | | Directory
i AN AN SN
Strearrs Streams
.M M
8 Stream 1 Stream 2 StreamM | | | Stream Directory |~

88

|
Object
NEMED)

Directory

MUSIC | | ObjCud

8

85 86 87

Figure 4

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

PCT/AU00/01296

3/46
/ 8l \
Scene 1 Scene 2
A N

Scene 1 | Stream | Video | Object1 | Stream | Video | Stream | Video | Stream | Scene2 | Stream | Object 1

Definition| Directory | Object 1 52 End Mark| Object 3 End Mark| Object 4 }|End Mark|Definition| Directory 52
Object 2 Object 2

59 52 5 53 52 53 52 53 59 52

- A J
' Y Y
Stream 1 Stream 2 Stream 3 Stream 1

\\ '82

Figure 5

v -

User Control Packets - 69

Object Control Packets — 68
Compressed data packets — 64
Definition packets - 66

Figure 6

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296
Vector Graphics Buffer
Optional Decoder 33 .
Server Decryption \{ndeo
34 Display
21 , ideo Decoder 38 [Buffer 44
‘
Iggtua Input N User
=p| Buff = Data Object Management 40 input /
t;oer Switch/ control
Demux xTdTe / 48
32 Playback
\Audio Decoder 42 IBuffer 16
-

SUBSTITUTE SHEET (Rule 26) - RO/AU

Figure 7

WO 01/31497 PCT/AU00/01296
5/46
eeeeeeeeooo OystemDisplay 70
Audio Device Graphical User
72 Interface 73
Audio Bitmap User
Events 47
Rendering Engine 74 '<—. Interaction
Management
Engine
Object\ /Object_ . 41
Store 39/ |Store 39 A
Decoder | | Decoder Object | | DRM
43 43 Control | |Engine
40 45
A
Compressed data %
packets 64 Input Data Switch/Demux 32 gse" |
Definition packets put Lata switchyLiemux < Object ontro
N\ : Packets
66 Library
75 69

Input Data Buffer 30 \
Compressed

Data Packets 52 Object control packets 68

v

Server 21

Figure 8

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

6/46

S101 // S102 // S103
Bitmap Compositor p| Sortobjects in Get first object
START >

appropriate Z order

Bitmap Compositor
END

more objects
o rende

S118

Read decoded | — S105
bitmap from buffer

S106

Any objec
rendering
ontrols?

S107

Set screen position
orientation & scale

S110 S108

S109
/

Any more
pixels to

Read next pixel in Start at first pixel in <

object buffer rocess? object buffer
S111
Is pixel YVES
transparent?
alue 25
S114 e $116

Are we alpha
blending?

Calculate correct
display pixel colour

unchanged?

S117
Draw background Draw object colour Draw given pixel
color pixel to disply pixel to display colour to display

Y v v

Figure 9

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

PCT/AU00/01296

|
r |
/ Audio i \4 l
Object ' Audio : Audio
Stores Mixer P Device
55 B, 37 ! 72
[!
5 i
/ | R {
Video } |
Object | Bitmap !
Stores ; Compositor —I—P
53 | 35 : Display
: ! Scene
I i Raster
Vector | Graphic , : 71
Graphic ' Primitive Scan !
Display B Converter ;
List 36 !
54 I {
Rendering ; J :
Parameters] :
s6 : |
|
User Event _:__» Hit Tester E
Controller < ! 31 — :
41c | I
| |
! I
| Rendering Engine 74 l
Figure 10

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

8/46

Hit Tester
31

41c

4le
User Events 4 /

! Animation list l I State'ﬂags :
; — Register !
41b ——+"1Animation path| | User Event :
! interpolator Controller :
i Condition |
E T l l evaluator !
Rendering ! v E
Parameters | — !
56 : Interaction —) Xvatl'tmg ,
4 Control 4la ctions !
: <4 List !
--- History / [\ 41d
Form Store
Object User Control ~ Object Library 41g
Control Logic Packets 58 control 58
68
Figure 11

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

9/46
Channel 1 Video Object Channel 2 Video Object Channel 3 Video Object
93a 93b 93c
ActiveSport.:'. ActiveSport
Background | ., ; A1
Video Object P &

"~ AN
OO |[gea”

© O =

Arbitrary Shape
Video Objects
Channel change
92

Figure 12

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

Interactive Player S201
START

10/46

5202

Read Packet From
Data Source

PCT/AU00/01296

Control or
Data Packet

/ S206

Decode frame and Attach Control
buffer result Action to Object
Render Audio/Video <
Frame to Output $205

\ Has User
Clicked On

Does Objec
have waiting

$209

Object has
attached

conditions
atisfied?

Perform Action

Figure 13

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

e e e et e = —m = T = = = = = . = - — — e = e . ———— - = —— =y

Packet stream User Control
68

Local Server 23

Multiplexer/ E
Data Source == Dynamic Media E

Manager | _ - Composition Engine

i |

Figure 14

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

PCT/AU00/01296

S 64 Y, S ,
; Remote Server 24 !
: Intelligent Multiplexer 27 «— Dynamic Media E
E Composition Engine | i
| 76 |
| A 'y
.| Data Data XML E
| Stream Stream Parser | Time :
. | Manager Manager Place i
; Profile |

Figure 15

SUBSTITUTE SHEET (Rule 26) - RO/AU

v
Operator
Database,

WO 01/31497 PCT/AU00/01296

13/46

S301

Client DMC process
START

play multi-object <
video

S302

S304

[‘ S306

S video sti
playing?

action been
{nitiated?

Send DMC request
to remote server

Local server
performs DMC

/‘ S307

Identify location of
object to be replaced
& its replacement

Figure 16

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

14/46

Serversl?rl\ﬁg T}‘)rocess S401
4 " S402
Wait for reception
of DMC request
Remove target
S403 object packets from)
[multiplex bit stream,
stop reading object S406

Is this a DMC

- stream from storage
object replace

Remove target
S404 object packets from

multiplex bit stream, >
object remove stop reading object
action? stream from storage 5407

—

Read new object
stream from storage,
interleave packets
S40S into transmitted 5408
multiplex bit stream

 J

object ADD
action?

Figure 17

SUBSTITUTE SHEET (Rule 26) - RO/AU

Scene / Object
Control Data 14

WO 01/31497 PCT/AU00/01296
* Combined R1a:;e I
Input olour difference Spatial/ Transmission
— Colour ™ Motion > Management & Temporald 3
Proc1e:s|ng Compensation Synchronisation Coder 18 Buffer 22
11 16
Decoder Option_al
1Dfrea|;nye 20 ncryption
Audio 24 h Means
=g Coding 28
12

L.

Figure 18

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

16/46

Video Compression
START

more frames
to be read?

S504
Perform
Spatial

iltering?

PCT/AU00/01296

/‘ S506

g Calculate difference Perform Localised
NO frame — Spatial Filtering

v

Perform Colour - 8507
Quantisation

S508

Update
colourmap?

Select, Reorder and
update colourmap

/— S509

S$510 \ +

¢ / 8511

¢

Map image to
colourmap > Swap frame buffers reference
"y Frame?
S515 NO
Rearrange regions in —— Generate Motion Calculate difference
previous frame Vectors [frame
l (S513)
Calculate Update S[CJ;Z:;;;,, Drop out
Image (S516) (s517)) background regions
(S518)
NO
f r%::l(;ogcsgs(f:tser Bit Rate Control < Encode & transmit ¢ l \ 4
(ss21) e (5520) resulting data (8519)
Figure 19

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296
17/46
e (V([10d)
Non-Adaptive Map Image to
p Colour = epresentative —'*
Quantisation 10b Colours 10¢
\ 10a I
Perfom \(ector SelectN
Quantisation of]
Colour Data [™===r=w=B® Representative
Colours
\ _ J A\ J
Stage 1 Stage 2 Stage 3
g
Figure 20
5 Spatially ||
' Current |l Calculate Threshold .) |
o Franl:trerStore Perceived |mmmp{ Motion Data jmefpi Filter Motion |1
! 16a Colour Distance (Distance) Data :
5 16¢ 16d 16e ;
5 Previous i * |
: Fr;:n: : Det'ermlne Form Conditional
' invalid Cmap Replenish t
; Store References > epenisimen
' 16b Image
: 16f
: 169
L é-4 .. 1
N A Combined J —
: Z Spatial/ Transmission
20 Temporal —> Buffer
| S Encoder 18 22

Figure 21

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

PCT/AU00/01296

R RS O ST TR
] - 10y 5—(?5 | i +5| +5 : T
" | D:TA*J— RO “ 7
* P 4{ TR *3 . 61 & |
R G RR PaliEN T
Ml TS Tz Al
0 R ‘ﬁﬁ Y1 1o) . 0 INERE 23
7 | ; : s * a i
S I D O I A 5 s =
Sl ! 3O T & 3 |
<4 i : 4 j 4 :
ST HENE E ! N T
-8 : L 8 . : 5 I R
€ 5 4 3 2 1 0 +1 +2 +3 +4 +5 £ 5 4 3 -2 1 0 +1 42 43 +4 +5 6 5 4 3 -2 -1 0 +1 42 +3 +4 +5
2D Logarithmic Search - 11a Three Step Search - 11b Simplified Conjugate Direction Search — 11c

Figure 22

Image

/’ 23b

O Leaf Node

%on-Leaf Nodsg
23c

Quad Tree

Binary Tree
Vertical start

Horizontal start

Binary Tree

23e

SUBSTITUTE SHEET (Rule 26) - RO/AU

Figure 23

WO 01/31497

19/46

Send Motio

S602 Vector Data?

Data Encoding
START

S601

YES

S603
/

Encode Motion
Vectors

'3

S604
\
Send

Colourmap
Update?

YES
S605

NO

Encode Colour map-
data

v

Create tree structure
from Bitmap Data

— S606

v

Encode tree
structure Data

— S607

Send
enhancement
Data?

S608

YES
S609

NO

Encode
Enhancement data

y

Encode Video
END

S610

Figure 24

SUBSTITUTE SHEET (Rule 26) - RO/AU

PCT/AU00/01296

WO 01/31497 PCT/AU00/01296

20/46
Colour map Update
START s701
Send layer identifier
N~ S702
Send number of
colours to update S703

YES NO
ibble zero? S713 S714
S7109 \
\ / §710 | | Send top nibble only| Send 8 bit colour

(4 bits) component value

Figure 25

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

21/46

Encode Tree
structure START

Send Layer
identifier

¥

Get first node in
tree

sSaot

S807

Isthis a s node at bottorm’

PCT/AU00/01296

5813

Send 4 transparent /

parent node level of Tree v opaque leaf flags
$808 $815
805 x
Send parent node / Send leaf node |/ S814
flag (1 bit) flag (1 bit) S811 Top left teaf Encode top left
opaque? leaf colour
\]
Send opaque
leaf flag (1bit)
5818
Top right leaf Encode top right
S8t s&12 l opaque? leaf colour
Send Transparent Encods leaf color J
leaf flag (1 bit) s819
$818
Bottom left Leaf Encode bottom
colour opagque? left leaf colour
|
s821
5820
$808 Bottom right Leaf Encode bottom
colour opaque? ieft leaf colour
§822]
Orteriree Ao theM
<
next node odes in the tree
s823
Encode Tree
structure END
Figure 26

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

22/46

Encode Leaf Colour
C START >/ 5901

$902 /_ S903

> leafcolp . YE Send FIFO lookup
already in a .
4
NO /— 595 | Send FIFO index
Send Colour flag flag (2 bits)
(1 bit)
\ S904

+ _~— S$906
Send Colour value

(N bits)
* S907
@code Leaf COIOP
END

Figure 27

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

23/46

Encode KeyFrame
Tree START S1001

Send layer identifier
N $1002
Get first node in
tree ¥ S1003

S1007

/_ $1004

Is this a Is node at
Grandparent bottom level
node? of tree?
YES pa S1005
Send parent node Send leaf {1ode flag
flag (1 bit) (1bit)
51008 / + S1012
_/ Encode Leaf Colour
S1009
S1013
$1006 S1014
v/
Order tree traversal Are there

PCT/AU00/01296

S1010

-~

Encode top left Leaf
Colour

sI01l —~_ ¥

Encode top right
Leaf Colour

v

Encode bottom left
Leaf Colour

v

Encode bottom right
Leaf Colour

¥

more nodes in
the tree?

to get next node

(e]

S1015
Encode Key Frame
Tree END

Figure 28

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

Altemate Encode
Tree START

24/46

$1101

Get one image
component

L— S1102

v

Get first node in

$1107

S1115 —\

PCT/AU00/01296

Send 4

/

fevel of Tree?

¥ opaque leaf flags

s1117

08
s s1116 ——
Send leaf node
flag (1 bit) Top teft leaf Encode top left
Send parent node S1111 opaque? leaf colour
flag (1 bit) [
s1118]
Send opaque ——\
leaf flag (1bit) s1119
_—— s1112 Top right leaf Encode top right
opaque? leaf colour
Send Transparent Encode leaf color §1120 I
teaf flag (1 bit) Mean Value _\
S1121
S1114 SH113
[Bottom left Leaf Encode bottom
colour opaque? left leaf colour
Encode Leaf,
V+H 1s value=0xFF |
Values sz $1123
S1108 S1124 Bottom right Leaf ;ncode bottom
colour opaque? right leaf colour
<]
Order '::;e(Are there more
next node nodes in the tree?,
51125
Altemate Encode’
Tree END
Figure 29

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

Prequantise System
START

Get next video
frame

L —

v

Vector prequantise
data

-

v

Encode non-index
colour video frames

L —

send compressed
frame data to client

Client decompresses
full colour video

Vector post quantise
data

v

Client renders video
to 8 bit display

ﬁ

~

PCT/AU00/01296
S1201 $1301 Vector Prequantise Vector Postquantise
START START
S1302 $1401
S1210 Get next 3D data set Get next compressed
Prequantise System Fi(r.g,b); 0<j<M octree data set
END $1402
o Select codebook Decoder regenerates
vectors Vi; 0<i<N 3D table from octree
S$1203 S1403
1304 —] Create 3D array Decoder quantises
t[0..r)f0..2][0..b] data by table lookup
S1204 S1404
s1305 1 Find closest vector
for array coordinates END
S1205
+ S1405
s1306 -] Fillin array valu.es;
$1206 t[r][g][b] = Vi
/‘ S1308
$1307 ,
$1207 Are there Get differences
previous data between current and
arrays? previous array
$1208 SI310 —\ NO
- Generate array
Encode using lossy —]
octree representation update data
51209 SI3IL —~ \ $1309
Send to decoder for
post quantising data
S1312
Send codebook
vectors to decoder
S1313

END

Figure 30

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

26/46

Voice Command
START

User speaks S1502
command into |/
device microphone

S1504
_— S1503 / S1505 T\

S1501

Is voice Encoded samples
YES . .
command Speech captl{re and P> inserted into
enabled compression UserControl packets
NO *
UserControl Packets
/ sent to Voice
S1506 Command Server
Perform Automatic
| Speech Recognition
S1507 *
| Map transcribed
§1508 speech to command
set
S1512
CLIENT Ser\{er or
Client
S1515 SIS13 — SERVER S1510 1\ TNO
Return command to Forward command Return transcribed
client device to Remote server text string to client
Client executes Server executes Client inserts text
command command string into text field
\ 2 ¥ ¥\ L 4 /
siste ——— _

S1514 S1511

Voice Command
END

Figure 31

S1517

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

11003
tem
/ 11001 Compute Server s}s}eﬁ / 11002 Remote Control Sys
- Programming Oqueo Converte::/ 11004 11009 GUI [t)&isplay
GUI screen | 11014 Input
reading =P 00 Video
Coding
Audio tot4
reading e 11010
|~ 11005 / 11011

11006 \
/ Tx/Rx
Programmatic-GUI | | '<4 > Bu%fer - 00 Video

=~ control execution Decoding

+ P

Uitrathin client-to- 11012 —
GUI control

interpretation L Tx/Rx
Buffer ~4~—_ 11008

client response M~ 11007

11013

Figure 32

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

PCT/AU00/01296

11003
Remote Control System
11001 Compute Serverw | 11002 y
Programming Outp ideo Converter} 11004 11009 GUI Displa
/)ﬁ*f 1~ \\\~ A play
GUI screen | 11014 input
reading P 00 Video
Coding
11014
Audio
reading =Pt 11115
11005
” 11010 11011
L 11006] /
Han Tx/Rx
Programmatic-GUI [l\zce)tdfm & Ly 00 Video
== control execution S > Buffer Decoding
+ y
Ultrathin client-to- 11012 —
GUI control Tx/Rx
interpretation k_ Buffer[: 11116
\'\ 11008
client response . 11007

11013

Figure 33

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

11003
s 11001 Compute 59"’°’W 11002 Remote Control System
Programming Outpyt-¥ideo Converter// 11004 11009
L N GUI Display
GUI screen | | — 11014 &
—k reading P 00 Video Inout
7 Coding P
Audio Hou ~
—p reading =P
{11005 11010
11006 / 1011
| 11216 /
Programmatic-GUI |/ Tx/Rx
= control execution Local a —> 00 Video
Wireless Buffer Decoding Means
* Transmitte <

Ultrathin client-to- / /,,

GUI control 0% 11215

interpretation TxRx i

Buffer | 7 g
. 11008 /
client response \\ 11007
Z
oz

Figure 34

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

30/46
Client Device
PDA | 11302
/ Device d
11313 1
| 11303
11311 \
/ 11312
. [0 § E
11311 b 2 L 11304
b @
11306 —
| 11305
LAN/ D Digital
Camera

“Transmitter:

\

\
\ 11309 \ 11308 \ 11307

Figure 35

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

11410 -

PCT/AU00/01296
31/46
11407 11408 v 11402
77 —Z—
Video on Vic!eo ient Device
demand OObJE:Ct
Server veriay
means 11403
= N\,
Profile "
‘Promotion:
=Selection:
11409 : =g 11405
11404
Digital Video
[:, Camera [P Coding F;rtoue
. Means ore
Live News
Feed
Advertising
Object
11411 / 11412 / \ 11414 \ 11413

Figure 36

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

$1601

Instream
Advertising
START

51602
\| Request AV data
stream from

32/46

PCT/AU00/01296

51603 Server
[7
Server begins
data streaming to

client

$1604

End of Data
Stream reached?

$1807

51818

Queus new AV
data for streaming

51618 -/

Has User dlicked

Register for future

Did user
action queue new
AV data?

51608

Server selects suitable
dvertising object

=

Instrea
Advertising END

‘

based on user
{ocation or profile

!

Server Insert adv. object
into stream

¥

Client decodes and
renders objects

$1609

$1610

=~

S1611

Has user Advert .

stream finished? i

Client sends
notification

Replace main
video, adv. obj or
animate obj

Request new AV data
from server

(offline) follow-up

$1619 —/

Figure 37

Execute Rendering
parameter animation

\— 51620

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296
33/46
S1701
Interactive Video
Brochure START
S1702
Download Brochure -~
on to device
S1704
S1703
Player reads and — Player cﬁnues
begins playing first 1 .
scene in SKYg file reading SKY file 4
<
$1705 $1706 NO $1707
End of SKY L‘J_% Render all scene 'Has user
. clicked on an
objects and perform . S1710
. . object?
unconditional action P
osition to new
S1708 81709 scene
Wasita *
submit form
S1711 YES . button?
< Send form data to cisr:;i; Stz 0 1713
remote server YES li ,,y , S1714
online: Does Objedt\ yrg umpTo new
NO have JumpTo scene or
SI715 —_ hehaviow object
«— Store form data for o
later upload OBJECT
Replace target | 5171.7
object with new one
S1716 \ S1718
Does Objec Animat deri
have Animate nimate rendering |_y,|
parameters
NO
Si719
as Object
any other NO »
behavio
YES
S1720
Are all
conditions o P
met?
S1721
\ Perform specified >

action

Figure 38

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

PCT/AU00/01296

34/46

" Play Video
@rochure START

Introductory
Scene plays

L

[%1video A

N sigor S1802 7

$1804

Obiec‘ts movein
from right

['®] video B
|E Video C ‘

K

L 4

51805 —

UserClicks
Middle Object

$1805 —~—

Junp to and play
selected] scene

L

v

$1808 —1

U ser Clicks
Menu Object

v

(%] video A

1809 —]

Jump to main
scene, replay it

["®] vigeo B

L 4

videoC J |

$1811 —

User Clicks Top
Object

Junp to selectedd

L

§1812 —
scene
S1814 —— User Clicks

Menu Object

S1815

Jump to main
scene, replay it

S

L J

$1817

Middle object
dragged into
shopping basket

51818 —1 Set user variable
2 totrue
Video A
51819 — Replace empty m
basket object @ Video B
R videoc /|
User Clicks Full
$1821 ~ | -
B asket Object
! Checkout
Video A []
Jump to check
S1g22 out scene, select > video 8 (X
ohjects based on &
, 15 user vatiables VideoC []
slz4 ¥ | BUY | [RETURN]
Play Video User Clicks On
Brochure EHD Buy Object
1837 Thank You
Transaction sent Juny to Final > Your transaction
to server ¢ Scene g is complete.
518%
Figure 39

SUBSTITUTE SHEET (Rule 26) - RO/AU

S18m

S1309

51310

S1813

51820

51823

L)

WO 01/3149

7

S1901

Server calls remote
wireless client

Client answers
automatically

Client establishes
S1907 / PUSH connection

v

Server streams data
$1909 / packets to client

35/46

Mode

$1903

Wireless Streaming
Session START

ull or Push

PCT/AU00/01296

User enters URL or [~__ S1904
dials phone number

Connection request . $1906
sent to remote server

v

Server establishes
PULL connection T~ S1908

Server streams data

Client stores Rxed

S1911 / data into memory

S1914 /

Client indicator set
to inform user of
waiting data

v

s1917 — |

Server automatically
ends connection and

disconnects call

data to

Any more

packets to client T 51910

Client decodes v1d‘eo ~ 51013
data and renders it

User manually ends
call from client \ 81916

Wireless streaming

Figure 40

\
session END 51918

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

36/46

PCT/AU00/01296

Billing
Info.

>
Stored
Video

AN

11510 11511 //

Client Device

11502

11503 ____

11505

Tx/Rx

Buffer |
/ Local
2 / L Wireless
Transmitter
11504 1.

I

~ & lm"‘“‘”@f@}i@éﬁ_,
= Decoding:Means=

Figure 41

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

37/46

S2001

Wireless Streaming
Player START

User enters URL or
52002 dials phone number

Software initiates
$2003 < network connection
with wireless netwk

v

Software makes data
$2004 —| streaming request

52006

Has user

$2005 requested call

Software initiates Place incoming data 52008
82007 —| call disconnect with packet in buffer
wireless network
* ' " | Check data packet - S2010
Free all allocated for errors, sequence
$2009 — memory and synchronisation
S2012 §2013

Data packe

received OK? Send status message

to remote server

Wireless streaming
Player END

S2011 —

Pass d K Buffer decoded Render decoded
ass data packet 10 Lgy| fames in memory = frames to output
software decoder for rendering
$2014 $2015 $2016 /
Figure 42

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296
38/46
Monitoring Device |- 11602 11603 | Client Device
D Video ~Video Coding
Camera Means 11608 GUI Displa
neos / TR AN Inout
11605 Buffer npu
deo | {Control[€ [= 11609 AN
] St Means
11606] L0 \ \ *
/ 11611 Tx/Rx :
A —
11607 Buffer > D', c(c))fi)' Wﬁo
(] I eans -
11610 / SRR 9

Figure 43

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

39/46
11703 11704
‘Source |] 7/ Network | "'i;i&m;};i;{ """"""""" '
¢ Operator A B

11706 -
Streaming

Media K\J\ T

Server

Greeting
Card Server

N
—
z
g

Intemet
connected
Personal -‘—V
Computer 5 Template
/ : Library | tofeoafeeaaans '
11712
11707 11708

11705

Figure 44

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

S2101

ideo Greeting Card
/Email START

40/46

2104~

Select template

video from library

$2106

User wants o
customise

$2109 ~_

Users enter
destination phone
number / address

S2110 ———

ASP compresses
video and stores it
for forwarding

S2111

ideo Greeting Card
/Email END

PCT/AU00/01296

Users capture live |— 52103
video to a file
upload v1dt?o t9 | s2105
network application
service provider
— 82107

Select object from
template library

ASP inserts object
into video data

— S52108

Figure 45

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

41/46
BIFS Object Descriptors Elementary Data
01a 01b Streams
01c
BIFS .
od 1d /Vldco stream 1
- streamref | |2 2

[l T I E = Video stream 2
- streamref2 ToTETTT N /

'\—Jéé

1

Figure 46

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

42/46
Encoder 50 Video Decoder 38
24 bit | S — P a— |
colour ector ctree Pl eal Time : .
data ™ P Quantise [Compression | =TT Quantisation —> 8d:tl;c(oolg:)r
(02a) | (02b) (02c) P (02d) 5
T B T 2abi
! L 5 colour data
SRS S — = " 02a)
Figure 47

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

43/46

//”’O;ject Library Data h

LibID | Version | Persist [Access | Unique State | Compressed
75a 75b Flag 75¢ {Flags 75d| ID 75e 75f |object data 52

LibID | Version | Persist | Access | Unique State | Compressed
75a 75b Flag 75¢ | Flags 75d| ID 75e 75f |object data 52

LibID | Version | Persist [Access | Unique State | Compressed

75a 75b Flag 75c |Flags 75d| ID 75e 75f |object data 52
Object Library Manager
75h
T \{ ? v

Object Compressed Library Query

Library Object Data Results
Control 58 52 751

Figure 48

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497

44/46

§2201
Video Frame
Decode START

read layer identifier

$2202

A _

PCT/AU00/01296

§2203

T / $2204

T / 52208 ?

$ this colou

map data? Get number of

colours to update

S thisend O
data
identifier2

YES

Video Frame
Decode END

Figure 49

this motio .
vector data I;etad 8r:10t10n vect:)r Decode quadtree
layer? ata & compensate
$2205
NO / / $2206 / $2207
s this quad™ —
tree layer data 2 Initialise FIFO R.e'fu.i tree depth and
initialise quadrant
$2209
S2211
/ S2210 /

Are there
more colours
0 update?

S2212
/

Get colour map
index value

+ , su3

Read colour
component values

YES

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

45/46

Decode Quad-tree S2301
START
/ $2302 / $2303
e we at tl YE Read leaf val
bottom tree cad leat value
level?
NO - $2307
Readvl:l)S: type Read le:;f colour Update image pixel
$2308 value colour value
Is thisa — 0 52310 L o
0 Initialise Decode quad Initalise Decode quad Initialise Decode quad
parent node? —> .
tree top left quadrant tree top right quadrant tree bottom left quadrant

/* S2312

NQ
Read leaf value |~ §2313

Initialise Decode quad tre
bottom right quadrant

2315 2316

Read leaf colour p| Set current image quadrant >
value to given leaf colour value

transparent?

S2317

Decode Quad-tree
END

Figure 50

SUBSTITUTE SHEET (Rule 26) - RO/AU

WO 01/31497 PCT/AU00/01296

46/46
$2401
Read Leaf Colour
START
Read colour present §2402
in FIFO flag
S2403 S2404 S$2405
4 / /
Is colour .
. Read colour value Store colour value in
stored in from data st ’ FIFO
FIFO(’ rom data stream -
$2406 $2407 $2408
YES /
Read FIFO index > Get colour value Read Leaf Colour
from data stream from FIFO location END
Figure 51

SUBSTITUTE SHEET (Rule 26) - RO/AU

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU00/01296

A. CLASSIFICATION OF SUBJECT MATTER

Int.CL.> GO6F 17/30, HO4L 12/56, HO4N 7/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GLOBAL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

INTERNET

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

see extra sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US 5,862,325-A-(Reed et al) 19 January 1999
A Column 44 line 13 to column 45,line 10 1-10,13,25-36,69-
136,145-148,201,244-
246
A Column 39,line 4 to column 40, line 41 : 14-24
US 5,586,235-A~(Kauffman) 17 December 1996
X Whole document 13
A Whole document 14-24,200
"Delivering Object-Based Audio-Visual Services"; Hari Kalva et al, IEEE
Transactions on Consumer Electronics, Vol. 45, No. 4, November 1999.
A Pages 1108-1111. 1-10,13-36,69-136,
145-148, 183-186,
187,

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents: "T" later document published after the international filing date or
"A" document defining the general state of the art which is priority date and not in conflict with the application but cited to
not considered to be of particular relevance understand the principle or theory underlying the invention
"E" carlier application or patent but published on or after "X" document of particular relevance; the claimed invention cannot
the international filing date be considered novel or cannot be considered to involve an
"L document which may throw doubts on priority claim(s) inventive step when the document is taken alone
or which is cited to establish the publication date of "Y" document of particular relevance; the claimed invention cannot
another citation or other special reason (as specified) be considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition combined with one or more other such documents, such
or other means combination being obvious to a person skilled in the art
“P" document published prior to the international filing date "&" document member of the same patent family
but later than the priority date claimed
Date of the actual completion of the international search Date of mailing of the interpational search report
9§ Tebawary 260/
Name and mailing address of the ISA/AU Authorized officer 14
AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au JAMES WILLIAMS
Facsimile No. (02) 6285 3929 Telephone No : (02) 6283 2599

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU00/01296
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
A Pages 1108-1111. 188, 193,
200-246,
248-252
Object -Oriented Communications Structures for Multimedia Data Transport”; K.
Ravindran et al, IEEE Journal on selected areas in communications,,Vol. 14,
No.7,September 1996
A Pages 1360-1375 1-10,13-36,
69-136,145-
148, 183-186,
187, 188,
193, 200-246,
248-252
WO 97/36376 (VXTREME INC) 2 October 1997
X Whole document 11,12
EP 0 240 948 (CSELT Centro Studie e Laboatori Telecommunications S.p.a.)
14 October 1987 11,12
X Whole document
Derwent Abstract Accession No. 98-473994/41, Class W04
X JP 10200924-A- (MATSUSHITA DENKI SANGYO KK) 31 July 1998 39-47,54-62
WO 00/26857 (PIXAR ANIMATION STUDIOS) 11 May 2000
P,A Whole document 39-47,54-62
AU 87100/98-A-(708489-B)(Canon Kabushiki Kaisha) 15 April 1999
X Page 18, line 15 to page 19, line 7 48-50,63-65
A " 1" [" 51,66,194-
199
"Picture Representation Using Quad Trees ", P. Carbonetto
http://www.cs.mcgill.ca/~pcarbo/cs251/ ;last update 4 March 1999
X whole document 48-50,63-65
A " " 51,66,194-
, 199
US 4,752,893-A-(Guttag et al.) 21 June 1988
X whole document 52,53,67,68
EP 0 720 347 -A2-(KABUSHIKI KAISHA TOSHIBA) 3 July 1996
X whole document 52,53,67,68
US 5,442,749-A-(Northcutt et al) 15 August 1995
X whole document 137-139,141-
143
Form PCT/ISA/210 (continuation of Box C) (July 1998) 7/13

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU00/01296
C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
US 5,442,749-A-(Northcutt et al) 15 August 1995
A whole document 140,144
US 6,167,442-A-(Sutherland et al) 26 December 2000
P,X whole document 137-144
WO 99/10801-A1-(APEX PC SOLUTIONS Inc) 4 March 1999
X page 3 ,line 19 to page 9, line 5. 137-139,141-
143
A " n LU " 140’144
US 4,725,956-A-(Jenkins) 16 February 1988
X whole document 149-156
A " " 37,38
US 5,226,090-A-(Kimura) 6 July 1993
X whole document 149-156
A " " 37,38
WO 00/23985-A1-(TELEFONAKTIEBOLAGET LM ERICSSON) 27 April 2000
P,X whole document 149-156,37,38
GB 2 149 172-A-(THE MARCONI COMPANY LIMITED) 5 June 1985
X whole document 149-156
A " " 37,38
EP 0 858 224-A2-(MATSUSHITA ELECTRIC INDUSTRIAL Co.Ltd) 12 August
1998
X whole document 189-190
WO 99/13661 -A1-(MOTOROLA, INC.) 18 March 1999
X whole document 189-190
EP 0 849 920-A1-(Lucent Technologies Inc.) 24 June 1998
X whole document 189-190
GB 2 329 542-A-(Sony United Kingdom Limited) 24 March 1999
X whole document 169,170, 172,
176,177, 179
A whole document 171-175, 178,
180-182
WO 97/41692-A1-(TVX Inc) 6 November 1997
X page 10,line 25 to page 14, line 6 and fig 1. 169, 170, 172,
176,177,179
A page 10,line 25 to page 14, line 6 and fig 1. 171-175, 178,
180-182

Form PCT/ISA/210 (continuation of Box C (2)) (July 1998)

8/13

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU00/01296
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
EP 0 764 927-A1-(CP Synergie) 26 March 1997
X whole document 169,170, 172
176,177,179
A whole document 171-175, 178,
180-182
US 5,710,887-A-(Chelliah et al) 20 January 1998
XY whole document 157-168
US 4,567,359-A-(Lockwood) 28 January 1986
XY whole document 157-168
WO 97/26610-A2-(Bland Partnership) 24 July 1997
Y whole document 157-168
Y TP 68 806 Derwent Accession No. 88-189906/27(Anonymous) 25 June 1988 247
EP 0784 394-A1-(AT&T Corp.) 16 July 1997
Y whole document 247
WO 94/23394 (MOTOROLA, INC.) 13 October 1994
Y whole document 247
WO 96/08095 (VIRTEX COMMUNICATIONS, INC.) 4 March 1999
X whole document with particular reference to page 3, line 11 to line 17 191-192
US 5,752,159-A-(Faust et al) 12 May 1998
A whole document 191-192
FR 2 726 146-A1-(Cohen et al) 26 April 1996
X whole document 191
A " " 192

Form PCT/ISA/210 (continuation of Box C(3)) (July 1998)

9/9

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU00/01296

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
reasons:

1. I:l Claims Nos :

because they relate to subject matter not required to be searched by this Authority, namely:

2. [l Claims Nos :

because they relate to parts of the international application that do not comply with the prescribed requirements to
such an extent that no meaningful international search can be carried out, specifically:

3. EI Claims Nos :

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
6.4(a)

Box I Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See additional sheet

As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims

As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite
payment of any additional fee.

As only some of the required additional search fees were timely paid by the applicant, this international search
report covers only those claims for which fees were paid, specifically claims Nos.:

10]

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search
report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest I:I The additional search fees were accompanied by the applicant's protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998) 513

INTERNATIONAL SEARCH REPORT

PCT/AU00/01296

International application No.

Supplemental Box
(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: II
I. Method for generating an object oriented interactive multimedia file and data streaming.
Claims 1-10,13-38,69-136,145-148,183-188,193,200-246,248-252
II. Mapping method in real time from a non-stationary 3-D data set into a single dimension.
Claims 11,12
IMI. An image processing method using a clour map and relative motion.
Claims 39-47,54-62
IV. A quadtree encoding method and system.
Claims 48-51,63-66,194-199
V. Animage encoding system for representing colours.
Claims 52,53,67,68
VI. A method for remotely controlling a computer
Claims 137-144
VII. A method for controlling a computer device.
Claims 149-168
VIIL A method of performing transmission
Claims 157-158
IX. A method of providing video.
Claims 169-182
X. A method of delivering multimedia content wherein content is scheduled for delivery.
Claims 189,190
XI. Aninteractive system wherein stored information can be viewed offline.
Claims 191,192

XII. A method of creating and sending electronic greeting cards.
Claim247.

Form PCT/ISA/210 (extra sheet)(July 1998)

10/10

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU00/01296

Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: Fields Searched

14

WPAT: (Stream+ OR flow OR continuous) AND (multimedia OR audio OR video OR music OR graphic+) AND
object AND oriented; INSPEC: same AND interact
WPAT: Map+ AND realtime AND (motion OR non-station+) .
WPAT: (image OR vi.deo OR picture) and (colo+ map+) OR (colo+t bit+)
WPAT: (image OR video OR picture) AND quadtree
WPAT: (image OR video OR picture) AND (colo+ OR tint+) AND (bit? OR byte? OR word?) AND
(Represent+00 OR cod+) AND (Flag)
VI. WPAT: (image OR video OR picture) AND (client OR server) AND (wireless OR remote OR slave OR radio)
AND (transmit+ OR receiv+ OR transmiss+) AND (comput+ OR generat+ OR creat+) AND
(display OR control+)
VII. WPAT: (audio OR speech+) AND (+cod+) AND (translat+ OR interpret+) AND comput+
VIII. WPAT: (advert+ OR sell+ OR buy+ OR trad+) AND (wireless OR pager OR mobile+ OR PDA OR handheld)
AND display AND cost
IX. WPAT: (monitor+ OR detect+ OR react+ OR respond+) AND (traffic OR Motion OR alarm OR event OR
burgl+) AND (IC G08B OR G08G OR H04N) AND surv+ AND video+ AND (area+ OR zone+ OR
location+)

X. WPAT: (wireless OR remote OR slave OR radio OR TV OR television) AND schedul+ AND (request OR

<2 g=H

order OR on demand OR pay for)

XI. WPAT: (inform+ OR data) AND)stor+ OR archiv+) AND (irans+ OR send+ OR forward+) AND (wireless OR
radio OR /IC H04Q OR H04B OR H04L) AND (iteract+ OR online OR offline OR multimed+ OR
object)

XII. WPAT: (greet+ OR christ+ OR birth+ OR sick+ OR gradu+ OR confirm+ OR marriage OR engagement) AND
card AND (video OR electronic) AND (queue+ OR schedul+ OR custom+ OR insert+ OR edit+ OR
creat+ OR make OR develop+ OR templat+ OR standard OR form+)

Form PCT/ISA/210 (extra sheet (2))(July 1998) 11/13

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/AU00/01296

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars

which are merely given for the purpose of information.

Patent Document Cited in Search Patent Family Member
Report

us 5862325 AU 21935/97 CA 2247498 EP 954782
uUs 6044205 WO 9732251 Us 6088717

AU 87100/98 P 11266161

US 4752893 NONE

Us 5442749 EP 529864 JP 6236330

UsS 6167442 AU 59788/98 CA 2197822 WO 9837487
CA 2173651 Us 5903277

wO 9910801 AU 88264/98

UsS 4725956 NONE

US 5226090 DE 4029717 JP 3202899 JP 3203486

GB 2149172 DE 3438333 FR 2554267 JpP 60173595

WO 9913661 UsS 5970777 UsS 5697131

GB 2329542 JP 11168713 Us 6069653

wO 9741692 AU 66931/96 AU 72004/96 WO 9741686
UsS 5926210

US 5710887 NONE

us 4567359 CA 1236216 UsS 5309355 US 5576951

woO 9726610 AU 23037/97 EP 875036 US 5826240
us 6125356 AU 94835/98 WO 9914688

wO 9423394 AU 64173/94 UsS 5426594

WO 9608095 AU 35489/95 BR 9508902 CA 2199360
EP 786180 Us 5694334

us 5752159 NONE

FR 2726146 NONE

END OF ANNEX

Form PCT/ISA/210 (citation family annex) (July 1998)

12/13

INTERNATIONAL SEARCH REPORT ‘

International application No.

Information on patent family members PCT/AU00/01296
Patent Document Cited in Search Patent Family Member
Report
EP 240948 CA 1278867 DK 1692/87 IT 1190565
JP 62239728 uUs 4807298
EP 720347 AU 43555/96 BR 9506916 CA 2184247
CN 1146266 F1 963342 JP 8242448
JP 10098685 JP 10098721 NO 963566
uUs 5721720 uUs 5845021 us 5995667
UsS 6009202 UsS 6011867 US 6016363
UsS 6016364 us 6018594 UsS 6021226
uUs 6044175 uUs 6047086 US 6081208
wO 9620557
EP 858224 CN 1193243 JP 10271483 UsS 6130720
EP 849920 CA 2217422 JP 10198610 Us 5999526
EP 764927 FR 2739207
EP 784394 CA 2191373 JP 9190480
END OF ANNEX

Form PCT/ISA/210 (citation family annex (2))(July 1998)

13/13

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

