097059291 A1 |0 VR Y00 0

—
o

O

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
7 May 2009 (07.05.2009)

) IO O O OO O

(10) International Publication Number

WO 2009/059291 Al

(51) International Patent Classification:
GOG6F 15/177 (2006.01)

(21) International Application Number:
PCT/US2008/082240

(22) International Filing Date:
3 November 2008 (03.11.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/982,675 2 November 2007 (02.11.2007) US
(71) Applicant (for all designated States except US): TEL-
CORDIA TECHNOLOGIES, INC. [US/US]; One Tel-

cordia Drive 5G116, Piscataway, NJ 08854-4157 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COCHINWALA,
Munir [US/US]; 154 South Alward Avenue, Basking
Ridge, NJ 07920 (US). MICALLEF, Josephine [US/US];
78 Midland Boulevard, Maplewood, NJ 07040 (US).
WULLERT, John, R. II [US/US]; 1106 Mayflower
Court, Martinsville, NJ 08836 (US).

(74) Agents: FEIG, Philip, J. et al.; Telcordia Technologies,
Inc., One Telcordia Drive 5G116, Piscataway, NJ 08854-
4157 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,

CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,

1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,

RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,

™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: METHOD AND SYSTEM FOR POLICY ENABLED PROGRAMMING

FIG. 1

POLICY ENGINE 1

/

POLICY ENABLED
APPLICATION

R

BREAK POINT EREAC POINT

CONFIGLRATION
TABLE

(et s L

l
L

\ |
APPLICATION SERVER

N

POLICY ENGINE n

(57) Abstract: A system and method for allowing external execution-time adaptation of application behavior of an application in
a telecommunication system without modification to the application code comprises an application having at least one break point
and residing on an application server, at least one identifiable decision engine, and a listing of break points that has for each break
point at least one identifier of the decision engine, such that at one of the break points, the application accesses the listing of break
points, invokes the listed instances of the decision engine corresponding to the break point, and adapts application behavior based
on the decision engine, hi addition, each entry in the listing of break points can have a sequence number so that if two entries for the
same break point have equal sequence numbers, the decision engines identified in these entries can be invoked in parallel.

10

15

20

WO 2009/059291 PCT/US2008/082240

METHOD AND SYSTEM FOR POLICY ENABLED PROGRAMMING

FIEED OF THE INVENTION

The present invention relates generally to programming of communications,

information and entertainment services.

BACKGROUND OF THE INVENTION

Software applications written in a traditional manner have all the functionality
defined within application code. Once such applications are deployed, the providers
offering the applications have little leeway to affect the behavior of the application. The
application may have a few parameters thaf can be adjusted, but generally the behavior
of the application is fixed unless the application code 1s modified.

Service providers wishing to address dynamic markets need the flexibility to
offer new services rapidly. The cycle time associated with modifying application code
can slow the process down unacceptably. Therefore, there is a need for application code
in which the behavior can be modified without waiting for a software release.

Stmilar motivations were involved in the development of the Intelligent Network
and Advanced Intelligent Network concepts for constructing telephone network services.
It was possible to build new services by changing the code within the telephone switch,
but this was rather slow and cumbersome. The approach chosen was to precisely define
the call model that specified the state of the telephone switch software in establishing a
connection between two parties. At various points in the call model, the telephone
switch could be configured to query an external service control point for instructions on
how to proceed. New service functionality could be produced by changing the behavior
of the logic in the service control point without making changes to the sofiware within

the switching system itself.

10

15

20

25

WO 2009/059291 PCT/US2008/082240

This approach is highly dependent on the common call model that specifies the
state of the switching system and the expected behavior. Such a call model could be
defined because the process of establishing calls is consistent from one system to
another. Definition and agreement of the call model took a substantial amount of time,
which was tolerable because the processing of telephone calls was relatively static over
time. In environments where providers are offering new and varied services on a
frequent basis, it Wﬂl not be possible to define such a detailéd model for the internal
states of the service logic. While this common call model technique has desirable
characteristics, it cannot be applied directly to the processing of emerging, new and
varied services.

Telecommunications eguipment vendors and operatoré addressed a similar
problem in adding features to call processing systems. The agreed upon solution, the
basis for the Advanced Intelligent Network (AIN), defines another common call model
as the basis for processing the establishment of telephone calls. This common call model
provides a pre-defined set of events where external systems can be queried for decisions.
U.S. Patent 5,940,487, “Programmable call processing system and method”, Bunch et al.,
for example, illustrates this approach on a distributed telecommunication switching
system éoupled to AIN. This separation of service _switching points (switches), which
process calls, and service control points, which process service logic, allows new calling
services to be defined without making changes to the software within the switch. This
approach worked well for controlling telephone calling in the circuit switched networks,
and was extended into next-generation packet-switched networks through the results of
industry forums such as the Parlay Group specifications and the Java Community
Process JAIN specification. The fact that there is a need for such standardization is

indicative of the limitations of this approach, in that it deals with a specific functionality

10

15

20

25

WO 2009/059291 PCT/US2008/082240

{call control) and requires advance agreement and/or standardization to function. Thus
this approach is appropriate for application functionality that is static over time.

.In U.S. Patent 6,970,901, “Device and method for swapping out a part of a
service logic program”, Moritz teaches a mechanism for distributing service logic across
multiple entities. Moritz specifically focuses on making use of the increasing
capabilities of intelligent terminal devices acting as client terminals, by distributing a
portion of the service logic to the client terminal. Moritz discloses methods for using
this distributed approach for determining charging related information. Distribution to
client devices can énable personalization, but does not easily enable modification of the
behavior of an overall service, because the change would have to be propagated to all of
the client terminal devices. Enabling distribution for a single topic, such as charging, is
simplified because the communication mechanism (the “charge ticket” in Moritz) can be
defined and coded in advance. Thus Moritz addresses the need for flexible service logic
programs, but in a very limited domain.

In U.S. Patent 6,967,957, “Architecture for the rapid creation of telephony
services in a next generation network™, Anjum et al. describe an object-oriented call
model, which “hides the detail of the underlying call-state management protocols and
hardware from applications”. Specifically, Anjum et al. describe a new call model that is
designed to be abstract enough to represent call control in both circuit-switched and
packet switched telephony networks. Such a call model is more flexible than the Java
Telephony Application Programming Interface (JTAPI) model on which it was based,
but still represents a single functionality. Thus this model 1s not applicable in the more
general case where the behaviors are not as well defined, or known clearly in advance.

The Policy Evaluation Enforcement Management (PEEM) effort within the Open

Mobile Alliance (OMA), as specified in the draft requirements document “Policy

10

I5

20

WO 2009/059291 PCT/US2008/082240

Evaluation, Enforcement and Management Architecture” (OMA-AD-

Policy Evaluation Enforcement Management-V1 0-200600625-D) describes an
architecture for policy-evaluation and execution as support for the OMA’s service
enablers. These enablers include functions such as group list management, messaging
and location. The architecture is designed to provide a common framework for these
enablers to query for a policy decision. Such a capability would be useful, although not
required, as a building block for the policy-enabled programming described here,
because it would simplify the process of mapping interfaces between systems. The
OMA work, however, does not specify how an enabler would determine when to query a
policy engine (the PEEM enabler), or which policy engine to query.

Another approach is that supported by workflow systems. In these systems,
which are often applied to complex order processing, the set of processing steps is
defined in textual fashion that is interpretted at run time, rather than compiled in the
manner of software code. This provides flexibility, in that the workflow can be modified
without changing the code of the workflow engine. However, the interpretation
operation is inefficient, leading to performance that is adequate for order processing but
generally insufficient for the execution of actual services.

Database systems provide yet another mechanism where triggers and stored
procedures can be invoked to execute logic, providing a great deal of flexibility.
However, the operations where the stored procedures can be exccuted exist only for
database operations of insert, delete, update and select on the- data in the database. The
problem with this approach is the restriction for database operations; the entire
specification is within the database system and not easily referenceable or modifiable

unless one navigates through the data and the associated triggers and stored procedures.

10

15

20

WO 2009/059291 PCT/US2008/082240

Hence, current processes are restricted to specific types of software applications,
e.g., call processing, and have required advanced agreement and/or standardization of the
application processing model before they could be used. Other current processes exist
only within middleware, such as databases or workflow systems, which limits their scope
and does not meet performance requirements for service execution.

Thus there is a need for a system capable of determining dynamically when and
where to query an external descision point, such as a policy engine. There is also a need
for a structured and efficient mechanism for configuring such dynamic queries,
characterized by breakpoints that can be configured to a controlled set of options.

BRIEF SUMMARY OF THE INVENTION

The present invention advantageously provides a design architecture and
methodology for building and deploying application software that allows the behavior of
the application to be adapted or configured during execution without making changes to
the application code. Reuse of a single software application multiple times for different
purposes by configuration or adaptation of the application is provided. Furthermore, the
inventive system and method enables rapid deployment of new service behaviors
because they can be delivered without the delays associated with the software
development cycle.

A system and method for allowing external execution-time adaptation of
application behavior of an application in a telecommunication system comprises an
application having at least one break point and residing on an application server, at least
one identifiable decision engine, and a listing of break points that has for each break
point at least one identifier of the decision engine, such that at one of the break points,

the application accesses the listing of break points, invokes the listed instances of the

10

15

20

25

WO 2009/059291 PCT/US2008/082240

decision engine corresponding to the break point, and édapts application behavior based
on the decision engine..

The listing of break points can be a file external to the application, and can
contain attribute mapping for each identifier and an action type for each identifier and, in

addition, can dynamically map the break point to the decision engine.

BRIEF DESCRIPTTION OF THE DRAWINGS

The invention is further described in the detailed description that follows, by
reference to the noted drawings by way of non-limiting illustrative embodiments of the
invention, in which like reference numerals represent similar parts throughout the
drawings. As should be understood, however, the invention is not limited to the precise
arrangements and instrumentalities shown. In the drawings:

Figure 1 is an architecture for policy-enabled program execution; and

Figure 2 is an break point configuration exemplary table; and

Figure 3 is a flow chart illustrating application behavior in processing entries in

the break point configuration table.

DETATLED DESCRIPTION

A system and method to allow external execution-time adaptation of application
behavior is presented. The key characteristics of this approach are that it provides
application developers with the performance associated with compiled code as well as
the flexibility to define the decision points and possible actions within the application
flow, allows for dynamic mapping of those decision points to external evaluation

engines, and enables-application behaviors to be configured as the applicaton is being

6

10

5

20

25

WO 2009/059291 _ PCT/US2008/082240

deployed or even while the application is executing, rather that only during the design
and development of the application.

There are two specific mechanisms that support such a system and method. The .
first is an external table such as a break point configuration table. The application reads
this table when it reaches a defined break point during execution to determine what
actions to take. The entries in this table can be defined separately from the application,

and even changed while the application is running, based on knowledge of what

attributes or variables the application has defined at a given break point. The second
adaptation method is contained in the external systems. The logic, policies and/or rules
within these systems will create responses that will influence the subsequent flow and
behavior of the application. With these two mechanisms, the behavior of applications
can be significantly modified without having to re-write or modify the application code.
Figure 1 illustrates one embodiment of the inventive system. A policy enabled
application 10 resides in an application server 12 in a telecommunication system (not
shown). The policy enabled application 10 is constructed with a specified set of
configurable break points 14 within the flow of the application logic. When the

execution of the application code reaches one of these break points 14, the application

code looks to a listing of break point configurations or an external table 16, suchas a
break point configuration table, containing data including action types 18. By evaluating
this data, the application 10 can determine the action to be taken at the break point 14. Tn
order to manage the complexity of the table, the number of possible action types can be
limited. The general action would be for the application to transmit data to an external
system 20 and use the resulting response to determine the application’s subsequent
actions. These subsequent actions are executed as part of the application 10, as defined

within its compiled code, with the associated performance. The external system 20 could

7

10

15

20

25

WO 2009/059291 PCT/US2008/082240

be a decision engine, a policy engine or a policy decision point that would accept input
from the application 10, apply a defined set of one or more policies, and provide a
response. The application’s behavior is altered by modifying one or more of the policies,
instead of by making changes to the application’s code. In an alternative embodiment, a
jump table (not shown) can be implemented within the application 10. In such a case,
the application beﬁavior could be changed by modifying the processing of the external
decision point, or by modifying and re-compiling the application 10.

Note that the external system 20 could also be a workflow system, database
system or even another software application.. The fact that the mapping can be changed
to point to different software applications provides flexibility even if the decision points
are hard coded in the policy enabled application 10.

There are many ways in which a policy enabled application 10 may react to the
response it teceives from an external policy engine 20. Building an application 10 that
gives an external system 20 complete flexibility in determining its subsequent behavior
would be extremely difficult and error prone. Through appropriate limitations on the
range of action types or options 18, however, the complexity can be kept at a manageable
level. Specifically, the application 10 could be designed to support a limited number of
action types 18 based on the response provided by the external system 20. Examples of
these action types 18 could include a fork or two-way decision point action, a null action,
and a variable replacement action.

In the case of a two-way decision action 18, the application 10 sends a message
to an external system 20 and the external system provides a binary, i.e. “yes/no” or
“true/false”, response. The application 10 then follows one pre-defined path if the
response is a “yes” and another path if the response is a “no”. While the application 10

performsronly one of two options in this decision action 18, the overall behavior can vary

10

15

20

25

WO 2009/059291 PCT/US2008/082240

widely based on the policies or processes used by the external systems 20 to make
decisions. This can be extended to multi-way decision actions where multiple paths are
possible.

As an example, an application 10 designed to deliver or transmit a digital content
item to a user could include a break point 14 just before transmitting the content. In
response to this break point 14, the application 10 supplies information identifying both
the user and the list of content items in a query to an external policy engine 28. The
application 10 is programmed to proceed with the transmission of the content if the
response is a “yes”, and to cancel the transmission if the response is a “no”. In one
situation, the external system 20 could be a real-time charging engine that determines if
the user has sufficient balance to pay for the items. If the user’s balance is sufficient, the
external system 20 debits the user account and returns a “yes”. If the balance is
insufficient, the external system 20 returns a “no”. In another situation, the external
system 20 can be an authorization system that only allows content to be downloaded to
users within a certain physical location, for example, as a corporate security measure, or
as a means for restaurants to attract visitors. If the user is within the location bounds
specified for the content items, the external system 20 returns a “yes” and if not, the
system 20 returns a “no”. Hence, two very different services employing distinct external
systems 20 have made use of the same content delivery policy enabled application 10.

In the case of a null action 18, the application 10 simply performs the break point
14 and continues execution. The null action is appropriate where the application simply
needs to inform an external system 20 of some event. In the content download service
example described above, the application 10 could be instructed to execute a break point
14 comprising a null action 18 just prior to transmitting the content. Executing the break

point 14 would cause an external system 20 to record the download event, including the

9

10

15

20

25

WO 2009/059291 PCT/US2008/082240

list of content items, so that the users with post paid accounts could be charged for the
content during the next billing cycle.

In the case of a variable replacement action 18, the application 10 uSes_ the
response from the external system 20 to alter the value of a variable being processed by
the application 10. In the content download service example above, the application 10
could be instructed to execufe a break point 14 comprising a variable replacement action
18 just prior to transmitting the content. Performing the break point 14 could cause an
external system 20 to filter the list of content items, removing those whose rating
information indicates that they are not acceﬁtable for the user, perhaps based on the age
or preferences of the identified user. The external system 20 then returns the filtered list
to the application 10 which replaces the initial list of content items with the filtered list,
and proceeds with the download.

Other action types 18 could be defined, providing greater flexibility in the control
of the application flow. Note that it is desirable to limit the number of action types or
options 18 in order to avoid undue complexity in constructing the application 10.

The policy-enabled application 10 would execute within an application server 12
or service delivery platform, and would have local access to the break point
configuration table 16 that would specify the application behavior associated with each
break point 14, Figure 2 shows an ecxemplary table 16 which could be populated by a
provisioning system responsible for deploying the product/service. The table 16
comprises not only the action types 18, discussed above, but also the folloWing fields,
which are described in more detail below: an address 22 for the pblicy engine or external
system 20, a sequence number 24 and attribute mapping 26. The policy-enabled
application 10 would interact with one or more external policy decision points. The

configuration table 16 links the points within the program flow where interactions can be

10

WO 2009/059291 PCT/US2008/082240

performed with the specific decision point to interact with and the manner in which to
interact (such as the attributes to transmit).

While the discussion here describes policy decision points, there is nothing in the
mechanisms defined here that limits the external systems 20. to being policy evaluators.

5 Any external system 20 with a defined invocation interface could be used in place of'a
policy decision point.

A simplified sample configuration table 16 is shown in Table 1. In this case,
there are two break points entries associated with Break Point I 14. For the first entry,
the application 10 must perform attribute mapping 26 by sending attributes A, B and C to

10 the PolicyEngine! via the system address 22 in the table 16, and use the response to
replace the value of attribute C. For the second entry, the application 10 must send
attributes 26 A, C and D to PolicyEnginel via its address 22 in the table 16, and perform
a decision action 18 based on the “yes/no” response. The sequence number 24 in the
sequence column indicates the order in which the invocations associated with a single

15 break point 14 are executed. Invocations that share a sequence number 24 could be
executed in parallel. In cases where no sequence numbers 24 are used, the application 10
could execute the queries in the order found in the file.

Table 1. Break Point Configuration Table

Break Point | Break Point | Sequence | System Address Attribute Response
ID Type Mapping Replacement
I Variable 1 PolicyEnginel A,B,C C
Replacement
I Fork |2 PolicyEnginel A CD
2 Null 1 PolicyEngine2 XY, Z
20 Figure 3 contains a flow chart that illustrates the behavior of the application 10

shown in Figure 1. Referring to the left side of the figure, upon initiation at step S1, the
11

10

15

20

25

WO 2009/059291 PCT/US2008/082240

application 10 performs its designed activities through Stage 1. At step S2, the
application reaches Break Point 1 14. At this point, the application 10 looks at the break
point configuration table 16 to see if there are any entries associated with Break Point 1
14.

The right side of Figure 3 illustrates the flow that is used within the Break Point 1
module to process these entries. Upon entry at step S3, the application 10 invokes the
external system 20 at step S4, using the attribute mappings 26 defined in the table 16.
When the external system 20 responds, the application 10 determines, at step S5, the type
of break point or actioﬁ type 18 being processed. If the action break point type 18 is
Variable Replacement, the application 10, at step S6, performs the repl.acement as
defined in the configuration table 16 and proceeds to step S7 to test if there are more
break point entries 14 to be processed. 1f the break point type 18 is null, the application
10 need not wait for a response and proceeds directly to testing, at step S7, if more break
point entries 14 need to be processed. If the break point type 18 is fork, the application
10 tests the response from the external system 20 at step S8. If the external system 20
response is “‘yes”, the application 10 proceeds to test for more break point entries 14 at
step S7. If the external system response is a “no”, the application breaks out of
processing any further break point entries 14 and returns to the main application flow
with a “No” exit condition at step S9. When there are no more break point entries 14 to
be processed, the application 10 returns to the main application flow with a “Yes” exit
condition at step S10.

Handling of exceptions and error conditions in the interactions with the external
systems 20 is not shown. The application 10 could be programmed with various
exception handling behaviors to deal with returned errors or time-outs with no response.

Alternatively, the table could be extended to indicate the actions to be taken in the case

12

10

15

20

25

WO 2009/059291 : PCT/US2008/082240

of certain handled exceptions. The manner in which the application 10 deals with these
situations is not critical to this mechanism.

A key aspect of this dynamic programming approach is that the application break
points 14 can be mapped dynamically to decision point systems 20 and to specific
policies within them. There are numerous methods in which this mapping could be
performed. Perhaps the most straightforward is a manual approach, where human
analysts create the break point configuration table 16, define the policies that correspond
to each break point 14, load the configuration table 16 into the application server 12 and
load the policies into the decision point. A greater degree of automation and validation
in this mapping process is possible if the application break points 14 and policies can be
made visible in a structured fashion.

A design environment could import the structured representation of all the break
points 14 in an application 10 selected by the user. The environment could retrieve
policies from decision points known to it. When the human user selects a break point 14,
a brief representation of which is shown in Table 2, the environment could retrieve and
present only those policies that are valid. For example, if the break point 14 only
allowed forking operations or two-way decision actions ‘18, only those policies that
return yes/no or true/false values would be appropriate. After selecting a policy, the user
would map the variables available from the software application 20 at the chosen break
point 14 to those specified in the interface to the policy, as shown in Table 3. The
environment could then validate the mappings, for example ensuring that the types, e.g.,
string, integer, etc., match. After all the mappings are successfully defined in this
manner, the environment could create the corresponding break point configuration table
16 and install it on the application server 12.

Table 2. Abbreviated Break Point Representation Structure

13

WO 2009/059291 PCT/US2008/082240

Break Poin¢

Name

Description

Allowed Types (Null, Variable Replacement, Fork)

Variables available (name and type)

Table 3. Abbreviated Policy Invocation Interface Structure

Policy

Name

Description

Input [variablel (name/type), variable2...]

Output [variable] (name/type), variable2...]

While the present invention has been described in particular embodiments, it
5 should be appreciated that the present invention should not be construed as limited by

such embodiments, but rather construed according to the claims below.

14

10

15

20

WO 2009/059291 PCT/US2008/082240

CLAIMS
What is claimed is:

1. A system for allowing external execution-time adaptation of application behavior of
an application in a telecommunication system, comprising:

an application residing on an application server, said application having at least
one break point;

at least one identifiable decision engine; and

a listing of break point configurations comprising at least one identifier of said
decision engines for each break point,

wherein at one of said break points, said application accesses said listing of break
point configurations, invokes the listed instances of said decision engines for said one
break point, and adapt$ application behavior based on said at least one decision engine.

2. The system according to claim 1, Wﬁerein said listing of break point
configurations is external to said application.

3. The system according to claim 1, wherein said listing of break point
configurations further comprises attribute mapping for each identifier and an action type .
for each identifier.

4. The system according to claim 1, wherein said listing of break point
configurations further comprises a sequence number associated with each entry in said
listing.

5. The system according to claim 1, wherein said listing of break point
configurations dynamically maps said break point to said decision engine.

6. The system according to claim 1, wherein if said sequence numbers for each

entry of said one break point are equal, invocation is done in parallel.

15

WO 2009/059291 PCT/US2008/082240

7. A method for allowing external execution-time adaptation of application
behavior of an application in a telecommunication system, said method comprising:

accessing a list of break point configurations at each of at least one break points
in an apphication, said table having at least onc identifier for a decision engine for each of

5 said at least one break points;

invoking all of the decision engines corresponding to the break point, and

adapting the application behavior based on the decision engine.

8 The method according to claim 7, wherein said listing of break point
configurations ié external to said application.

10 9. The method according to claim 7, wherein said listing of break point
configurations further comprises attribute mapping for each identifier and an action type
for each identifier.

10. The method according to claim 7, wherein said listing of break point
configurations further comprises a sequence number associated with each entry in said

15 listing.

11. The method according to claim 7, wherein said listing of break point
configurations dynamically maps said break point to said decision engine.
12. The method according to claim 7, wherein if said sequence numbers for each

entry of said one break point are equal, invoking is done in parallel.

20

16

PCT/US2008/082240

WO 2009/059291

1/3

U INIINT AJT70d

T INIONG AJ10d

¢t
aiii_1,,,,@;iiiii,_,,_A.._i_i_iig

81
)

_ ‘
" HIAHSS NOTLYIIlddv |

ﬁ

INIOd Xv34d

S3dAL NOTLIY

318yl
NOLLYHA9TANOD
INIOd Av3d

¥ 0318VNT AIT'10d

|
|
|
NOLLYIT TddY _
|
|
|

WO 2009/059291 PCT/US2008/082240

213

FIG. 2
! o -]
| |
| 15
| |
% BREAK POINT CONFIGURATION TABLE :
| |
!
|
| POLICY ENGINE ADDRESS — 2
|
|
| |
% SEQUENCE NUMBER 4
| |
l |
! |
| ACTION TYPE ~— 1
| |
| |
| |
% ATTRIBUTE MAPPING % :
| |
| !
| !
| |

- - . N

WO 2009/059291 PCT/US2008/082240

3/3
FIG. 3
(even Y
Y
INVOKE REMOTE |~ 34
SYSTEH

59

VARTABLE

BREAK POINT “_BEPLACEMENT

TYPE

SIND smaee ¢

NULL

REPLACE
VARIABLES

ST BREAK POINT 1

b

EXIT {NO)

MORE BREAK

33 POINTS?

STAGE 2

BREAK POINT 2

EXIT (YES)

310

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/82240

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/177 (2008.04)
USPC - 709/220

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 709/220

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 709/203, 220, 223, 224, 230; 370/254, 255, 257 keyword limited - see search terms below

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWest (PGPB,USPT,USOC,EPAB,JPAB), Google Scholar, Google Patent

Search terms: telecommunication, telecom, application, programming, dynamic, adaptation, configurable, policy, decision, breakpoint,
table, driven, interpretive, list, command, action, state, machine, external, parameter, attribute, primitive, element etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document, with indication, where appropriate, of the relevant passages

entire document

Category* Relevant to claim No.
X S 5,724,406 A (JUSTER) 03 March 1998 (03.03.1998), 1-12
col 2, In 3-43, col 2, In 62 to col 3, In 2, col 3, In 15-32
A US 5,317,757 A (MEDICKE et al.) 31 May 1994 (31.05.1994), 1-12
entire document
A US 7,111,053 B1 (BLACK et al.) 19 September 2006 (19.09.2006), 1-12

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is

. cited to establish the publication date of another citation or other

special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed :

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

18 December 2008 (18.12.2008)

Date of mailing of the international search report

29DEG2000 ,

Name and mailing address of the ISA/US

Maii Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

PCT Helpdesk: 571~
PCT OSP: 571-272-7774

Authorized offig€r;]
WY ouny

-43 /

y/

Form PCT/ISA/210 (second sheet) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - wo-search-report

