
JP 2011-530768 A 2011.12.22

10

(57)【要約】
【課題】
【解決手段】入力コードから並列に実行可能なコードを
生成する処理は、入力コードを静的に解析することによ
り、入力コードのデータフローおよび制御フローのアス
ペクトを決定する工程と、入力コードを動的に解析する
ことにより、入力コードのデータフローおよび制御フロ
ーの追加のアスペクトを決定する工程と、静的解析によ
って決定された入力コードのデータフローおよび制御フ
ローのアスペクトと動的解析によって決定された入力コ
ードのデータフローおよび制御フローの追加のアスペク
トとに少なくとも部分的に基づいて、入力コードの中間
表現を生成する工程と、中間表現を処理して、並列実行
が可能な中間表現の部分を決定する工程と、処理された
中間表現から並列実行可能なコードを生成する工程と、
を備える。
【選択図】図１０

(2) JP 2011-530768 A 2011.12.22

10

20

30

40

50

【特許請求の範囲】
【請求項１】
　入力コードから並列実行可能なコードを生成するシステムであって、
　１つ以上のプロセッサであって、
　　前記入力コードを静的に解析することにより、前記入力コードのデータフローおよび
制御フローのアスペクトを決定し、
　　前記入力コードを動的に解析することにより、前記入力コードのデータフローおよび
制御フローの追加のアスペクトを決定し、
　　前記静的解析によって決定された前記入力コードのデータフローおよび制御フローの
前記アスペクトと、前記動的解析によって決定された前記入力コードのデータフローおよ
び制御フローの前記追加のアスペクトと、に少なくとも部分的に基づいて、前記入力コー
ドの中間表現を生成し、
　　前記中間表現を処理して、並列実行が可能な前記中間表現の部分を決定し、
　　並列実行可能なコードを生成する、
　ように構成される１つ以上のプロセッサと、
　前記１つ以上のプロセッサに接続される１つ以上のメモリであって、前記１つ以上のプ
ロセッサに命令を与えるように構成される１つ以上のメモリと、
　を備えるシステム。
【請求項２】
　請求項１に記載のシステムであって、
　前記入力コードがバイナリコードである、システム。
【請求項３】
　請求項１に記載のシステムであって、
　前記静的解析には、前記入力コードを逆アセンブルして、前記入力コードを静的に生成
される中間表現に変換する処理が含まれる、システム。
【請求項４】
　請求項１に記載のシステムであって、
　前記静的解析には、並列実行が可能な静的中間表現の部分を特定する処理が含まれる、
システム。
【請求項５】
　請求項１に記載のシステムであって、
　前記静的解析には、インスツルメンテーションコードを挿入する処理が含まれる、シス
テム。
【請求項６】
　請求項１に記載のシステムであって、
　前記静的解析には、インスツルメンテーションコードを挿入する処理が含まれ、
　前記動的解析には、前記インスツルメンテーションコードを実行する処理が含まれる、
システム。
【請求項７】
　請求項１に記載のシステムであって、
　前記動的解析には、プロファイル情報を決定する処理が含まれる、システム。
【請求項８】
　請求項１に記載のシステムであって、
　前記動的解析には、ホットスポット情報を決定する処理が含まれる、システム。
【請求項９】
　請求項１に記載のシステムであって、
　前記動的解析には、分岐ターゲット情報を決定する処理が含まれる、システム。
【請求項１０】
　請求項１に記載のシステムであって、
　前記動的解析には、メモリ・エイリアス情報を決定する処理が含まれる、システム。

(3) JP 2011-530768 A 2011.12.22

10

20

30

40

50

【請求項１１】
　請求項１に記載のシステムであって、
　前記動的解析には、動的ループ回数情報を決定する処理が含まれる、システム。
【請求項１２】
　請求項１に記載のシステムであって、さらに、
　並列部分を含むように前記中間表現を修正し、
　修正された中間表現に基づいてアクセラレーション・コードを生成することを含む、シ
ステム。
【請求項１３】
　請求項１に記載のシステムであって、
　並列実行が可能な前記中間表現の部分が投機的に決定される、システム。
【請求項１４】
　請求項１に記載のシステムであって、
　並列実行が可能な前記中間表現の部分が投機的に決定され、検証コードが挿入される、
システム。
【請求項１５】
　入力コードから並列実行可能なコードを生成する方法であって、
　前記入力コードを静的に解析することにより、前記入力コードのデータフローおよび制
御フローのアスペクトを決定する工程と、
　前記入力コードを動的に解析することにより、前記入力コードのデータフローおよび制
御フローの追加のアスペクトを決定する工程と、
　前記静的解析によって決定された前記入力コードのデータフローおよび制御フローの前
記アスペクトと、前記動的解析によって決定された前記入力コードのデータフローおよび
制御フローの前記追加のアスペクトと、に少なくとも部分的に基づいて、前記入力コード
の中間表現を生成する工程と、
　前記中間表現を処理して、並列実行が可能な前記中間表現の部分を決定する工程と、を
備える方法。
【請求項１６】
　入力コードから並列実行可能なコードを生成するためのコンピュータプログラム製品で
あって、
　コンピュータ読み取り可能な記憶媒体に具現化され、
　複数のコンピュータ命令であって、
　　前記入力コードを静的に解析することにより、前記入力コードのデータフローおよび
制御フローのアスペクトを決定するコンピュータ命令と、
　　前記入力コードを動的に解析することにより、前記入力コードのデータフローおよび
制御フローの追加のアスペクトを決定するコンピュータ命令と、
　　前記静的解析によって決定された前記入力コードのデータフローおよび制御フローの
前記アスペクトと、前記動的解析によって決定された前記入力コードのデータフローおよ
び制御フローの前記追加のアスペクトと、に少なくとも部分的に基づいて、前記入力コー
ドの中間表現を生成するコンピュータ命令と、
　　前記中間表現を処理して、並列実行が可能な前記中間表現の部分を決定するコンピュ
ータ命令と、を備える、コンピュータプログラム製品。
【請求項１７】
　入力コードから並列実行可能なコードを生成するシステムであって、
　１つ以上のプロセッサであって、
　　前記入力コードを静的に解析することにより、前記入力コードのデータフローおよび
制御フローのアスペクトを決定し、
　　データフローおよび制御フローの前記アスペクトに少なくとも部分的に基づいて、前
記入力コードの中間表現を生成し、
　　前記中間表現を処理して、並列実行可能なコードを生成し、

(4) JP 2011-530768 A 2011.12.22

10

20

30

40

50

　　前記並列実行可能なコードを格納し、
　　前記入力コードの実行要求に応じて、前記格納された並列実行可能なコードを実行す
る、
　ように構成される１つ以上のプロセッサと、
　前記１つ以上のプロセッサに接続される１つ以上のメモリであって、前記１つ以上のプ
ロセッサに命令を与えるように構成される１つ以上のメモリと、
　を備えるシステム。
【請求項１８】
　入力コードから並列実行可能なコードを生成する方法であって、
　前記入力コードを静的に解析することにより、前記入力コードのデータフローおよび制
御フローのアスペクトを決定する工程と、
　データフローおよび制御フローの前記アスペクトに少なくとも部分的に基づいて、前記
入力コードの中間表現を生成する工程と、
　前記中間表現を処理して、並列実行可能なコードを生成する工程と、
　前記並列実行可能なコードを格納する工程と、
　前記入力コードの実行要求に応じて、前記格納された並列実行可能なコードを実行する
工程と、
　を備える方法。
【請求項１９】
　入力コードから並列実行可能なコードを生成するためのコンピュータプログラム製品で
あって、
　コンピュータ読み取り可能な記憶媒体に具現化され、
　複数のコンピュータ命令であって、
　　前記入力コードを静的に解析することにより、前記入力コードのデータフローおよび
制御フローのアスペクトを決定するコンピュータ命令と、
　　データフローおよび制御フローの前記アスペクトに少なくとも部分的に基づいて、前
記入力コードの中間表現を生成するコンピュータ命令と、
　　前記中間表現を処理して、並列実行可能なコードを生成するコンピュータ命令と、
　　前記並列実行可能なコードを格納するコンピュータ命令と、
　　前記入力コードの実行要求に応じて、前記格納された並列実行可能なコードを実行す
るコンピュータ命令と、を備える、
　コンピュータプログラム製品。
【発明の詳細な説明】
【技術分野】
【０００１】
[クロスリファレンス]
　本出願は、「ソフトウェア・アプリケーションの性能を向上させるための方法および装
置（Ｍｅｔｈｏｄ　ａｎｄ　Ａｐｐａｒａｔｕｓ　ｔｏ　Ｅｎｈａｎｃｅ　ｔｈｅ　Ｐｅ
ｒｆｏｒｍａｎｃｅ　ｏｆ　Ｓｏｆｔｗａｒｅ　Ａｐｐｌｉｃａｔｉｏｎｓ）」の名称で
２００８年８月１３日に出願された米国仮出願番号第６１／１８８，９０５号に基づく優
先権を主張するものである。前記出願の内容は、参照することによりその全体が本明細書
に組み込まれる。
【背景技術】
【０００２】
　コンピュータシステムにおいて、ソフトウェアの性能および能力が向上すれば、新しい
アプリケーションや機能および改良されたアプリケーションや機能が可能になる。より強
力なソフトウェアはより強力なハードウェアを必要とし、より強力なハードウェアがあれ
ばより強力なソフトウェアが可能になるという相乗作用が、過去数十年の情報革命を推進
してきた。「インストラクションセット（命令セット）対応」コンピュータ処理の歴史に
おいて、コンピュータハードウェアの世代が新しくなるにつれ、既存のアプリケーション

(5) JP 2011-530768 A 2011.12.22

10

20

30

40

50

が実質的に改善され、一方、新しいアプリケーションや再コンパイルしたアプリケーショ
ンにより、ハードウェアの能力以上の改良がなされてきた。
【０００３】
　しかしながら、コンピュータのハードウェア・アーキテクチャ技術が成熟するにつれて
、マイクロプロセッサの供給元にとって、マイクロアーキテクチャ技術によるこれ以上の
性能向上はますます困難になってきた。コンピュータスレッド内で命令レベルの並列性を
向上させる費用対効果が高い手法は限界に達しているため、産業界の多くは、スレッドレ
ベルの並列性を向上させることが、終わりのない性能向上を続けるための最適な技術と考
えている。したがって、メーカーは、１つの半導体「チップ」内に複数のプロセッサを備
える「マルチコア」ＣＰＵの生産を開始した。これに合わせて、主要なソフトウェア開発
者たちは、マルチコア・プロセッサの潜在性能を利用するためのアプリケーション書き換
えを求めている。
【０００４】
　これらの開発の結果、新世代のコンピュータハードウェアを用いても、既存のアプリケ
ーションでは、実質的な性能向上が見込めない場合が多い。最新のマルチコア・プロセッ
サを特に対象としたアプリケーション書き換え以外では、大きな性能向上は見込めない。
また、マルチスレッド・アプリケーションをプログラミングして、マルチプロセッサ・ア
ーキテクチャを利用する方法は、多くの場合、複雑でエラーを招きやすい。
【０００５】
　以下、本発明のさまざまな実施例を添付の図面を参照して詳述する。
【図面の簡単な説明】
【０００６】
【図１】マルチプロセッサ・ハードウェアシステムの実施例を示すブロック図。
【０００７】
【図２】アプリケーション性能を向上させたソフトウェアシステムの実施例を示すブロッ
ク図。
【０００８】
【図３Ａ】性能を向上させていないマルチプロセッサ・ハードウェアシステムにおけるＣ
ＰＵへのアプリケーションのマッピングを示す図。
【０００９】
【図３Ｂ】性能を向上させたマルチプロセッサ・ハードウェアシステムにおけるＣＰＵへ
のアプリケーションのマッピングを示す図。
【００１０】
【図４】入力コードから並列実行可能なコードを生成するプロセスの１つの実施例を示す
フローチャート。
【００１１】
【図５】入力コードから並列実行可能なコードを生成するプロセスの別の実施例を示すフ
ローチャート。
【００１２】
【図６】静的解析プロセスの実施例を示すフローチャート。
【００１３】
【図７】動的解析プロセスの実施例を示すフローチャート。
【００１４】
【図８】図４および図５に示すプロセスを実行する性能を向上させたシステムの実施例を
示すブロック図。
【００１５】
【図９】中間表現の例を示す図。
【００１６】
【図１０】プログラム表現のいくつかの例とそれらの相互関係を示す図。
【発明を実施するための形態】

(6) JP 2011-530768 A 2011.12.22

10

20

30

40

50

【００１７】
　本発明は、プロセス、装置、システム、物質構成、コンピュータ読み取り可能な記憶媒
体上で具現化されるコンピュータプログラム製品、および／または、プロセッサ、たとえ
ば、プロセッサに接続されるメモリ上に記憶される、および／または、メモリにより提供
される命令を実行するように構成されるプロセッサ等、種々の態様で実現可能である。本
明細書において、これらの実施態様やその他本発明が具現化可能なすべての態様を「手法
」と称する。開示されているプロセスにおける各ステップの順序は、本発明の要旨の範囲
内で変更可能である。特に断らない限り、あるタスクを実行するように構成されるものし
て説明されるプロセッサやメモリ等のコンポーネント（部品）は、所定の時間でタスクを
実行するように一時的に構成される一般的なコンポーネント、または、タスクを実行する
ために製造された特定のコンポーネントとして実現可能である。本明細書で用いる「プロ
セッサ」という用語は、コンピュータプログラム命令等のデータを処理するように構成さ
れる１つ以上のデバイス、回路、および／または、処理コアを意味する。
【００１８】
　本発明の１つまたは複数の実施形態を、本発明の原理を例示する添付の図面を参照して
、以下に詳述する。これらの実施例に基づいて本発明を説明するが、本発明は何らこれら
の実施例に限定されるものではない。本発明の範囲は、特許請求の範囲によってのみ限定
されるものであり、本発明は、さまざまな変形・変更および等価の形態を網羅するもので
ある。以下、本発明の理解を助ける目的で、種々の特定の詳細に基づいて本発明を説明す
るが、これらの詳細は例示に過ぎず、これらの詳細の一部または全部がなくても、特許請
求の範囲に従って発明を実現可能である。本発明の特徴を明確にするために、本発明に関
連する技術分野で周知の技術に関しては詳細を説明しない。
【００１９】
　入力コードから並列実行可能なコードを生成する手法を開示する。入力コードを静的に
解析して（statically analyzed）、入力コードのデータフローおよび制御フローのアス
ペクト（aspects）を決定する。一部の実施形態において、入力コードをさらに動的に解
析して（dynamically analyzed）、データフローおよび制御フローの追加のアスペクト（
additional aspects）を決定するようにしてもよい。決定されたアスペクトに少なくとも
部分的に基づいて、中間表現ＩＲ（Intermediate Representation）を生成する。中間表
現ＩＲを処理し、並列実行が可能な中間表現ＩＲの部分を特定する。一部の実施形態にお
いて、特定された部分を並列に実行するように構成される並列コードを生成して、キャッ
シュに格納するようにしてもよい。元の入力コードを後で呼び出す場合には、代わりにキ
ャッシュに格納したコードが呼び出される。
【００２０】
　図１は、マルチプロセッサ・ハードウェアシステムの実施例を示すブロック図である。
実施例のシステム１００は、１つまたは複数のマルチコア中央処理装置（ＣＰＵ）１０２
と、１つまたは複数の動的メモリ１０４と、１つまたは複数のネットワークカード、ディ
スプレイ、キーボード等の入力／出力（Ｉ／Ｏ）装置１０６と、１つまたは複数のディス
ク記憶装置やフラッシュメモリ等の不揮発性記憶装置１０８と、を備える。各コンポーネ
ントは、相互に接続されている。
【００２１】
　図２は、アプリケーション性能を向上させたソフトウェアシステムの実施例を示すブロ
ック図である。この実施例では、アプリケーション性能エンハンサー２０４（「アクセラ
レータ」とも称する）は、アプリケーション２０２の実行ファイルを処理して、アプリケ
ーションの性能を向上するように構成される。後で詳述するように、アプリケーション性
能エンハンサーは、実行ファイルを中間表現に変換して、静的解析および動的解析を用い
て、並列に実行可能な中間表現の部分を特定する。
【００２２】
　図３Ａは、性能を向上させていないマルチプロセッサ・ハードウェアシステムにおける
ＣＰＵへのアプリケーションのマッピングを示す図である。図示した例では、アプリケー

(7) JP 2011-530768 A 2011.12.22

10

20

30

40

50

ション３０２は、シングルスレッドであり、１つのＣＰＵ上で実行される。この間、他の
ＣＰＵコアは用いられていない。アプリケーションがマルチスレッドの場合でも、通常、
性能を最大にする方法ではなく、プログラマーにとって最も簡単な方法で、スレッド処理
が行なわれる。言い換えると、アプリケーションは、多くの場合、性能を最大にするため
に複数のスレッドでバランスを取るというよりも、プログラミングを容易にするように分
割される。たとえば、ウィンドウズ（登録商標）グラフィカルユーザーインターフェース
（ＧＵＩ）を用いるアプリケーションは、多くの場合、主アプリケーション用のスレッド
と、ＧＵＩ管理用の別のスレッドに分割される。この形式のマルチスレッドは、主処理ス
レッドの性能を最適化するものではない。さらに、最新のタイムスライス型マルチタスク
－マルチプロセッサ環境下では、複数のアプリケーションを別々のコアで同時に実行可能
である。各アプリケーションと対応する実行ＣＰＵとの間の関係は、通常、図３Ａに示す
１対１の関係である。この関係では、複数のＣＰＵの処理能力を最大限に利用することに
はならない。
【００２３】
　図３Ｂは、性能を向上させたマルチプロセッサ・ハードウェアシステムにおけるＣＰＵ
へのアプリケーションのマッピングを示す図である。アプリケーションの主スレッドを並
列コンピューティング（並列計算）のために解析する。別々のＣＰＵ上でマルチスレッド
で実行できるように、部分ｉ、部分ｉｉ、・・・部分ｍ等、並列コンピューティングが可
能と考えられる部分を再構成することにより、高度な並列化と性能向上が達成できる。
【００２４】
　図４は、入力コードから並列実行可能なコードを生成するプロセスの１つの実施例を示
すフローチャートである。さまざまな実施形態において、プロセス４００は、エンドユー
ザのコンピュータで実行されるものでもよく、あるいは、開発者のシステム上でソフトウ
ェア開発時に実行されるものでもよい。また、ソースコード、アセンブリコードおよび／
またはバイナリコードを入力コードとして利用できる。ステップ４０２で、入力コードを
静的に解析する。本明細書において、「静的解析」は、解析の最中にコードを実行する必
要がないコード解析を意味する。システム資源に対する需要が低い時に静的解析をオフラ
インで実行するようにしてもよい。一部の実施形態において、静的解析プロセスで、入力
コードの逆アセンブリを行なって、データフローと制御フローの命令、演算およびアスペ
クトを含む入力コードのデータ部分とコード部分とを識別するようにしてもよい。識別さ
れる情報には、データセグメントに含まれるデータ、コードセグメントに含まれるコード
、データ処理に利用されるヘッダ情報が含まれる。
【００２５】
　静的解析では、コードの挙動に依存する情報等、データフローおよび制御フローの所定
のアスペクトを取得することが難しい場合がある。したがって、ステップ４０４で、入力
コードを動的に解析して、データフローと制御フローの追加のアスペクトを決定する。本
明細書において、「動的解析」は、コードを実行しながら実施するオンラインまたはラン
タイム解析を意味する。さまざまな実施形態において、実行周波数、ホットスポットおよ
びその他のプロファイル情報、分岐ターゲット(branch target：分岐先)、メモリ・エイ
リアス情報（memory alias information）、および動的ループ回数等が、動的解析によっ
て決定されるアスペクトの例である。ランタイム（実行時）におけるコードの解釈または
エミュレーションを介して、および／または、インスツルメンテーション後のコード（in
strumented code）を実行することにより、情報を収集するようにしてもよい。
【００２６】
　ステップ４０６で、静的解析により決定されたアスペクトおよび動的解析により決定さ
れた追加のアスペクトに基づき、入力コードの中間表現ＩＲを生成する。ステップ４０８
で、中間表現ＩＲをさらに処理して、並列実行が可能な部分を特定し、さらに、中間表現
ＩＲを操作して、並列化部分を含む修正中間表現ＩＲを形成する。この場合、種々の並列
化手法を用いることができる。たとえば、ソフトウェア・パイプライン等の手法を用いて
、ループを展開するようにしてもよいし、動的チェックを挿入して、データ依存関係を制

(8) JP 2011-530768 A 2011.12.22

10

20

30

40

50

御依存関係に変換するようにしてもよい。ステップ４１０で、中間表現ＩＲをコード・ジ
ェネレータに送信し、コード・ジェネレータは、受信した中間表現ＩＲに基づいて、並列
実行可能なコードを生成する。ステップ４１２で、生成された並列実行可能なコードを格
納する。
【００２７】
　図５は、入力コードから並列実行可能なコードを生成するプロセスの別の実施例を示す
フローチャートである。さまざまな実施形態において、プロセス５００は、エンドユーザ
のコンピュータで実行されるものでもよく、あるいは、開発者のシステム上でソフトウェ
ア開発時に実行されるものでもよい。ステップ５０２で、入力コードを静的に解析して、
入力コードのデータフローおよび制御フローのアスペクトを決定する。一部の実施形態に
おいて、動的な解析も実行して、入力コードのデータフローおよび制御フローの追加のア
スペクトを決定するようにしてもよい。あるいは、一部の実施形態において、動的な解析
は省略してもよい。ステップ５０４で、静的解析によって決定されたデータフローおよび
制御フローのアスペクトに少なくとも部分的に基づいて、入力コードの中間表現ＩＲを生
成する。動的解析が実行される場合には、アスペクトと同様に追加のアスペクトに少なく
とも部分的に基づいて、中間表現ＩＲを生成する。ステップ５０６で、中間表現ＩＲを処
理する。中間表現ＩＲに含まれる並列処理可能部分を特定し、並列実行可能なコードを生
成する。ステップ５０８で、並列実行可能なコードを格納して、後で再利用できるように
する。この場合、並列実行可能なコードと元の入力コードとのマッピングはそのまま保持
される。ステップ５１０で、入力コードの実行要求に応じて、格納された並列実行可能な
コードをメモリにロードして、元の入力コードの代わりに実行する。以下に詳述するよう
に、さまざまな実施形態において、種々のキャッシング手法を用いて実行ファイルを格納
することができる。
【００２８】
　図６は、静的解析プロセスの実施例を示すフローチャートである。静的解析プロセスは
、たとえば、ユーザー要求に応じて、または、プログラムの起動に応じて、ステップ６０
２で開始される。ステップ６０４で、ファイルシステムのスキャンを実行して、実行ファ
イル、参照されたＤＬＬ（ダイナミック・リンク・ライブラリ）および／または共用オブ
ジェクト（ＳＯ：shared object）ファイルを検索する。さらに、使用頻度の高い／直前
に使用された、および／または、更新頻度の高い／一番最近更新されたアプリケーション
やライブラリを特定するようにしてもよい。ステップ６０６で、検索された各ファイルを
開いて、読み出す。ステップ６０８で、前回の実行で実行時統計（ランタイム統計）のよ
うな動的データが得られた場合には、これを解析する。ステップ６１０で、ファイルの逆
アセンブリを実行し、静的に生成される中間表現に変換する。ステップ６１２で、中間表
現の変換処理を実行する。一部の実施形態において、変換処理は、コードを解析して、並
列に実行可能な中間表現の部分を特定するものでもよい。あるいは、一部の実施形態にお
いて、変換処理で、ホットスポット解析および他のプロファイル情報等の実行時型情報（
ランタイム情報）、分岐ターゲット情報、メモリ・エイリアス情報、および動的ループ回
数情報等のインスツルメンテーションを容易にするインスツルメンテーションコード（in
strumenting code）を挿入するようにしてもよい。また、一部の実施形態において、変換
処理で、コードの修正を行なうようにしてもよい。
【００２９】
　ステップ６１４で、チェッカーコードと、エラー回復等の実行時支援（ランタイムアシ
スタンス）を必要とするアイテムのランタイム（実行時）へのリンクのような他のインス
ツルメンテーションと、を含む可能なスレッドを作成する。ステップ６１６で、コードと
アノテーション（注釈）とを発行する。アプリケーションの並列化処理が完了していない
場合には、コードとアノテーションとを格納する。ＤＬＬまたは他のライブラリコードを
呼び出しコードに応じた種々の方法で、並列化するようにしてもよい。また、一部の実施
形態において、ＤＬＬの多重並列化処理を行ない、各コピーを呼び出しアプリケーション
／機能に関連付けてもよい。

(9) JP 2011-530768 A 2011.12.22

10

20

30

40

50

【００３０】
　図７は、動的解析プロセスの実施例を示すフローチャートである。動的解析プロセスは
、たとえば、ユーザー要求に応じて、または、プログラムの起動に応じて、ステップ７０
２で開始される。プロセスは、プログラムの起動を監視している。ステップ７０４で、プ
ログラムの起動を検知すると、コードを傍受する。ステップ７０６で、プログラムのアク
セラレーションが完了しているか否かが判定される。部分的に、または、完全に並列化さ
れたプログラム・バージョンが格納されている場合には、そのプログラムのアクセラレー
ションが完了していると考えられる。並列化および／または拡張バージョンは、上述した
静的解析プロセスにより得られたものでもよいし、前回の動的解析プロセスにより得られ
たものでもよい。
【００３１】
　プログラムのアクセラレーションが完了していると判定された場合には、ステップ７０
８で、以前に格納されたコードを取得し、ステップ７１０で、必要に応じて、最適化処理
とリンク処理とを実行する。ステップ７１２で、制御を移し、コードを実行する。コード
の実行中に、ステップ７１４で、必要に応じて、実行時統計等の動的データを収集する。
コードに挿入されたカウンタ等のインスツルメンテーションコードにより実行時統計が得
られる。収集したデータを格納する。
【００３２】
　並列化および／または拡張バージョンが見つからず、プログラムの並列化処理がなされ
ていない場合には、ステップ７１６で、プロセスはコードを傍受して、インスツルメンテ
ーション等、侵入を最小限に抑えたモニタリングを開始して、ホットスポットを特定する
。ステップ７１７で、以前の実行または今回の実行で得られた実行時統計等の動的データ
を解析して統合する。ステップ７１８で、プログラムコードの逆アセンブリを実行して、
中間表現ＩＲに変換する。ステップ７２０で、中間表現ＩＲを解析して、変換する。必要
に応じて、インスツルメンテーションコードを挿入してもよく、コードを挿入した場合に
は、コードの並列化処理を行なうようにしてもよい。ステップ７２２で、可能なスレッド
を作成する。ステップ７２４で、実行可能なコードとアノテーションとを発行し、必要に
応じて、不揮発性記憶装置に書き込んで格納する。未修正／最小限のインスツルメンテー
ション後のコードと修正／並列化コードとの間にはマッピングが確立されている。次に、
ステップ７１２で、制御を修正／並列化コードに移し、実行時統計等の動的データを収集
する。
【００３３】
　必要に応じて、プロセス７００を繰り返し実行してもよい。たとえば、ホットスポット
が時間と共に変化した場合、または、以下に詳述するように、投機的（推量的）選択が間
違っていた場合には、ランタイムシステムが、プロセスの繰り返しおよびコードの再生成
の必要性を示唆するようにしてもよい。
【００３４】
　図８は、図４および図５に示すプロセスを実行する性能を向上させたシステムの実施例
を示すブロック図である。図示した例では、入力コードには、高級言語で書かれたアプリ
ケーションプログラムのコンパイル処理等により作成される１つまたは複数のソース実行
ファイル１が含まれる。一部の実施形態において、ソース実行ファイルは、コンパイラで
生成されたコード等のバイナリコード、ＤＬＬ（ダイナミック・リンク・ライブラリ）、
共用オブジェクト（ＳＯ）ファイル、またはこれらの組み合わせを含むものでもよい。図
示した例では、ソース実行ファイルは、性能エンハンサーと同じシステムにインストール
されている。アプリケーションは、直接的な明示スレッド、スレッドライブラリに基づく
間接的なスレッド、またはこれらの組み合わせを含むものでもよい。
【００３５】
　図示したシステムにおいて、実行ファイルセクション、初期化および非初期化され、静
的に割り当てられたデータ、スタック、および動的に割り当てられたデータ等の複数のセ
グメントにメモリが分割されていると仮定する。（マウスのクリック等）ユーザー操作の

(10) JP 2011-530768 A 2011.12.22

10

20

30

40

50

直接の結果として、または、その他の理由で（たとえば、他のプログラムによるトリガー
やネットワークイベントに応じて）プログラムが起動すると、メモリ空間が最初に割り当
てられる。オペレーティング・システムＯＳが、ローダーを用いてメモリに実行ファイル
をロードし、必要に応じて、他の実行ファイルを移転および他の実行ファイルにリンクさ
せる。次に、新しく起動されたプログラムに制御を移す。
【００３６】
　図示した例では、性能エンハンサーは、以下に示す機能コンポーネント（機能部品）、
すなわち、逆アセンブラ／コンバータ５と、並列化部７と、コードエミッタ８と、エグゼ
キューションマネージャ（実行管理部）９と、コンフィグレーションマネージャ（構成管
理部）１２と、ファイルキャッシュマネージャ４と、を備える。一部のコンポーネントの
機能の一部または全部が、他のコンポーネントに含まれるものでもよい。また、これらの
コンポーネントの一部を省略してもよい。
【００３７】
　コードの１セクション（すなわち、オペレーションコード（命令コード）の最初のビッ
トの記憶場所）に対するポインタを受信すると、逆アセンブラ／コンバータ５が命令の逆
アセンブリを実行する。このプロセスにより、入力コードの命令およびオペランド（演算
対象）が特定され、（プロセッサモード等）他の全体的な情報と共に、この情報が中間表
現ＩＲ６に変換される。
【００３８】
　中間表現ＩＲは、入力コードのデータ構造およびプログラム情報を表わす。中間表現Ｉ
Ｒに基づく最適化処理および変換処理を実行するコンパイラで、中間表現ＩＲを解析し、
操作するようにしてもよい。コンパイラは、複数の中間表現ＩＲを用いて、時間と共にデ
ータフォーマットを変化させて、様々なコンパイル段階を容易にするものでもよい。中間
表現ＩＲには、通常、実行するべき演算に関する情報、演算に影響を与える（ソース）デ
ータ、および宛先データが含まれる。
【００３９】
　図９は、中間表現の例を示す図である。図示した例は、フィボナッチ数列を算出する関
数のＬＬＶＭ（Low Level Virtual Machine：ローレベル仮想マシン）中間表現ＩＲを示
す。関数のソースコードは以下のとおりである。
int fib(int n) {
　　if (n==1)　　　 return 0;
　　if (n==2)　　　　return 1;
　　return (fib(n-1)+fib(n-2));
}
【００４０】
　図８に戻って、逆アセンブリにより得られた中間表現ＩＲを並列化部７で処理し、新し
い中間表現ＩＲを生成する。この例では、並列化部は、最終的に実行可能なコードの生成
につながる複数の最適化「パス」を備える最新の最適化コンパイラと同様のものである。
ソース入力を中間表現ＩＲに変換後、これらのパスで中間表現を変換する。各パスは、直
接的に、または、間接的に、中間表現ＩＲを改善して、次段の最適化段階のための中間表
現ＩＲを準備する。最適化処理の例としては、デッドコード削除、定数伝搬、ループ不変
解析およびループ展開が挙げられる。一部の実施形態において、一部のパスは、単純に中
間表現ＩＲを解析し、次段のパス用に付加的な最適化構造を形成するものでもよい。多重
最適化処理および変換処理アルゴリズム自体に加えて、プログラム的にコード化された判
定（「ヒューリスティック」とも称する）により、これらの最適化処理を適用するべきタ
イミングおよび環境を指示するようにしてもよい。たとえば、ループを展開すると、コー
ドが大きくなり、必要なメモリ容量のオーバーフローが生じ、ループの展開による効果が
相殺されてしまう場合には、ループの展開は望ましくない。さらに、各パスの順序を決め
る高レベル制御を行なうようにしてもよい。並列化部の一部の実施形態において、多重パ
スを用いて、スレッドレベルの並列性を特定し、抽出するようにしてもよい。このような

(11) JP 2011-530768 A 2011.12.22

10

20

30

40

50

最適化処理により、共通メモリを共有する別個のＣＰＵで実行可能な独立実行スレッドを
形成できる。
【００４１】
　並列化部は、静的処理を実行するものでも、動的処理を実行するものでもよい。一部の
実施形態において、並列化部は、静的／オフライン解析と動的／ランタイム解析とを混ぜ
て実行し、性能を向上させるものでもよい。
【００４２】
　並列化部が動的処理を行ない、単純な実行時チェックよりも複雑な最適化処理を実行す
る場合には、追加の処理が性能に与える影響を最小限に抑えるように、処理を実行する場
所や方法を変化させるようにしてもよい。一部の実施形態において、実行中のアプリケー
ションとは別のプロセスやスレッドで処理や解析を実行するようにしてもよい。また、一
部の実施形態において、アプリケーションと同じプロセスやスレッドで処理を実行するよ
うにしてもよい。
【００４３】
　一部の実施形態において、並列化部は、性能を向上させるスレッドレベルの並列化の推
量を伴う最適化処理を行なうようにしてもよい。このような場合、並列化部は、並列化に
関する「推量（スペキュレーション）」を行なう、と考えることができる。コードを挿入
して、推量が正しかったことを確認する。たとえば、並列化部は、長期手続き呼び出しが
「０」という結果を戻すという推量を行なう。推量を行なうことにより、結果が得られる
まで実行できなかったコードを、並列に実行することが可能になる。ただし、コードが結
果をコミット（確定）する前に、呼び出された手続きが実際に「０」という結果を戻すこ
とを検証する必要がある。別の例として、ループの多重繰り返しを別々のスレッドで実行
する場合には、プログラマーが指定した回数繰り返した結果のみがコミットされることを
保証する必要があるかもしれない。すなわち、間違った繰り返しの影響を取り消す、また
は、緩和する必要があるかもしれない。このような形態の投機的（推量的）並列化におい
て、ランタイム環境１１に関連して説明したランタイム支援に依存する、および、ランタ
イム支援と密接に作用するように、生成されるコードを構築するようにしてもよい。
【００４４】
　制御推量、データ推量およびメモリ順序付け推量のいずれか、または、すべてを実行す
るようにしてもよい。一部の実施形態において、並列化部は、推量（スペキュレーション
）やメモリモデルをトランザクションと見なすものでもよい。
【００４５】
　一部の実施形態において、リアルタイムまたはオフラインのいずれかで、ターゲットシ
ステム上での再コンパイルが可能なシステムで推量を行なうようにしてもよい。投機（推
量）システムおよび／またはトランザクションシステムにおいては、コンフリクトを検出
して、データ・バージョニングを支援する必要がある。さまざまな実施形態において、「
積極的（ｅａｇｅｒ）」または「消極的（ｌａｚｙ）」に分類される方法が用いられる。
たとえば、「積極的」なデータ・バージョニング方法は、「取り消し（ｕｎｄｏ）」ログ
を用いて、間違った演算値を前の状態に戻す。一方、「消極的」なデータ・バージョニン
グ方法は、書き込みバッファを用いて、データの種々のバージョンを書き込む。いずれの
方法にも長所と短所がある。静的コンパイラ、特に、プロファイル誘導フィードバックを
行わない静的コンパイラでは、いずれのスキームが最適であるかの推量を行ない、その選
択肢を選択することができる。実際には、最適な手法は、多くの場合、コンパイル時には
入手できない（実際の遅延等の）ランタイム情報によって決まる。すなわち、最適な選択
は、実行時に選択されるものである。さらに、プログラムが非常に異なる特性を有するさ
まざまな実行段階を経る場合があるため、単一の最適な手法を選択することができない場
合もある。動的並列化部は、さまざまな手法の最適な組み合わせを用いて最初の推論を行
ない、プログラム挙動の時間変化を観察し、プログラムの変化に応じて、よりより結果を
与える別の手法を選択するように新しいコードを生成することができる。
【００４６】

(12) JP 2011-530768 A 2011.12.22

10

20

30

40

50

　図８に戻って、コードエミッタ８は、並列化された中間表現ＩＲを処理して、バイナリ
コード化された実行可能な命令を形成する。レジスタは通常この段階で割り当てられ、特
定の命令が選択される。一部の実施形態において、元のソースプログラムに直接対応する
命令に加えて、追加の命令を用いてインスツルメンテーションを実行するようにしてもよ
い。インスツルメンテーションにより、コードが繰り返し呼び出されるホットスポット等
のプログラム特性、分岐ターゲット等のランタイム情報、またはメモリ・エイリアス情報
を特定できる。一部の実施形態において、コードエミッタの機能を実行中のアプリケーシ
ョンとは別のプロセスやスレッドで実行するようにしてもよい。一部の実施形態において
、コードエミッタの機能を、並列化部７またはエグゼキューションマネージャ９が備える
ようにしてもよい。
【００４７】
　修正された（すなわちインスツルメンテーションおよび／または並列化処理された）ア
プリケーションは、制御／命令のマルチスレッド、静的に、および／または、動的に割り
当てられたデータ、および、追加のランタイム支援を可能にするライブラリへのフックま
たはリンクを含むものでもよい。動的に逆アセンブリされて、動的に生成されたコードを
備える環境において、メモリ内画像１０では、コードの各ブロック端に制御／管理プロセ
スへの分岐が含まれている。このような協調マルチスレッド環境下では、各スレッドは「
軽量」と考えられ、演算をこのようなスレッドのワークキューとして構築することが望ま
しい。ワークキューは、ランタイムシステム１１により管理される。
【００４８】
　（ソフトウェア開発時における並列化とは対照的に）アプリケーションがインストール
され実行されるシステムにおいてアプリケーションを並列化処理する環境下で、シングル
スレッド処理の状況や正確性を維持できるように、アプリケーション用に修正された動作
環境を形成する。たとえば、修正アプリケーションが、複数のＣＰＵで同時に実行され、
メモリを共有する必要があるマルチスレッドを備える構成でもよい。マルチスレッドは、
並列「プログラムカウンター」や並列スタック等、対応するリソースのコピーを備える必
要がある。これらのリソースは、仮想マシンおよびランタイム環境１１として、構築され
、管理される。ランタイムリソースは、スレッドマネージャ、メモリマネージャ、例外ハ
ンドラ、および共通プログラムライブラリおよびＯＳ機能の新しい／交換コピーが含まれ
るものでもよい。これらのリソースをすべて用いることにより、投機的（推量）／トラン
ザクション処理が容易になる。一部の実施形態において、ランタイム機能を、修正アプリ
ケーションのメモリ内画像の一部としてもよい。
【００４９】
　計算コストが高い最適化処理および変換処理を実行して、コードを発行する場合、一部
の実施形態において、今後のソースプログラムの起動に備えて、これらの処理で得られた
出力を格納しておくようにしてもよい。たとえば、解析後に、インスツルメンテーション
コードを挿入したプログラムの新バージョンを形成し、プロファイル情報を収集するよう
にしてもよい。次にプログラムが実行される時に、挿入されたインスツルメンテーション
コードを用いて、プログラムが実行時間の大部分を費やす「ホットスポット」の位置等の
情報を収集することができる。別の例として、実行時メモリ・エイリアス解析を挿入する
ようにしてもよい。また別の例として、アプリケーションの並列化バージョンや追加の実
行時チェックを最小限に抑えた多重並列化バージョンが挙げられる。新しい拡張実行ファ
イルを１つまたは複数のファイルに書き込む。一部の実施形態において、これらのファイ
ルの記憶に用いられるメモリ空間の容量を制限するために、ファイルキャッシュマネージ
ャ４をオプションで用いるようにしてもよい。
【００５０】
　一部の実施形態において、ファイルキャッシュマネージャは、使用頻度の高いファイル
を保持するキャッシュを管理するようにしてもよい。別の実施形態において、さまざまな
管理ポリシーを用いるようにしてもよい。たとえば、直前に使用されたポリシーまたは使
用頻度の高いポリシーの組み合わせを用いるようにしてもよい。ソース実行ファイルとこ

(13) JP 2011-530768 A 2011.12.22

10

20

30

れらのファイルとの間のマッピングを維持する。プログラムが起動され、並列化が望まし
いと考えられる場合はいつでも、このキャッシュを調べて、アプリケーションの並列化バ
ージョン（またはインスツルメンテーション後のバージョン）が存在するか否かを判定す
る。存在する場合には、この情報をエグゼキューションマネージャ９に伝達して、対応す
るファイルをメモリにロードし、最初に起動される実行ファイルの代わりに実行する。
【００５１】
　一部の実施形態において、オプションでエグゼキューションマネージャ９を備え、上述
した複数のモジュールおよび複数の「静的」および「動的」ステップ全体にわたる調整を
行なうようにしてもよい。ターゲットシステムに対する共通マネージャ下でこれらの機能
をリンクさせることにより、動的処理と静的処理とを混ぜて、必要に応じて起動できる。
たとえば、エグゼキューションマネージャが、更新のダウンロードおよびインストールに
よりアプリケーションが変更されたことを検知すると、静的解析を開始する。一部の実施
形態において、エグゼキューションマネージャの機能を、キャッシュマネージャ４、並列
化部７、または、コードエミッタ８が備えるようにしてもよい。
【００５２】
　　図１０は、プログラム表現のいくつかの例とそれらの相互関係を示す図である。たと
えば、プログラムは、（高級言語またはアセンブリでコード化（符号化）された）ソース
形式でも、バイナリ実行ファイルとして（コンパイルされているが実行可能ではない）オ
ブジェクト形式でもよい。システムモジュールが、複数のオブジェクトファイルをリンク
させて、より大きく、より完全な実行ファイルを作成するようにしてもよい。また、シス
テムモジュールが、プログラムが起動すると、起動したプログラムをメモリにロードする
ようにしてもよい。実行中のメモリ常駐アプリケーションは直接実行されるものでもよい
し、あるいは、インタプリタ（解釈プログラム）内で実行されるものでもよい。また、プ
ログラムは、中間表現のコンパイラ内に存在するものでもよく、コンパイラのコードジェ
ネレータは、このプログラムを実行可能な形式に変換するものでもよい。実行可能な形式
に変換されたプログラムをファイルに書き込み、メモリにロードして、直接実行すること
ができる。あるいは、実行可能な形式に変換されたプログラムをインタプリタやランタイ
ムに渡して実行させるようにしてもよい。
【００５３】
　以上、本発明の理解を助ける目的で実施例を詳細に説明してきたが、本発明は、何ら実
施例の詳細に限定されるものではなく、さまざまに変形・変更した態様で実施可能である
。上述の実施例は例示に過ぎず、何ら本発明を限定するものではない。

(14) JP 2011-530768 A 2011.12.22

【図１】 【図２】

【図３Ａ】

【図３Ｂ】

【図４】

(15) JP 2011-530768 A 2011.12.22

【図５】 【図６】

【図７】 【図８】

(16) JP 2011-530768 A 2011.12.22

【図９】 【図１０】

(17) JP 2011-530768 A 2011.12.22

10

20

30

40

【国際調査報告】

(18) JP 2011-530768 A 2011.12.22

10

フロントページの続き

(81)指定国　　　　 AP(BW,GH,GM,KE,LS,MW,MZ,NA,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),
EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,SE,SI,S
K,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BR,
BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,I
S,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PE
,PG,PH,PL,PT,RO,RS,RU,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW

(72)発明者 ジョンーンズ・ジョル・ケビン
 アメリカ合衆国　カリフォルニア州９４３０６　パロ・アルト，ケンブリッジ・アベニュー，４４
 ５，スイート　ビー
(72)発明者 シャープ・マイケル・ダグラス
 アメリカ合衆国　カリフォルニア州９４３０６　パロ・アルト，ケンブリッジ・アベニュー，４４
 ５，スイート　ビー
(72)発明者 バエブ・イワン・ディミトロフ
 アメリカ合衆国　カリフォルニア州９４３０６　パロ・アルト，ケンブリッジ・アベニュー，４４
 ５，スイート　ビー
Ｆターム(参考) 5B081 CC16 CC30 CC32 CC64

	biblio-graphic-data
	abstract
	claims
	description
	drawings
	search-report
	overflow

