(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

7 February 2002 (07.02.2002)

(10) International Publication Number

WO 02/10909 A2

(51) International Patent Classification’: GOG6F 9/00 (74) Agents: GARRETT, ARTHUR, S.; Finnegan, Hender-
son, Farabow, Garrett & Dunner, L.L.P., 1300 I Street,

(21) International Application Number: PCT/US01/23466 N.W., Washington, DC 20005-3315 et al. (US).
(22) International Filing Date: 26 July 2001 (26.07.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
(25) Filing Language: English CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(26) Publication Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
(30) Priority Data: SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

09/628,694 28 July 2000 (28.07.2000) US

(84) Designated States (regional): ARIPO patent (GH, GM,
(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

San Antonio Road, MS: PAL01-521, Palo Alto, CA 94303

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

(US).

(72) Inventor:

BOUCHER, Michael; 1769 Casey Court,

Lafayette, CO 80026-9148 (US).

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

[Continued on next page]

(
LINING

Evaluate
Sub Using
Normal
Inlining
Procedures

N

ID Subprogram
Eligible for Inlining

510

WO 02/10909 A2

Inlining to be
Applied to Path?

524

Apply Inlining to
Path

530

Another Path?

All Subs Evaluated

544

54) Titlee METHODS AND APPARATUS FOR COMPILING COMPUTER PROGRAMS USING PARTIAL FUNCTION IN-

Begin
516

(57) Abstract: A method and system makes inlining decisions that are
efficient for subprograms that have significantly varying execution times
over a range of variables or execution paths. A subprogram of a com-
puter program is identified and certain execution paths of the subprogram
are selectively inlined. The subprogram may be identified based on ex-
ecution characteristics of the subprogram. The selective inlining of the
execution paths may be based on execution characteristics of the paths.
The paths may be selectively inlined based on an inline indication as-
sociated with an execution path, where the inline indication may be an
inline directive. The inline directive may be included as part of a program
comment statement. A compiler makes determinations whether to inline
a specific execution path of a subprogram by evaluating certain informa-
tion supplied in conjunction with the path. By supplying information in
association with the subprogram path, the compiler may more easily de-
termine the various execution characteristics of the execution paths and
may inline or not based on the execution characteristic indication asso-
ciated with the subprogram execution path.

w0 02/10909 A2 0D N0 00 A0 OO RO

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

WO 02/10909 PCT/US01/23466

METHODS AND APPARATUS FOR COMPILING
COMPUTER PROGRAMS USING PARTIAL FUNCTION INLINING

L FIELD OF THE INVENTION

The present invention relates to optimizing computer code during

compilation, and more particularly, to partial function inlining during compilation.

Il BACKGROUND OF THE INVENTION

Modern computer program languages are based on modular design
models, where computer code is written in small, modular units or subprograms

that define certain objects or functions. These subprograms may be called (i.e.

invoked) wherever desired in the program by a simple reference to the

subprogram. While modular program design is an effective programming
technique, additional overhead may be introduced during the execution stage
after the program is compiled. An overhead penalty is introduced when a
subprogram is called frequently but the execution timé of the subprogram is
small relative to the time required to call the subprbgram.

Most compilers are equipped with various optimization routines that
determine how to represent the original source code in an efficient executable
form, such as reducing the sizé and required execution time of various calls to
the subprogram. One well known optimization technique is referred to as
inlining. Inlining fechniques replace the subprogram calls at the various locations
in the computer program with the lines of code that define the subprogram.

Inlining is typically performed when a subprogram is called many times in a

10

15

20

WO 02/10909 PCT/US01/23466

program and when the execution time of the subprogram is small compared with
the time necessary to set-up for and call the subprogram.

Inlining provides performance improvements for various reasons. First, the
subprogram linkage is removed, including the code to save and restore registers,
allocate stack space, and the branch itself. Second, the code surrounding the call
site can be improved, since the call itself, which may be a barrier for some
optimization procedures, is no longer present. By removing the call site, it is also
possible to perform better instruction scheduling, register allocation, etc. Third,
the subprogram code that is substituted for the call can be optimized for the
specific call context.

The decision to inline a subprogram may be determined by the compiler
automatically or assisted by user directed inlining. With user directed inlining, the
programmer specifies which subprograms should be inlined. The compiler then
attempts to inline the subprograms chosen by the user at each of its call sites.
When automatic inlining is used, the compiler determines which subprograms
should be inlined by following a set of inline optimization rules. However, the
typical rules implemented by a compiler do not account for subprograms that
exhibit varying execution characteristics due to the range of variables or
arguments over which the subprogram operates. With the varying arguments,
the subprogram’s actual run-time may be substantially influenced depending on
the argument received. For example, within a subprogram various execution
paths may be taken based on the argument received. In some cases, the path

taken is shorter and faster than others and the path may be taken more

10

15

20

WO 02/10909 PCT/US01/23466

frequently. However, because subprograms are inlined based on the execution
time of the subprogram as a whole, the disparate execution times and disparate
frequency of execution of the different paths are not accounted for very well in
optimization techniques.

One method used to help the compiler determine whether to inline based
on different variables is referred to as profiling. When using profiling, the
computer program is executed at compile time using different data scenarios to
determine how programs will perform (profiling) before producing the final
compiled code. The use of profiling information typically requires at least two
passes to compile the program. One pass is performed then the compiled
program is executed to generate the profiling information, and the other pass
performs the automatic inlining based on the profiling information. The
compiler’'s determination of whether to inline a subprogram that has been profiled
is typically based on the number of times a subprogram is called and the
execution time of the subprogram. While using profiling to determine whether to
inline a subprogram is beneficial in some cases, it does not solve the
optimization problem introduced by subprograms that exhibit significantly
different execution or run-time characteristics based on the arguments used or
éxecution paths taken in the subprograms. That is, profiling only provides a
guess as to the best way to inline based on the data sets used to perform the
profiling. Hence, the compiler’s decision whether to inline may be correct or

efficient for some scenarios but costly for others.

10

15

20

WO 02/10909 PCT/US01/23466

Thus, there is a need for a system and method that enables a compiler to
make inlining decisions that are efficient for subprograms that have significantly
varying execution times over a range of variables or execution paths.

lll. SUMMARY OF THE INVENTION

Methods and systems consistent with the present invention enable a
compiler to make inlining decisions that are efficient for subprograms that have
significantly varying execution times over a range of variables or execution paths.

In one aspect consistent with the present invention, a subprogram of a
computer program is identified and certain execution paths of the subprogram
are selectively inlined. The subprogram may be identified based on execution
characteristics of the subprogram and the selective inlining of the execution
paths may be based on execution characteristics of the paths. These execution
characteristics may be based on the execution time for the paths and/or on the
frequency of execution of the paths. The paths may be selectively inlined based
on an inline indication associated with an execution path, where the inline
indication may be an inline directive. The inline directive may be included as part
of a program comment statement. The selective inlining of the paths may be
determined using information profiles associated with the execution path.

In another aspect of the present invention, a subprogram is identified that

'operates in a first manner when operands passed to the subprogram fall within a

first range of values and that operates in a second manner when operands

passed to the subprogram fall within a second range of values. Subprogram

10

15

20

WO 02/10909 PCT/US01/23466

statements that cause the subprogram to operate in the first manner are
replaced with expanded code.

A compiler makes determinations whether to inline a specific execution
path of a subprogram by evaluating certain information supplied in conjunction
with the path. By supplying information in association with the subprogram path,
the compiler may more easily determine the various execution characteristics of
the execution paths. Subprograms may be programmed to indicate or may be
associated with the range of variables or parameters that cause the subprogram
to exhibit a specific execution characteristic. When the compiler encounters an
indication of a subprogram path that may exhibit one of multiple execution
characteristics, the compiler makes the decision whether to inline or not based
on the execution characteristic indication associated with the subprogram call.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a compiler system consistent with the present
invention;

Fig. 2 is a detailed drawing of a compiler consistent with the present
invention;

Fig. 3 is a block diagram of modules associated with optimization
procedures consistent with the present invention.

Fig. 4 is a diagram of the process of creating computer code consistent
with the present invention; and

Fig. 5 is a diagram of the process for inlining that is consistent with the

present invention.

10

15

20

WO 02/10909 PCT/US01/23466

V. DETAILED DESCRIPTION OF THE INVENTION

Referring to the figures, a detailed description of the preferred
embodiments of the present invention is described. A system or method
operating consistent with the present invention identifies a subprogram that has a
first and a second execution characteristic and replaces a first portion of the
subprogram with expanded code that exhibits the first execution characteristic
while leaving intact a second portion of the subprogram that exhibits the second
execution characteristic. The first execution characteristic may be exhibited
when operands passed to the subprogram fall within a first range of values and
the second execution characteristic may be exhibited when operands passed to
the subprogram fall within a second range of values. Such systems and
methods are particularly useful in a compiler for selectively inlining portions of
identified subprogram calls of a particular subprogram based on various
execution characteristics of the subprogram. The term subprogram generally
refers to user defined or predefined computer program routines or functions
designed to carry out a desired task and expanded code generally refers to
replacement computer program code that more explicitly defines the steps of an
operation than the code it replaced.

Within a subprogram various execution paths may be taken based on the
arguments received, and in some cases, the paths that may be taken vary in
complexity, execution time, and frequency of traversal. In prior systems,
because subprograms are typically inlined based on the execution time and

frequency of execution of the subprogram as a whole, the path dependent

10

15

20

WO 02/10909 PCT/US01/23466

execution times and frequency of execution are not accounted for very well in
optimization techniques. However, a system or method operating consistent with
the present invention enables various execution paths of a subprogram to be
evaluated separately for consideration for inlining. In an embodiment consistent
with the present invention, directives may be included in the various execution
paths within a subprogram to indicate that the path should be inlined or
considered for inlining. A compiler consistent with the present invention
recognizes the directive as an indication to consider the program instructions of
the particular execution path for inlinihg. As a result, various branches within a
subprogram may be selectively inlined according to the specifications or
characteristics of a particular execution path or branch.

Referring to Fig. 1, a compiler system 10 consistent with the present
invention operating in a computer system 14 is illustrated. It should be
appreciated that certain components of the computer system 14 are not
illustrated because such components are not necessary for an understanding of
the present invention. The computer system 14 includes a central processing
unit (CPU) 18, memory module 20, input/output ports 24, and a computer system
bus 28. The computer system bus 28 communicates data and éignals among
the components of the computer system 14.

The memory module 20 is representative of random access memory, read
only memory and other memory elements used for storage and processing in the
computer system 14. The memory module 20 includes source code 30 of a

program to be compiled, a compiler 32, intermediate code 36 (without inlining),

10

15

20

WO 02/10909 PCT/US01/23466

intermediate code 38 (with inlinihg), and the assembly code 40. As known to
those skilled in the art, CPU 18 executes compiler 32 in a manner consistent with
the present invention. A computer program represented by the source code 30
is first converted to the intermediate code 36 by the compiler 32 prior to the
compiler 32 applying optimization procedures. The compiler 32 inlines selected
portions of subprograms, consistent with the present invention, to produce
intermediate code 38. The intermediate code 38 is then optimized to produce
the assembly code 40. The compiler 32 consistent with the present invention is
adapted to selectively inline portions of subprograms that exhibit various
execution characteristics. Particularly, selected execution branches of a
subprogram are inlined based on the branches' execution characteristics.

Referring to Fig. 2, a more detailed view of the compiler 32 is illustrated.
The compiler 32 includes several subcomponents: an internal representation
translator unit 210 that produces the intermediate code 36 from the source code
30, optimization procedures 220, and an assembler 240. The internal
representation of the source code 30 is subjected to an array of optimization
procedures 220 that are modeled into the compiler 32. The optimization
procedures 220 are modeled consistent with the present invention to recognize
directives included as part of an execution path of a subprogram. The directives
are used in association with execution paths to indicate that a path of a
subprogram is to be given special consideration for inlining as discussed herein.
The optimization procedures 220 produce the inlined intermediate code 38,

which is provided to the assembler 240 to produce the assembly code 40. It

10

15

20

WO 02/10909 PCT/US01/23466

should be appreciated that optimization procedures, other than those discussed
herein, that are well known in the art may be used in combination with an
embodiment consistent with the present invention.

Referring to Fig. 3, a more detailed view of the optimization procedures
220 is illustrated. The optimization procedures 220 may include an inline
eligibility module 310, an inline profitability module 320, and a profiling module
330. The inline eligibility module 310 determines the portions of the source code
that are eligible for inlining by identifying subprograms using inlining eligibility
rules as known to those skilled in the art. After a program module is identified as
eligible for inlining, the profitability of inlining each identified subprogram is
determined by the profitability module 320. Generally speaking, the profitability
module 320 determines whether execution time will be saved by inlining
subprograms and inlines the subprograms after making the determination. The
profitability module 320 estimates the profitability of inlining based on rules
encoded into the profitability module 320, by assessing user inline directives,
and/or by invoking the profiling module 330.

When a developer includes a inline directive in a branch or execution path
of a subprogram, consistent with the present invention, the inline profitability
module 320 considers the identified path separately for inlining from other paths
of the subprogram or other instructions or operations of the subprogram. For
example, an inline directive may indicate to the compiler that it is likely that a
particular conditional execution statement, such as an "if" statement or branch,

will be taken. The compiler 32 uses this directive to determine whether to inline.

10

15

20

WO 02/10909 PCT/US01/23466

Consequently, the inline profitability module 320 may inline an identified path of a
subprogram that has a different characteristic than other paths of the subroutine.
It should be appreciated by those skilled in the art that procedures for
determining profitability are well known and therefore, are not discussed in detail
herein, as generally discussed in U.S. Patent No. 5,740,443.

As discussed above, a compiler may profile a program by compiling the
code and executing the compiled code with different sets of data to determine
the best way to finally compile the code. When profiling is desired, an option to
profile the code may be selected to invoke the profiling module 330. When
profiling is used, the inline profitability module 320 and the profiling module 330
implement a two stage compiling process. In the first stage, the program is
compiled and run a number of times using different scenarios or data. The
subprograms identified as possessing multiple execution characteristics have
identified portions (e.g. including an inline directive along a selected path or
paths of the subprogram) of the subprogram evaluated individually, with
corresponding profiling information. Inline directives are program statements that
provide hints to aid the compiler in making the decision of whether to inline a
particular segment of code.

The profiling module 330 may base profiling considerations on a single set
of profiling information and/or execution characteristics exhibited by certain paths
or portions of the subprogram in view of the various data sets designated for a
specific path or portion. The profiling module 330 collects and records

information on how many branches of or within the subprogram were taken and

-10 -

10

15

20

WO 02/10909 PCT/US01/23466

how long it took the branches of the subprogram to run. In the second stage, the
program is recompiled using the recorded information to determine whether to
inline a subprogram or portion of the subprogram based on the gathered data.
Subprograms or portions thereof that where not frequently utilized and/or had
relatively long execution times are not inlined and those that were frequently
utilized and had relatively short execution times are inlined.

As discussed above, a system operating consistent with the present
invention identifies a subprogram that has multiple execution characteristics and
inlines certain segments of the subprogram based on the execution
characteristics of the subprogram. For example, in a first scenario, some
subprograms' operations are straightforward or not very time consuming when
the operands sent to the subprogram fall within a normal range of values. In
another scenario, the operands sent to the subprogram fall outside the normal
operating ranges for the subprogram and special processing is used to
accomplish the desired task. The special processing can include error trapping,
error recovery, or it may require alternative computational methods. Systems
and methods operating consistent with the present invention treat the invocation
of a subprogram for operands that produce normal processing and operands that
produce special processing as distinct cases for consideration for inlining. The
normal case processing is considered for inlining according to the general
inlining procedures specified for the compiler and special case processing, which

frequently occupies the bulk of the subprogram, is not likely to be inlined.

-11 -

10

15

20

WO 02/10909 PCT/US01/23466

Many subprograms, such as the mathematical sine function, have
different execution characteristics based on the variables or arguments over
which it operates. In a computer program, for angles (©) < /8, a sine
subprogram executes in a relatively fast manner compared to the time required
to call the sine subprogram in a computer program. However, the sine
subprogram executes in a relatively slower manner compared to the time
required to call the sine function for angles (©) > /8. In conventional compilers,
the compiler would assess whether the sine subprogram, in general, takes a long
time to execute based on conventional profitability analysis and would either
inline the entire sine subprogram based on the determined profitability. This
results in optimization of sine subprograms in certain situations and not others.
However, a system or method operating consistent with the present invention
distinguishes between the various execution characteristics of subprograms,
such as a sine subprogram, and selectively inlines portions of the sine
subprogram based on the execution characteristic that a branch of the sine
subprogram will likely exhibit.

Thus, in a system or method operating consistent with the present
invention, since inlining the sine function is profitable for angles < 1/8, the
compiler 32 inlines code along the sine subprogram path that receive angles (©)
< 1/8 and does not inline code along the sine subprogram path that receive

angles (©) > /8. Consequently, subprograms are partially inlined based on the

execution characteristic of a particular branch.

-12 -

10

15

20

WO 02/10909 PCT/US01/23466

The following is an example of source code used to illustrate an
implementation consistent with the present invention. It should be appreciated
that this source code example is not intended to represeht a specific source code
(high level) language but instead represents the general type logic statements
that may be implemented in various computer program languages, such as Java,
C, Fortran, Pascal, or other high level language and does not limit the invention
to any specific computer language. (Java is a registered trademark of Sun
Microsystems Corporation.) The following represents a subprogram to compute
the "sine" function:

If (© <1/8) then

c$dir INLINE PATH

{compute sine with a quick formula}

else

{compute sine with long process}

end if

In the subprogram code illustrated above, the sine subprogram has two
execution paths: one path that computes sine using a quick formula when © <
/8 (the short path) and another path that computes sine using a long formula
when © > /8 (the long path). In this example, the calculation of sine along the
short path may be considered a first execution characteristic of the subprogram
and the calculation of sine along the long path may be considered a second

execution characteristic of the subprogram. The computation of sine along the

-13-

10

15

20

WO 02/10909 PCT/US01/23466

short path takes less time than the computation of sine along the long path. A
directive "c$dir INLINE PATH" is included along the short path to identify the
short path as having a certain execution characteristic. The "c" indicates the
language following is a program comment and the "$dir" indicates that the
compiler is to interpret this comment as a special directive. In this example, the
directive is named "INLINE PATH" and indicates to the compiler that this path or
branch of the subprogram is to be inlined. By using the comment "¢" syntax, if
this code is evaluated by a compiler that does not have the logic consistent with
the present invention modeled therein, the compiler treats the statement as a
program comment and does not perform any action with respect to the
statement. Without an element to distinguish execution paths, such as the
directive statement discussed above, a compiler would not be able to distinguish
whether one path of subprogram was shorter/faster and would not know whether
the path is frequently or infrequently executed.

When the compiler 32 encounters a path of a subprogram that includes a
directive specified in accordance with the present invention, the compiler 32
inlines or considers for inlining the code along the short path. When profiling is
used, a compiler consistent with the present invention may evaluate data
collected after testing different sets of data to determine execution paths that
were taken frequently and executed quickly as opposed to only evaluating the
entire subprogram as in conventional compilers.

It should be appreciated that the sine subprogram discussed is intended

only as an example of a subprogram that may be evaluated and inlined

-14 -

10

15

20

WO 02/10909 PCT/US01/23466

consistent with the principles of the present invention and that other
subprograms with different execution characteristics may be inlined consistent
the principles of the present invention. Another example of a subprogram that
can be inlined consistent with the present invention is the mathematical tangent
function, which processes normally for a certain range of variables but requires
special case processing for another range of variables.

Referring to Figs. 4-5, flow diagrams consistent with an embodiment of the
present invention are illustrated. Fig 4. is a flow diagram of the process used in
developing source code that is consistent with the present invention. Such
source code enables a compiler to identify the range of variables that are
associated with a specific execution characteristic of a subprogram. A
subprogram is identified that exhibits varying execution characteristics based on
the range of variables that cause the different execution characteristics (step
402). After identifying the ranges, the specific ranges of variables identifying
execution characteristics are associated with the particular conditional branch of
the subprogram that causes the associated execution characteristic to be
exhibited (step 410). The subprogram path or paths that are to be given special
consideration, such as for inlining, are identified and a directive consistent with
the present invention is included along the path to identify the path that is to be
given special consideration for inlining (step 430).

Referring to Fig. 5, a flow diagram of the processes for inlining computer
code consistent with the present invention is shown. Since the inlining process is

the same for various compilation systems, the discussion associated with Fig. 5

-15-

10

15

20

WO 02/10909 PCT/US01/23466

deséribes the processes that occur during the second pass of compilation when
profiling is used and describes the inlining processes when a single compilation
stage compiler is used. After optimization processing begins, the compiler
identifies a subprogram that is eligible for inlining (510). The compiler
determines whether the subprogram has multiple execution characteristics (step
512). If the subprogram does not have multiple execution characteristics, the
subprogram is evaluated using normal inlining procedures (step 516). The
compiler determines that the subprogram does not have multiple execution
characteristics if an inline directive statement is not associated with the
subprogram. The compiler then determines whether additional subprograms are
to be evaluated for inlining (step 540). If all subprograms have been evaluated,
the process ends (step 544). If all subprograms have not been evaluated, the
process continues (step 510).

If the compiler determines that a subprogram has multiple execution
characteristics (i.e. a directive consistenf with the present invention is associated
with a particular execution path of the subprogram) (step 512), the compiler
considers the indicated execution path for inlining separately from the
subprogram as a whole (step 524). If the compiler determines that inlining
should not be applied to the execution path (step 524), the process checks for
other paths to be evaluated, and if no other paths exist (step 536) within the
subprogram, other subprograms, if any more exist, are evaluated (step 510). If
the compiler determines that inline processing is to occur (step 524), the

subprogram execution path is inlined (step 530). If there are no other execution

-16 -

10

15

20

WO 02/10909 PCT/US01/23466

paths in subprogram (step 536), the process determines whether other
subprograms are to be evaluated (step 540). If there is another execution path
of the subprogram to be evaluated (step 536), the process determines whether
an inline directive is associated with the branch (step 524). If an inline directive
is associated with the execution path, the execution path will be given special
consideration for inlining (step 524), as discussed herein.

In summary, a compiler consistent with the present invention makes
determinations as to whether to inline a specific call to a subprogram by
evaluating certain information supplied in conjunction with the subprogram call.
By supplying information in association with the subprogram call, the compiler
may more easily determine the various execution characteristics of the execution
paths of a subprogram. For many subprograms, the source code developer
knows or can determine that certain predefined or developer defined
subprograms exhibit different characteristics based on the different variables
operated on by the subprogram. Thus, subprograms may be programmed to
indicate or may be associated with the range of variables or parameters that
cause the subprogram to exhibit a specific execution characteristic. When the
compiler encounters an indication of a subprogram path that may exhibit one of
multiple characteristics of the subprogram, the compiler makes the decision
whether to inline or not based on the execution characteristic indication
associated with the subprogram call.

By processing subprograms in a manner consistent with the present

invention, two disadvantages of normal inlining are solved. First, since only a

-17 -

10

15

20

WO 02/10909 PCT/US01/23466

small portion of the subprogram is inlined, it is much less likely that the
executable code produced as a result of the inlining will grow to unacceptable
bounds. Second, the optimization is performed more efficiently since less code
will be inlined.

It should be appreciated by those skilled in the art that the present
invention may be used in various compilers or stages of compilation that perform
optimization. For example, a system or method consistent with the present
invention may be used for optimization as described herein when compiling
source code to intermediate code, such as Java byte codes. Additionally, a
system or method consistent with the present invention may be used for
optimization when byte codes are converted to object code.

It should be understood by those skilled in the art that various changes
and modifications may be made to the described embodiments and principles,
and equivalents may be substituted for elements without departing from the
scope of the invention. Modifications may be made to adapt a particular
element, technique, or implementation to the teachings of the present invention
without departing from the scope of the invention. It should be appreciated that
steps for performing processes consistent with the present invention may be
reordered. Steps may also be removed or added without departing from the
scope of the present invention. Although the described implementation is
discussed specifically in terms of software, the invention may be implemented as
a combination of hardware and software. Additionally, although aspects of the

present invention are described as being stored in memory, one skilled in the art

-18 -

WO 02/10909 PCT/US01/23466

will appreciate that these aspects can also be stored on other types of computer-
readable media, such as secondary storage devices, like hard disks, floppy
disks, or CD-ROM: a carrier wave from the Internet; or other forms of RAM or
ROM. Therefore, the described embodiments should be taken as illustrative and
not restrictive, of the invention defined by the following claims and their scope of

equivalents.

-19-

WO 02/10909 PCT/US01/23466

V. WHAT IS CLAIMED

1. A computer-implemented method for inlining code of a computer
program, comprising:
identifying a subprogram of the computer program; and
5 selectively inlining computer code of certain execution paths of the
subprogram.
2. The method of claim 1 comprising identifying the subprogram

based on execution characteristics of the subprogram.

3. The method of claim 1 wherein said step of selectively inlining is
10 based on execution characteristics of the execution paths.
4, The method of claim 3 wherein the execution characteristics are

based on the execution time for the paths.
5. The method of claim 4 wherein the execution characteristics are
based on the frequency of execution of the paths.
15 6. The method of claim 1 Wherein the step of selectively inlining is

based on an inline indication associated with an execution path.

7. The method of claim 6 wherein the inline indication is an inline
directive.
8. The method of claim 7 wherein the inline directive is included as
20 part of a program comment statement.
9. The method of claim 1 further comprising determining whether ;o

selectively inline the execution paths using information profiles associated with

the execution path.

-20 -

WO 02/10909 PCT/US01/23466

10. A computer program compiler for inlining computer program code,
comprising:

a subprogram identification module that identifies subprograms of the
computer cpde; and

5 a path identification module that selectively inlines computer code of
certain execution paths of the subprogram.

11. The apparatus of claim 10 wherein the path identification module
selectively inlines based on an inline indication associated with an execution
path.

10 12. The apparatus of claim 11 wherein the inline indication is an inline
directive.

13. The method of claim 12 wherein the inline directive is included as
part of a program comment statement.

14. A computer-implemented method of determining whether to replace

15 subprogram code of a computer program, comprising the steps of:

identifying a subprogram that has a first and a second execution
characteristic;

replacing a portion of the subprogram that exhibits the first execution
characteristic with program instructions that explicitly define the operations of the

20 first execution characteristic; and
leaving intact a second portion of the subprogram that exhibits the second

execution characteristic.

-21 -

10

15

20

WO 02/10909 PCT/US01/23466

15. The method of claim 14 wherein said second execution
characteristic is an atypical characteristic.

16. The method of claim 15 wherein said atypical characteristic is an
execution time duration.

17. The method of claim 16 wherein said execution time duration
exceeds a predetermined threshold.

18. The method of claim 17 wherein said first execution characteristic is
a typical execution characteristic.

19. The method of claim 17 wherein said first and second execution
characteristics are execution time durations.

20. The method of claim 19 wherein the first and second execution
characteristics are based on arguments operated on by the subprogram.

21. The method of claim 20 wherein the first and second execution
characteristics are invoked based on conditional execution computer statements
associated with the characteristics.

22. The method of claim 11 wherein the first and second execution
characteristics are invoked based on conditional execution computer statements
associated with the characteristics.

23. A computer readable medium for inlining computer program code,
which when executed by a computer, performs the steps of:

identifying a subprogram that has a plurality of execution characteristics;

inlining only a selected portion of the subprogram that corresponds to one

of the execution characteristics.

-922.

WO 02/10909 PCT/US01/23466

24. The medium of claim 23 wherein the selected portion is defined by
a selected péth of a plurality of execution paths that may be executed by the
subprogram.
25. The medium of claim 24 further comprising determining the
5 selected path by identifying a directive associated with the path.
26. The medium of claim 25 wherein the directive is included in the
selected path.
27. The medium of claim 23 wherein the execution characteristics are
identified by evaluating a conditional execution statement associated with a
10 subprogram call.
28. A computer-implemented method of replacing subprogram code in
a computer system, comprising the steps of:
identifying a subprogram that operates in a first manner when operands
passed to the subprogram fall within a first range of values and that operates in a
15 second manner when operands passed to the subprogram fall within a second
range of valpes; and
replacing subprogram statements that cause the subprogram to operate in

the first manner with expanded code.

20 29. A computer-implemented method for compiling a program
containing at least one reference to a subprogram from source code to object
code, wherein the subprogram has alternative paths of execution, the method

comprising:

-23-

WO 02/10909 PCT/US01/23466

a) determining the execution path of the subprogram to be
executed when the reference to the subprogram is encountered during
compilation of the program; and

b) replacing the reference to the subprogram in the program with at

5 least a portion of the subprogram corresponding to the execution path of the
subprogram to be executed when the reference to the subprogram is
encountered during compilation of the program.

30. The method of claim 29 wherein determining the execution path of
the subprogram to be executed when the reference to the subprogram is
10 encountered during compilation of the program, comprises:
analyzing a set of input parameters that may be provided to the
subprogram during execution.
31. The method of claim 29, further comprising:
determining whether the subprogram contains a command signaling a
15 preference for optimizing compilation of the program by performing steps a) and
b).
32. The method of claim 29, further comprising:

converting the program from source code to object code.

20 33. A computer-implemented method for compiling a program
containing at least one reference to a subprogram from source code to object
code, wherein the subprogram has alternative paths of execution, the method

comprising:

-24 -

10

15

20

WO 02/10909 PCT/US01/23466

determining the execution path of the subprogram to be executed when
the reference to the subprogram is encountered during compilation of the
program; and

replacing the reference to the subprogram with only a portion of the
subprogram corresponding to the execution path of the subprogram to be .
executed when the reference to the subprogram is encountered during
compilation of the program.

34. The method of claim 33 wherein determining the execution path of
the subprogram to be executed when the reference to the subprogram is
encountered during execution of the program, comprises:

analyzing a set of input parameters that may be provided to the
subprogram during execution.

35. An apparatus having a processor and a memory containing
programs for inlining code of a computer program which when executed using
the processor perform steps comprising:

identifying a subprogram of the computer program; and

selectively inlining computer code of certain execution paths of the
subprogram.

36. The apparatus of claim 35 wherein said subprogram is identified
based on execution characteristics of the subprogram.

37. The apparatus of claim 35 wherein said computer code is

selectively inlined is based on execution characteristics of the execution paths.

-25-

WO 02/10909 PCT/US01/23466

38. The apparatus of claim 37 wherein the execution characteristics are
based on the execution time for the paths.

39. The apparatus of claim 37 wherein the execution characteristics are
based on the frequency of execution of the paths.

5 40. The apparatus of claim 35 wherein the computer code is selectively
inlined based on an inline indication associated with an execution path.

41. The apparatus of claim 40 wherein the inline indication is an inline
directive.

42. The apparatus of claim 41 wherein the inline directive is included as

10 part of a program comment statement.

43. The apparatus of claim 35 further comprising using information
profiles associated with the execution path to determine whether to selectively
inline the execution paths.

44. An apparatus having a processor and a memory containing

15 programs for determining whether to replace subprogram code of a computer
program which when executed using the processor perform steps comprising:
identifying a subprogram that has a first and a second execution
characteristic;

replacing a portion of the subprogram that exhibits the first execution

20 characteristic with program instructions that explicitly define the operations of the
first execution characteristic; and

leaving intact a second portion of the subprogram that exhibits the second

execution characteristic.

-26 -

WO 02/10909 PCT/US01/23466

45. The apparatus of claim 44 wherein said second execution
characteristic is an atypical characteristic.

46. The apparatus of claim 45 wherein said atypical characteristic is an
execution time duration.

5 47. The apparatus of claim 46 wherein said execution time duration
exceeds a predetermined threshold.

48. The apparatus of claim 47 wherein said first execution
characteristic is a typical execution characteristic.

49. The apparatus of claim 47 wherein said first and second execution

10 characteristics are execution time durations.

50. The apparatus of claim 49 wherein the first and second execution
characteristics are based on arguments operated on by the subprogram.

51. The apparatus of claim 50 wherein the first and second execution
characteristics are invoked based on conditional execution computer statements

15 associated with the characteristics.

52. The apparatus of claim 51 wherein the first and second execution
characteristics are invoked based on conditional execution computer statements
associated with the characteristics.

53. An apparatus having a processor and a memory containing

20 programs for replacing subprogram code in a computer system which when
executed using the processor perform steps comprising, comprising the steps of:
identifying a subprogram that operates in a first manner when operands

passed to the subprogram fall within a first range of values and that operates in a

-7 -

WO 02/10909 PCT/US01/23466

second manner when operands passed to the subprogram fall within a second
range of values; and
replacing subprogram statements that cause the subprogram to operate in

the first manner with expanded code.

-28 -

WO 02/10909 PCT/US01/23466

1/5
10
/ /14
/24
18 28

CPU <——l—> I/0

20
Y /
/32
40
30
Source Code > Compiler —» Assembly Code
4 4
\ 7 v
36 38
Intermediate Code \ Intermediate Code
(without inlining) (with inlining)

FIG. 1

PCT/US01/23466

WO 02/10909

2/5

]

apo)
Alquiessy

lo|quiassy

¢ 'Old

ovm\

saInpaooid
uoneziwpdo

022 \

jun Joejsuel |

A|
8po) 92IN0S

EN\

WO 02/10909

3/5

220

PCT/US01/23466

310

Inline Eligibility
Module

320

nline Profitability
Module

Profiling Module

330

v

FIG. 3

WO 02/10909 PCT/US01/23466

4/5

Determine Whether
Subprograms Exhibit
Varying Execution
Characteristics

402

A 4

Associate a Threshold or

Range of Variables of Sub

With Corresponding ——410

Execution Characteristic
(Path)

Assocate in Inline Directive
with the Appropriate — 430
Execution Characteristic

FIG. 4

WO 02/10909 PCT/US01/23466

5/5
Begin
516
Evaluate 510
Sub Using N -
P ID Subprogram
Normal |« Eligible for Inlini
Inlining igible for Inlining
Procedures

512

Does Sub Have
Multiple Execution
haracteristics?

524

Inlining to be
Applied to Path?

A

Apply Inliningto | _—930
Path

536

Another Path?

A 4

All Subs Evaluated

540
Y

FIG. 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

