

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2006/0219389 A1 Hendrix

Oct. 5, 2006 (43) Pub. Date:

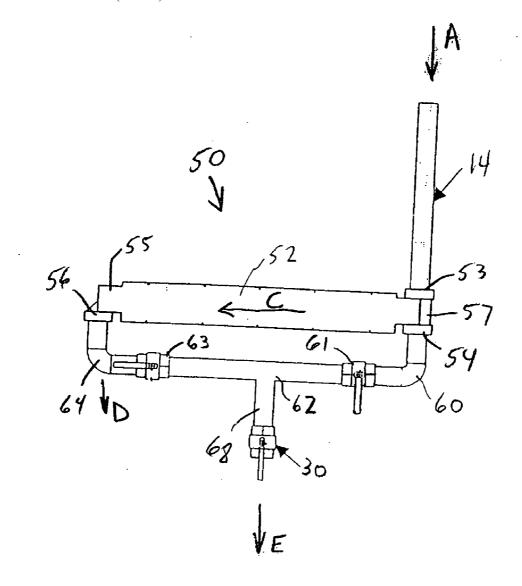
(54) AIR COMPRESSOR AFTERCOOLER

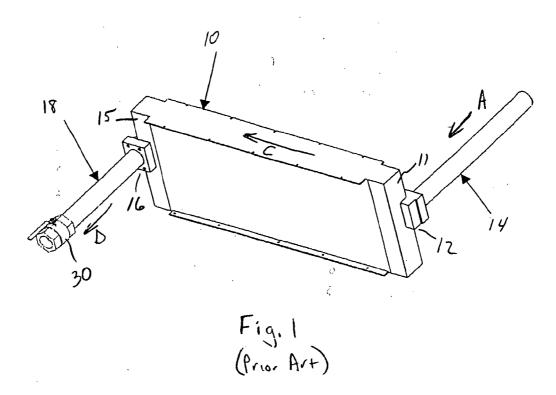
(75) Inventor: Dean P. Hendrix, Mocksville, NC (US)

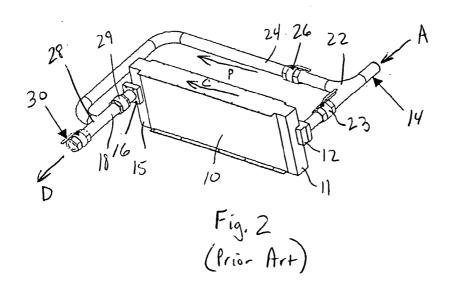
Correspondence Address: MICHAEL BEST & FRIEDRICH, LLP 100 E WISCONSIN AVENUE MILWAUKEE, WI 53202 (US)

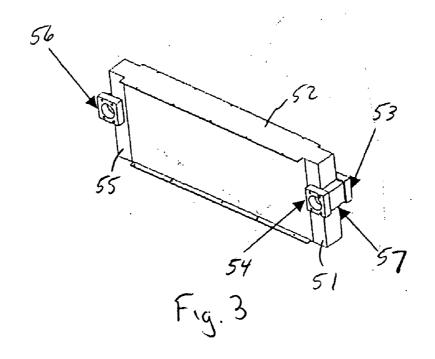
Assignee: Ingersoll-Rand Company, Montvale, NJ

Appl. No.: 11/096,728


(22) Filed: Apr. 1, 2005


Publication Classification


(51) Int. Cl. F28F 27/02 (2006.01) (52) U.S. Cl.165/103


ABSTRACT (57)

A compressor aftercooler and an aftercooler assembly incorporating the aftercooler. The aftercooler has an inlet header and a cooler outlet that are in flow communication with a cooling area therebetween such that air passing from the inlet header to the cooler outlet is reduced in temperature. A bypass outlet exits directly from the inlet header such that air passing from the inlet header to the bypass outlet bypasses the cooling area. The aftercooler assembly further comprises a valve and piping arrangement to control flow through the aftercooler.

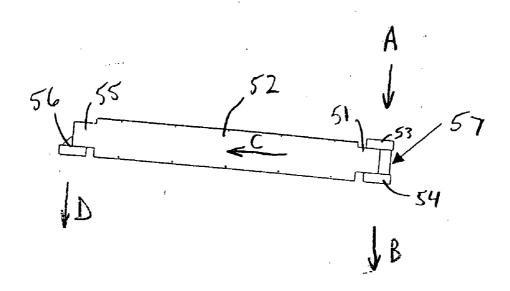
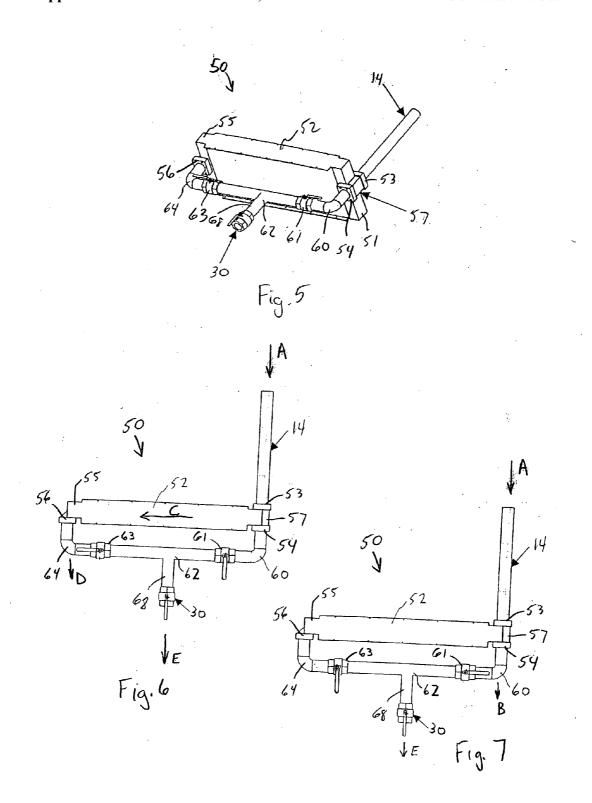



Fig. 4

AIR COMPRESSOR AFTERCOOLER

BACKGROUND

[0001] The present invention relates to air compressor aftercoolers. More particularly, the present invention relates to an aftercooler assembly for providing hot or cool air from an air compressor.

[0002] Engine driven and motor driven air compressors are frequently equipped with an aftercooler in the discharge circuit. As shown in FIG. 1, the aftercooler 10 receives air from the compressor (not shown) via an inlet pipe 14. The compressed air traveling in the direction A enters the aftercooler header 11 via an inlet flange 12. The compressed air travels across the aftercooler as indicated by arrow C. The aftercooler 10 lowers the temperature of the compressed air being delivered to the equipment connected to the compressor. The cooled air travels from the outlet header 15 through an outlet flange 16 to a discharge pipe 18 as indicated by arrow D. An outlet valve 30 may be provided to control the flow to downstream components. The cooler air is generally required in order to precipitate moisture from the compressed air as well as protect downstream equipment from excessive temperatures.

[0003] In certain applications, such as petrochemical, steel and glass manufacturing, high temperature compressed gas is required. A method to bypass the compressor aftercooler is needed for use in these applications. FIG. 2 illustrates a typical system for achieving bypass of the aftercooler 10. This bypass system generally incorporates an additional piping circuit around the aftercooler 10. The inlet pipe 14 includes a tee 22 with a flow path toward the inlet flange 12 and a second path through a bypass pipe 24. A first control valve 23 is provided before the inlet flange 12 and a second control valve 26 is provided along the bypass pipe 24. The control valves 23 and 26 are controlled to provide the desired air temperature. If cool air is desired, control valve 26 is closed while control valve 23 is opened. As such, the compressed air travels through the inlet flange 12, across the aftercooler as indicated by arrow C and out of the discharge pipe 18, in manner similar to the standard aftercooler assembly of FIG. 1. If hotter air is desired, control valve 23 is closed such that the compressed air cannot enter the aftercooler 10. The control valve 26 is opened such that the compressed air travels through bypass valve 24 as indicated by arrow P. The bypassed air reenters the discharge pipe 18 via a tee 28. A check valve 29 must be provided along the discharge pipe 18 to prevent the hotter air from entering the aftercooler discharge header 15.

[0004] Engine and motor driven air compressors are constantly being required to be packaged in increasingly smaller enclosures. The inclusion of the additional piping inside of the compressor package adds complexity to the assembly and service of the compressor and also increases the cost of the unit. Performance of the compressor may be reduced by the additional restriction of the cooling airflow by the additional pipe work.

SUMMARY

[0005] The present invention provides a compressor aftercooler and an aftercooler assembly incorporating the aftercooler. The aftercooler has a body having an inlet header and a cooler outlet. The inlet header and the cooler outlet are in flow communication with a cooling area therebetween such that air passing from the inlet header to the cooler outlet is reduced in temperature. A bypass outlet exits directly from the inlet header such that air passing from the inlet header to the bypass outlet bypasses the cooling area. The aftercooler assembly further comprises a first pipe section exiting the bypass outlet and a second pipe section exiting the cooler outlet. The first and second pipe sections each connected with a combining tee such that flow through the first and second pipe sections flows to a common discharge. A first valve is positioned along the first pipe section between the bypass outlet and the common discharge and a second valve is positioned along the second pipe section between the cooler outlet and the common discharge.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is an isometric view of a standard after-cooler configuration.

[0007] FIG. 2 is an isometric view of a standard after-cooler bypass configuration.

[0008] FIG. 3 is an isometric view of the aftercooler of a first embodiment of the present invention.

[0009] FIG. 4 is a top plan view of the aftercooler of FIG.

[0010] FIG. 5 is an isometric view of an aftercooler system according to the first embodiment of the present invention.

[0011] FIG. 6 is a top plan view of the aftercooler system of FIG. 5 with the valves positioned in a standard flow configuration.

[0012] FIG. 7 is a top plan view of the aftercooler system of FIG. 5 with the valves positioned in a bypass flow configuration.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0013] The present invention will be described with reference to the accompanying drawing figures wherein like numbers represent like elements throughout. Certain terminology, for example, "top", "bottom", "right", "left", "front", "frontward", "forward", "back", "rear" and "rearward", is used in the following description for relative descriptive clarity only and is not intended to be limiting.

[0014] Referring to FIGS. 3-7, an aftercooler system 50 that is a preferred embodiment of the present invention is shown. The aftercooler system 50 includes an aftercooler 52 having an inlet header 57 and an outlet header 55. The outlet header 55 has an outlet flange 56 similar to the outlet flange of a standard aftercooler. The inlet header 57 includes an inlet flange 53 entering the header 57 and an outlet flange 54 exiting the inlet header 57, preferably directly across from the inlet flange 53. Compressed air entering the inlet flange 53 can travel through the aftercooler as indicated by arrow C or may travel directly through the inlet header 57 as indicated by arrow B.

[0015] Referring to FIGS. 5-7, the aftercooler assembly 50 includes a compact system of pipes 60, 62, 64 and valves 61, 63 to control flow through the aftercooler 52. A first pipe elbow 60 is connected to the outlet flange 54 to receive

bypassed air traveling in the direction B. A -second pipe elbow 64 is connected to outlet flange 56 to receive air that has traveled through the aftercooler 52 as indicated by arrows C and D. The first and second elbows 60, 64 are interconnected to a tee pipe 62 that provides a common discharge pipe 68. The discharge pipe 68 may have a valve 30 to control flow to downstream equipment.

[0016] To control flow through the aftercooler system 50 a first control valve 61 is provided between the first elbow 60 and the tee 62 and a second control valve 63 is provided between the second elbow 64 and the tee 62. When cool air is desired, the first control valve 61 is closed and the second control valve 63 is opened as shown in FIG. 6. Air travels into the inlet flange 53 via a standard inlet pipe 14 as indicated by arrow A. Since the first control valve 61 is closed and the second control valve 63 is open, the compressed air travels across the aftercooler 52 as indicated by arrow C. The cooled air exits the outlet flange 56 as indicated by arrow D and travels through elbow 64 to the tee 62. Since the first control valve 61 is closed, the cooled compressed air travels through the discharge pipe 68 as indicated by arrow E.

[0017] When hot air is desired, the first control valve 61 is opened and the second control valve 63 is closed as shown in FIG. 7. Air travels into the inlet flange 53 via a standard inlet pipe 14 as indicated by arrow A. Since the first control valve 61 is opened and the second control valve 63 is closed, the compressed air does not travel across the aftercooler 52, but instead flows directly through the inlet header 57 and out the outlet flange 54 as indicated by arrow B. The cooled air exits the outlet flange 57 and travels through elbow 60 to the tee 62. Since the second control valve 63 is closed, the cooled compressed air travels through the discharge pipe 68 as indicated by arrow E. The second control valve 63 prevents backflow into the outlet header 55 and therefore the check valve as in the standard bypass system is eliminated.

[0018] In addition to the flow described above, the valves 61 and 63 may be partially opened to provide a mixing of cool air and hot air to achieve air having a desired discharge temperature between the cool temperature and the hot temperature. To facilitate such mixed air flow, the illustrated manual valves 61, 63 may be replaced with automated valves, for example, solenoid valves. The compressor controller could than automatically control the valves to provide a desired discharge air temperature.

[0019] The aftercooler system 50 of the present invention uses a reduced amount of piping inside the compressor enclosure. The reduction in piping permits greater cooling air flow, greater access for servicing of the compressor, a reduced number of components, and reduced cost of the compressor system. While the illustrated piping configuration is preferred, other piping configurations may be used. Additionally, the outlet flange 57 may be capped and the aftercooler 52 utilized in a standard manner if such is desired. Additionally, the flow through the aftercooler 52 may be configured such that the outlet flange 56 may be provided on the inlet header 57 side of the aftercooler.

What is claimed is:

- 1. A compressor aftercooler comprising:
- a body having an inlet header and a cooler outlet, the inlet header and the cooler outlet in flow communication with a cooling area therebetween such that air passing from the inlet header to the cooler outlet is reduced in temperature; and
- a bypass outlet that exits directly from the inlet header such that air passing from the inlet header to the bypass outlet bypasses the cooling area.
- 2. A compressor aftercooler assembly comprising:
- an aftercooler having a body having
 - an inlet header and a cooler outlet, the inlet header and the cooler outlet in flow communication with a cooling area therebetween such that air passing from the inlet header to the cooler outlet is reduced in temperature; and
 - a bypass outlet that exits directly from the inlet header such that air passing from the inlet header to the bypass outlet bypasses the cooling area;
- a first pipe section exiting the bypass outlet and a second pipe section exiting the cooler outlet; the first and second pipe sections each connected with a combining tee such that flow through the first and second pipe sections flows to a common discharge;
- a first valve positioned along the first pipe section between the bypass outlet and the common discharge and a second valve positioned along the second pipe section between the cooler outlet and the common discharge.

* * * * *