0 0 0 O

WO 01/27746 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 April 2001 (19.04.2001)

0 00

(10) International Publication Number

WO 01/27746 A2

(51) International Patent Classification’: GO6F 9/00

(21) International Application Number: PCT/US00/28658

(22) International Filing Date: 13 October 2000 (13.10.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/419,405 14 October 1999 (14.10.1999) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:

uUs
Filed on

09/419,405 (CON)
14 October 1999 (14.10.1999)

(71) Applicant (for all designated States except US): 360
POWERED CORPORATION [US/US]; Suite 300, 190
Queen Anne Avenue, Seattle, WA 98109 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): TRIPP, Gary, W.

[US/US]; 9836 Miller Road, Bainbridge Island, WA 98110

(US). MEADWAY, Michael, D. [US/US]; 18033 - 129th

Place Southeast, Snohomish, WA 98290 (US).
(74) Agents: HALEY, Jeffrey, T. et al.; Graybeal Jackson Ha-
ley LLP, Suite 350, 155 - 180th Avenue Northeast, Belle-
vue, WA 98004 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS,LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ,PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, F1, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

[Continued on next page]

(54) Title: DATA DRIVEN DISCRETE PARALLEL PROCESSING

1 SOURCE OF
UPDATES

i

DIRECT UPDATES BASED
ON DATA CONTENT

(57) Abstract: A data driven discrete parallel pro-
cessing computing system for searches with a key-
ordered list of data objects distributed over a plu-
rality of servers. The invention is a data-driven ar-
chitecture for distributed segmented databases con-
sisting of lists of objects. The database is divided
into segments based on content and distributed over
a multiplicity of servers. Updates and queries are
data driven and determine the segment and server to
which they must be directed avoiding broadcasting.

£ ! = This is effective for systems such as search engines.
1 o-9 16 u-z Each object in the list of data objects must have
SERVER SERVER a key on which the objects can be sorted relative
r 7 to each other. Each segment is self-contained and
{ /" doesn’t rely on a schema. Multiple simultaneous
i queries and simultaneous updates and queries on
. different segments on different servers result in par-
3 DIRECT QUERIES N prect allel processing on the database taken as a whole.
BASED ON DATA CONTENT 5| REPLIES T0
SOURCE OF
} QUERY
4| SOURCE OF QUERIES /

(TO WHICH RESPONSES
ARE DIRECTED)

DATA DRIVEN DISCRETE
PARALLEL PROCESSING

wO 01727746 A2 N0 E00 000 0 A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 01/27746 PCT/US00/28658

DATA DRIVEN DISCRETE PARALLEL PROCESSING
FIELD OF INVENTION

This invention relates to computer data base systems, specifically data base

systems where the data to be updated or queried is distributed over multiple servers.
BACKGROUND

When large data bases need to be able to respond in a timely fashion too large
numbers of queries, it is desirable to distribute the data base over multiple servers so that the
many servers can each respond to queries at the same time. Similarly, where the data base is
frequently being updated, a greater rate of updates can be handled with each server updating
only a portion of the data base.

There are many distribution schemes for distributed databases. If the data base
consists of multiple tables, it is common to place one table in each server. Alternatively,
records within a table may be distributed by placing records one through n on a first system
and records above n on a second system. As a further alternative, column A of a table may be
on one server while column B of the same table is on another server.

As shown in Figure 1, all of these data base distribution schemes require a
shared table or index or schema of some kind to coordinate the different portions of the
distributed data base during queries and updates. This requirement for coordination between
the various segments imposes scale and performance limitations on distributed data bases as
well as challenges for fault tolerance in case one of the distributed segments ceases to
function. In addition, complex locking schemes which account for communications delays
and topologies must be implemented to ensure that distributed columns or records are not
improperly modified.

To avoid the coordination and locking problems with distributed data bases,
where the data can be kept in multiple separate databases, it is known to arrange multiple
databases in parallel. Each query is sent to all of the databases and the responses from all of
the databases are then aggregated, with or without filtering or elimination of duplicates, to
provide the response. Similarly, each update is sent to each database and the individual
database system decides whether the update is relevant to its dataset. Because the databases
need not coordinate or otherwise communicate with each other, the coordination and locking

problems of a distributed database are avoided. However, this still presents a scalability

10

15

20

25

30

WO 01/27746 PCT/US00/28658

problem and a speed problem because the updates and queries must be sent to all databases
and each database must take the time to receive and respond to each update and each query.
SUMMARY OF THE INVENTION

The invention is a data driven discrete parallel processing architecture for
distributed simple data bases. This invention is effective for systems where the data base can
be organized in one ordered list and the list can be segmented and constructed such that the
data contents of each update transaction are sufficient to determine the segment of the list to
which the update should be directed and the data contents of each query transaction are
sufficient to determine the segment of the list to which each query should be directed.
Consequently, each object in the list must have a key on which the objects can be sorted
relative to each other. Two or more objects can have the same key. The queries and updates
each include data content that can be compared to the key to find a match, place a new object
into sorted order, modify an object, or delete an object.

In all respects, the data set on each server is entirely self contained; that is, it
does not require references to other data tables, such as data dictionaries, that are shared
between segments. It therefore will not work for relational databases — the data set must be
representable as a single, key-ordered list of objects. Except for each object having a key on
which the objects can be sorted, the objects need not have anything in common. Each object
consists of a key and any number of constructs which can include different data types; they
can have different numbers or lengths of fields; and each field is preferably of variable length.
Unlike a traditional database using fixed numbers of fields for each record or fixed field sizes,
in the preferred embodiment, the data storage requirements are the minimum necessary to
represent the data as formatted. Empty fields are not be stored — there is simply no reference
to them at all. Alternatively, the numbers of fields in each object can be fixed, in which case
the list of objects is simply a standard table of a database, and the field lengths can be fixed as
well.

Although it must be possible to represent the entire data set as a single, key-
ordered list, the segments of the list that are placed on each server do not have to be exclusive
of each other. Two segments can overlap. Or the segments on two or more servers can be
identical. In these cases, a query or an update may be directed to two or more segments and

two or more responses may be received. However, in the preferred embodiment, the

10

15

20

25

30

WO 01/27746 PCT/US00/28658

segments do not overlap (each is a proper subset of the list) to avoid the need for queries or
updates to be directed too more than one server.

An example of an application where the invention may be employed is an
index for an internet search engine. The search engine receives queries which are
specifications of words where the user is searching for web-site pages containing the words.
If the index for the internet search engine is distributed based on the content of the data of
each query, 1.e. the keys shown in the first column of Figure 3, a query for a particular word
can be directed to the server which contains, in alphabetical order, those words within the
index which include the queried word if it exists in the index. Likewise, because each update
to the index consists of a key word plus a reference to a web page where that word was found

>

each update can be directed to only one of the servers and no update change must be made on
any other server.

Thus, where the updates and queries can be data driven to determine the
segment of a distributed key-ordered list of objects to which they must be directed, the list
can be divided into segments based on content and distributed among a multiplicity of servers
as shown in Figure 2. In this example, the list is segmented based on the first character in the
key for each object in the list. All updates where the key word begins with a number are
directed to server 11; all updates where the key word begins with the letters A through E are
directed to server 12; etcetera. Likewise, all queries where the key word begins with a
number are directed to server 11; all queries where the key word begins with the letters A
through E are directed to server 12; etcetera. The objects in each segment are complete unto
themselves — that is, they include no references to any data construct associated with another
segment. This allows the segment within each server to stand on its own and requires no
reference to other data tables on other servers to complete each update or to completely
respond to each query.

By structuring the data base as one large list of objects that is sorted based on a
key that is the entire basis for directing updates to segments of the data base and directing
queries to segments of the data base, the data base can be segmented based on a possible
range of values of the key for each segment. For example, as shown in Figure 3, a first
segment 31 consists of all objects with keys 21 beginning with a numeral. A second segment

32 consists of all objects with key words 21 beginning with the letter A. A forth segment

10

15

20

25

30

WO 01/27746 PCT/US00/28658

consists of all objects with key words 21 beginning with the letters A through CL. A fifth
segment consists of all words 21 beginning with the letters CO through CZ.

A limitation of this method of segmenting a data base is that the segments will
not be of equal size. As the data changes over time, randomness will cause some segments to
grow or shrink more than others. However, as the costs of data storage have declined, this is
not a significant problem. Of course, extreme imbalances can be rectified by human
intervention in a manual process which requires coordination between various segments.

Because the processes executed by each segment server are entirely
independent of each other, the system architecture allows for truly discrete parallel
processing. Consequently, there is no upper limit to the scalability or performance of the
system. Even the update processor 2, the query processor 3, and the query reply processor 5
can be duplicated as many times as necessary to allow parallel processing in the directing
functions without coordination or communication between them. Using multiple update or
query processors does not increase overall system overhead. Each connection to a database
server may be via a physically separate channel.

In the preferred embodiment, the key words are stored in their full length
without translation via a data dictionary.

Alternatively, to reduce storage requirements, the ASCII words for a segment
may be translated to shorter average representations with a data dictionary on the server for
that segment. However, this introduces a second lookup without providing much in the way
of storage savings when working with text databases. The average word length is about nine
bytes. This is small enough that the storage saved is not worth the extra I/O time required for
dictionary maintenance. With a dictionary, each word must have an ID which is subsequently
stored in the entry table. The ID must always be unique therefore a
lock/load/increment/store/unlock must be performed for new words. This introduces a
bottleneck for insertions since multiple processes must contend for a required resource (the
counter record). There is also an issue of recoverability. If the dictionary is corrupted, the
index table has no meaning because there is no way to map word ID values back to the text.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a prior art distributed data base.

Figure 2 shows the architectural data driven parallel processing.

10

15

20

25

30

WO 01/27746 PCT/US00/28658

Figure 3 shows a prototypical segmented data table.

Figure 4 shows a data driven specification as used by the query processor and
the update processor.

Figure 5 shows a segmented index of type value pairs.

Figure 6 is block diagram showing the architecture of a search engine for
indexing the world wide web according to one embodiment of the present invention.

Figure 7 is functional block diagram of the central server of Figure 6.

Figure 8 is a bubble chart illustrating the process executed by the queue
manager of Figure 7 in queuing update entries and transferring these entries to the remote
queue manager of Figure 7.

Figure 9 is a bubble chart illustrating the process executed by the update
process server of Figure 7.

Figure 10 is a bubble chart illustrating the overall data flow in the search
engine of Figure 7.

Figure 11 illustrates components of the indexing system of Figure 6 for a Java-
based implementation of the indexing system according to one embodiment of the present
invention.

Figure 12 shows a class package for the segmented index.

Figure 13 is a functional data flow diagram illustrating an alternative
embodiment of the central cataloging site of Figure 6.

Figures 14 and 15 are diagrams illustrating operation of a distributed
accounting and inventory system on an intranet according to one embodiment of the present

invention.

DETAILED DESCRIPTION OF THE INVENTION

As shown in Figure 2, the data base, which consist of one key-ordered list of
objects, is segmented based on content of the key of the objects such that objects with keys
beginning with a numeral are on server 11, objects with key words beginning with the letters
A through E are on server 12, objects with key words beginning with the letters F through J
are on sever 13, objects with key words beginning with letters K through O are on server 14,
objects with key words beginning with the letters P through T are on server 15, and objects

with key words beginning with the letters U through Z are on sever 16.

10

15

20

25

30

WO 01/27746 PCT/US00/28658

The system operates with any source of updates 1. The updates are directed to
an update processor 2 which routes the updates to one of many servers based on data content.

The system operates with any source of queries 4 where each query includes a
key. A query processor 3 routes the queries to one of the servers based on the data content of
the query. A query reply director 5 returns the response from the appropriate server to the
source of the query.

An example of a data base which may be segmented in accordance with the
present invention is shown in Figure 3. It is an ordered list of objects, each object having a
key 21 and each object having additional data constructs 22. Although the database must be
organized as one list or table, it could have any number of items or fields in each object.

In Figure 3, the key column 21 holds alphanumeric keys . As shown in Figure
3, this list can be easily segmented such that objects having keys beginning with a numeral
are in the first segment 31, objects having keys beginning with the letter A are in the second
segment 32, objects having keys beginning with the letter B are in the third segment 33,
etcetera. As shown in segment 36, two or more objects can have the same key . If there are
many objects in the list which have a key beginning with the same letter, such as the letter C
or the letter S, objects having keys beginning with this letter can be further segmented by
looking at the second character in the key. For example, as shown in Figure 3, the fourth
segment 34 includes keys beginning with CA through CL; and the fifth segment 35 consists
of keys beginning with the letters CO through the letters CZ. Similarly, a later segment 41
consists of keys beginning with characters SA through SE; a subsequent segment 42 consists
of keys beginning with the characters SF through SP; and a further segment 43 consist of
keys beginning with the characters SQ through SZ.

Figure 4 shows a look-up table that is stored in the query processor and in the
update processor to determine to which server a query or an update should be sent. For each
update or query, the first character of the key (or first two or three characters) is compared to
the entries in column 51 and the appropriate server to which it should be sent is found on the
row. As shown by the entries in rows 54 and 55, two segments can overlap. As shown by the
entries in columns 52 and 53, each query or each update can be directed to multiple servers.

As shown in Figure 5, the primary key need not be a word. In Figure 5, the
primary key 51 is a data type which specifies the type of data at a location on a network. The

10

15

20

25

30

WO 01/27746 PCT/US00/28658

secondary key 52 contains a value associated with the data at that location, such as a title of
the data or a word within the data. Associated with this type-value pair is a reference 53, in

the form of a URL or some hash of a URL, to a location on a network where data of the type
and value can be found.

The ordered list of Figure S, which is useful as an index for an internet search
engine, is segmented primarily based on type. The first segment 61 consists of the type
“domain”. The second segment 62 consists of the type “concept”. The third segment 63
consists of the type “image”. The fourth segment 64 consists of the type “sound”. The fifth
segment 65 consists of the type “XML tag”. The sixth segment 66 consists of the type
“video”. The seventh segment 67 consists of the type “category”. The eighth segment 68
consists of the type “community”. The ninth and tenth segments 69, 70 consist of the type
“word”. As shown in this Figure, a type with a large number of records can be further
segmented based on a value or on a part of a value which, in this case, is the value column 52.
For example, in Figure 5, words beginning with the characters A through M are in the ninth
segment and words beginning with the characters N through Z are in the tenth segment. Also,
as shown in the tenth segment 70, two objects can have the same key and value but different
references.

Segmented Index for Network Search Engine

Figure 6 is a block diagram of an indexing system for a network search engine
according to one embodiment of the present invention. The system includes a central server
that stores a central index.

Each of the components in the central server will now be described generally,
with these respective components being described individually in more detail below. The
central server includes a router 210 that directs packets comprising search requests and update
transactions through a load balancing switch 212 to an appropriate set of servers 214, 302 and
222. The switch 212 balances traffic to all web servers 214 to prevent overloading respective
web servers and improve overall performance of the central server. The router 210 also
functions to allow offline updates of index server sets 216 and as a dispatch point to prevent
searches from being applied to an index server currently receiving updates, as will be

explained in more detail below. The web servers 214 generate the parallel queries necessary

10

15

20

25

30

WO 01/27746 PCT/US00/28658

to perform a search using the index servers 216. In one embodiment of the central server,
there are twenty web servers 214,

The central server further includes a master index server 218 containing a
master copy of the entire central search index or catalog. In the embodiment of Figure 6, the

master index server 218 has a redundant array of independent disks or RAID 5 to provide

protection against disk failures and loss of the central search index. In addition, the central

index stored on the master index server 218 is also stored on a remote master index server
220 at a different physical location to provide backup of the central search index.

A number of update servers 222 each receive updates. Each of the update
processors 222 applies all index change transactions through a firewall/router 224 to the
master index server 218 which, in turn, updates the central search index and then distributes
those changes to the various index servers sets 216. The master index server 218 also sends
instructions to the Name Space / Directory Server 233 to dynamically determine which set of
index servers 216 is to remain on-line to service search requests, and which set is to receive
the updates.

Changes to the index are received as transaction lists and each transaction list
is stored on one of the update servers 222. The transaction list is referred to as a batch, and
each batch contains a series of deletion and addition transactions formatted as commands.
More specifically, each batch represents an incremental change record. The update server
222 thereafter transfers each batch to the master index server 218 which, in turn, updates the
master index to reflect the index changes in the batch. It should be noted that only
"incremental" changes are transmitted to the central server.

The overall operation of the central server will now be described in more detail
with reference to the functional block diagram of Figure 7. In Figure 7, many components
previously discussed with reference to Figure 6 are shown, and for the sake of brevity the
detailed operation of each such component will not again be described in detail.

The queue manager 302 receives update transaction batches from the update
server 222, as will be described in more detail below.

The central server also performs index update processing to update the central
index stored on the master storage server 218 and the segmented central index stored on the

index servers 216, 217, as will now be described in more detail,

10

15

20

25

30

WO 01/27746 PCT/US00/28658

The queue manager 302 stores the received update transaction batches, and
periodically transmits a copy of the stored transaction batches to a remote queue manager 304
for processing by update processing manager 308 and being applied to the remote master
storage server 220. The queue manager 302 also periodically transmits a copy of the stored
transaction batches to and update processing server 306. The queue manager 302 stores
update transaction batches received during a predetermined interval, and upon expiration of
this interval the update batches are transferred to the update processing manager 308. Upon
receiving the update transaction batches, the update processing server 306 applies all the
batches to update the central index stored on the master storage server 218. Once the central
index stored on the master storage server 218 has been updated, the master storage server 218
applies the update transaction batches through the router to update the segmented central
index stored on the index server sets 216, 217.

During updating of the segmented central index stored on the index server sets
216, 217, the update transaction batches are directed to only one set of index servers 216, 217
while the other set remains online to handle search queries, and thereafter places the updated
set of index servers 216, 217 online and updates the set previously online. For example,
assume the index servers 216 are the primary set of index servers and the servers 217 are the
secondary set. Each index server set 216, 217 can contain all or a portion of the central index
218. As seen from the above example, the primary and secondary index server sets 216 and
217 eliminate the need for record locking of the segmented central index to which search
queries are applied. Thus, all records of the segmented central index are always available for
search queries. Moreover, if one server of the primary index server set 216 or 217 fails, the
remaining servers of that set will continue to serve queries. If the entire server set fails, the
corresponding secondary index server set is made the primary so that the entire segmented
central index is available for applied search queries. It should be noted that in the unlikely
event that both the primary and secondary index server sets 216, 217 for a particular segment
of the central index simultaneously fail, the remaining segments of the central index remain
available for applied search queries, and only the segment of the central index stored on the
failed index servers becomes unavailable. In other words, search queries are still applied to

the vast majority of the central index so that reasonable search results may are still obtained.

10

15

20

25

30

WO 01/27746 PCT/US00/28658

In a case were both server sets fail, queries for the segment that had failed could be sent to
central index.

The index server sets are used to provide query results for searches submitted
by the Web Servers. Each set of servers is identical, and each set of servers contains a
portion of the overall index. Initially, the division will be alphabetical and numerical, for a
set of 36 servers. Server “A” would contain the index for all words beginning with “A”.
Only one set of servers is updated at a given time, while the other set remains on-line to
service search requests. This permits the system to be run without file-locking constraints
and allows for failover should a server become inoperative.

Figure 7 is a bubble chart illustrating the process executed by the queue
manager 302 of Figure 7 in queuing update entries and transferring these entries to the remote
queue manager 304. The queue manager 302 receives update entries 600 from the update
server 222 and places these update entries in an update queue 604. The entries in the queue
604 are transferred to a queue database 606. Once the queue 604 is done receiving update
entries 600, 602, which may be when the queue is full or at predetermined intervals, the
queue manager 302 goes to step 608 and retrieves the queue entries from the queue database
606 and sends them to the remote queue manager 304. As previously described, the update
entries stored in the queue database 606 are thereafter processed by the update processing
server 306 (see Figure 7) to update the local master index on master index sever 218 (see
Figure 7). The queue manager 302 also receives a deletion request (not shown) from the
update processing server 306 and deletes update entries stored in queue database 606 in
response to this deletion request, as will be explained in more detail below with reference to
Figure 9.

Figure 9 is a bubble chart showing the process executed by the update
processing server 306. The process begins in step 700 with the update processing server 306
retrieving queue entries 700 from the queue manager 304. In the embodiment of Figure 9, the
queue entries 702 are retrieved periodically so that in step 700 the queue entries for the last N
hours are retrieved. From step 700, the process proceeds to step 704 and the update
processing server 306 applies the queue entries to the master index server 218 which, in turn,
utilizes the queue entries in updating the master index, as previously described. Once the

queue entries 702 have been applied to the server 218, the process proceeds to step 706 and

10

10

15

20

25

30

WO 01/27746 PCT/US00/28658

the update processing server 306 applies a deletion request 708 to the queue manager 302 (see
Figures 7 and 8). In response the deletion request 708, the queue manager 302 deletes the
update entries stored in the queue database 606 that have now been applied to the master
index server 218. The central index on the master index server 218 has now been updated to
include entries in the queue database 606, so these entries are deleted since they are now
reflected in the central index and thus no longer needed.

Figure 10 is a bubble chart illustrating the overall data flow between the search
engine, agent, and brochure components of the active indexing system. Each aspect of the
overall data flow has already been described in a corresponding section above, and thus
Figure 10 will now be described merely to provide a brief description of the overall data flow
of the indexing system according to one embodiment of the present invention. The
components of the process in Figure 10 may logically broken into two functional groups, an
indexing group and a searching group. In the searching group, a user 800 applies a search
request to one of the web servers 214, which processes the search request and applies it to
selected ones of the index servers 216, 217. In response to the applied search request, each of
the search index servers 216, 217 queries its corresponding local index segment 802 and
generates search data. The index servers 216, 217 then return the search results to the web
server 214, which, in turn, provides the user 800 with the search results corresponding to his
applied search request.

The remaining components in the Figure 10 are in the indexing group. The
queue manager 302 receives updates, as previously described. The queue manager makes
update and deletions to the queue database 602 corresponding to the received updates, and
also provides a mirror copy of these updates to the remote queue manager 304. The update
processing server 306 retrieves the update entries from the queue manager 302, and applies
the updates to the master index servers 218. The server 218 updates the master index to
include the applied updates, and the update processing server 306 then sends a deletion
request to the queue manager 302 to delete the corresponding entries from the queue database
602,

Once the master index server 218 has updated the master index, the server

updates the segmented index stored on the search index servers 216, 217 as previously

11

10

15

20

25

30

WO 01/27746 PCT/US00/28658

described. Each of the search index servers 216, 217 updates its corresponding portion of the
segmented index in response to the updates from the master index server 218.

The server architecture of the system will now be described. The server
architecture provides a number of services which support the management and use of
segmented index information. The system is divided into several components which can be
run on different machines, as needed, in a truly distributed architecture. The design must
scale well and be self-healing wherever possible. To make this possible, Jini technology
plays an important role in the architecture and services are exposed using that infrastructure.
As components are brought online, they advertise that their existence to the local Jini lookup
service. This information is automatically propagated to services that need access to other
services, and handshaking brings elements into the Jini community as they are announced. If
non-critical parts of the system become unavailable, the system is able to compensate by
distributing load to other machines hosting the necessary services.

As shown in Figure 11, a load balancer 2001 allows round-robin distribution
of incoming traffic to web servers and the agent listener. The web servers 214 provide user
services like account registration and search capabilities. The AgentListener 2003 is a secure
socket listener that manages agent connections. One of the components is a
UserAccessService 2005, which controls access. Users can make queries on the search index.
These are handled by the QueryDispatchService 2014, which delegates subqueries to
appropriate IndexSegmentServices 2013. Incoming information for updates is added to the
MessageQueueService 2009 and popped off by the UpdateManagerService 2008, which
coordinates information to ensure we have the latest updates. Collected changes are added
and/or removed in the MasterIndexService 2011.

Figure 11 shows request/response flow with the direction of arrows. The
intent is to make clear who is asking for the execution of respective services. The web server
214, serving up static and dynamic content through Servlets and Java Server Pages, can
communicate with the UserAccessService 2005 and the QueryDispatchService 2014, but
nothing else. The AgentListener 2003 can talk to the UpdateManagerService 2008 and the
MessageQueueService 2009 only. An IndexSegmentService 2013 is able to initialize itself
by asking for information from the MasterIndexService 2011. Finally, the
UpdateManagerService 2008 can talk to the MessageQueueService 2009 and the

12

WO 01/27746 PCT/US00/28658

MasterIndexService 2011. Its job is to keep the MasterIndexService 2011 up to date by
processing incoming update messages.
An IndexSegmentService 2013 is associated with a given Index Segment

Range, which determines the prefix character range for the index content. When an

5 IndexSegmentService 2013 is brought online, it automatically becomes available to the
QueryDispatchService 2014. If one of these services is reinitialized periodically, the update
will be completely transparent, so long as another IndexSegmentService 2013 covers the
same Index Segment Range. This might be a single server or may be distributed arbitrarily
across a number of IndexSegmentService instances. So long as a QueryDispatchService

10 instance is available to the web servers, and sufficient IndexSegmentService instances are
available to cover the full range of possible tokens, the system is capable of executing
queries.

The packages separate functionality groups into logical divisions of labor. A
description of selected packages follows. In each description, we include a UML class

15 diagram and a table describing the class in more detail. The class specification uses the
JavaDoc approach.

The com.activeindexing.shared.index package contains classes related to
indexing and includes the IndexSegmentService as shown in more detail in F igure 12. The
following Table 1 describes each of the classes of Figure 12 in more detail.

20 Table 1

Class escription

IndexSegmentService |An index segment is a pieces of the master index constrained to a range of
entries for performance optimization. A range is defined by the
IndexSegmentRange class and the index is kept in memory. This class
exposes a Jini service for dynamic availability reasons.

IndexEntry An index entry contains an identifier, reference to a content page, field
reference, hit count and context flags.

IndexField A field entry contains only an identifier and text name. It is used for
database normalization by the index entries.

IndexPage A page reference contains a document identifier, URL to the indexed page, a
signature key, mime type, modification date, title, description and index file
reference.

IndexContext A context defines a position where the index entry was found, either in the
title, meta information or in the body of the document.

IndexInputStream This stream provides utility functionality to make it easier to read index
objects from an input device.

IndexOutputStream This stream provides utility functionality to make it easier to write index

13

WO 01/27746 PCT/US00/28658

objects to an output device.

IndexSegmentRange [This class encapsulates a segment range, which is defined by two string

values representing the from and to tokens.

10

15

20

25

Alternative Segmented Index System

Figure 13 is a functional data flow diagram illustrating an alternative
embodiment of the central cataloging site of Figure 6. In Figure 13, a web server 4700 is the
main gateway for all updates and search requests. An update batch processor 4702 receives,
stores, and applies update batches and also transmits copies of the batches to redundant
remote catalog sites. A remote update batch processor 4704 receives and applies batches
received from a master catalog site to a local index server for the purposes of redundancy. An
index server 4706 stores all search index information in a series of database segments, and
creates result sets from queries applied to it as a result of search requests received by the web
server 4700.

An update batch storage area 4710 contains the received update batches
transmitted from remote hosts, and these batches are deleted after processing. An index
segment storage area 4712 contains a subset of the total index database for the index server
4706. For example, a single segment might contain the keyword fields for all of the
keywords beginning with the letter “A”. Typically, these storage areas will be placed on
high-speed RAID storage systems. An index segment storage twin area 4714 is identical to
the storage area 4712. The purpose of the twin area 4714 is to provide access to existing
index information while the corresponding index segment storage area is being updated. This
permits updates to be applied to a segment without requiring record locking. The index
server 4706 is simply notified as to which segment areas are available for search processing.
Once updated, the area 4712 or 4714 becomes available again.

In operation of the system of Figure 13, the update processor 4702 periodically
updates the index segments on the index server 4706. All updates received are applied as
batches to retain data integrity on the index server 4706. The update processor 4702
separates update information as required to match the segments on the index server 4706,
then updates each segment storage area 4712 and each segment storage twin area 4714.

While a segment storage area 4712, 4714 is being updated, its counterpart is available for

search request processing.

14

10

15

20

25

30

WO 01/27746 PCT/US00/28658

In processing search requests, the web servers 4700 receive and interpret the
search requests from remote portals or web browsers. Each search request is preprocessed to
divide the request into sub-requests as required for each index segment, then the index server
4706 is requested to perform search queries on each relevant segment. More than one index
segment may be queried simultaneously. The index server 4706 determines which index
segment storage areas 4712, 4714 are available for use, applies the search request, and
transmits the results to the web server 4700 which, in turn, collects and collates all search
results and transmits these results back to the requesting system in a formatted manner.
Segmented Resource Indexing System on an Intranet

The segmented indexing system may be used not only on the global
communications network but on corporate Intranets as well. A typical corporate intranet
includes a central location, such as a corporate headquarters, at which a central searchable
database is maintained, and a number of remote locations, such as regional offices or stores,
coupled to the central location through a network of intranet. Each remote location transfers
data to the central location for storage in the central database. The remote locations may also
search the central database for desired information.

With the architecture of the indexing system, everything, including each field
in a local database, is treated as an object. Instead of copying each object to a central
location, an object reference is created at each local site and sent to a cataloging location or
locations. The objects are not duplicated in a monolithic central database. One advantage to
this architecture is that the decision of whether to expose the existence and classification of
local objects becomes the responsibility and choice of the author, rather than a generic
decision. In the system, the implementation of retention rules and the physical location of the
objects remain with the author. The searchable segmented central catalog merely references
the distributed objects, eliminating the need to make full copies and therefore manage a large
storage system. Each local site generates and transfers information to the central server, or to
a plurality of central servers, for use in a searchable segmented catalog.

Figures 14 and 15 are diagrams illustrating operation of a distributed
accounting and inventory system on an intranet 1000 according to one embodiment of the
present invention. In Figure 14, the intranet 1000 includes three different physical locations

1002, 1004, and 1006 including catalogs 1008, 1010, and 1012, respectively. Each location

15

10

15

20

25

30

WO 01/27746 PCT/US00/28658

1002-1006 also includes a source of objects (not shown in Figure 14) that corresponds to an
inventory of items at that location. The sources of objects or sources for the locations 1002,
1004, 1006 are designated sources 1002, 1004, and 1006, respectively, in records of the
respective catalogs 1008-1012. In the example of Figure 14, the source 1006 is empty (i.e.,
no inventory items at location 1006).

Each of the catalogs 1008-1012 is a catalog of object references to objects in
the source at the corresponding location and to objects at the other locations. For example,
the catalog 1010 at location 1004 includes a record for part no. 1, which is part of the
inventory or source 1004 at this location. The catalog 1010 further includes an object
reference, as indicated by the arrow 1014, for part no. 3, which is part of the inventory or
source 1008 at location 1002. The catalog 1010 does not store a duplicate copy of the
information in the record for part no. 3, but instead merely stores a reference to that object.

Figure 15 is another diagram of the intranet 1000 expressly illustrating the
sources 1002-1006 on the locations 1002-1006, respectively. The source 1006 is shown as
containing no objects, such as may be the situation where the location 1006 is at a
headquarters of a corporation. The sources 1002 and 1004 each include objects or inventory
items, such as where these locations are remote offices of the corporation. This example
illustrates that records for objects are not duplicated on each location 1002-1006, but instead
object references in each of the catalogs 1008-1012 point to objects stored in remote sources.
The segmented index for an intranet system provides several advantages in accounting or
inventory control applications, and others. A conventional intranet system requires the
centralization of the catalog for purposes of control. The segmented intranet system separates
the control of the physical inventory (objects in the sources 1002-1006) from accounting
control. Since the whole intranet includes only objects and object references, then central
reporting and planning can occur to the location 1006, but such reporting merely corresponds
to data being read from the remote locations 1002, 1004, and no data is modified. In the
intranet 1000, each location 1002-1006 functions as both a server and a client, and minor
latency between the locations is not critical because, within each location, accounting and
physical control remain linked. Latency need be considered only where authority to sell or
transfer inventory (objects in the sources 1002-1006) is separate from the physical control of

the inventory.

16

10

15

20

25

WO 01/27746 PCT/US00/28658

With the segmented intranet system, the author of an object has physical
control over that object and thus may decide what objects are to be exposed for searching by
other locations. As a result, the segmented intranet index system is well suited for high-
security management systems that typically require elaborate security procedures to prevent
unauthorized duplication of data. For example, assume there are 200 remote information
generators (offices, salespeople, etc.). With this intranet system, data access to information in
the objects is maintained through the use of the references available to both the central
location and the remote.

The intranet system also provides a more effective means to organize and
describe organizational data, creating a much more flexible environment for data retention
handling. A data retention handling system has two primary goals: 1) eliminate obsolete data
to prevent confusion with current data and reduce storage requirements; and 2) reduce
liability. Typically, hierarchical storage management ("HSM") systems have been used for
these purposes. An HSM system stores frequently-used or relatively new files on high-speed,
immediately available, and most expensive storage media. Older files or files that are not as
frequently used are stored on “near-line” storage media that may consist of automatically
mounted tape drives or CD-ROMs. Old files or files that are almost never used are stored
off-line on tape or other inexpensive high-capacity media. Some files may eventually be
deleted if they fall within certain parameters of usage, type, or age. The intranet system
overcomes these potential difficulties of a HMS system. For example, in the intranet system,
duplicate copies of records are not maintained at each location, thereby eliminating the need
for hierarchical storage media to provide the required access to stored records.

It is to be understood that even though various embodiments and advantages
of the present invention have been set forth in the foregoing description, the above disclosure
is illustrative only, and changes may be made in detail, and yet remain within the broad
principles of the invention. Therefore, the present invention is to be limited only by the

appended claims.

17

10

15

20

25

30

WO 01/27746 PCT/US00/28658

CLAIMS

1. A computing system with a key-ordered list of data objects distributed over a
plurality of servers which allows discrete parallel processing on said servers, comprising:

(a) a plurality of memories in a plurality of servers, each memory containing a
segment of a key-ordered list of data objects where each segment consists of a contiguous
subset of said objects having keys with a specified range; and

(b) a query processor which receives queries and, based on data content of the
query, directs each received query to one of said plurality of servers by comparing the data
content of the query to the specified range of keys for each segment.

2. The system of claim 1 where at least one segment includes two or more objects
having the same key.

3. The system of claim 1 where the data set on each server is entirely self contained in
that it does not include references to data tables that are shared between segments.

4. The system of claim 1 where independent processors serve at least two of the
segments such that the segments can be accessed simultaneously.

5. The system of claim 1 where each segment is a proper subset of the key-ordered
list.

6. The system of claim 1 where, for each object, the key is expressed in complete
form such that look-ups can be performed directly based on data content of each query.

7. The system of claim 1 additionally comprising an update processor which receives
updates and, based on data content of the update, directs each received update to one of said
plurality of servers by comparing the data content of the update to the specified range of keys
for each segment.

8. The system of claim 1 further including means for receiving multiple queries from
a single source, directing each query to a different server, combining results of said multiple
queries, and directing said results back to the source of the queries.

9. The system of claim 1 where each data object includes a key and one or more data
constructs for each of a plurality of said objects.

10. The system of claim 1 where each object is comprised of a type and a value

specifically stored as a pair.

18

10

15

20

25

30

WO 01/27746 PCT/US00/28658

11. The system of claim 1 where, for two or more of said objects, each object includes
a reference to a location of an associated object on a network.

12. The system of claim 1 where there are at least two copies of said memories for a
segment of said segmented list.

13. The system of claim 12 where, while one of the copies for a segment is available
for updates, the other copies for the segment are available for queries.

14. The system of claim 13 where updates and queries can occur simultaneously.

15. The system of claim 13 where at least one copy of each segment is available for
query processing at all times.

16. A method of operating a computing system with a key-ordered list of objects
distributed over a plurality of servers which allows discrete parallel processing on said
servers, comprising:

(a) operating a plurality of servers with a plurality of memories, each memory
containing a segment of a key-ordered list of data objects where each segment consists of a
contiguous subset of said objects having keys with a specified range; and

(b) operating a query processor which receives queries and, based on data
content of the query, directs each received query to one of said plurality of servers by
comparing the data content of the query to the specified range of keys for each segment.

17. A set of computer data containing a set of computer programs which, when run
on a plurality of servers, causes the servers to perform the method of claim 16.

18. The method of claim 16 where at least one segment includes two or more objects
having the same key.

19. The set of computer data of claim 17 further including the limitations of claim 18.

20. The method of claim 16 where the data set on each server is entirely self
contained in that it does not include references to data tables that are shared between
segments.

21. The set of computer data of claim 17 further including the limitations of claim 20.

22. The method of claim 16 where independent processors serve at least two of the
segments such that the segments can be accessed simultaneously.

23. The set of computer data of claim 17 further including the limitations of claim 22.

19

10

15

20

25

30

WO 01/27746 PCT/US00/28658

24. The method of claim 16 where each segment is a proper subset of the key-ordered
list.

25. The set of computer data of claim 17 further including the limitations of claim 24.

26. The method of claim 16 where, for each object, the key is expressed in complete
form look-ups are performed directly based on data content of each query.

27. The set of computer data of claim 17 further including the limitations of claim 26.

28. The method of claim 16 further comprising of receiving updates and, based on
data content of the update, directing each received update to one of said plurality of servers
by comparing the data content of the update to the specified range of keys for each segment.

29. The set of computer data of claim 17 further including the limitations of claim 28.

30. The method of claim 16 further comprising receiving multiple queries from a
single source, directing each query to a different server, combining results of said multiple
queries, and directing said results back to the source of the queries.

31. The set of computer data of claim 17 further including the limitations of claim 30.

32. The method of claim 16 where each data object includes a key and one or more
data constructs for each of a plurality of said objects.

33. The set of computer data of claim 17 further including the limitations of claim 32.

34. The method of claim 16 where each object is comprised of a type and a value
specifically stored as a pair.

35. The set of computer data of claim 17 further including the limitations of claim 34.

36. The method of claim 16 where for two or more of said objects each object
includes a reference to a location of an associated object on a network.

37. The set of computer data of claim 17 further including the limitations of claim 36.

38. The method of claim 16 where there are at least two copies of said memories for a
segment of said segmented list.

39. The set of computer data of claim 17 further including the limitations of claim 38.

40. The method of claim 38 where, while one of the copies for a segment is available
for updates, the other copies for the segment are available for queries.

41. The set of computer data of claim 39 further including the limitations of claim 40.

42. The method of claim 40 where updating and querying can occur simultaneously.

43. The set of computer data of claim 41 further including the limitations of claim 42.

20

WO 01/27746 PCT/US00/28658

43. The set of computer data of claim 41 further including the limitations of claim 42.
44. The method of claim 40 where at least one copy of each segment is available for

query processing at all times.

45. The set of computer data of claim 43 further including the limitations of claim 44.

21

WO 01/27746 PCT/US00/28658

1/14
SERVER A
INDEX TABLE
L~ N\
< NETWORK
|
SERVER B SERVER C
DATA TABLE DATA TABLE

DISTRIBUTED DATABASE

Fig. 1
(Prjgr Art)

WO 01/27746 PCT/US00/28658
2/14
1 SOURCE OF
UPDATES
\
2| DIRECT UPDATES BASED
ON DATA CONTENT
el // ’ ~<
1 g-9 18] y-7
SERVER SERVER
L
\/
DIRECT QUERIES DIRECT
BASED ON DATA CONTENT REPLIES To
] SOURCE OF
QUERY
4 SOURCE OF QUERIES ,‘/////////

(TO WHICH RESPONSES
ARE DIRECTED)

DATA DRIVEN DISCRETE
PARALLEL PROCESSING

Fig. 2

WO 01/27746

3

32
33
34
35

36

41

42

43

21
KEY

3/14

ONE OR MORE CONSTRUCTS

22

123

360

ABLE

BAKER

CLEF

COACH

DIGGER

ELEPHANT

FLUTE

FLUTE

SEQUEL

SFORZANDO

SPORT

SQUAB

SEGMENTED KEY-ORDERED LIST OF OBJECTS

51 92 53
0-9 SERVER 11 SERVER A
A-E SERVER 12 SERVER B
F-J SERVER 13 SERVER C
K-0 SERVER 14 SERVER D
54| P-T SERVER 15 SERVER E
BN T-Z SERVER 16 SERVER F

DATA DIRECTION SPECIFICATION

PCT/US00/28658

Fig. 3

Fie. 4

WO 01/27746

61

62

63

64

65

66

67

68

69

70

PCT/US00/28658

4/14
51 52 53
TYPE VALUE REFERENCE
DOMAIN 360.COM nnn.nnn.nn.n
DOMAIN GRAYBEAL.COM nnn.nnn.nn.n
CONCEPT AUTOMOBILE nan.nnn.nn.n
CONCEPT PERSON nnn.nnn.nn.n
IMAGE KENNEDY, J.F. nan.nnn.nn.n
IMAGE TRUMAN, H. nnn.nnn.nn.n
SOUND | AIR ON A G STRING nan.nnn.nn.n
SOUND | HAVE A DREAM nnn.nnn.nn.n
SOUND | STAIRWAY TO HEAVEN nnn.nnn.nn.n
XML TAG NAME nnn.Ann.nn.n
XML TAG TAXPAYER ID # nnn.nnn.nN.N
VIDEO KING KONG nnn.nnn.nn.n
VIDEO CITIZEN KANE ann.nnn.nn.n
CATEGORY NEWS nnn.nnn.nn.n
CATEGORY RETAIL nnn.nnn.nn.n
COMMUNITY| PATENT ATTORNEYS nnn.nnn.nn.n
COMMUNITY| NON-PROFIT ORGS nnn.nnn.nn.n
WORD ABLE nnn.nnn.nn.n
WORD HEXAGON nnn.nnn.nn.n
WORD TEST nnn.nnn.nn.n
WORD TEST nan.nnn.nn.n
WORD ZULU nnn.nnn.nn.n

SEGMENTED INDEX OF TYPE-VALUE PAIRS

Fig. 5

WO 01/27746 PCT/US00/28658

5/14
208 208
Remote Server Remote Server
(Web Host) (Web Host)

|204 Agent| | 206 BROCHURE || | [204 Agent] [206 BROCHURE |

I —~=———|nfernet——— |

I

| 210 Router |

| 212 Load Allocater |
| | I I | I |

302 222
214 214 214 214 214 214 Update Update
Web | |Web | | Web| | Web| | Web| | Web ueue SBrver
Server| ([Server| [Server| [Server| |Server| [Server Manager (set)
(set) s
I I | | I | |
254 234 233 226
Query Query Name Brochure
Processor Processor Space Database
Server Server
(set) Raid
I
I | |
216 216 216 216
IZdl7 I2d’7 IZdl7 IZdl7 Firewall
ndex ndex ndex ndex
Server Server Server Server 224 Router
(set) (set) (sef) (set) I
: ' 306
‘ b Update
. rocessin
Remote Location Firewall Seresd
219 Router I
\
218
Rezrﬁgie 308 304 Central Index
Ceniral index [Updale | | Update server
S;r\.lzr Server Manager Raid
ai

Fie. 6

PCT/US00/28658

WO 01/27746

6/14

4 Iy

JoBDuDp
ananp ajoway

143

F N

(1p207) JoAtas

Joniag bBussanoly
ajopd
90¢

h

SEIVEDN
ajopdn jusby
ace

Xapuj|” JajSbp
8ic

A 4

[4
}9S JaAaS Xapu|

412

Jebpupp ananp
eos

A

y

|
}9S JanaS Xapuj

91¢

S18A18S QoM
vic

7 Y
_
_
|
L lasmolg

qsm

PCT/US00/28658

§ ‘Il

7/14

WO 01/27746

Jaboupy enanp 19MBS %08y
sjowsy pof ainyooug 67y
spodssog
s8ljus pawljuod wWolj

ananp) sloLjw salue sapus ajopdpn
0} saujua _ Bujaeoal ananb ¢09
w:mww%:mm h auoq ETVEREN
r09
sjuabo wou
sajus ajopdp
009
sajus saljua
snanp enenp Jaboupp
// asbqDjbp A\ enand Zog
ananp) 909

PCT/US00/28658

WO 01/27746

8/14

Jsanba.
94318@
80/

ananb

wouj Salyue Buidjddo

>

6 ‘Tl

\.

1abpuppy
ananp

cog

A

91918(
90/

auog

JEINER
Jajsow

Uuo 9snqnjop |«

o

salljua
anany
414

sinoy

Buijos)j0a <u> sp|

o} Aiddy
(4

saljua
ananp
col

H

Janiag
xapu|
81

Joj saliue
ananb Jag
00/

auo(

PCT/US00/28658

WO 01/27746

buisssaoso.
Jsanbay c&ﬂmm 195N 008
sjsenbal / .
o el 0T oI

ajopdn

\

sj|nsaJ
TEILEIS

JEIVELS

aspqojo(SEIVE]
juswbag x%:_‘;ﬂwwm Xopu| ;9.m8m m%, ow_m
yoioes 708 212917 e

vic

sjsenbau
soljue youneg

saujud %iopdn

He%%
aspqojb(]
X8pu| JajsSDN

~ saLjus

ajopdp

9/14

Janag
Xapu| JajSby
81z

108s8%0.44

seljua 3j0pd)

ajopdp

sysanbau
ajejep suoys|jap pup

SUopPD——
yojog

ananp
ayopdn 209
Jaboupp
ananp
yojoq sayojp
ajopdp) cos m._u_u_m%
sayojoq
opopdn
~__| 8dnog
ojopdn
buissesoid ajppdpn

WO 01/27746

2001

10/14

PCT/US00/28658

Load Balancer

2005
4 UserAccessService)

User Permission
Database| {Database

214

(Web Server)
é Web Server)
é Web Server)
\ J

2003 I
Agent Listener

Agent Listener

Usage Log

—
\— J

2008 ‘[2009 !

MessageQueueService

UpdateManagerService I\MM

2011 : 2013
MasterindexService (indexSegmentService

é IndexSegmentService

Master
Index
Database

2014

[

é IndexSegmentService

é IndexSegmentService

Index Segment
Database in RAM

L2
Forward Messages to Remote Site

L QueryDispatchService J

Fig. 11

PCT/US00/28658

WO 01/27746

1/14

gl oL

3]1 491 Jxapuljeb+
Bujs:uoyduosaqieb+
bunys:alyi|jeb+
3jp(:ajpgponeb+
Bupis:adAjswipieb+
Aayainjpubis:sinjoubisieb+
T4N-18Nkeb+

jurqieb+

abodxapu|

UD8|00q:D}DAD}EN SI4+
upajooq:Apog s+
UD8|00q:48pDa} Si+

Ajugejlam+

woaugindingxapu

Ajuipoal4

woaugindujxspui

abupyjuawbagxapuj:abupyjuswbagiab+
proa:Aiowapjuswbegysaljel+

ad1Alaguawbagxapuy
<<BODIBJUI>>

jur:qlyeb+
jxajuo)xapuj:jxajuorjab+
jXajuogxapu| JuiunogiHjebi+
P[el4xapuj:pja! jjab+
abpdxapu):abpd}eb+
BunysiawoNjeb+ jur:qeb+
ur:qyeb+
Aju3xepu
p|al4xapuj <<BODIBUID >

Bupyg:oljeb+
BulyS:wou jab+

abupyjuswbagxapuj |—

xapul'paJoys:buixapujaAljonwos

WO 01/27746 PCT/US00/28658

\

Search requests

12/14

Search results

Web Server

Search results

Search requests

Periodic update
transactions

4772\

Index segment

atch
Processor

Index Server

Index segment

: storage Index_segment storage
Update batch storage
storage Index segment Index segment
\ storage alternate —-qeeament Storage alternate
4710

AN 4714 storage alternate

ST —4704
// Remoie\\//
Update |\
atch

\Processor /
~ s

~—

Fig. 13

PCT/US00/28658

WO 01/27746

y00/ 83In0S | ¥G L "ON _

y00) 83Ino§ | /[9 "ON

y00/ 831n0S | ¥7| S "ON

2001 @dnog | | ¥ "ON

200} ?dinos | 9¢ g "ON

210! y00/ ®834nog | 7} ¢ N 8001
lllllll MIIIIIII P00/ @dinos | G | "ON IIIIIIIWIIIIIII
$00) ©9n0S | $G L "ON 8ouaJejey | Ajjuony sequinN oy 824nos | ¢ L "ON
p00) 92anog | // 9oN (/iMoo 824nos | // 9 ‘oN
¥00) 93nog | ¥7} G "ON 710! 834nos | yZ1 G "ON
¢00} 9d4nog | | v "ON 8dJnos | | ¥ "ON
200} ?3nos | 9¢ ¢ 'ON \\“_ SN 8dJnos | g¢ ¢ "ON
y001 33nos | 7} ¢ ON _ _ 8aJnog | 7| ¢ ON
$00} 334n0S | G | "ON _ || 7004 @danog | g | "ON
oouassyay | Appuonp [sequnN pog _ “ 9oualajay | Ayyuonp [1equuiny oy

||||||||||||||| _ L

PCT/US00/28658

WO 01/27746

14/14

oI ay
§Ja[IonbpoaH { 901jJ0 apouiay
||||||||||||||| S 4. N
_ “ 7S L *oN
| Ll 9 ‘oN
“ _ ¥Z) G "ON
Lo A Z "oN
bl g | *ON
900/ | Awuonp |sequny piod _ “ »00) | Myuong fisquiny piog
90inog—" 900/ 10elqo eounog | | ousom.\.vg\ 100lqQ @9.nog
#004 891n0g | 45 L "ON “ _ #0041 891n0S | 4G L “ON
#004 @oanog | 1/ 9 ON _ _ #0041 @oinog | 74 9 "oN
#0041 e0anog | 47| G'ON |1 |]|ro0s evanos | 47y G ‘oN
2004 9nos | | 7 "N _ “ 2004 ®dnog | | ¥ ‘oN
2004 0Inog | 9¢ £ ON || |[zoos eoanos | 9g g ‘oN
#004 e2inog | ¢} Z N “ “ #001 ®anog | z| Z "oN
#004 801n0g | G L'ON || ||#00s e2anog g | ON
CRIVEPEIR) r::O:O LwnEzz HDbd “ “ CRIPEREFEY] x.—__.:_u:o JaquinN ._Lcn_
2101 | 0101~
N I _

| 8d1}J0 sjoway

| y "oN
9¢ ¢ ‘oN

2004 | Anwuonp |sequinN piog
92N0S—" 2001 108190 @dn0g
#001 99anog | g L "oN
004 oaanos | £/ 9 ‘oN
700/ ®2nos | y7| G ‘oN
2004 #3anos | | ¥ "ON
2004 #2nos | g¢ g "oN
#0041 ®2nos | z| Z "ON
#004 83anog | g | ‘oN

adualajey b._t._c_._o daquinN Hbd

2001~

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

