A flexible substrate, OLED device, and defect detection method thereof

A flexible substrate, an OLED device comprising the flexible substrate, and a defect detection method thereof. The flexible substrate comprises a bottom plate and barrier layers (2, 4) disposed above the bottom plate (1). The flexible substrate further comprises a crack detection layer (3), the crack detection layer (3) is disposed adjacent to the barrier layers (2, 4), the crack detection layer (3) generates a crack when a crack occurs in the barrier layers (2, 4), and the crack detection layer (3) having a crack is different in color from the crack detection layer (3) that does not have a crack in a power-on state. By means of the flexible substrate and the OLED device, a high detection efficiency is achieved, the accuracy of a detection effect is ensured, and the product defect-free rates of the flexible substrate and the OLED device are improved.

图2 / FIG. 2
柔性基板、OLED器件及其不良检测方法

技术领域

本发明属于显示技术领域，具体涉及一种柔性基板、一种OLED器件及其不良检测方法。

背景技术

有机电致发光二极管(Organic Light-Emitting Diode，简称OLED)器件因具有多种优点而获得了越来越多的研究者的关注和研究，这些优点包括：制作成本低、全固态、主动发光、亮度高、对比度高、低电压直流驱动、低功耗、视角宽、响应速度快、厚度薄、工作温度范围宽，可实现柔性显示(flexible display)等。尤其是其具有柔性显示的特点，使其能够弯曲从而被广泛应用于需要曲面显示的领域，如智能卡、电子纸、智能标签应用等，正逐渐成为显示技术领域的新宠。

通常，OLED器件至少包括阳极、阴极以及位于阳极和阴极之间的发光层，阴极一般采用活泼金属形成，发光层一般采用有机发光材料形成。其中，OLED器件中的有机发光材料和阴极对水气和氧气特别敏感，因此OLED器件对水气和氧气的阻隔要求比较高。例如：以OLED器件的寿命为一万小时计算，并以OLED器件中低功函数(如，镁的功函数和钙的功函数)失效所需的水气量和氧气量的最低值来估算水气和氧气对OLED器件封装的渗透率，得出要求用于OLED器件封装的材料的水气透过率为$<10^{-3}$g/m²/天，氧气透过率为$<10^{-3}$cm³/m²/天。

OLED器件一般采用塑料基板作为柔性基板(flexible substrate)，由于塑料基板的水气和氧气(以下简称水氧)透过率均较高，因此需要在柔性基板中制作阻挡层(barr ier film)以防止水氧的渗透。目前，通常采用在柔性基板中沉积氮化硅材
料（SiNx）和氧化硅材料（SiOx）的方式来形成阻挡层，由于SiNx和SiOx均为无机材料，在弯折过程中容易产生裂缝（crack）；而且，为了防止水氧通过接触孔（pin hole）渗入OLED器件内部，需要SiNx和SiOx具有一定的厚度以达到阻止水氧的作用，而SiNx和SiOx膜层厚度的增加，又进一步增加了产生裂缝的可能性。阻挡层裂缝（barrier film crack）会导致OLED器件出现不良。通常，在OLED器件发生不良时，该OLED器件中的薄膜晶体管（Thin Film Transistor，简称TFT）的不良很容易通过电性能的改变来判断；而由该OLED器件中的阻挡层的裂缝导致的不良则需要使用显微镜来观察，而使用显微镜观察存在制样复杂，不容易找到不良点，耗时长等问题，不仅检测效率低而且检测结果准确性不高，因而无法对产生不良的环节进行有效地控制，从而导致OLED器件产品良率较低。

发明内容

本发明所要解决的技术问题是针对现有技术中存在的上述不足，提供一种柔性基板，包括该柔性基板的OLED器件及其不良检测方法，该柔性基板和该OLED器件使得具有较高的检测效率，并且保证了检测效果的准确性，因而能够对产生不良的环节进行有效地控制，从而提高了柔性基板和OLED器件的产品良率。

解决本发明技术问题所采用的技术方案是一种柔性基板，该柔性基板包括底板以及设置于所述底板上方的阻挡层，所述柔性基板还包括裂缝检测层，所述裂缝检测层与所述阻挡层相邻设置，所述裂缝检测层在所述阻挡层产生裂缝时产生裂缝，有裂缝的所述裂缝检测层与没有裂缝的所述裂缝检测层在通电状态下的颜色不同。

优选的是，所述阻挡层包括第一阻挡层和第二阻挡层，所述裂缝检测层与所述第一阻挡层和所述第二阻挡层中的一个相邻设置；或者，所述裂缝检测层设置于所述第一阻挡层和所述第二阻挡层之间；以及
所述裂缝检测层在所述第一阻挡层和所述第二阻挡层中的至少一个产生裂缝时产生裂缝。

优选的是，所述裂缝检测层采用电致变色材料形成，没有裂缝的所述裂缝检测层在通电状态下为透明色，有裂缝的所述裂缝检测层在通电状态下为非透明色。

优选的是，所述电致变色材料为无机电致变色材料或有机电致变色材料。

优选的是，所述无机电致变色材料包括三氧化钨、二氧化钛或五氧化二钒，所述有机电致变色材料包括聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯或金属酞菁类化合物。

优选的是，所述裂缝检测层的厚度范围为500-3000。优选的是，所述裂缝检测层采用化学气相沉积法形成。

优选的是，所述底板为塑料基板，所述第一阻挡层和所述第二阻挡层采用无机材料形成。

优选的是，所述第一阻挡层相对于所述第二阻挡层更靠近所述底板，所述第一阻挡层采用氮化硅材料形成，所述第二阻挡层采用氧化硅材料形成。

优选的是，所述第一阻挡层的厚度小于所述第二阻挡层的厚度，所述第一阻挡层的厚度范围为500-3000，所述第二阻挡层的厚度范围为1500-5000。

一种OLED器件，包括上述的柔性基板。

本发明还提供了一种上述柔性基板的不良检测方法，包括：对所述柔性基板中的裂缝检测层进行通电；检测所述裂缝检测层在通电状态下的颜色；以及通过所述颜色来确定所述柔性基板是否存在不良。

优选的是，在所述颜色为非透明色的情况下，确定所述柔性基板存在不良，在所述颜色为透明色的情况下，确定所述柔性基板不存在不良或所述柔性基板存在不良但不良不是由所述柔性基板中的阻挡层引起。

本发明还提供了一种上述OLED器件的不良检测方法，包括：
对所述 OLED 器件中的裂缝检测层进行通电；
检测所述裂缝检测层在通电状态下的颜色；以及
通过所述颜色来确定所述 OLED 器件是否存在不良。
优选的是，在所述颜色为非透明色的情况下，确定所述 OLED 器件存在不良，在所述颜色为透明色的情况下，确定所述 OLED 器件不存在不良或者所述 OLED 器件存在不良但不良是由所述 OLED 器件中的阻挡层引起。

本发明的有益效果是：本发明中的柔性基板通过增设由电致变色材料形成的裂缝检测层，能通过裂缝检测层在通电状态下的颜色来检测阻挡层是否有裂缝，相对于现有技术中使用放大镜来观察以检测阻挡层是否有裂缝的方式，更易于判断柔性基板和 OLED 器件的不良是否由阻挡层的裂缝引起；同时，还省去了放大镜观察制样的程序，并且避免了制样时不易找到不良点的缺点，节省了时间，使得具有较高的检测效率，并且保证了检测效果的准确性，因而能够对产生不良的环节进行有效地控制，从而提高了柔性基板和 OLED 器件的产品良率。

附图说明
图 1 为本发明实施例 1 中柔性基板的结构示意图。
图 1A 为本发明实施例 1 中柔性基板的制备示意图。
图 1B 为本发明实施例 1 中判断柔性基板是否由阻挡层裂缝引起不良的检测示意图。
图 2 为本发明实施例 2 中柔性基板的结构示意图。
图 3 为本发明实施例 3 中柔性基板的结构示意图。
图 4 为本发明实施例 4 中 OLED 器件的结构示意图。
图 4A 为本发明实施例 4 中判断 OLED 器件是否由阻挡层裂缝引起不良的检测示意图。
图 4B 为本发明实施例 4 中判断 OLED 器件是否因剥离而产生裂缝的检测示意图。
图 4C 为本发明实施例 4 中判断 OLED 器件是否因弯曲而产生
具体实施方式

为使本领域技术人员更好地理解本发明的技术方案，下面结合附图和具体实施方式对本发明的柔性基板和OLED器件作进一步详细描述。

一种柔性基板，包括底板以及设置于所述底板上方的阻挡层，所述柔性基板还包括裂缝检测层，所述裂缝检测层与所述阻挡层相邻设置，所述裂缝检测层在所述阻挡层产生裂缝时产生裂缝，有裂缝的所述裂缝检测层与没有裂缝的所述裂缝检测层在通电状态下的颜色不同。

一种OLED器件，包括上述的柔性基板。

上述的柔性基板，由于采用了与所述阻挡层相邻设置的裂缝检测层，通过检测裂缝检测层在通电状态下的颜色，可以很方便地检测出柔性基板中的阻挡层是否有裂缝，检测方便且结果准确。

相应地，可以对柔性基板和OLED器件的制备过程中可能产生不良的环节进行控制，使得柔性基板和OLED器件的良率得到提高。

实施例1：

本实施例提供一种柔性基板，该柔性基板包括底板以及设置于底板上方的阻挡层，还包括裂缝检测层，裂缝检测层与阻挡层相邻设置，所述裂缝检测层在所述阻挡层产生裂缝时产生裂缝，有裂缝的裂缝检测层与没有裂缝的裂缝检测层在通电状态下的颜色不同。

如图1所示，阻挡层包括第一阻挡层2和第二阻挡层4。所述柔性基板还包括裂缝检测层3，在本实施例中，裂缝检测层3设置于第一阻挡层2和第二阻挡层4之间。由于形成裂缝检测层3的材料(参见下文)的特殊性，裂缝检测层3在第一阻挡层2和/
或第二阻挡层 4 产生裂缝时将发生断裂，从而产生裂缝。而有裂缝的裂缝检测层 3 和没有裂缝的裂缝检测层 3 在通电状态下的颜色不同。因此，通过检测裂缝检测层 3 在通电状态下的颜色，就可以确定裂缝检测层 3 是否有裂缝，进而确定第一阻挡层 2 和/或第二阻挡层 4 是否有裂缝。其中，对裂缝检测层 3 通电时，所施加的电压的范围为 1-5V。

应当理解的是，在本发明中，在对裂缝检测层 3 进行通电时，还需要在裂缝检测层 3 的两侧（例如，相对的两侧）设置用于通电的正电极和负电极。

例如，裂缝检测层 3 采用电致变色（electrochromic）材料形成，在此情况下，没有裂缝的裂缝检测层 3 在通电状态下为透明色，有裂缝的裂缝检测层 3 在通电状态下为非透明色。电致变色是指材料的光学属性（反射率、透过率、吸收率等）在外加电场的作用下发生稳定、可逆的颜色变化的现象，在外观上表现为颜色和透明度的可逆变化。电致变色材料具有良好的离子和电子导电性、较高的对比度、变色效率、循环周期、写-擦效率等电致变色性能。

优选的是，所述电致变色材料包括无机电致变色材料和有机电致变色材料。进一步优选的是，无机电致变色材料包括三氧化钨 WO₃、二氧化钛 TiO₂或五氧化二钒 V₂O₅，有机电致变色材料包括聚噻吩类及其衍生物、紫罗兰类、四硫富瓦烯或金属酞菁类化合物。其中，裂缝检测层 3 的厚度范围可以为 500-3000μm。

在本实施例中，底板 1 一般为塑料基板，第一阻挡层 2 和第二阻挡层 4 采用无机材料形成。其中，第一阻挡层 2 采用氮化硅材料 SiNx 形成，以获得较好的阻水阻氧的效果；第二阻挡层 4 采用氧化硅材料 SiOx 形成，以使得柔性基板获得较好的平衡应力。为保证较好的阻水阻氧效果和柔性基板的结构，采用氮化硅材料 SiNx 形成的第一阻挡层 2 相对于采用氧化硅材料 SiOx 形成的第二阻挡层 4 更靠近底板 1；同时，第一阻挡层 2 的厚度小于第二阻挡层 4 的厚度，例如：采用氮化硅材料 SiNx 形成的第一阻挡层 2
厚度范围为 500-30,000 人，采用氧化硅材料 SiOx 形成的第二阻挡层 4 的厚度范围为 1500-5,000 人。

由于性质较接近的材料具有更好的匹配性，而本实施例中由于第一阻挡层 2 和第二阻挡层 4 均采用无机材料形成，因而裂缝检测层 3 优选采用无机材料形成，以使得裂缝检测层 3 与第一阻挡层 2 和第二阻挡层 4 获得更好的匹配性。

如图 1A 所示，在制备本实施例的柔性基板时，首先将底板 1 设置于载台 6 上，接着在底板 1 上方依次形成第一阻挡层 2、裂缝检测层 3 和第二阻挡层 4。其中，形成第一阻挡层 2、裂缝检测层 3 和第二阻挡层 4 均采用化学气相沉积法 (Chemical Vapor Deposition, 简称 CVD) 形成，以便获得更均匀的层结构。在裂缝检测层 3 形成后，可立即对其进行通电检测，以确保裂缝检测层 3 本身不存在裂缝，当然，也可以同时确定已形成的第一阻挡层 2 是否有裂缝，以便及时对制备工艺进行改进，从而提高柔性基板的产品良率。

本实施例通过在第一阻挡层 2 和第二阻挡层 4 之间加入了一层由电致变色材料形成的第一检测层 3，由于形成裂缝检测层 3 的材料的特殊性，任一阻挡层 (仅第一阻挡层 2，或仅第二阻挡层 4，或第一阻挡层 2 和第二阻挡层 4) 有裂缝均将导致裂缝检测层 3 随之发生断裂，从而产生裂缝，因此，通过检测裂缝检测层 3 在通电状态下的颜色，可以判断进行柔性基板剥离或者柔性弯折等操作时，第一阻挡层 2 和/或第二阻挡层 4 是否产生了裂缝。

如图 1B 所示，对柔性基板进行检测时，当裂缝检测层 3 在通电状态下的颜色为透明色时，说明氧化硅材料 SiOx 组成的第一阻挡层 2 和氧化硅材料 SiOx 组成的第二阻挡层 4 中的任一个均没有裂缝；当裂缝检测层 3 在通电状态下的颜色为非透明色时，说明氮化硅材料 SiNx 组成的第一阻挡层 2 和氧化硅材料 SiOx 组成的第二阻挡层 4 中的至少一个产生了裂缝。

当检测到柔性基板的裂缝检测层 3 在通电状态下的颜色为非透明色 (即，第一阻挡层 2 和第二阻挡层 4 中的至少一个有裂缝)
时，可适当调整阻挡层制备过程中的制备设备的参数，避免继续生产出不良的柔性基板，从而提高柔性基板的产品良率。

实施例2：
本实施例提供一种柔性基板，与实施例1不同的是，本实施例的柔性基板中的裂缝检测层3仅与第一阻挡层2相邻。

如图2所示，第一阻挡层2相对于第二阻挡层4更靠近底板1，裂缝检测层3与第一阻挡层2和底板1相邻设置，即裂缝检测层3设置于底板1与第一阻挡层2之间。

本实施例中柔性基板的其他结构与实施例1相同，通过裂缝检测层检测柔性基板中的阻挡层是否有裂缝的方法与实施例1相同，这里不再赘述。

实施例3：
本实施例提供一种柔性基板，与实施例1不同的是，本实施例的柔性基板中的裂缝检测层3仅与第二阻挡层4相邻。

如图3所示，第一阻挡层2相对于第二阻挡层4更靠近底板1，裂缝检测层3仅与第二阻挡层4相邻设置，即裂缝检测层3设置于第二阻挡层4远离底板1的一侧。

本实施例中柔性基板的其他结构与实施例1相同，通过裂缝检测层检测柔性基板中的阻挡层是否有裂缝的方法与实施例1相同，这里不再赘述。

从实施例1-3可以看出，裂缝检测层可以设置在第一阻挡层与第二阻挡层的任意一侧，只要保证裂缝检测层与第一阻挡层和第二阻挡层中的至少一个相邻设置即可，而对裂缝检测层的具体设置位置不做限定。因此，在实际应用中，裂缝检测层的设置位置可以根据柔性基板的具体结构来确定，即，裂缝检测层的设置是灵活且方便的。

实施例4：
本实施例提供一种 OLED 器件，该 OLED 器件采用实施例 1-3 所提供的柔性基板中的任一种柔性基板。

如图 4 所示，柔性基板上方设置有显示层 5，显示层 5 包括薄膜晶体管 (Thin Film Transistor，简称 TFT) 以及有机电致发光二极管 OLED。以采用实施例 1 中的柔性基板的结构形成 OLED 器件为例，在制备本实施例的 OLED 器件时，首先将底板 1 设置于载台 6 上，接着在底板 1 上方依次形成第一阻挡层 2、裂缝检测层 3 和第二阻挡层 4，然后形成 TFT 以及 OLED。

以采用实施例 1 中的柔性基板的结构形成 OLED 器件为例，检测 OLED 器件在以下三种情况是否不良和/或不良的原因：

情况一：OLED 器件出现不良，检测不良是否由阻挡层裂缝所导致；

情况二：剥离前的 OLED 器件正常，剥离后的 OLED 器件出现不良，检测不良是否由阻挡层裂缝所导致；

情况三：剥离后的 OLED 器件正常，弯折后的 OLED 器件出现不良，检测不良是否由阻挡层裂缝所导致。

情况一：OLED 器件出现不良时，检测不良是否由阻挡层裂缝所导致。如图 4A 所示，在将 OLED 器件从载台 6 上剥离之前，将裂缝检测层 3 通电，观察裂缝检测层 3 在通电状态下的颜色，如果裂缝检测层 3 在通电状态下的颜色为透明色，则说明 OLED 器件的不良的原因不是第一阻挡层 2 和/或第二阻挡层 4 有裂缝，而可能是由 TFT 不良或其他原因引起的；如果裂缝检测层 3 在通电状态下的颜色为非透明色，则说明 OLED 器件的不良的原因是第一阻挡层 2 和第二阻挡层 4 中的至少一个阻挡层有裂缝。

通过上述检测，可确定 OLED 器件的不良是否由阻挡层的裂缝引起，从而可以缩小判断批量 OLED 器件不良的原因的范围，提高检测效率。

情况二：剥离前的 OLED 器件正常，剥离后的 OLED 器件出现不良，检测不良是否由阻挡层的裂缝所导致。如图 4B 所示，首先，在将 OLED 器件从载台 6 上剥离之前，先将裂缝检测层 3 通电，观
察裂缝检测层 3 在通电状态下的颜色是透明色还是非透明色。如果裂缝检测层 3 在通电状态下的颜色是透明色，则说明第一阻挡层 2 和第二阻挡层 4 均没有裂缝；在此情况下，将 OLED 器件从载台 6 上剥离；然后，对剥离下来的 OLED 器件，将裂缝检测层 3 再次通电，观察裂缝检测层 3 在通电状态下的颜色是透明色还是非透明色，如果是透明色则说明第一阻挡层 2 和第二阻挡层 4 均没有裂缝，如果是非透明色则说明第一阻挡层 2 和第二阻挡层 4 中的至少一个有裂缝。

通过上述检测，可以排除阻挡层是否在剥离过程中产生裂缝，从而导致 OLED 器件的不良：当检测到 OLED 器件因剥离工艺而有较大的不良率时，可适当对剥离工艺进行改进，以降低 OLED 器件的不良率，从而减少因剥离工艺带来的损失。

情况三：剥离后的 OLED 器件正常，弯折后的 OLED 器件出现不良，检测不良是否由阻挡层裂缝所导致。如图 4C 所示，首先，在将 OLED 器件弯折之前，先将裂缝检测层 3 通电，观察裂缝检测层 3 在通电状态下的颜色是透明色还是非透明色。如果裂缝检测层 3 在通电状态下的颜色是透明色，则说明第一阻挡层 2 和第二阻挡层 4 均没有裂缝；在此情况下，采用弯折治具将 OLED 器件弯折；然后，对弯折后的 OLED 器件的裂缝检测层 3 再次通电，观察裂缝检测层 3 在通电状态下的颜色是透明色还是非透明色。如果裂缝检测层 3 在通电状态下的颜色是透明色，则说明第一阻挡层 2 和第二阻挡层 4 均没有裂缝，如果裂缝检测层 3 在通电状态下的颜色是非透明色，则说明第一阻挡层 2 和第二阻挡层 4 中的至少一个有裂缝。

通过上述检测，可以确定阻挡层是否在弯折过程中产生裂缝，从而导致 OLED 器件的不良。

通过上述三种情况的检测，可以逐步确定 OLED 器件产生不良的原因，确定导致 OLED 器件产生不良的环节，使得 OLED 器件可能产生不良的环节可控，从而提高 OLED 器件的检测效率，并且保证检测效果的准确性。
本实施例中 OLED 器件作为一种显示装置，可以为：电子纸，OLED 面板，手机，平板电脑，显示器，笔记本电脑，数码相框，导航仪等任何具有显示功能的产品或部件。

本实施例中的 OLED 器件，由于采用了具有较高良率的柔性基板，因此相应地提高了 OLED 器件的产品良率，提高了显示效果。

本发明中的柔性基板通过增设由电致变色材料形成的裂缝检测层，能通过检测裂缝检测层在通电状态下颜色来检测阻挡层是否有裂缝，可以在任何方便的环节对柔性基板或对 OLED 器件中的阻挡层是否有裂缝进行检测，相对于现有技术中使用放大镜来观察以检测阻挡层的裂缝的方式，更易于判断 OLED 器件不良是否由阻挡层的裂缝引起；同时，还省去了放大镜观察制样的程序，并且避免了制样时不易找到不良点的缺点，节省了时间，使得具有较高的检测效率，并且保证了检测效果的准确性，因而能够对产生不良的环节进行有效地控制，从而提高了柔性基板和 OLED 器件的产品良率。

应当理解的是，虽然在上述各个实施例中，以电致变色材料（包括无机电致变色材料和有机电致变色材料）来形成裂缝检测层，从而没有裂缝的裂缝检测层 3 在通电状态下为透明色，有裂缝的裂缝检测层 3 在通电状态下为非透明色为例进行了描述，但是本发明不限于此。只要本身没有裂缝的裂缝检测层 3 在第一阻挡层 2 和第二阻挡层 4 中的至少一个产生裂缝时产生裂缝，并且有裂缝的裂缝检测层 3 与没有裂缝的裂缝检测层 3 在通电状态下的颜色不同即可，本发明的裂缝检测层 3 的材料并不限于所述电致变色材料。

应当理解的是，以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式，然而本发明并不局限于此。对于本领域技术人员而言，在不脱离本发明的精神和实质的情况下，可以做出各种变形和改进，这些变形和改进也属于本发明的保护范围。
1. 一种柔性基板，包括底板以及设置于所述底板上方的阻挡层，其特征在于，所述柔性基板还包括裂缝检测层，所述裂缝检测层与所述阻挡层相邻设置，所述裂缝检测层在所述阻挡层产生裂缝时产生裂缝，有裂缝的所述裂缝检测层与没有裂缝的所述裂缝检测层在通电状态下颜色不同。

2. 根据权利要求1所述的柔性基板，其特征在于，所述阻挡层包括第一阻挡层和第二阻挡层，所述裂缝检测层与所述第一阻挡层和所述第二阻挡层中的一个相邻设置；或者，所述裂缝检测层设置于所述第一阻挡层和所述第二阻挡层之间；以及所述裂缝检测层在所述第一阻挡层和所述第二阻挡层中的至少一个产生裂缝时产生裂缝。

3. 根据权利要求1或2所述的柔性基板，其特征在于，所述裂缝检测层采用电致变色材料形成，没有裂缝的所述裂缝检测层在通电状态下为透明色，有裂缝的所述裂缝检测层在通电状态下为非透明色。

4. 根据权利要求3所述的柔性基板，其特征在于，所述电致变色材料为无机电致变色材料或有机电致变色材料。

5. 根据权利要求4所述的柔性基板，其特征在于，所述无机电致变色材料包括三氧化钨、二氧化钛或五氧化二钒，所述有机电致变色材料包括聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯或金属酞菁类化合物。

6. 根据权利要求1-5中任一项所述的柔性基板，其特征在于，
所述裂缝检测层的厚度范围为500-3000人。

7. 根据权利要求1-6中任一项所述的柔性基板，其特征在于，所述裂缝检测层采用化学气相沉积法形成。

8. 根据权利要求2所述的柔性基板，其特征在于，所述底板为塑料基板，所述第一阻挡层和所述第二阻挡层采用无机材料形成。

9. 根据权利要求2或8所述的柔性基板，其特征在于，所述第一阻挡层相对于所述第二阻挡层更靠近所述底板，所述第一阻挡层采用氮化硅材料形成，所述第二阻挡层采用氧化硅材料形成。

10. 根据权利要求2、8或9所述的柔性基板，其特征在于，所述第一阻挡层的厚度小于所述第二阻挡层的厚度，所述第一阻挡层的厚度范围为500-3000人，所述第二阻挡层的厚度范围为1500-5000人。

11. 一种OLED器件，其特征在于，包括根据权利要求1-10中任一项所述的柔性基板。

12. 一种根据权利要求1-10中任一项所述的柔性基板的不良检测方法，包括：

 对所述柔性基板中的裂缝检测层进行通电；

 检测所述裂缝检测层在通电状态下的颜色；以及

 通过所述颜色来确定所述柔性基板是否存在不良。

13. 根据权利要求12所述的不良检测方法，其中：

 在所述颜色为非透明色的情况下，确定所述柔性基板存在不良，在所述颜色为透明色的情况下，确定所述柔性基板不存在不良。
良或者所述柔性基板存在不良但不良不是由所述柔性基板中的阻挡层引起。

14. 一种根据权利要求11所述的OLED器件的不良检测方法，包括：
对所述OLED器件中的裂缝检测层进行通电；
检测所述裂缝检测层在通电状态下的颜色；以及
通过所述颜色来确定所述OLED器件是否存在不良。

15. 根据权利要求14所述的不良检测方法，其中：
在所述颜色为非透明色的情况下，确定所述OLED器件存在不良；在所述颜色为透明色的情况下，确定所述OLED器件不存在不良或者所述OLED器件存在不良但不良不是由所述OLED器件中的阻挡层引起。
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H01L 51/52 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 103998796 A (BOE TECHNOLOGY GROUP CO., LTD.), 20 August 2014 (20.08.2014), claims 1-11, description, paragraphs 33-69, and figures 1-4</td>
<td>1-15</td>
</tr>
<tr>
<td>E</td>
<td>CN 203950840 U (BOE TECHNOLOGY GROUP CO., LTD.), 19 November 2014 (19.11.2014), claims 1-11, description, paragraphs 33-69, and figures 1-4</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>CN 1019581 10 A (PRYSM, INC.), 25 January 2011 (26.01.2011), description, paragraphs 17-24, and figures 1-2</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>CN 102903828 A (SICHUAN COO DISPLAY TECHNOLOGY CO., LTD.), 30 January 2013 (30.01.2013), the whole document</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "C" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "R" document member of the same patent family

Date of the actual completion of the international search 14 January 2015 (14.01.2015)

Date of mailing of the international search report 17 February 2015 (17.02.2015)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P. R. China
No. 6, Xuecheng Road, Jimenqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer FANG, Yuanfeng
Telephone No.: (86-10) 82245142

Form PCT/ISA/02 (second sheet) (July 2009)
International Search Report

Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 103996798 A</td>
<td>20 August 2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 203950840 U</td>
<td>19 November 2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 101958110 A</td>
<td>26 January 2011</td>
<td>US 2010244705 A</td>
<td>30 September 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 246947 A</td>
<td>29 September 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 246947 B</td>
<td>04 April 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010231191 A</td>
<td>14 October 2010</td>
</tr>
<tr>
<td>CN 102903828 A</td>
<td>30 January 2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 2005227389 A I</td>
<td>13 October 2005</td>
<td>US 2006169989 A</td>
<td>03 August 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7465678 B2</td>
<td>16 December 2008</td>
</tr>
<tr>
<td>检索报告引用的专利文件</td>
<td>公布日（年/月/日）</td>
<td>同族专利</td>
<td>公布日（年/月/日）</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>CN 103996796 A</td>
<td>2014年8月26日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 203950340 U</td>
<td>2014年11月19日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 101958110 A</td>
<td>2011年1月26日</td>
<td>US 2010244705 A1 2010年9月30日</td>
<td></td>
</tr>
<tr>
<td>GB 2468947 A</td>
<td>2010年9月29日</td>
<td>GB 2468947 B 2012年4月4日</td>
<td></td>
</tr>
<tr>
<td>GB 2468947 B</td>
<td>2012年4月4日</td>
<td>JP 2010231191 A 2010年10月14日</td>
<td></td>
</tr>
<tr>
<td>CN 102903828 A</td>
<td>2013年1月30日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>US 7465678 B2</td>
<td>2008年12月16日</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>