AGILITY TRAINING APPARATUS AND METHOD OF AGILITY TRAINING

Applicants: John White, Rio Rancho, NM (US);
Adam White, Rio Rancho, NM (US);
John Hardy, Denver, CO (US)

Inventors: John White, Rio Rancho, NM (US);
Adam White, Rio Rancho, NM (US);
John Hardy, Denver, CO (US)

Assignee: TRUEFIT, LLC, Rio Rancho, NM (US)

Filed: Aug. 28, 2014

Related U.S. Application Data

Provisional application No. 61/872,685, filed on Aug. 31, 2013.

ABSTRACT

The present invention relates to the field of exercise apparatus that provide exercises which are used for speed and agility training as well as strength training, with an emphasis on plyometric training, comprising a multi-directional, multi-configurable, and adjustable system of ladders.
FIG. 8
AGILITY TRAINING APPARATUS AND METHOD OF AGILITY TRAINING

CLAIM TO DOMESTIC PRIORITY

[0001] This application claims benefit to U.S. provisional patent application No. 61/872,685, filed on Aug. 28, 2013.

FIELD OF INVENTION

[0002] The present invention relates to the field of exercise apparatuses that provide exercises which are used for speed and agility training as well as strength training, with an emphasis on plyometric training, comprising a multi-directional, multi-configurable, and adjustable system of ladders. The present invention improves upon currently sold devices by incorporating cognitive and mental training in conjunction with agility and movement training.

[0003] BACKGROUND OF THE INVENTION

[0004] Providing an exercise route via an agility ladder specific to speed of movement, directional movement, and a combination of the two movements is known as agility training. Currently, exercisers use agility training devices consisting of a single ladder element to exercise because these devices provide a route to facilitate training of the user’s speed and agility, stretching, movement, or coordination. The route is normally provided by laying an agility ladder on a flat surface such as the ground or floor. The user then runs, jumps, side-steps, crawls, or moves in a plurality of ways as quickly as possible using the agility ladder as a route to execute the chosen exercise.

[0005] The usefulness of the devices currently known in the art depends in part on the ease with which a user performs different types of speed and agility exercises, the range or number of exercises that are performed with the device, and the ease with which users can configure the devices for different exercises according to his or her training needs and abilities.

[0006] Agility ladders when used lie flat on the ground or floor to provide a route over which the user moves as quickly and accurately as possible, exercising the user’s muscles, joint complexes, and mental dexterity. Agility ladders currently known in the art are portable and available in a variety of lengths, but variable directional elements and variable spacing of the directional elements are currently not available, thus limiting the diversity of exercises that can be performed. Such devices, in order to be useful for a wide variety of exercises, and training techniques must be composed of a multi-directional, multi-configurable, adjustable system of agility ladders, but currently are not.

[0007] Exercise devices consisting of one agility ladder that is not adjustable or multi-directional can be used on the ground or floor. At a fixed length an agility ladder allows a user to train for agility and speed by moving either the length, width, or length and width of the agility ladder using a specific movement pattern incorporating speed, balance, and stability. A single directional agility ladder is limited in its usefulness due to lack of adjustability and configurability.

[0008] Single directional agility ladders that are adjustable due to changing the spacing between the shortened cross members along the length of the ladder overcome some of the limitations of single directional non-adjustable agility ladders. Increased or decreased spacing between the shortened cross members allows the user to adjust the spacing at which the user must negotiate to perform the chosen particular movement pattern in relation to the chosen exercise. A single directional adjustable agility ladder is limited in its usefulness with limited configurability, and it is still limited to its linear direction because of its singularity.

[0009] One way to encourage regular exercise is to make exercising fun and to provide a variety of exercises. Such variations keep the exercise and competition fresh for the participants. The present invention provides a large variety of exercises to the user and is therefore fun to use.

[0010] The present invention comprising a flexible, configurable, inexpensive, more complex agility training apparatus is an improvement over the agility ladders currently known in the art.

SUMMARY OF THE INVENTION

[0011] 1.) An agility training apparatus comprising:

[0012] one or more a multi-configurable, multi-directional core elements having multiple core sides each one of the multiple core sides detachably coupled to one or more different core sides of the multiple core sides; and

[0013] one or more ladder elements detachably coupled to the core element, wherein each of the one or more ladder elements further comprise two or more ladder sides and one or more cross members is attached between two ladder sides.

[0014] 2.) The agility training apparatus of claim 1 wherein the core element is configured in a shape selected from the group consisting of triangle, square, pentagon, rectangle, quadrilateral, hexagon, heptagon, octagon, nonagon, decagon, heptagon, hexagon, dodocagon and other multi-sided polygon.

[0015] 3.) The agility training apparatus of claim 1 wherein each one of the multiple core sides further comprise:

[0016] multiple core fasteners spaced apart and disposed on each one of the multiple core sides,

[0017] 4.) The agility training apparatus of claim 3 wherein each one of the multiple core fasteners further comprise:

[0018] a fastener selected form the group consisting of plastic snaps, metal snaps, fabric hook-and-loop, magnets, and metal clips with flexible sides.

[0019] 5.) The agility training apparatus of claim 3 wherein each one of the multiple core sides is rotatable about each one of the multiple core fasteners.

[0020] 6.) The agility training apparatus of claim 1 wherein each of the one or more cross members is detachably coupled to each of the two ladder sides.

[0021] 7.) The agility training apparatus of claim 6 further comprising a plurality of anchor points variably spaced and disposed on the ladder sides providing for the cross members to be attached at variable locations.

[0022] 8.) The agility training apparatus of claim 6 wherein the multiple ladder sides and each of the one or more cross members are various colors.

[0023] 9.) The agility training apparatus of claim 8 wherein the various colors of the multiple ladder sides and of each of the one or more cross members is selected from the group of colors consisting of orange, blue, green, yellow, and black.

[0024] 10.) The agility training apparatus of claim 1 wherein the multiple ladder sides and each of the one or more cross members further comprise material selected from the group consisting of flexible material, rubber, plastic, webbing, nylon, and fabric.

[0025] 11.) An agility training apparatus comprising:

[0026] a multi-configurable, multi-directional core element having multiple core to ladder fasteners; and
one or more ladder elements detachably coupled to the core element by the core to ladder fasteners,

The agility training apparatus of claim 11 wherein the core element further comprises:
multiple core sides each one of the multiple core sides detachably coupled to one or more other core side(s) of the multiple core sides,

The agility training apparatus of claim 11 wherein the core element is configured in a shape selected from the group consisting of triangle, square, pentagon, rectangle, quadrilateral, hexagon, heptagon, octagon, nonagon, decagon, hexagon, heptagon and other multi-sided polygon.
The agility training apparatus of claim 11 wherein each one of the multiple core to ladder fasteners is selected from the group of fasteners consisting of plastic snaps, metal snaps, fabric hook-and-loop, magnets and metal clips with flexible sides.
The agility training apparatus of claim 11 wherein each of the one or more ladder elements further comprises material selected from the group consisting of flexible material, rubber, plastic, webbing, nylon, and fabric.
An agility training apparatus comprising: a first ladder element detachably coupled to one or more second ladder elements.
The agility training apparatus of claim 16 wherein the first ladder element and each of the one or more second ladder elements further comprises:
multiple ladder sides each one of the multiple ladder sides having multiple cross fasteners space apart and disposed along the ladder side; and
one or more cross members detachably coupled to each of the multiple ladder sides by the core fasteners.
The agility training apparatus of claim 17 wherein the first ladder element is detachably coupled to the one or more of the second ladder elements by the cross fasteners.
The agility training apparatus of claim 16 wherein the first ladder and each of the one or more second ladders are variously colored.
The agility training apparatus of claim 16 wherein the first ladder and each of the one or more second ladders comprise material selected from the group consisting of flexible material, rubber, plastic, webbing, nylon, and fabric.

FIG. 1 is an illustration of a top view of one embodiment of the exercise apparatus of the present invention comprising ladder elements connected to a core element;
FIG. 2 is an illustration of an overhead view detail illustrating one ladder element as illustrated in FIG. 1;
FIG. 3 is an illustration of one ladder element as illustrated in FIG. 1 comprising alternate spacing of the cross elements;

FIG. 4 is an illustration of a front view of the core element constructed as an octagon, one of a plurality of core configurations;
FIG. 5 is a detailed illustration of core element connectors and fasteners;
FIG. 6A is an illustration of an alternate configuration of the embodiment of the exercise apparatus of the present invention comprising two ladder elements connected to each other to form a 90 degree angle;
FIG. 6B illustrates how the two ladder elements illustrated in FIG. 6A are connected;
FIG. 7 is a detailed illustration depicting the connection points of a ladder element to the core as well as the connection points of the cross members, sometimes called cross connectors, and the side elements, sometimes called ladder sides or side connectors of the ladder element;
FIG. 8 is an illustration of a top view of an alternate embodiment of the exercise apparatus of the present invention; and
FIG. 9 is an illustration of a top view of yet another alternate embodiment of the exercise apparatus of the present invention.
FIG. 10A is an illustration of a means for carrying and organizing the exercise apparatus, including multiple ladder elements of the present invention.
FIG. 10B is an illustration of how the ladder elements are attached to the means.
FIG. 10C is an illustration of an alternate means for carving the exercise apparatus, in particular the ladder elements of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more preferred embodiments of the invention and are not to be construed as limiting the invention in the drawings.

FIG. 1 is an illustration of a top view of one embodiment of the exercise apparatus of the present invention comprising ladder elements connected to a core element;
FIG. 2 is an illustration of an overhead view detail illustrating one ladder element as illustrated in FIG. 1;
FIG. 3 is an illustration of one ladder element as illustrated in FIG. 1 comprising alternate spacing of the cross elements;

FIG. 4 is an illustration of a front view of the core element constructed as an octagon, one of a plurality of core configurations;
FIG. 5 is a detailed illustration of core element connectors and fasteners;
FIG. 6A is an illustration of an alternate configuration of the embodiment of the exercise apparatus of the present invention comprising two ladder elements connected to each other to form a 90 degree angle;
FIG. 6B illustrates how the two ladder elements illustrated in FIG. 6A are connected;
FIG. 7 is a detailed illustration depicting the connection points of a ladder element to the core as well as the connection points of the cross members, sometimes called cross connectors, and the side elements, sometimes called ladder sides or side connectors of the ladder element;
FIG. 8 is an illustration of a top view of an alternate embodiment of the exercise apparatus of the present invention; and
FIG. 9 is an illustration of a top view of yet another alternate embodiment of the exercise apparatus of the present invention.
FIG. 10A is an illustration of a means for carrying and organizing the exercise apparatus, including multiple ladder elements of the present invention.
FIG. 10B is an illustration of how the ladder elements are attached to the means.
FIG. 10C is an illustration of an alternate means for carving the exercise apparatus, in particular the ladder elements of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to an apparatus and method of exercising, movement, agility and speed training and more particularly to an apparatus comprising a system of easily configurable connectors for performing a wide variety of movements, exercises and stretches, and the method of using the apparatus.

An agility training apparatus comprising multi-functional, multi-configurational agility ladders for exercising, fitness, and athletic training is disclosed. Embodiments include a multi-directional core providing multiple configuration possibilities, adjustable agility ladders comprising two elongated ladder sides with multiple points of attachment on each elongated side, and shortened cross members. Shortened cross members are attached perpendicularly between two elongated ladder sides thus forming a ladder. A plurality of anchor points variably spaced and disposed on the elongated ladder sides provide for the shortened cross members to be attached at variable locations, thus providing for the shortened cross members of the individual ladder to be variably spaced. Multiple agility ladders are connected to the individual sides of the multi-directional core to form a plurality of configurations of agility ladders that are used for exercise, fitness, and athletic training.

The agility training apparatus comprising an exercise apparatus of the present invention preferably comprises a substantially multi-configurational apparatus that is easily conformable into a plurality of different lengths, shapes, and directions that allow the user to easily perform a variety of varying directional specific exercises. For instance, variably spacing the shortened cross members of the individual ladder can create different challenges for one user. For instance, cross members can be placed approximately 18 inches (46
(cm) apart for agility drills. With variable spacing, cross members can be placed closer together to create a drill requiring shorter, quicker steps, or to accommodate athletes of all sizes, including men, women and children. With variable spacing, cross members can be placed further apart. The present invention improves upon and overcomes deficiencies of the agility exercise devices known in the art. The present invention comprises an exercise apparatus comprising a plurality of particular and beneficial elements, specifically comprising a configuration system comprising fasteners that easily allow a user to perform a variety of exercises, stretches, and physical therapy techniques.

[0057] The exercise apparatus described herein comprises a substantially multi-configurational apparatus that is easily adjustable by adjusting a system of fasteners comprising metal snaps, plastic snaps, fabric hook and loop fasteners, such as VELCRO®, metal clips or magnets, and flexible sides of varying lengths that allow the user to perform a variety of exercises, stretches, and physical therapy techniques, when laid on the ground or floor.

[0058] The method of use includes a plurality of movements, exercises, stretches, and physical therapy techniques that is accomplished by adjusting the length and configuration of any element of the apparatus. Other embodiments of the method of use of the apparatus include mental exercises performed in conjunction with physical exercises, balancing movements and matrix based movements and exercises.

[0059] The invention also includes a means for and methods of storing, organizing and carrying the exercise apparatus.

[0060] Elements of the embodiments of the present invention are illustrated in more detail in FIGS. 1-10C. The plurality of configurations and methods of use embodied in the present invention does not limit the scope of the present invention.

[0061] One embodiment of the present invention provides an exercise apparatus comprised of eight (8) detachable/connectable sides of the core fastened to each other using core component fasteners. Extending from each individual connectable core side 20, sometimes called core connector 20, is a ladder fastened to its respective core side 20 using core to ladder fasteners.

[0062] FIG. 1 is an illustration of a top view of one embodiment of the exercise apparatus of the present invention comprising ladder elements 11 connected to a core element 21. Agility training apparatus 10 comprises a plurality of ladder elements 11. Ladder element 11 comprises side connector 12, cross connector 16, and cross fasteners 14. The elements of fasteners 14 are disposed on side connector 12 and cross connector 16, respectively, thus securely yet flexibly fastening connectors 12 and 16. The core element 21 is comprised of a plurality of core connectors 20 comprising flexible straps, rubber, plastic, webbing, nylon webbing, or any other material. Core element 21 comprises a shape such as triangle, square, pentagon, rectangle, quadrilateral, hexagon, heptagon, octagon, nonagon, decagon, hexagon, dodecagon, other multi-sided polygon or any other shape dependant on the number of core connectors 20 fastened together. Core connectors 20 are fastened to other connectors via core fasteners 18. Core fasteners 18 comprise a metal snap, a plastic snap, a fabric hook and loop fastener, such as VELCRO®, a metal clip, magnets, or any other fastener that fasten core connectors 20. Any fasteners that quickly and easily and flexibly fasten core connectors 20 are preferred embodiments of this invention.

[0063] FIG. 2 is an enlarged overhead view detailing a ladder element, as illustrated in FIG. 1. Ladder element 11 comprises side connectors 12, sometimes called ladder sides 12, cross connectors 16 sometimes called cross members 16, and cross fasteners 14. Cross fasteners 14 comprise a metal snap, a plastic snap, a fabric hook and loop fastener, such as VELCRO®, a metal clip, magnets, or any other fastener that quickly and easily fasten cross connectors 16 to side connector 12. Cross connectors 16 are any desired thickness, length, or width and are comprised of any suitable material, including but not limited to rubber, plastic, webbing, nylon webbing, fabric, or any other flexible and inexpensive material. Ladder element 11 comprises a plurality of cross connectors 16 and usually two side connectors 12. Side connectors 12 are any desired thickness, length, or width and are comprised of any suitable material, including but not limited to rubber, plastic, webbing, nylon webbing, fabric, or any other flexible and inexpensive material.

[0064] FIG. 3 is an illustration of one ladder element comprising an alternate spacing of the cross elements. In FIG. 3, ladder element 11 comprises side connectors 12, cross connectors 16, and cross fasteners 14. Here, ladder element 11 comprises fewer cross connectors 16 than the ladder element that is illustrated in FIG. 2. This configuration of agility training apparatus 10 provides for additional exercises.

[0065] FIG. 4 is an enlarged overhead view of the core in an octagon configuration, one of a plurality of possible core configurations. FIG. 4 illustrates core 21 comprising an opening comprising eight core connectors 20. Core connectors 20 and side connectors 12 are provided in a plurality of sizes. Core connectors 20 are fastened to each other via core fasteners 18. Core to ladder fasteners 22 disposed on core connector 20 fastens ladder elements 11 to core connectors 20 via cross fasteners 14 disposed on side connectors 12. Core to ladder fasteners 22 comprise a metal snap, a plastic snap, a fabric hook and loop fastener, such as VELCRO®, a metal clip, magnets, or any other fastener that quickly and easily fastens core connectors 20 to side connectors 12.

[0066] FIG. 5 is a detailed illustration of core connectors 20 and core fasteners 18 and core to ladder fasteners 22 that were previously illustrated in FIG. 4, showing the method of fastening side connectors 12 with core fasteners 18. Side connectors 12 are rotatable via core fasteners 18 to produce a plurality of core 21 configurations, comprising a triangle, square, pentagon, and so on, as desired for the method of exercise.

[0067] FIG. 6A is an illustration of an alternate configuration of the embodiment of the exercise apparatus of the present invention comprising two ladders connected to each at a 90 degree angle.

[0068] FIG. 6B illustrates how the two ladder elements illustrated in FIG. 6A are connected via cross fasteners 14. This configuration provides an alternate agility exercise for the exerciser, combining running forward with sideways squats. Ladder elements are provided in a variety of colors to provide cues to the exerciser, so he or she knows it’s time for a different exercise when the exerciser sees a different color. This alternate configuration provides for a variety of agility exercises to be performed by the exerciser moving in multiple directions. Additionally, it allows the user to incorporate mental exercises with the physical exercises by having to focus on the multi directional layout of the elements of the present invention.

[0069] An example of specific usage follows. The exerciser first sprints in one direction of the ladder element, then
catches a ball at the end of the ladder element, and then must perform another exercise, for example sidestepping along another ladder element. The exerciser thus must perform an agility exercise combined with a hand-eye coordinated exercise, and ultimately finish the set by performing yet another exercise after the catch. Muscles and cognitive functioning of the brain as well are thus stimulated.

[0070] FIG. 7 is a detailed illustration depicting the connection points of a ladder to the core connector as well as the connection points of the cross connectors and the side connectors of the ladder element. Cross fasteners 14 provide stability when core connectors 20 are fastened to side connectors 12 and also provide stability when side connectors are fastened to cross connectors 16. Core fasteners 18 also provide stability when fastening core connectors 20, but also provide flexibility when core connectors are rotated around the axis located at core fasteners 18 in order to provide a variety of core 21 configurations.

[0071] FIG. 8 is an illustration of a top view of an alternate embodiment of the exercise apparatus of the present invention. FIG. 8 illustrates agility training apparatus 10 of the present invention comprising five ladders 11, and two alternative core 21 configurations, both comprising three core connectors 20. The configuration illustrated in FIG. 8 comprises a plurality of potential exercise options that incorporate both physical and mental training. For example, an individual exerciser is provided a set of ladder elements disposed in several directions that incorporate different exercises to be performed in a specific order based on color of each individual ladder element and/or direction. For example, an exerciser first reverse runs into a specified ladder element. Upon entering the core 21, the user pivots 90 degrees then sidesteps through the connecting ladder element. Once the user has reached the second core 21 the user must perform a matrix of lunge using the three ladder elements extending from the juncture then finally sprints along a specified ladder element, thus completing a specified order of directions and exercises.

[0072] FIG. 9 is an illustration of a top view of yet another alternate embodiment of agility training apparatus 10 of the present invention comprising six ladders 11, and an alternate core 21 configuration comprising eight core connectors 20. The configuration in FIG. 9 provides similar exercises provided in previous configurations of the agility training apparatus of the present invention, but also provides for a variety of configurations to incorporate multiple exercisers to train and learn to function as a team.

[0073] For example, three users stand at the ends of each of three parallel ladder elements 11 respectively. Each of the three exercisers are provided with separate, distinct, and different instructions on how to run through the system of ladder elements.

[0074] For example, the first exerciser sprints through his designated ladder element 11 and upon reaching core 21, pivots 90 degrees left and then sidesteps outside of ladder element 11. The middle exerciser sprints along her designated ladder element 11, then catches a football, then proceeds through core 21 and then sprints along ladder element 11 on the opposite side of the core. The third user sprints through his designated ladder element 11, posts a block for the exerciser who caught the football, then pivots 90 degrees right and sprints out designated ladder element 11. This system of team exercising, in this case a football team, incorporates physical and mental training along with integrating a system of teamwork.

[0075] FIGS. 8 and 9 illustrate two possible configurations of agility training apparatus 10. An almost limitless number of configurations of agility training apparatus 10 are possible, according to the needs and desires of the exerciser.

[0076] FIG. 10A illustrates a means 23, sometimes called a case, for storing, organizing and carrying the exercise apparatus. A series of case fasteners 24, sometimes called tie downs, are attached to the outside of the case 23. The case fasteners 24 are designed to hold down the ladder elements. The case 23 can be a hard material, such as plastic, leather, cardboard, fiber composite, recycled material, or other inexpensive rigid material. Alternatively, the case 23 may be made of a soft material, such as fabric, cloth, a flexible and durable plastic, a flexible and durable synthetic material, or any other flexible and durable material. The case 23 closes using a zipper, metal buckle latches, fabric hook and loop fasteners, such as VELCRO® or other similar methods of closing the case. The case 23 may also have a handle or strap attached to the outside of the case. The handle or strap can be adjustable. The handle or strap can be made of a durable fabric, stretchy material, plastic, rubber, or other flexible material.

[0077] FIG. 10B illustrates how the ladder elements 11 are organized and attached to the means 23. The ladder elements can be organized and stacked into the case 23. The ladder elements are held in place by a series of case fasteners 24 on the sides of the case. The case fasteners 24 can secure one or more ladder elements, and as many as ten ladder elements. The case fasteners 24 comprise metal snaps, plastic snaps, fabric hook and loop fasteners, such as VELCRO®, metal clips, elastic cords, such as bungee cords or cords made of propylene covered with cloth, and other similar types of fasteners.

[0078] FIG. 10 illustrates of an alternate means for storing and carrying the exercise apparatus, in particular the ladder elements 11 of the present invention. One or more ladder elements, made of a substantially flexible material. In this configuration, the ladder sides form two ends of a rolled up shape 25. A strap or length of material 26 having a first end and a second end is attached to each end of the rolled up ladder elements. Each end of the strap can be attached directly to the ladder sides that create the ends of the roll with fasteners. The fasteners comprise metal snaps, plastic snaps, fabric hook and loop fasteners, such as VELCRO®, metal clips, elastic cords, such as bungee cords or cords made of propylene covered with cloth, and other similar types of fasteners. Alternatively, the two ends of the strap can form a loop at each end of the strap. The two large loops can encircle and tightly wrap around the roll at two points. The loop can be secured and fitted around the roll with a metal loop buckle, a plastic buckle, plastic snaps, metal snaps, hook and loop fasteners, such as VELCRO®, or other similar types of fasteners. The handle or strap 26 can be used to carry the ladder elements. The handle or strap 26 can be made of a durable fabric, stretchy material, plastic, rubber, or other flexible material. The handle or strap 26 can be adjustable.

[0079] The preceding examples can be repeated with similar success by substituting generically or specifically described operating conditions of this invention for those used in the preceding examples. Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention are obvious to those skilled in the art and it is intended to cover all such modifications and equivalents.
What is claimed:

1. An agility training apparatus comprising:
 one or more a multi-configurable, multi-directional core elements having multiple core sides each one of the multiple core sides detachably coupled to one or more different core sides of the multiple core sides; and
 one or more ladder elements detachably coupled to the core element, wherein each of the one or more ladder elements further comprise two or more ladder sides and one or more cross members is attached between two ladder sides.

2. The agility training apparatus of claim 1 wherein the core element is configured in a shape selected from the group consisting of triangle, square, pentagon, rectangle, quadrilateral, hexagon, heptagon, octagon, nonagon, decagon, heptagon, and other multi-sided polygon.

3. The agility training apparatus of claim 1 wherein each one of the multiple core sides further comprise:
 multiple core fasteners spaced apart and disposed on each one of the multiple core sides.

4. The agility training apparatus of claim 3 wherein each one of the multiple core fasteners further comprise:
 a fastener selected from the group consisting of plastic snaps, metal snaps, fabric hook-and-loop, and metal clips with flexible sides.

5. The agility training apparatus of claim 3 wherein each one of the multiple core sides is rotatable about each one of the multiple core fasteners.

6. The agility training apparatus of claim 1 wherein each one of the one or more cross members is detachably coupled to each one of the two ladder sides.

7. The agility training apparatus of claim 1 further comprising a plurality of anchor points variably spaced and disposed on the ladder sides providing for the cross members to be attached at variable locations.

8. The agility training apparatus of claim 1 wherein the multiple ladder sides and each of the one or more cross members are various colors.

9. The agility training apparatus of claim 8 wherein the various colors of the multiple ladder sides and each of the one or more cross members is selected from the group of colors consisting of orange, blue, green, yellow, and black.

10. The agility training apparatus of claim 1 wherein the multiple ladder sides and each of the one or more cross members further comprise material selected from the group consisting of flexible material, rubber, plastic, webbing, nylon, and fabric.

11. An agility training apparatus comprising:
 a multi-configurable, multi-directional core element having multiple core to ladder fasteners; and
 one or more ladder elements detachably coupled to the core element by the core to ladder fasteners.

12. The agility training apparatus of claim 11 wherein the core element further comprises:
 multiple core sides each one of the multiple core sides detachably coupled to one or more other core side(s) of the multiple core sides.

13. The agility training apparatus of claim 11 wherein the core element is configured in a shape selected from the group consisting of triangle, square, pentagon, rectangle, quadrilateral, hexagon, heptagon, octagon, nonagon, decagon, heptagon, and other multi-sided polygon.

14. The agility training apparatus of claim 11 wherein each one of the multiple core to ladder fasteners is selected from the group of fasteners consisting of plastic snaps, metal snaps, fabric hook-and-loop, magnets and metal clips with flexible sides.

15. The agility training apparatus of claim 11 wherein each one of the one or more ladder elements further comprises material selected from the group consisting of flexible material, rubber, plastic, webbing, nylon, and fabric.

16. An agility training apparatus comprising:
 a first ladder element detachably coupled to one or more second ladder elements.

17. The agility training apparatus of claim 16 wherein the first ladder element and each of the one or more second ladder elements further comprises:
 multiple ladder sides each one of the multiple ladder sides having multiple cross fasteners space apart and disposed along the ladder side; and
 one or more cross members detachably coupled to each of the multiple ladder sides by the cross fasteners.

18. The agility training apparatus of claim 17 wherein the first ladder element is detachably coupled to the one or more of the second ladder elements by the cross fasteners.

19. The agility training apparatus of claim 16 wherein the first ladder and each of the one or more second ladders are variously colored.

20. The agility training apparatus of claim 16 wherein the first ladder and each of the one or more second ladders comprise material selected from the group consisting of flexible material, rubber, plastic, webbing, nylon, and fabric.

* * * * *