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SCHEDULING NEURAL NETWORK PROCESSING

BACKGROUND

[0001] This specification relates to memory management processes for performing neural

network computations.

[0002] Neural networks are machine learning models that employ one or more layers of
operations to generate an output, e.g., a classification, for a received input. Some neural
networks include one or more hidden layers in addition to an output layer. The output of each
hidden layer is used as input to the next layer in the network, i.e., the next hidden layer or the
output layer of the network. Some or all of the layers of the network generate an output from

a received input in accordance with current values of a respective set of parameters.

[0003] Some neural networks include one or more convolutional neural network layers.
Each convolutional neural network layer has an associated set of kernels. Each kernel includes
values established by a neural network model created by a user. In some implementations,
kernels identify particular image contours, shapes, or colors. Kernels can be represented as a
matrix structure of weight inputs. Each convolutional layer can also process a set of activation

inputs. The set of activation inputs can also be represented as a matrix structure.

SUMMARY

[0004] The subject matter described in this specification includes systems and methods for
receiving a batch of neural network inputs to be processed using a neural network on a hardware
circuit. The neural network can include multiple layers arranged in a directed graph and each
layer can have a respective set of parameters. Methods according to the described technologies
include determining a partitioning of the neural network layers into a sequence of superlayers.

Each superlayer can be a partition of the directed graph that includes one or more layers.

[0005] Described methods can include processing the batch of inputs using the hardware
circuit. For example, processing the batch of inputs can include loading, into a memory of the
hardware circuit, the respective set of parameters for the layers in each superlayer of the
sequence. Additionally, for each input in the batch, the described methods can include
processing the input through each of the layers in the superlayer using the parameters in the

memory of the hardware circuit to generate a superlayer output based on the input.

[0006] One aspect of the subject matter described in this specification can be embodied in a

computer-implemented method. The method includes, receiving a batch of neural network
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inputs to be processed using a neural network on a hardware circuit, the neural network having
a plurality of layers arranged in a directed graph, each layer having a respective set of
parameters; and determining a partitioning of the neural network layers into a sequence of
superlayers, each superlayer being a partition of the directed graph that includes one or more

layers.

[0007] The method further includes processing the batch of neural network inputs using the
hardware circuit, including, for each superlayer in the sequence: loading the respective set of
parameters for the layers in the superlayer into memory of the hardware circuit; and for each
neural network input in the batch: processing a superlayer input corresponding to the neural
network input through each of the layers in the superlayer using the parameters in the memory

of the hardware circuit to generate a superlayer output for the neural network input.

[0008] These and other implementations can each optionally include one or more of the
following features. For example, in some implementations, for a first superlayer in the
sequence, the superlayer input corresponding to the neural network input is the neural network
input. In some implementations, the superlayer input to each superlayer after the first
superlayer output is a superlayer output generated by a preceding superlayer in the

sequence.

[0009] In some implementations, processing the batch of neural network inputs using the
hardware circuit, comprises, for each superlayer: sequentially processing the superlayer inputs
corresponding to the batch of neural network inputs through each of the layers in the superlayer
such that the superlayer input for a first neural network input in the batch is processed through
each of the layers in the superlayer before a superlayer input corresponding to a second neural
network input in the batch is subsequently processed through each of the layers in the

superlayer.

[0010] In some implementations, respective layers of a superlayer are associated with a
working set, each working set being defined at least by: i) one or more inputs of the batch of
neural network inputs to be processed using the neural network on the hardware circuit, or one
or more outputs of a preceding layer of the superlayer; and ii1) a size parameter that indicates
an amount of memory needed to process the one or more inputs through each of the layers in
the superlayer.

[0011] In some implementations, determining the partitioning of the neural network layers
into a sequence of superlayers, includes: 1) determining a particular size parameter for at least

one working set; ii) determining a particular aggregate parameter capacity of the memory of
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the hardware circuit; and iii) determining the partitioning of the neural network layers into a
sequence of superlayers based on at least one of the particular size parameter for the at least
one working set or particular aggregate parameter capacity of the memory of the hardware
circuit.

[0012] Insome implementations, the memory of the hardware circuit has a threshold storage
capacity, and determining the partitioning of the neural network layers into a sequence of
superlayers, includes: partitioning the neural network layers into a sequence of superlayers

based on the threshold storage capacity of the memory of the hardware circuit.

[0013] In some implementations, the neural network layers are partitioned into a sequence
of superlayers so as to not exceed the threshold storage capacity of the memory when the

hardware circuit processes the batch of neural network inputs.

[0014] In some implementations, the batch of neural network inputs and the respective set
of parameters are received from a source external to the hardware circuit, and wherein
processing the superlayer inputs corresponding to the neural network inputs through each layer
of the superlayer comprises processing the superlayer inputs without receiving any additional

parameters from the external source.

[0015] Other implementations of this and other aspects include corresponding systems,
apparatus, and computer programs, configured to perform the actions of the methods, encoded
on computer storage devices. A computing system of one or more computers or hardware
circuits can be so configured by virtue of software, firmware, hardware, or a combination of
them installed on the system that in operation cause the system to perform the actions. One or
more computer programs can be so configured by virtue of having instructions that, when

executed by data processing apparatus, cause the apparatus to perform the actions.

[0016] The subject matter described in this specification can be implemented in particular
embodiments to realize one or more of the following advantages. By partitioning neural
network layers into a sequence of superlayers, external communications by a neural network
hardware circuit may be minimized when the neural network processes an input using sets of
parameters. Minimized external communications by the hardware circuit during computational
processes can result in improved bandwidth consumption and energy optimization by the
hardware circuit.

[0017] Further, a sequence of superlayers can provide a global scheduling process that
intermixes “batch™ and “layer” dimensions of a neural network model to optimize one or more

memory working sets for the processing of inputs through neural network layers. For example,
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by performing global scheduling over batch and layer dimensions, live memory working sets
of neural network applications may be minimized thereby enhancing batchless execution of
inputs for a given hardware circuit. Live memory working sets can correspond to data for
processing through layers of a neural network, where the data is currently resident in a physical

memory space of a data processing apparatus or processor hardware circuit.

[0018] Additionally, an example hardware circuit can include on-chip memory (e.g., SRAM)
such that inputs and parameters of minimized working sets can be stored on-chip using the
SRAM capacity. Thus, cost savings can be realized if additional memory resources are no
longer required to store inputs and parameters when SRAM capacity is efficiently utilized
based on a global scheduling process that provides sequences of superlayers. In some
implementations, on-chip SRAM capacity may be scaled up or down as needed to meet
particular design requirements and to provide scheduling processes that may, or may not,

include forming superlayer sequences.

[0019] The details of one or more implementations of the subject matter described in this
specification are set forth in the accompanying drawings and the description below. Other
potential features, aspects, and advantages of the subject matter will become apparent from the

description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 illustrates an example hardware circuit for processing neural network inputs

through layers of a neural network that each have a respective set of parameters.

[0021] FIG. 2A illustrates an example graph that relates to processing of a single batch
element using respective layers of a neural network.

[0022] FIG. 2B illustrates an example graph that relates to processing of multiple batch
elements for a given layer of a neural network.

[0023] FIG. 3illustrates an example graph that relates to processing of a single batch element
among multiple layers of a neural network that form a superlayer.

[0024] FIG. 4 1is an example flow diagram for a method of processing neural network inputs

through superlayers of a neural network.

[0025] FIG. 5 illustrates an example graph that represents neural network layers that are
partitioned into a sequence of superlayers for processing a single batch element using multiple

layers of a superlayer.
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[0026] FIG. 6A illustrates an example graph that represents a working set size for a neural

network layer.

[0027] FIG. 6B illustrates an example graph that represents a working set size for a

superlayer of a neural network.

[0028] Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

[0029] A neural network having multiple layers can be used to compute inferences. For
example, given an input, the neural network can compute an inference for the input. The neural
network computes this inference by processing the input through each of the layers of the neural
network. In particular, the layers of the neural network can be arranged in a directed graph,
with some or all of the layers having a respective set of parameters. Each layer receives an
input and processes the input in accordance with the set of parameters for the layer to generate

an output. The output can be used as an input at the next neural network layer.

[0030] Therefore, in order to compute an inference from a received input, the neural network
receives the input and processes it through each of the neural network layers in the directed
graph to generate the inference, with the output from one neural network layer being provided
as input to the next neural network layer. Data inputs to a neural network layer, e.g., either the
input to the neural network or the outputs of one or more layers connected to the layer in the

directed graph, to a neural network layer can be referred to as activation inputs to the layer.

[0031] Any particular layer in the directed graph can receive multiple inputs, generate
multiple outputs, or both. The layers of the neural network can also be arranged such that an
output of a layer can be sent back as an input to a previous layer. Methods according to the
described technologies can include determining a partitioning of the neural network layers into
a sequence of superlayers such that each superlayer is a partition of the directed graph that

includes one or more layers.

[0032] Described methods can include processing the batch of inputs through layers of
respective superlayers in the sequence for a neural network on a hardware circuit. Processing
the batch of inputs can include loading parameters for the layers into a memory of the hardware
circuit, and using the parameters to process a neural network input to generate respective

superlayer outputs for the input.
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[0033] In some implementations, one or more functions described in this specification can
be performed using a hardware circuit or electronic component of a system. The hardware
circuit can receive control signals from a control device that is electrically coupled to the
hardware circuit. The hardware circuit can be a packaged electronic device that includes one
or more non-transitory machine-readable storage mediums (e.g., memory) for storing inputs to

a neural network layer and parameters used to process the inputs.

[0034] The hardware circuit can include multiple components that form a packaged
integrated circuit or processor device such as a processor micro-chip (e.g., a CPU or GPU).
Hence, in this instance, the memory of the hardware circuit can be “on chip” memory relative
to the multiple other components that form the micro-chip. As used in this specification, a
packaged hardware circuit or electronic device may include semiconducting material, such as
a silicon wafer, that is encapsulated or enclosed within a supporting case. The supporting case
can include one conductors wires that extend from a periphery of the case for connecting the

device to a printed circuit board.

[0035] The control device can be an external controller that is spaced apart from the
hardware circuit and that is external to at least the on-chip memory enclosed by the component
package (e.g., the supporting case) of the hardware circuit. The external controller can be a
system-level controller that provides control signals to the hardware circuit to cause the
hardware circuit to perform neural network inference computations using the inputs and
parameters discussed above. The external controller can include “off-chip™ memory, where
the memory is off chip at least because the memory is not co-located with the on-chip memory

of the packaged hardware circuit.

[0036] In some implementations, when performing inference computations, rather than
using the off-chip memory, the external controller can use the on-chip memory of the hardware
circuit to store inputs and parameters. In response to receiving controls signals from at least
one controller of the system, the hardware circuit accesses the on-chip memory and uses the

stored inputs and parameters to perform neural network computations.

[0037] FIG. 1 shows an example of a hardware circuit 100 that can be used to perform neural
network computations. Performing neural network computations can include circuit 100
processing neural network inputs through layers of a neural network that each have arespective
set of parameters. In some implementations, circuit 100 corresponds to a hardware circuit that
includes one or more processors, processor microchips, or other circuit components that

embody a neural network. In other implementations, circuit 100 can include one or more
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hardware circuits, processors and other related circuit components that form one or more neural
networks. In general, methods according to the described technologies can be applied to, or can
be implemented using, a variety of processor architectures, such as, CPUs, GPUs, digital signal

processors (DSPs), or other related processor architectures.

[0038] Circuit 100 generally includes a controller 108 that provides one or more control
signals 110 to cause inputs associated with memory 104 to be either stored to, or retrieved
from, a memory address of memory 102. Likewise, controller 108 also provides one or more
control signals 110 to cause parameters for parameter memory 106 to be either stored to, or

retrieved from, a memory address of memory 102.

[0039] Circuit 100 further includes one or more multiply accumulate (MAC) cell/unit(s) 107,
an input activation bus 112 and an output activation bus 114. Control signals 110 can, for
example, cause memory 102 to provide one or more inputs unto input activation bus 112, cause
memory 102 to provide one or more parameters from parameter memory 106, and/or cause
MAC cell/unit 107 to use the inputs and parameters to perform computations that produce

output activations that are provided to output activation bus 114.

[0040] Controller 108 can include one or more processing units and memory. Processing
units of controller 108 can include one or more processors (e.g., microprocessors or central
processing units (CPUs)), graphics processing units (GPUs), application specific integrated
circuits (ASICs), or a combination of different processors. Controller 108 can also include other
storage or computing resources/devices (e.g., buffers, registers, control circuitry, etc.) that
provide additional processing options for performing one or more of the determinations and

calculations described in this specification.

[0041] In some implementations, processing unit(s) of controller 108 executes instructions
stored in memory to cause controller 108 and circuit 100 to perform one or more functions
described in this specification. The memory of controller 108 can include one or more non-
transitory machine-readable storage mediums. Non-transitory machine-readable storage
mediums described herein can include a solid-state memory, a magnetic disk, an optical disk,
a portable computer diskette, a random access memory (RAM), a read-only memory (ROM),
an erasable programmable read-only memory (e.g., EPROM, EEPROM, or Flash memory), or

any other tangible medium capable of storing information.

[0042] Circuit 100 can be an example compute unit or compute tile and can include
additional hardware structures to perform computations associated with multi-dimensional data

structures such as tensors, matrices and/or data arrays. In some implementations, input values
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can be pre-loaded to activation memory 104 and parameter/weight values can be pre-loaded to
parameter memory 106 using data values received by circuit 100 from an external or higher

level control device associated with a neural network computing system.

[0043] Circuit 100 can receive instructions that define a particular compute operation to be
performed by using a neural network of the system. In general, data values stored in memory
102 are typically each written to a respective memory address location. The address location
in memory 102 can then be accessed by an example control device (e.g., controller 108) when

a data value such as an input is needed to perform a particular compute operation.

[0044] Controller 108 can provide one or more control signals 110 to memory 102 to load
inputs, from memory 102, onto input activation bus 112 and provide the values to an array of
computational units that include MAC 107. An index of activation memory 104 can include
all memory address locations having inputs. Data bus 112 is accessible by one or more units of
a computational array. The units of the computational array can receive, from data bus 112,
one or more activation values to perform computations relating to matrix multiplication based

on the received activation values.

[0045] For a given compute cycle, circuit 100 can require access to an element of activation
memory 104 and parameter memory 106 to execute multiplication operations associated with
inference computations for a neural network layer. For a cycle in which computations are
performed, controller 108 can provide one input value at a time and the array of computational
units including MAC cell 107 will multiply an activation with a weight/parameter to produce

different output activations for a given input.

[0046] Insome implementations, each MAC cell 107 of the array of computational units can
be responsible for different output depths of a neural network layer. The array of computational
units can be fully controlled by controller 108, and controller 108 can determine, based on

detection of an activation value, when there is a need to perform a particular computation.

[0047] Furthermore, input values can be analyzed upon arriving at circuit 100 for storage in
memory 102. In response to analyzing the inputs, controller 108 can execute programmed
instructions to efficiently compress activation data by storing only particular input values in
memory 102 (e.g., only non-zero activation values), thereby saving memory storage space and
corresponding bandwidth.

[0048] When circuit 100 receives inputs and parameters, controller 108 can, for example,

execute one or more direct memory access operations. Execution of these memory access

operations includes storing, in address locations of memory 102, inputs corresponding to
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dimensional elements of activation memory 104. Likewise, controller 108 can also store, in
address locations of memory 102, parameters corresponding to dimensional elements of
parameter memory 106. Controller 108 can further include one or more address registers that
maintain the memory addresses from which a particular input will be fetched. Moreover, the
one or more registers will also store the memory addresses from which a corresponding

parameter is fetched to be multiplied with the particular input.

[0049] Controller 108 can reference the above mentioned registers to determine a
corresponding parameter (and memory address) for a first input and to determine a
corresponding parameter (and memory address) for a second input when the first and second
inputs are processed sequentially. In some implementations, output activations computed at a
first neural network layer are used as inputs to a next/subsequent second layer in the network,
e.g., anext hidden layer or the output layer of the network. In general, each layer of the neural
network generates an output from a received input in accordance with current values of a

respective set of parameters.

[0050] In alternative implementations, there may be some compute operations in which a
single input is used as an operand for several multiply operations covering a variety of weights
for a given dimensional element of parameter memory 106 (e.g., to iterate an “X” or “Y”
dimension). According to the described technologies, circuit 100 can be configured to receive
controls signals from an external controller of a computing system or machine learning system.
The external controller can provide batches of neural network inputs and parameters that are
stored in the an on-chip memory of circuit 100. As described in more detail below, the external
controller can be configured to implement a scheduling policy for batch element processing by

aneural network on circuit 100.

[0051] For example, an external controller of the system can provide control signals to
circuit 100 to cause circuit 100 to process neural network inputs through layers of the neural
network using inputs and parameters that are stored in on-chip memory of circuit 100.
According to the described technologies, a particular scheduling policy can be used to partition
layers of the neural network into groupings of layers that form one or more sequences of
superlayers (described below). The system controller can then use circuit 100 to access inputs
and parameters stored in on-chip memory and then process batches of neural network inputs

through each layer in a sequence of superlayers.

[0052] FIG. 2A illustrates an example graph 200A that relates to processing of a single batch

element using respective layers of a neural network. In some implementations, graphs 200A/B,
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and graphs 300, 500, and 600A/B described below, are different from an example directed

graph that may represent the topology of a neural network.

[0053] Graph 200A shows how the size of a working set varies during the processing of the
batch element through the layers of the neural network. The size of the working set is
represented in terms of storage units 204. Generally, a working set for a given neural network
layer includes inputs to the neural network layer, outputs from the neural network layer, and
the parameters that are used to process the inputs by the neural network layer. Working sets
generally include a grouping of one or more data structures that are needed for a given neural

network computation and are described in more detail below.

[0054] One or more storage units 204 are used to store inputs of a working set and associated
parameters for a neural network layer. Storage units 204 can be associated with memory
resources of memory 102 described above. A batch element is to a single neural network input

that is processed using an example neural network on a hardware circuit.

[0055] Asnoted above, aneural network can include multiple layers that are used to compute
inferences, and an inference is computed by processing a neural network input through the
layers of the neural network. Thus, graph 200A further shows neural network layers 206,
including layer A, layer B, layer C, layer D and layer E. Graph 200A shows that a batch
element is first processed through layer A, then through layer B, then through layer C, then
through layer D, and then through layer E. In some implementations, respective layers of layers
206 can be one of the following types of neural network layers: a convolutional layer, a
reduction layer, a fully connected (FC) layer, a classifier layer, an element-wise multiply layer,
or a pooling layer, e.g., average pooling layer or max pooling layer.

[0056] A working set for a neural network layer can include one or more batch elements and
parameters that are used to process the batch elements through respective layers of the neural
network. A working set can be defined by: 1) one or more inputs/batch elements of a batch of
inputs that are to be processed using the neural network on the hardware circuit; and ii) a size
parameter or number of storage units 204 that indicates an amount of memory needed to store
the inputs and parameters. In addition to inputs, a working set may also include output
activations. In some implementations, a neural network can be described as having a “batch™
dimension that is associated with the batch elements described above, and a “layer” dimension

corresponding to layers 206.

[0057] In general, the following description of FIG. 2A provides context for the improved

neural network scheduling processes described herein below with reference to, for example,

10
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FIGs. 3-6. For example, layers 206 can be neural network layers of an example machine
learning model that includes at least five layers (e.g., layers A, B, C, D, and E). Inference
computations performed by the machine learning model may experience sudden or unexpected
increases in feature depth or output striding. When this occurs, an active working set at a given
point in a neural network compute process, may increase input and output activation quantities

or decrease input and output activation quantities over time.

[0058] For example, as shown in FIG. 2A, a working set of a single batch element processed
by a machine learning model may require a single storage unit 204 for batch processing that
occurs at layer A. An increase in input activations processed for a given working set may occur
during batch processing at layer B. Thus, the machine learning model can require use of 8
storage units 204 during batch processing at layer B rather than the single storage unit 204 at
layer A. Further, in the implementation of FIG. 2A, working sets processed at layers C, D, and

E may require 2, 4, and 1 units of storage respectively.

[0059] In some implementations, increases or decreases in input/output activation quantity
and corresponding required storage units can occur based on layers of a neural network each
having different numbers of parameters or weights. So, a working set for layer A can include
fewer activations and parameters relative to layer B, and so the working set for layer A may
only require fewer storage resources relative to a larger working set for layer B that may require

more storage resources.

[0060] In some implementations, storage units 204 can correspond to memory resources of
inputs memory 104 and parameter memory 106. For example, storage units 204 can
correspond to memory resources of a static random access memory (SRAM) that is associated
with on-chip memory of the above described electronic component of a hardware circuit of
circuit 100. On-chip memory resources that include memory 104, 106 can have a fixed or
threshold storage capacity. This threshold storage capacity may be less than, or substantially
less than, a storage capacity of a dynamic random access memory (DRAM) resource that is
associated with off-chip memory of circuit 100. As indicated above, the off-chip memory can

be memory of a higher level external control device.

[0061] FIG. 2B illustrates an example graph 200B that relates to processing of multiple batch
elements for a given layer of aneural network. Graph 200B includes a first collection of storage
units 208 for storing inputs of working sets associated with respective batch elements of batch
212. Graph 200B further includes a second collection of storage units 210 for storing inputs

of working sets associated with respective batch elements of batch 214.

11
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[0062] In the implementation of FIG. 2B, two or more batches can each include multiple
batch elements, namely batch 212 can have at least one individual batch element ““0,” and batch
214 can have at least one individual batch element “1.” Processing of at least two batches 212,
214 can cause a relative size of a given working set to be amplified by a factor of the batch
size. For example, as shown in FIG. 2B, the working set size at each of layers 206 (layer A-
layer E) can be amplified, e.g., doubled, based on processing inputs of at least two batches,

batch212 and batch 214, that have corresponding batch sizes.

[0063] As discussed above, a system controller can be configured to include compile-time
scheduling, or other computing logic, for implementing a neural network scheduling process
or policy that defines the manner in which batches of inputs are processed through one or more
layers of a neural network. For example, circuit 100 receives a batch of neural network inputs
and the system controller determines a scheduling process for how the inputs should be
processed to perform an inference for each input in the batch. Processing of the inputs causes
the neural network to generate intermediate inputs such as input activations that can be
provided to a subsequent layer of the neural network. Intermediate inputs can correspond to
output activations of a first neural network layer that are provided as input activations to a

subsequent neural network layer.

[0064] In a conventional scheduling policy, a neural network processes each input or batch
element in a batch through a first neural network layer to generate a layer output (output
activation) for each batch element. Each layer output is then processed through a second neural
network layer and so on until the processing of the batch elements in the batch are complete.
That is, the processing of a given layer is performed for all batch elements in the batch before
any processing for the next layer in the neural network occurs. This conventional neural
network scheduling policy may be limited by constraints such as memory capacity and, thus,
may be inefficient at maximizing use of available memory and computing resources of a

machine learning system.

[0065] Regarding use of on-chip memory, e.g., storage units 204 of memory 104, 106, of an
example hardware circuit, in some implementations, a maximum batch size that can be
supported by on-chip memory resources can be determined based on a size of a working set.
In particular, the maximum batch size supported by storage units 204 can be determined based,
in part, on the largest working set of inputs and parameters that are processed by a given neural

network layer.
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[0066] For example, and with reference to FIG. 2B, a total on-chip storage capacity
associated with memory 102 and 104 may be limited to 20 storage units 204. In FIG. 2B,
because a working set of two batch elements processed by layer B requires 16 storage units
204, processing of a third batch element would require 24 units of storage unit 204 and, thus,
exceed the 20 storage unit capacity. So, in this example, a neural network may only support a
particular maximum working set size that includes two batch elements, when processing each

batch element requires at least 8 units of storage.

[0067] Specifically, in the implementation of FIG. 2B, processing of batch element “0” in
the working set requires 8 units of storage as indicated by reference feature 208 and processing
of batch element “1” the working set also requires 8 units of storage as indicated by reference
feature 210. Thus, because processing batch elements 0 and 1 collectively require 16 storage
units 204, processing of at least one additional batch element that requires more than 4 storage
units 204 would exceed on-chip storage capacity (limited here to 20 units) of available memory

resources of a hardware circuit of a neural network.

[0068] FIG. 3 illustrates an example graph 300 that relates to processing of batch elements
among multiple layers 206 of a neural network that form one or more superlayers 308 and 310,
wherein superlayer 308, for example, includes layers A, B, and C. Graph 300 includes a first
collection of storage units 304 for storing inputs and parameters of working sets associated
with batch element O of respective batch elements 302. Likewise, graph 300 further includes
a second collection of storage units 306, which are shown grey in FIG. 3, for storing inputs and

parameters of working sets associated with batch element 1 of respective batch elements 302.

[0069] As indicated above, circuit 100 can include an example electronic component or
hardware circuit that may have fewer on-chip or SRAM storage resources relative to other
components or circuits of circuit 100. However, as described herein, circuit 100 can be
configured to execute compute-intensive machine learning algorithms using available on-chip
memory. In these instances, a neural network of a machine learning system can include an
accelerator architecture that does not impose unnecessary constraints on a minimum or
maximum batch size that can be supported by storage units 204 of the hardware circuit’s on-
chip memory.

[0070] According to the described technologies, an improved neural network scheduling
process can be used to efficiently exploit batch locality afforded through use of local on-chip
storage resources of a hardware circuit of circuit 100. Further, use of this on-chip storage as

well as other local computing resources can optimize available bandwidth and conserve

13



WO 2018/212799 PCT/US2018/013939

component energy consumption in bandwidth- and energy-sensitive computing environments.
Further still, use of this on-chip storage and other local resources can serve to minimize external
communications by the hardware circuit during processing of inputs through layers of a neural

network.

[0071] For example, as noted briefly above, a hardware circuit that implements a neural
network may communicate externally with a host device/external controller to receive neural
network inputs and parameters that are used by the neural network to compute inferences.
These external communications can require use of on-chip computing resources of the
hardware circuit. Hence, the external communications can decrease available computing
bandwidth of the hardware circuit, increase system latency, and may also cause increases in

energy consumption by electronic components of the hardware circuit.

[0072] In view of these constraints relating to bandwidth and energy consumption, this
specification describes a global scheduling policy or process that intermixes “batch™ and
“layer” dimensions of an example neural network model to optimize use of particular memory
working sets. In particular, implementations of the described technologies can include a
flexible neural network scheduling policy that leverages batch and layer dimensions of a
machine learning model to minimize a size of active working sets for batch elements processed

by the neural network.

[0073] For example, an improved neural network scheduling process according to the
described teachings enable active working sets to be sized such that storage of the working
sets, including parameters, in on-chip memory 104, 106 does not exceed a threshold storage
capacity of the on-chip memory resource. Hence, methods described herein enable efficient
scheduling of batch element processing by a neural network. For example, efficiencies can be
realized based on a scheduling policy that enables working sets to be stored in on-chip storage
of a hardware circuit in a manner that does not impose unnecessary constraints on a batch size

of inputs and parameters used to process the inputs.

[0074] Further, an improved scheduling policy according to the described teachings can
maximize efficient use of available on-chip resources for storing inputs and parameters so that
external communications to access off-chip resources are minimized. Efficient use of on-chip
resources and reduced external communications can lead to an increase in available system

bandwidth and an overall decrease in energy consumption by system components.

[0075] In some implementations, aspects of an improved scheduling process or policy can

be encoded using software instructions or program code. The instructions can be executable
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by at least one processor of circuit 100, at least one processor of controller 108, or at least one

processor of an example hardware circuit of circuit 100 or controller 108, or both.

[0076] FIG. 4 is an example flow diagram for a method 400 of processing neural network
inputs through superlayers of a neural network using circuit 100. Method or process 400
corresponds to an improved scheduling policy for batch element processing by a neural
network. At block 402, circuit 100 receives a batch of neural network inputs to be processed
using a neural network on a hardware circuit of the system. The neural network can have
multiple layers that are arranged in a directed graph and each layer can have a respective set of
parameters. As discussed above, in some implementations, a hardware circuit of circuit 100
can receive inputs from a host interface device or higher level controller of an example neural

network hardware system.

[0077] At block 404, circuit 100 determines a partitioning of the neural network layers into
a sequence of superlayers. For example, circuit 100 can include, or have access to, compiler
logic that is configured to determine one or more partitions of the neural network layers into
sequences of superlayers. Alternatively, or in addition to the compiler logic, circuit 100 can
include, or have access to, at least one hardware block configured to determine one or more
partitions of the neural network layers into sequences of superlayers. In some implementations,
each superlayer in the sequence of superlayers is a partition of the directed graph that includes

one or more layers.

[0078] At block 406, circuit 100 processes the batch of neural network inputs using the
hardware circuit of the system. In some implementations, processing a batch of neural network
inputs using the hardware circuit can include loading respective sets of parameters for the
layers in the superlayer into memory 106. In some instances, parameters for the layers in a
superlayer are loaded for each superlayer in a sequence of superlayers. Further, processing a
batch of neural network inputs using the hardware circuit can also include, for each neural
network input in the batch, processing the neural network input through each of the layers in
the superlayer using the parameters in the memory of the hardware circuit to generate a

superlayer output for the neural network input.

[0079] For a first superlayer in the sequence, the output of the neural network input to the
superlayer (e.g., a superlayer input) is a first superlayer output. Additionally, the superlayer
input to each superlayer after the first superlayer is a superlayer output generated by a preceding
superlayer in the sequence. In some implementations, processing a batch of neural network

inputs includes processing the inputs through all the layers of a first superlayer in the sequence
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and then processing the inputs through all layers of each subsequent superlayer in the sequence
until all of inputs in the batch have been processed through all of the superlayers in the neural

network.

[0080] Referring again to FIG. 3, when using an improved neural network scheduling
process, one batch element can be executed in a batchless manner for multiple layers 308 and
310. According to the described technologies, multiple layers 308 can form a first superlayer,
while multiple layers 310 can form a second superlayer that is different than the first superlayer.
Groupings of multiple layers that are partitioned to form superlayers are described in more

detail below with reference to FIG. 4.

[0081] As shown in FIG. 3, in some implementations, layer B of an example machine
learning model can require a large amount of storage units 204 to process a large working set
relative to a required amount of storage units at layer C where a smaller working set is
processed. When a working set for a batch element is sufficiently small, an improved
scheduling process can include a machine leaming model switching to a next batch element
that is processed by a particular grouping of multiple layers (e.g., a superlayer), such as
superlayer/layers 308.

[0082] For example, a neural network implemented on a hardware circuit of circuit 100 can
be configured to perform global scheduling over “batch™ and “layer” dimensions of a neural
network. In particular, batch processing of inputs to a neural network layer can be performed
by executing a group of layers 308 (A, B, C) for a first batch of elements 0 in a first process
iteration, and then executing the same group of layers (A, B, C) 308 for a second batch of

elements 1 in a second process iteration.

[0083] Asshownin FIG. 3, alternating between different batch elements in accordance with
an improved scheduling policy reduces a maximum size of the working sets relative to a
maximum working set size of the conventional scheduling policy described above. For
example, at least with regard to batch processing at layer B for batch element 1, alternating
between different batch elements can reduce a maximum working set size of layer B to 10
units, instead of the maximum working set size of 16 units required when using the
conventional scheduling policy described above. For example, 8 units may be used for batch
processing at layer B for batch element 1, and 2 units may be used to store the output of
previously batch processing at layers A, B, C of batch element 0 and/or inputs and parameters

of working sets associated with batch element 0 for processing at layers D and E.
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[0084] FIG. 5 illustrates an example graph 500 that represents neural network layers that are
partitioned into a sequence of superlayers for processing at least a single batch element using
multiple layers that are partitioned to form superlayers. Graph 500 includes a first collection
of storage units 504 for storing inputs of working sets for batch element 0 of respective batch

elements 502.

[0085] Likewise, graph 500 further includes: a) a second collection of storage units 506 for
storing inputs of working sets for batch element 1 of respective batch elements 502; b) a third
collection of storage units 508 for storing inputs of working sets for batch element 2 of
respective batch elements 502; and c) a fourth collection of storage units 510 for storing inputs

of working sets for batch element 3 of respective batch elements 502.

[0086] Graph 500 further includes a sequence of superlayers along an X-axis of the graph.
For example, graph 500 includes: 1) a first superlayer 512 for processing batch elements 0, 1,
2, and 3 through each of layers A, B, C; and ii) a second superlayer 514 for processing batch
elements 0, 1, 2, and 3 through each of layers D, E. According to the described teachings, a
sequence of superlayers defined based on an improved neural network scheduling policy can
support a relatively high working set batch size without exceeding on-chip memory capacity,

or threshold capacity, of a hardware circuit that executes a neural network.

[0087] For example, as shown in FIG. 5, when inputs are processed during an example “B3™
layer and batch phase, a maximum size of a working set can require only 14 storage units for
four batch elements, e.g., batch elements 0, 1, 2, and 3 as indicated by the distinguishing shade
patterns of respective storage units 204. This reduction in required storage units, as compared
to the conventional scheduling process (e.g., that requires 16 storage units), allows for
improved exploitation of the locality of inputs and parameters received and stored via on-chip
memory of a hardware circuit. This improved leveraging of on-chip resources can result in
increased bandwidth and energy savings that are realized based in part on reduced usage of off-

chip, or DRAM, memory resources.

[0088] Additionally, as noted briefly above, an improved scheduling policy can be used to
process one or more batches of inputs or inputs without exceeding on-chip memory capacity
of a hardware circuit of circuit 100. In some implementations, processing one or more batches
of neural network inputs through layers of a superlayer in a sequence can include generating,
by a first superlayer (512) in the sequence, a first superlayer output for receipt by at least a

subsequent layer of a neural network as an input to the subsequent layer.
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[0089] In some instances, a neural network input to a second superlayer in a sequence of
superlayers can correspond to a first superlayer output generated by a first superlayer in the
sequence. Further, processing a batch of inputs through layers of a superlayer in a sequence
can include processing a neural network input through each of the layers in the second
superlayer using the parameters in a memory of a hardware circuit to generate a second

superlayer output for a neural network input that corresponds to a first superlayer output.

[0090] Insome implementations, processing a batch of neural network inputs through layers
of a superlayer in a sequence of superlayers can include processing inputs for a batch element
one-by-one through each layer of the superlayer. For example, processing a batch of inputs
can include sequentially processing two or more neural network inputs through each of the
layers in a superlayer. Such sequential processing can include processing a first neural network
input through each layer of the superlayer and then processing a second neural network input

through each layer of the superlayer.

[0091] In some implementations, for each superlayer in the sequence, processing inputs
through layers of the superlayer can include, sequentially processing superlayer inputs
corresponding to the batch of neural network inputs through each of the layers in the superlayer
such that the superlayer input for a first neural network input in the batch is processed through
each of the layers in the superlayer before a superlayer input corresponding to a second neural
network input in the batch is subsequently processed through each of the layers in the

superlayer.

[0092] In some implementations, a first superlayer in a sequence of superlayers can include
a single neural network layer. In this implementation, processing inputs through a sequence of
superlayers can include processing a first input through the first superlayer that includes the
single neural network layer. After this first input is processed through the single layer of the
first superlayer, a second input can be immediately processed by the first superlayer before the
first input is processed through all layers of the subsequent superlayer that follows the first
superlayer in the sequence. The first input that is processed by the subsequent superlayer in
the sequence can be a superlayer output of the first superlayer that includes the single neural

network layer.

[0093] A superlayer and one or more sequence of superlayers can be formed based on
partitioning groups of layers in accordance with an improved neural network scheduling policy.
In some implementations, circuit 100 includes programmed instructions for an improved

scheduling policy and these instructions can include determining a partitioning of neural
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network layers into a sequence of superlayers. Each superlayer can be a partition of a directed

graph that includes one or more layers.

[0094] Aspects of an improved scheduling process can cause neural network layers to be
formed into multiple superlayers such that all inputs and parameters for a given superlayer can
be accessed from on-chip storage of a hardware circuit of circuit 100. As indicated above, on-
chip access to inputs and parameters can minimize external communications by the hardware
circuit. For example, external communications can be minimized because the hardware circuit
can avoid computing processes that are associated with recurring fetch operations to obtain

additional quantities of inputs and parameters from an off-chip interface.

[0095] In some implementations, an off-chip interface can couple a hardware circuit to an
external control device that provides inputs and parameters to circuit 100. In particular, each
superlayer in a sequence of superlayers can receive a particular quantity of parameters for
processing one or more neural network inputs for the superlayer. In some instances, processing
the one or more neural network inputs through layers of the superlayer can include processing
the inputs without receiving subsequent quantities of parameters to process a particular quantity

of inputs for the superlayer.

[0096] In some implementations, circuit 100 executes program code to determine one or
more superlayer partitions or boundaries of a sequence of superlayers. For example, circuit
100 can determine or compute a sum of an activation working set and aggregate parameter
capacity for a given layer. Circuit 100 can then use the determined sum to determine a
partitioning of neural network layers into a sequence of superlayers based in part on a
predefined or threshold on-chip storage capacity (e.g., memory 104 and 106) of memory
resources of a hardware circuit. Hence, neural network layers can be partitioned into a
sequence of superlayers so as to not exceed a threshold storage capacity of on-chip memory

when a hardware circuit of circuit 100 processes one or more batches of neural network inputs.

[0097] In some implementations, determining a partitioning of neural network layers into a
sequence of superlayers includes: 1) circuit 100 determining a particular size parameter for at
least one working set that includes inputs for processing by the neural network; ii) circuit 100
determining a particular aggregate input activation and parameter capacity of a memory of a
hardware circuit; and iii) circuit 100 determining the partitioning of the layers into a sequence
of superlayers based on at least the particular size parameter for the at least one working set or
the particular aggregate input activation and parameter capacity of the memory of the hardware

circuit.
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[0098] For example, a storage capacity, or threshold capacity, of on-chip memory may be
500megabyte (MB). Circuit 100 can determine total on-chip memory usage based on an
equation 1 [Total usage = (working set * N) + parameters| where a variable N of equation 1 is
a batch size. Circuit 100 can then determine an amount of memory required to store respective
sets of parameters for each layer of a neural network. In some implementations, referencing
FIG. 5, circuit 100 can determine that: 1) a set of parameters for layer A requires 25MB of
memory; ii) a set of parameters for layer B requires 125MB of memory; and iii) a set of

parameters for layer C requires SOMB of memory.

[0099] Thus, in this example, circuit 100 determines that aggregate memory usage for
respective sets of parameters for layers A, B, and C is 200MB, leaving 300MB of available on-
chip memory for use in storing inputs (e.g., S00MB on-chip memory capacity minus 200MB
of aggregate memory usage). For respective layers A, B, C, circuit 100 can determine a
particular size parameter for inputs of working sets to be processed by the respective layers and
a corresponding batch size for the working set. Using the size parameter of the inputs for the
working set and the corresponding batch size, circuit 100 can determine the aggregate
activation and parameter capacity of the memory. Circuit 100 can use the aggregate activation
and parameter capacity of the memory to determine a partitioning of layers into a sequence of

superlayers.

[00100] In someimplementations, circuit 100 uses equation 1, the size parameter of the inputs
(e.g., in memory units), the batch size, and the aggregate memory used for the parameters to
determine a total on-chip memory usage for one or more groups of layers. Circuit 100 can
compare the total memory usage for each group of layers to the 500MB on-chip storage
capacity. Circuit 100 can then determine a partitioning or grouping of layers that form a
sequence of superlayers based on the results of the comparison. Circuit 100 determines the
partitioning of the layers into a sequence of superlayers so as to not exceed the threshold storage
capacity of the on-chip memory (S00MB) when a hardware circuit processes a batch of neural

network inputs for the working sets.

[00101] FIG. 6A illustrates an example graph 600A that represents an activation working set
size for aneural network layer, while FIG. 6B illustrates an example graph 600B that represents
an activation working set size for a superlayer of a neural network. As discussed above, and
as indicated by graphs 600A and 600B, working sets for neural network layers that are not
arranged as superlayers can include substantially larger working set sizes when compared to a

sizes of a working set for neural network layers arranged as superlayers.
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[00102] For example, working sets for batch processing using the conventional scheduling
policy described above can result in working set sizes that include millions of inputs. Such
large quantities of inputs can exceed a storage or threshold capacity of on-chip memory
resources of a hardware circuit when on-chip storage units 204 are used to store inputs and
parameters used to processed the inputs. In contrast, working sets for batch processing using
superlayer partitions, based on an improved scheduling policy as described herein, can result
in working set sizes that include substantially fewer inputs. The substantially fewer quantities
of inputs can be efficiently stored using on-chip storage units 204 such that the on-chip memory

capacity is not exceeded.

[00103] Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied computer
software or firmware, in computer hardware, including the structures disclosed in this
specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one
or more computer programs, i.e., one or more modules of computer program instructions
encoded on a tangible non transitory program carrier for execution by, or to control the

operation of, data processing apparatus.

[00104] Alternatively or in addition, the program instructions can be encoded on an
artificially generated propagated signal, e.g., a machine-generated electrical, optical, or
electromagnetic signal, which is generated to encode information for transmission to suitable
receiver apparatus for execution by a data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-readable storage substrate, a random or

serial access memory device, or a combination of one or more of them.

[00105] The processes and logic flows described in this specification can be performed by
one or more programmable computers executing one or more computer programs to perform
functions by operating on input data and generating output(s). The processes and logic flows
can also be performed by, and apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array), an ASIC (application specific
integrated circuit), a GPGPU (General purpose graphics processing unit), or some other

processing unit.

[00106] Computers suitable for the execution of a computer program include, by way of
example, can be based on general or special purpose microprocessors or both, or any other kind

of central processing unit. Generally, a central processing unit will receive instructions and
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data from a read only memory or a random access memory or both. The essential elements of
a computer are a central processing unit for performing or executing instructions and one or
more memory devices for storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or transfer data to, or both, one or more
mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.

However, a computer need not have such devices.

[00107] Computer readable media suitable for storing computer program instructions and data
include all forms of non-volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices;
magnetic disks, e.g., internal hard disks or removable disks. The processor and the memory

can be supplemented by, or incorporated in, special purpose logic circuitry.

[00108] While this specification contains many specific implementation details, these should
not be construed as limitations on the scope of any invention or of what may be claimed, but
rather as descriptions of features that may be specific to particular embodiments of particular
inventions. Certain features that are described in this specification in the context of separate
embodiments can also be implemented in combination in a single embodiment. Conversely,
various features that are described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as acting in certain combinations and
even initially claimed as such, one or more features from a claimed combination can in some
cases be excised from the combination, and the claimed combination may be directed to a

subcombination or variation of a subcombination.

[00109] Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations be performed, to achieve desirable
results. In certain circumstances, multitasking and parallel processing may be advantageous.
Moreover, the separation of various system modules and components in the embodiments
described above should not be understood as requiring such separation in all embodiments, and
it should be understood that the described program components and systems can generally be

integrated together in a single software product or packaged into multiple software products.

[00110] Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions recited in

the claims can be performed in a different order and still achieve desirable results. As one
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example, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In certain

implementations, multitasking and parallel processing may be advantageous.

23



WO 2018/212799 PCT/US2018/013939

What is claimed is:

1. A method, comprising:
receiving a batch of neural network inputs to be processed using a neural network
on a hardware circuit, the neural network having a plurality of layers arranged in a
directed graph, each layer having a respective set of parameters;
determining a partitioning of the neural network layers into a sequence of
superlayers, each superlayer being a partition of the directed graph that includes one or
more layers;
processing the batch of neural network inputs using the hardware circuit,
comprising, for each superlayer in the sequence:
loading the respective set of parameters for the layers in the superlayer into
memory of the hardware circuit; and
for each neural network input in the batch:
processing a superlayer input corresponding to the neural network
input through each of the layers in the superlayer using the parameters in the
memory of the hardware circuit to generate a superlayer output for the

neural network input.

2. The method of claim 1, wherein for a first superlayer in the sequence, the

superlayer input corresponding to the neural network input is the neural network input.

3. The method of claim 2, wherein the superlayer input to each superlayer after the
first superlayer output is a superlayer output generated by a preceding superlayer in the

sequence.

4, The method of one of claims 1 to 3, wherein processing the batch of neural
network inputs using the hardware circuit, comprises, for each superlayer:

sequentially processing the superlayer inputs corresponding to the batch of neural
network inputs through each of the layers in the superlayer such that the superlayer input
for a first neural network input in the batch is processed through each of the layers in the
superlayer before a superlayer input corresponding to a second neural network input in

the batch is subsequently processed through each of the layers in the superlayer.
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5. The method of one of claims 1 to 4, wherein respective layers of a superlayer are
associated with a working set, each working set being defined at least by:

1) one or more inputs of the batch of neural network inputs to be processed using
the neural network on the hardware circuit, or one or more outputs of a preceding layer of
the superlayer; and

i1) a size parameter that indicates an amount of memory needed to process the one

or more inputs through each of the layers in the superlayer.

6. The method of claim 5, wherein determining the partitioning of the neural network
layers into a sequence of superlayers, comprises:

1) determining a particular size parameter for at least one working set;

i1) determining a particular aggregate parameter capacity of the memory of the
hardware circuit; and

1i1) determining the partitioning of the neural network layers into a sequence of
superlayers based on at least one of the particular size parameter for the at least one
working set or particular aggregate parameter capacity of the memory of the hardware

circuit.

7. The method of one of claims 1 to 6, wherein the memory of the hardware circuit
has a threshold storage capacity, and determining the partitioning of the neural network
layers into a sequence of superlayers, comprises:

partitioning the neural network layers into a sequence of superlayers based on the

threshold storage capacity of the memory of the hardware circuit.

8. The method of claim 7, wherein the neural network layers are partitioned into a
sequence of superlayers so as to not exceed the threshold storage capacity of the memory

when the hardware circuit processes the batch of neural network inputs.

9. The method of one of claims 1 to 8, wherein the batch of neural network inputs and
the respective set of parameters are received from a source external to the hardware
circuit, and wherein processing the superlayer inputs corresponding to the neural network
inputs through each layer of the superlayer comprises processing the superlayer inputs

without receiving any additional parameters from the external source.
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10. A computing system comprising;
a hardware circuit disposed in the computing system, the hardware circuit
including one or more processing devices; and
one or more machine-readable storage devices for storing instructions that are
executable by the one or more processing devices to perform operations comprising:
receiving a batch of neural network inputs to be processed using a neural
network on a hardware circuit, the neural network having a plurality of layers
arranged in a directed graph, each layer having a respective set of parameters;
determining a partitioning of the neural network layers into a sequence of
superlayers, each superlayer being a partition of the directed graph that includes
one or more layers;
processing the batch of neural network inputs using the hardware circuit,
comprising, for each superlayer in the sequence:
loading the respective set of parameters for the layers in the superlayer
into memory of the hardware circuit; and
for each neural network input in the batch:
processing a superlayer input corresponding to the neural
network input through each of the layers in the superlayer using the
parameters in the memory of the hardware circuit to generate a

superlayer output for the neural network input.

11.  The computing system of claim 10, wherein for a first superlayer in the sequence,
the superlayer input corresponding to the neural network input is the neural network

input.

12.  The computing system of claim 11, wherein the superlayer input to each superlayer
after the first superlayer output is a superlayer output generated by a preceding superlayer

in the sequence.

13.  The computing system of one of claims 10 to 12, wherein processing the batch of
neural network inputs using the hardware circuit, comprises, for each superlayer:
sequentially processing the superlayer inputs corresponding to the batch of neural

network inputs through each of the layers in the superlayer such that the superlayer input
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for a first neural network input in the batch is processed through each of the layers in the
superlayer before a superlayer input corresponding to a second neural network input in

the batch is subsequently processed through each of the layers in the superlayer.

14, The computing system of one of claims 10 to 13, wherein respective layers of a
superlayer are associated with a working set, each working set being defined at least by:
1) one or more inputs of the batch of neural network inputs to be processed using
the neural network on the hardware circuit, or one or more outputs of a preceding layer of
the superlayer; and
i1) a size parameter that indicates an amount of memory needed to process the one

or more inputs through each of the layers in the superlayer.

15.  The computing system of claim 14, wherein determining the partitioning of the
neural network layers into a sequence of superlayers, comprises:

1) determining a particular size parameter for at least one working set;

i) determining a particular aggregate parameter capacity of the memory of the
hardware circuit; and

111) determining the partitioning of the neural network layers into a sequence of
superlayers based on at least one of the particular size parameter for the at least one
working set or particular aggregate parameter capacity of the memory of the hardware

circuit.

16.  The computing system of one of claims 10 to 15, wherein the memory of the
hardware circuit has a threshold storage capacity, and determining the partitioning of the
neural network layers into a sequence of superlayers, comprises:

partitioning the neural network layers into a sequence of superlayers based on the

threshold storage capacity of the memory of the hardware circuit.

17.  The computing system of claim 16, wherein the neural network layers are
partitioned into a sequence of superlayers so as to not exceed the threshold storage
capacity of the memory when the hardware circuit processes the batch of neural network

inputs.
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18.  The computing system of one of claims 10 to 17, wherein the batch of neural
network inputs and the respective set of parameters are received from a source external to
the hardware circuit, and wherein processing the superlayer inputs corresponding to the
neural network inputs through each layer of the superlayer comprises processing the

superlayer inputs without receiving any additional parameters from the external source.

19.  One or more machine-readable storage devices storing instructions that are
executable by one or more processing devices to perform operations comprising:
receiving a batch of neural network inputs to be processed using a neural network
on a hardware circuit, the neural network having a plurality of layers arranged in a
directed graph, each layer having a respective set of parameters;
determining a partitioning of the neural network layers into a sequence of
superlayers, each superlayer being a partition of the directed graph that includes one or
more layers;
processing the batch of neural network inputs using the hardware circuit,
comprising, for each superlayer in the sequence:
loading the respective set of parameters for the layers in the superlayer into
memory of the hardware circuit; and
for each neural network input in the batch:
processing a superlayer input corresponding to the neural network
input through each of the layers in the superlayer using the parameters in the
memory of the hardware circuit to generate a superlayer output for the

neural network input.

20.  The machine-readable storage devices of claim 19, wherein processing the batch of
neural network inputs using the hardware circuit, comprises, for each superlayer:
sequentially processing the superlayer inputs corresponding to the batch of neural
network inputs through each of the layers in the superlayer such that the superlayer input
for a first neural network input in the batch is processed through each of the layers in the
superlayer before a superlayer input corresponding to a second neural network input in

the batch is subsequently processed through each of the layers in the superlayer.

28



PCT/US2018/013939

WO 2018/212799

1/6

80Jn0g |euleix]
Jo Jake juenbasgng o

_1

sng uoneAndy IndinQ

144’ { ]
\. % % * sng uoneAndy Induj
chb e [ | | 20T Aowsi
“ 1===2- === b [Iiiiininiat Lo [iniiabbubululubl “ “
| ' Zov ! D Lo b Lo “ “
" ' 1INn ! D ' 1INn P ' 1NN i “
" LoV ! Lo | ovn | P11 oww | m “ vor/
e A A N | ey
1 ] ! | 1
| b ! m “ m m Klowsy
S I S i L1 s)ndy|
b
R
]
e e, e, e, -
oLl 0Ll
SR, A ——, . A —— oLl 80l
m 0T Aowsa " A Jajjosu0Q
]
: S Tt 3 |
! ! KIows|\ Jajsweled “ m
! i

SLHDIIM/SHYILINVYVd ANV SNOILVAILDY LNdNI




WO 2018/212799 PCT/US2018/013939
2/6

))_ 200A

>

Working set

_________________________________________ 1 Time
FIG. 2A

>

)ZOOB

Working set

208

| : Time
00000000 O0OK 206
1111111111

o
oy FIG. 2B



WO 2018/212799

‘j 300

3/6

306

204

PCT/US2018/013939

Time

1

1

v
o
(o]
A\

198 BuJOpn

FIG. 3



WO 2018/212799 PCT/US2018/013939
4/6

4001‘

RECEIVING A BATCH OF NEURAL NETWORK INPUTS TO BE PROCESSED USING A
NEURAL NETWORK ON A HARDWARE CIRCUIT, THE NEURAL NETWORK HAVING A
PLURALITY OF LAYERS ARRANGED IN A DIRECTED GRAPH, EACH LAYER HAVING

A RESPECTIVE SET OF PARAMETERS 402

'

DETERMINING A PARTITIONING OF THE NEURAL NETWORK LAYERS INTO A
SEQUENCE OF SUPERLAYERS, EACH SUPERLAYER BEING A PARTITION OF THE
DIRECTED GRAPH THAT INCLUDES ONE OR MORE LAYERS 404

'

PROCESSING THE BATCH OF NEURAL NETWORK INPUTS BY USING THE
HARDWARE CIRCUIT TO PROCESS THE INPUTS FOR EACH SUPERLAYER IN THE
SEQUENCE 406

FIG. 4



PCT/US2018/013939

WO 2018/212799

5/6

G 9ld

00S h\

19S BUJOAA




WO 2018/212799

Working Set (B)

6/6

GOOAK

PCT/US2018/013939

Layer Activation Working Set

2,400,000

1,800,000

1,200,000 “
“ I|
|

600,000

I

[l

Layer

GOOBK

FIG. 6A

Superlayer Activation Working Set

400,000

300,000

200,000

Working Set (B)

100,000

Superlayer

FIG. 6B



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/013939

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N3/10 GO6F9/50
ADD. GO6N3/063

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Jeffrey Dean ET AL:
distributed deep networks",

3-8 December 2012,
Retrieved from the Internet:

25/NIPS2012 0598.pdf
[retrieved on 2014-04-11]
page 1 - page 8, paragraph 5
Appendix

"Large scale

The 26th annual conference on Neural
Information Processing Systems (NIPS'25):

6 December 2012 (2012-12-06), XP055113684,

URL:http://books.nips.cc/papers/files/nips

1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 April 2018

Date of mailing of the international search report

20/04/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Volkmer, Markus

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/013939

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Larissa Laich: "Graph Partitioning and
Scheduling for Distributed Dataflow
Computation",

14 September 2016 (2016-09-14), pages
1-71, XP055465499,

University of Stuttgart UniversitdtsstraBe
38 D-70569 Stuttgart

Retrieved from the Internet:
URL:https://elib.uni-stuttgart.de/bitstrea
m/11682/9279/1/Graph%20Partitioning%20and%
20Scheduling%20for%20Distributed%20Dataflo
w%20Computation.pdf

[retrieved on 2018-04-09]

Chapters 2-4

MART\'IN ABADI ET AL: "TensorFlow: A
system for large-scale machine learning",
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

27 May 2016 (2016-05-27), XP080806519,

the whole document

Wencong Xiao ET AL: "TUX 2 : Distributed
Graph Computation for Machine Learning",
This paper is included in the Proceedings
of the 14th USENIX Symposium on Networked
Sysgems Design and Implementation (NSDI
'17).,

27 March 2017 (2017-03-27), pages 669-682,
XP055465519,

ISBN: 978-1-931971-37-9

Retrieved from the Internet:
URL:http://web.eecs.umich.edu/ mosharaf/Re
adings/TuX2.pdf

[retrieved on 2018-04-09]

the whole document

WO 2017/075346 Al (GOOGLE INC [US])

4 May 2017 (2017-05-04)

the whole document

US 2016/335119 Al (MERRILL THEODORE [US]
ET AL) 17 November 2016 (2016-11-17)

the whole document

1-20

1-20

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/013939
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2017075346 Al 04-05-2017 US 2017124454 Al 04-05-2017
WO 2017075346 Al 04-05-2017
US 2016335119 Al 17-11-2016  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

