(19)

11 LV 10794 B

(5) Int.Cl. 5 **D01F6/60** C08G69/16 D01D5/08

Latvijas patents uz izgudrojumu 1995.g. 30.marta Latvijas Republikas likums

¹ Īsziņas

(21) Pieteikuma numurs: P-93-477

Pieteikuma datums: 04.06.1993

Pieteikuma publikācijas datums: 20.08.1995

Patenta publikācijas
datums: 20.12.1995

30 Prioritāte:

P 4218719.2 06.06.1992 DE

(73) ĺpašnieks(i):

BASF AKTIENGESELLSCHAFT; Carl-Bosch-Strasse 38, D-67056 Ludwigshafen/Rhein, DE

72 Izgudrotājs(i):

Paul MATTHIES (DE), Karl HAHN (DE), Karlheinz MELL (DE), Thomas SAUER (DE), Klaus WEINERT (DE), Martin LAUN (DE), Herbert HABERKORN (DE)

(74) Pilnvarotais vai pārstāvis:

Ābrams FOGELS, Patentu birojs "ALFA-PATENTS", Mārstaļu iela 2/4, Rīga LV-1050, LV

Virsraksts: Šķiedras uz polikaprolaktāma bāzes, to iegūšanas paņēmiens un pielietojums dziju un neausto materiālu iegūšanai,šie materiāli

Som Kopsavilkums: Piedāvātas šķiedras ar relatīvo viskozitāti (RV) no 2,0 līdz 3,0 uz polikaprolaktāma bāzes, kas iegūtas sekojoši:

(a) ekstrudējot polikaprolaktāma šķiedras caur vērpšanas sprauslu no kausējuma, kas pamatā sastāv no polikaprolaktāma;

(b) iegūts šķiedras atdzesējot;

(c) atdzesētās šķiedras izstiepjot ar ātrumu, kas nav mazāks par aprēķināto pēc formulas: [3600 + 1250 · (3,0 - RV)] m/min,

pie kam izmantotais polikaprolaktāms iegūts vismaz vienas dikarbonskābes klātienē, kura ņemta no grupas: C_4 - C_{10} -alkāndikarbonskābe; C_5 - C_8 -cikloalkāndikarbonskābe; benzola un naftalīna dikarbonskābe, kas var saturēt līdz divām sulfoskābes grupām, pie kam karbonskābes grupas nav blakus; N- C_1 - C_6 -alkil-N,N-di(C_4 - C_{10} -karboksialkil)amīni; 1,4-di(C_1 - C_1 0-karboksi-alkil)piperazīni.

Piedāvāts arī paņēmiens minēto šķiedru iegūšanai, šādu šķiedru pielietošana dziju un neausto materiālu iegūšanai, kā arī dzijas un neaustie materiāli no šādām šķiedrām.

Izgudrojuma formula

- 1. <u>Šķiedras</u> ar relatīvo viskozitāti (RV) no 2,0 līdz 3,0, mērot viskozitāti 1g šķiedras šķīdumam 100 ml 96% sērskābes, uz polikaprolaktāma bāzes, kas iegūtas:
- (a) ekstrudējot polikaprolaktāma šķiedras caur vērpšanas sprauslu no kausējuma, kas pamatā sastāv no kaprolaktāma;
- (b) tādā veidā iegūtās šķiedras atdzesējot;
- (c) izstiepjot atdzesētās šķiedras ar ātrumu, kas nav mazāks par aprēķināto pēc formulas [3600 + 1250 (3,0-RV)] m/min, pie kam izmantotais polikaprolaktāms iegūts ar vismaz vienas tādas dikarbonskābes piedevu, kas ņemta no grupas:
 - C₄-C₁₀-alkāndikarbonskābes,
 - C₅-C₈-cikloalkāndikarbonskābes,
 - benzola un naftalīna dikarbonskābes, kas var saturēt līdz divām sulfoskābes grupām, pie kam karboksilgrupas nav blakus,
 - N-C₁-C₆-alkil-N,N-di(C₄-C₁₀-karboksialkil)amīni,
 - 1,4-di(C₁-C₁₀-karboksialkil)piperazīni.
- 2. <u>Šķiedras</u> pēc 1. punkta, kas *atšķiras* ar to, ka polikaprolaktāms iegūts vismaz ar viena N,N-di(C_1 - C_6 -alkil)amino(C_2 - C_{12} -alkil)amīna piedevu.
- 3. <u>Sķiedras</u> pēc 1. vai 2. punkta, kas *atšķiras* ar to, ka šķiedru maksimālais stiepes pagarinājums nepārsniedz 100 %.
- **4.** Paņēmiens šķiedru ar relatīvo viskozitāti (RV) no 2,0 līdz 3,0, mērot viskozitāti 1g šķiedras šķīdumam 100 ml 96% sērskābē ,uz polikaprolaktāma bāzes pēc punkta 1, kas *atšķiras* ar to, ka:
- (a) ekstrudē polikaprolaktāma šķiedras caur vērpšanas sprauslu no kausējuma, kas pamatā sastāv no kaprolaktāma;
- (b) tādā veidā iegūtās šķiedras atdzesē;
- (c) izstiepj atdzesētās šķiedras ar ātrumu, kas nav mazāks par aprēķināto pēc formulas [3600 + 1250 (3,0-RV)] m/min, pie kam izmantotais polikapro-

laktāms iegūts ar vismaz vienas tādas dikarbonskābes piedevu, kas ņemta no grupas:

- C₄-C₁₀-alkāndikarbonskābes,
- C₅-C₈-cikloalkāndikarbonskābes,
- benzola un naftalīna dikarbonskābes, kas var saturēt līdz divām sulfoskābes grupām, pie kam karboksilgrupas nav blakus,
- N-C₁-C₆-alkil-N,N-di(C₄-C₁₀-karboksialkil)amīni,
- 1,4-di(C₁-C₁₀-karboksialkil)piperazīni.
- 5. Paņēmiens šķiedru iegūšanai uz polikaprolaktāma bāzes pēc 4. punkta, kas *atšķiras* ar to, ka izmanto polikaprolaktāmu, kas iegūts vismaz ar viena N,N-di(C_1 - C_6 -alkil)amino(C_2 - C_{12} -alkil)amīna vai primārā C_4 - C_{12} -alkilamīna vai C_6 -aril- C_1 - C_4 -alkilamīna piedevu.
- 6. Škiedras pēc jebkura no iepriekšējiem punktiem.
- 7. <u>Šķiedru</u>, kas iegūtas pēc jebkura no 1.-5. punktam, <u>pielietojums</u> dziju un neausto materiālu ražošanai.
- 8. Dzijas un neaustie materiāli pēc 7. punkta.

Schnellgesponnene Fäden auf der Basis von Polycaprolactam und Verfahren zu ihrer Herstellung

5 Beschreibung

Die vorliegende Erfindung betrifft Fäden mit einer relativen Viskosität RV von 2,0 bis 3,0 (gemessen bei einer Konzentration von 1 g Fäden pro 100 ml in 96 gew.-%iger Schwefelsäure) auf der Ba
10 sis von Polycaprolactam, erhältlich durch

(a) Extrudieren einer im wesentlichen aus Polycaprolactam bestehenden Schmelze durch eine Spinndüse, so daß Polycaprolactamfilamente gebildet werden;

15

- (b) Abkühlen der so hergestellten Filamente und
- (c) Abziehen der abgekühlten Filamente mit einer Geschwindigkeit von mindestens [$3600 + 1250 \cdot (3,0 RV)$] m/min, und

20

wobei das verwendete Polycaprolactam in Gegenwart von mindestens einer Dicarbonsäure ausgewählt aus der Gruppe aus

- C₄-C₁₀-Alkandicarbonsäuren,
- 25 C₅-C₈-Cycloalkandicarbonsäuren,
 - Benzol- und Naphthalindicarbonsäuren, die bis zu zwei Sulfonsäuregruppen tragen können und deren Carbonsäuregruppen nicht benachbart sind,
 - $N-C_1-C_6-Alkyl-N$, $N-di(C_4-C_{10}-alkancarbonsäure)$ amin,
- 30 1,4-Piperazin-di(C_1 - C_{10} -alkancarbonsäure)

hergestellt wurde.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung 35 dieser Fäden, deren Verwendung zur Herstellung von Flächengebilden, sowie Flächengebilde aus diesen Fäden.

Beim Schnellspinnen von Polyamiden werden im allgemeinen die aus der Spinndüse austretenden Fäden mit Geschwindigkeiten von über

- **40** 3000 m/min von der Düse abgezogen, während man beim konventionellen Spinnen mit Abzugsgeschwindigkeiten in der Regel von maximal etwa 1200 m/min arbeitet.
- Im Vergleich zum konventionellen Spinnen bietet das Schnellspin-45 nen im allgemeinen den Vorteil einer höheren Produktivität. In einigen Fällen, speziell bei Polycaprolactam, kann man unter Umständen den Verfahrensschritt der Verstreckung einsparen. Des

weiteren ist beim Schnellspinnen von Vorteil, daß die Verspinnung und Aufspulung in der Regel weniger stark vom Feuchtigkeitsgehalt und von der Temperatur der umgebenden Raumluft abhängen als beim konventionellen Spinnen. Ferner ist in der Regel die Lagerfähig5 keit der aufgespulten Fäden bis zur Weiterverarbeitung gegenüber konventionell gesponnenen Fäden verbessert. Darüberhinaus eignen sich schnellgesponnene Fäden im allgemeinen besonders gut für die Strecktexturierung, das Streckschären und Streckschlichten.

- 10 Unter Strecktexturierung versteht man das Verstrecken und die Texturierung in einem Arbeitsgang, wobei man bei der Texturierung eine spezielle Faserstruktur durch eine richtungsgebundene Orientierung der Makromoleküle erzeugt. Hierdurch erreicht man im allgemeinen eine höhere Elastizität, Volumendeckkraft und Wärmeiso-15 lation im Vergleich zu glatten Fäden. Zur besseren Weiterverar-
- 15 lation im Vergleich zu glatten F\u00e4den. Zur besseren Weiterverarbeitung k\u00f6nnen solche F\u00e4den nachge\u00f6lt und/oder verwirbelt werden.

Zur Herstellung von Kettwirkwaren oder Webwaren muß eine Vielzahl von Fäden parallel nebeneinander als Kette in der Kettwirkma20 schine bzw. dem Webstuhl vorgelegt werden. Zu diesem Zweck werden

- zu schine bzw. dem webstuhl vorgelegt werden. Zu diesem zweck werden mehrere hundert bis mehrere tausend Fäden gemeinsam auf einen sog. Baum aufgespult. Dabei werden die Fäden häufig zur Erzielung eines verbesserten Fadenschlusses und einer verbesserten Weiterverarbeitbarkeit verwirbelt, nachgeölt, paraffiniert oder ge-
- 25 schlichtet. Mehrere solcher Bäume könne in einem weiteren Schritt zur Vermehrung der Fadenzahl assembliert werden. Die Herstellung eines (Teil-)Kettbaumes kann mit einer gemeinsamen Verstreckung der gesamten Fadenschar kombiniert werden (Streckschären), desgleichen das Schlichten einer Fadenschar (Streckschlichten), wo-
- 30 bei den Fäden bessere Gleiteigenschaften und ein besserer mechanischer Schutz durch eine Umhüllung mit dem Schlichtemittel verliehen werden.

Die Verstreckung kann auch in bekannter Weise an die Verspinnung 35 angeschlossen oder in diese integriert sein ("on line").

In der EP-B 201,189 wird ein Schmelzspinnverfahren zur Herstellung von Polyamidfilamenten beschrieben, das dadurch gekennzeichnet ist, daß man ein geschmolzenes Polymergemisch, das ein nie-

- 40 dermolekulares Zusatzmittel wie Wasser enthält, mit einer relativen Viskosität von 2,0 bis 3,0 (gemessen in 96 gew.-%iger Schwefelsäure) extrudiert, die gebildeten Filamente abkühlt und die abgekühlten Filamente mit einer Geschwindigkeit von mehr als 3200 m/min abzieht. Fäden aus Polycaprolactam, das in Gegenwart einer
- **45** als Kettenregler wirkenden Dicarbonsäure hergestellt wurde, werden nicht beschrieben.

In der DE-A 4,019,780 wird ein Verfahren zur Herstellung von Polycaprolactam in Gegenwart von Dicarbonsäuren, die als Kettenregler dienen, beschrieben. Aus dem dort beschriebenen Polycaprolactam (relative Viskosität RV = 2,36) hergestellte, bei einer 5 Abzugsgeschwindigkeit von 4250 m/min schnellgesponnene Fäden erweisen sich bezüglich der Fadenfestigkeit und der Bruchdehnung

als vergleichbar zu Fäden nach dem Stand der Technik.

- Ein Nachteil von schnellgesponnenen und aus diesen gewonnenen

 10 verstreckten oder strecktexturierten Fäden besteht darin, daß sie im allgemeinen niedrigere Werte bezüglich der Höchstzugkraft aufweisen als entsprechende konventionell gesponnene, bis zur gleichen Höchstzugkraftdehnung verstreckte bzw. texturierte Fäden. Des weiteren ist die Zugkraftänderung bei der Dehnung der Fäden, erhältlich durch Messen der Zugkraft in Abhängigkeit von der Längenänderung ("Zugkraft-Längenänderungskurve"), solcher schnellgesponnenen Fäden im allgemeinen nicht befriedigend groß, d.h. der Kurvenverlauf ist in der Regel zu flach.
- 20 Im Vergleich zu schnellgesponnenem Polyamid 66 (Polyhexamethylenadipinsäureamid) haben schnellgesponnene Polycaprolactamfäden nach der Strecktexturierung bei gleicher Höchstzugkraftdehnung ferner den Nachteil einer geringeren Kräuselbeständigkeit.
- 25 Aufgabe der vorliegenden Erfindung war es, schnellgesponnene Fäden auf der Basis von Polycaprolactam zur Verfügung zu stellen, die die oben genannten Nachteile nicht aufweisen. Insbesondere sollten Fäden mit einer größeren Zugkraftänderung (bezogen auf die Längenänderung), d.h. einer steileren Zugkraft-Längenänderungskurve, einer verbesserten Höchstzugkraft, und bei texturierten Fäden einer verbesserten Kräuselbeständigkeit zur Verfügung gestellt werden.

Demgemäß wurden die eingangs definierten Fäden gefunden.

35

Außerdem wurde ein Verfahren zur Herstellung dieser Fäden, deren Verwendung zur Herstellung von Flächengebilden, sowie Flächengebilden aus diesen Fäden gefunden.

- 40 Erfindungsgemäß verspinnt man eine Schmelze, die im wesentlichen das oben definierte Polycaprolactam enthält, wobei man die abgekühlten Filamente mit einer Geschwindigkeit von mindestens [3600 + 1250·(3,0 RV)] m/min, bevorzugt mindestens [3800 + 1250·(3,0 RV)] m/min, abzieht. Bei Spinngeschwindigkeiten von größer als
- 45 [3600 + 1250·(3,0 RV)] m/min beobachtet man eine nicht zu erwartende Verbesserung der Höchstzugkraft. Dies äußert sich darin, daß je höher man die Spinngeschwindigkeit oberhalb von [3600 +

1250·(3,0 - RV)] m/min bei gegebenem RV wählt, desto größer der Zuwachs der Höchstzugkraft von derart gesponnen Fäden ist. Handelsübliches Polycaprolactam zeigt nach unseren Erfahrungen diesen Effekt entweder gar nicht oder nur in geringerem Maße (s.

5 Vergleichsbeispiele). Der Effekt tritt nach den bisherigen Beobachtungen unterhalb einer Spinngeschwindigkeit von [3600 + 1250 (3,0 - RV)] m/min bei gegebenem RV nicht auf.

Die Obergrenze der Spinngeschwindigkeit liegt in der Regel nicht 10 höher als 8000 m/min und hängt im wesentlichen von der Viskosität der zu verspinnenden Schmelze und der verwendeten Spinnvorrichtung ab.

Die relative Viskosität RV des zu verspinnenden Polycaprolactams

15 liegt in der Regel im Bereich von 2,0 bis 3,0 (gemessen bei einer Konzentration von 1 g des einzusetzenden Polycaprolactams pro 100 ml in 96 gew.-%iger Schwefelsäure bei 25°C), bevorzugt im Bereich von 2,3 bis 2,9. Ein Polycaprolactam mit einer RV größer als 3,0 ist in der Regel zu hochviskos, um noch schnell versponnen werden zu können, ein Polycaprolactam mit einer RV kleiner als 2,0 bildet im allgemeinen keine stabil zu verspinnenden Fäden.

Die relative Viskosität RV der gesponnenen Fäden liegt erfindungsgemäß im Bereich von 2,0 bis 3,0 (gemessen bei einer 25 Konzentration von 1 g des einzusetzenden Polycaprolactamfadens pro 100 ml in 96 gew.-%iger Schwefelsäure bei 25°C), bevorzugt im Bereich von 2,3 bis 2,9.

Erfindungsgemäß setzt man Polycaprolactame ein, die in Gegenwart von mindestens einer Dicarbonsäure, die als Kettenregler wirksam ist, hergestellt wurden. Solche Polycaprolactame sind zum Teil beispielsweise aus der US-A 3,386,976 und der DE-A 40 19 780 bekannt. Die Herstellung der erfindungsgemäßen Polycaprolactame nimmt man bevorzugt in Anlehnung an das in der DE-A 40 19 780 beschriebene Einstufen-Verfahren vor.

Zweckmäßig polymerisiert man Caprolactam in Gegenwart von Wasser als Initiator unter Mitverwendung von Dicarbonsäuren als Kettenregler bei einer Temperatur im Bereich von 230 bis 300, bevorzugt 40 von 240 bis 290°C.

Geeignete Vorrichtungen zur Durchführung der Polymerisation sind dem Fachmann bekannt und beispielsweise in den DE-ASen 2,448,100, 1,495,198 und in der EP-B 20,946 beschrieben.

Das als Initiator verwendete Wasser setzt man im allgemeinen in einer Menge im Bereich von 0.1 bis 5 Gew.-%, insbesondere von 0.5 bis 3 Gew.-%, bezogen auf Caprolactam, ein.

- 5 Als Dicarbonsäuren verwendet man bevorzugt solche, die bei der hydrolytischen Polymerisation von Caprolactam als difunktionelle Kettenregler wirken und sich unter den Bedingungen der Polymerisation und der Verspinnung nicht zersetzen und auch nicht zu Verfärbungen oder anderen unerwünschten Erscheinungen führen. Des
- 10 weiteren sind solche Dicarbonsäuren ungeeignet, die beispielsweise durch die Bildung einer Ringstruktur kettenbegrenzend wirken können. Als Beispiele für ungeeignete Dicarbonsäuren seien Bernsteinsäure und Phthalsäure genannt, da sie durch Ringschluß kettenbegrenzend wirken können.

15

Geeignete Dicarbonsäuren sind beispielsweise

C4-C10-Alkandicarbonsäuren wie Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebazinsäure, Undecandisäure und Dodecandi-20 säure, bevorzugt Adipinsäure,

 C_5 - C_8 -Cycloalkandicarbonsäuren wie Cyclopentan-1,3-dicarbonsäure, Cyclohexan-1,4-dicarbonsäure, bevorzugt Cyclohexan-1,4-dicarbonsäure, säure,

25

Benzol- und Naphthalindicarbonsäuren, die bis zu zwei Sulfonsäuregruppen, wobei hierunter auch die entsprechenden Alkalimetallsalze mitzuzählen sind, tragen können und deren Carbonsäuregruppen nicht benachbart sind, wie Terephthalsäure, Isophthal-

30 säure, Naphthalin-2,6-dicarbonsäure, 5-Sulfoisophthalsäure, bevorzugt Terephthalsäure, Isophthalsäure und 5-Sulfoisophthalsäure, und deren Mischungen,

N-C₁-C₆-Alkyl-N, N-di (C₄-C₁₀-alkancarbonsäure) amin wie N-Me-35 thyl-N, N-di (capronsäure) amin, N-Methyl-N, N-di (essigsäure) amin,

1,4-Piperazin-di(C_1 - C_6 -alkancarbonsäure) wie 1,4-Piperazin-diessigsäure, 1,4-Piperazin-dipropionsäure, 1,4-Piperazin-dibutansäure, 1,4-Piperazin-dipentansäure, 1,4-Piperazin-dihexansäure,

40 bevorzugt 1,4-Piperazin-diessigsäure und 1,4-Piperazin-dipropionsäure.

Fäden mit Dicarbonsäuren, die tertiäre Aminogruppen tragen, kann man im allgemeinen leicht mit anionischen Farbstoffen färben.

45 Dies kann in einigen Fällen zur Erzielung besonders intensiver Farbtöne erwünscht sein.

Sulfonatgruppenhaltige Fäden kann man in der Regel gut mit kationischen Farbstoffen färben. Hingegen wird die Fähigkeit solcher
Fäden mit anionischen Farbstoffen, die beispielsweise in vielen
Lebensmitteln und Getränken vorkommen, zu reagieren, herabge5 setzt, was in der Regel zu einer geringeren Anschmutzempfindlichkeit führt.

Zweckmäßig führt man die Dicarbonsäuren dem Kopf der Polymerisationszone zu, wobei für eine innige Durchmischung mit der polyme10 risierenden Schmelze gesorgt wird. Man kann die Dicarbonsäuren aber auch vor oder während der Polymerisation zusetzen.

Die Dicarbonsäuren setzt man in der Regel in Mengen im Bereich von 0,05 bis 0,6, insbesondere von 0,1 bis 0,5 Mol-%, bezogen auf 15 Caprolactam, ein.

In einer weiteren Ausführungsform kann man neben den genannten Dicarbonsäuren als Kettenregler Diamine des Typs $N,N-Di-(C_1-C_6-alkyl)$ amino- $(C_2-C_{12}-alkyl)$ amin einsetzen, falls man 20 eine Verbesserung der Anfärbbarkeit gegenüber anionischen Farbstoffen wünscht.

Beispielhaft seien genannt 2-Diethylamino-1-ethylamin, 6-Dimethylamino-1-hexylamin, 3-Dimethylamino-1-propylamin, 25 3-Diethylamino-1-propylamin, bevorzugt 3-Dimethylamino-1-propylamin, 3-Diethylamino-1-propylamin.

Vorzugsweise setzt man die Diamine des Typs N,N-Di-(C₁-C₆-alkyl)amino-(C₂-C₁₂-alkyl)amin in Mengen im Bereich 30 von 0,05 bis 0,3, besonders bevorzugt von 0,1 bis 0,3 Mol-%, ein, bezogen auf Caprolactam. Die Verwendung von weniger als 0,05 Mol-% führt in der Regel zu keiner wesentlichen Verbesserung der Anfärbbarkeit, bei einer Menge von über 0,3 Mol-% wirkt sich im allgemeinen der kettenbegrenzende Effekt dieser Diamine zu stark 35 aus.

In einer anderen Ausführungsform kann man neben den genannten Dicarbonsäuren als Kettenregler primäre Monoamine einsetzen, falls man eine Verringerung des Carboxylgruppengehaltes und eine 40 Verbesserung der Schmelzstabilität des Produktes wünscht.

Als primare Monoamine kommen C_4 - C_{12} -Alkylamine und C_6 -Aryl- C_1 - C_4 -alkylamine wie Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecylamin, Phenylmethyl-,

45 Phenylethyl-, Phenylpropyl- und Phenylbutylamin in Betracht, vorzugsweise Hexylamin, Octylamin, Decylamin und Phenylethylamin.

Die primären Monoamine werden vorzugsweise im Bereich von 0,05 bis 0,5 Mol-%, besonders bevorzugt von 0,1 bis 0,4 Mol-%, bezogen auf Caprolactam, eingesetzt.

- 5 Im allgemeinen kann man die Polymerisation bei einem Druck im Bereich von 100 bis 2000 kPa durchführen. Eine besonders bevorzugte Ausführungsform besteht darin, daß man die Polymerisation kontinuierlich unter einem einheitlichen Druck von 100 bis 190, vorzugsweise von 100 bis 170 kPa, gemessen in der Dampfphase über
- 10 der Polymerisationszone, durchführt, wobei man einen Gehalt von 0,1 bis 0,5, insbesondere von 0,1 bis 0,4 Gew.-% an Wasser in der Schmelze aufrechterhält. Es versteht sich, daß die oben in die Reaktionszone eingeführte überschüssige Wassermenge in Abhängigkeit vom angewandten Druck fortlaufend abdestilliert wird, um den vorgenannten Wassergehalt einzuhalten.

Die Polymerisationsdauer beträgt in der Regel 5 bis 20, bevorzugt 8 bis 12 Stunden, und richtet sich im wesentlichen nach den gewünschten Eigenschaften des Produkts.

20

Das Polycaprolactam entnimmt man der Polymerisationszone zweckmäßig am unteren Ende.

- Der Gehalt an chemisch gebundenen Dicarbonsäuren (bestimmbar 25 durch Hydrolyse des Polycaprolactams und anschließende Analyse) im extrahierten und getrockneten Endprodukt liegt in der Regel im Bereich von 5 bis 60 mMol/kg, bevorzugt von 10 bis 50 mMol/kg. Bei Werten unter 5 mMol/kg ergibt sich im allgemeinen nicht die gewünschte Verbesserung der Eigenschaften der beim Schnellspinnen
- 30 erhaltenen Fäden. Bei Werten über 60 mMol/kg ist es in der Regel nicht möglich, die zur Herstellung des Polymeren gewünschte relative Viskosität bzw. das gewünschte Molekulargewicht zu erreichen.
- 35 Enthält das Endprodukt zusätzlich chemisch gebundene Diamine, so liegt deren Gehalt im allgemeinen im Bereich von 5 bis 30 mMol/kg, bevorzugt von 10 bis 30 mMol/kg, wobei der Gehalt an chemisch gebundenen Dicarbonsäuren dann in der Regel im Bereich von 10 bis 50, bevorzugt von 15 bis 50 mMol/kg, liegt.

Den Gehalt des spinnfertigen Polycaprolactams an mit Wasser extrahierbaren Restmonomeren und Oligomeren wählt man im Bereich von 0 bis 2, vorzugsweise von 0 bis 1 Gew.-% Polycaprolactam.

Der Wassergehalt des spinnfertigen Polycaprolactams liegt in der Regel im Bereich unterhalb von 0,4, bevorzugt von 0,02 bis 0,15 $Gew.-\frac{1}{2}$.

- 5 Die erfindungsgemäßen unverwirbelten Fäden weisen in der Regel eine Höchstzugkraftdehnung im Bereich von 30 bis 100 %, bevorzugt von 40 bis 90 % auf. Durch Verwirbelung kann man die Höchstzugkraftdehnung gewünschtenfalls weiter absenken.
- 10 Das zu verspinnende Polycaprolactam sowie die daraus erhaltenen Fäden können übliche Zusatzstoffe und Verarbeitungshilfsmittel enthalten. Deren Anteil beträgt in der Regel bis zu 5, vorzugsweise bis zu 3 Gew.-%, bezogen auf das Gesamtgewicht des Polycaprolactams.
- Übliche Zusatzstoffe sind beispielsweise Stabilisatoren und Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Farbstoffe, Pigmente, Mattierungsmittel und Antistatika.
- Oxidationsverzögerer und Wärmestabilisatoren sind z.B. sterisch gehinderte Phenole, Hydrochinone, Phosphite und Abkömmlinge und substituierte Vertreter dieser Gruppe und Mischungen dieser Verbindungen, sowie Kupferverbindungen wie Kupfer-(I)-iodid und 25 Kupfer-(II)-acetat.

Beispiele für UV-Stabilisatoren sind substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone, die man im allgemeinen in Mengen bis zu 1 Gew.-% einsetzen kann; ferner eignen sich 30 hierfür Mangan-(II)-Verbindungen.

Geeignete Farbstoffe sind organische Pigmente und die üblichen Spinnfarbstoffe wie Chrom- oder Kupferkomplexverbindungen, anorganische Pigmente wie Titandioxid und Cadmiumsulfid, Eisenoxide 35 oder Farbruße.

Als Antistatika kann man die üblichen Stoffe, beispielsweise Polyalkylenoxide und Derivate davon einsetzen.

40 Die Zugabe der Zusatzstoffe kann man in jeder Stufe der Herstellung der erfindungsgemäßen Fäden durchführen, zweckmäßig gibt man die Stabilisatoren frühzeitig zu, um schon zu Beginn einen Schutz zu haben. In Übereinstimmung damit, gibt man im allgemeinen die Stabilisatoren schon während des Polymerisationsverfahrens zu, soweit sie dieses Verfahren nicht stören.

Die erfindungsgemäßen Fäden kann man gewünschtenfalls in an sich bekannter Weise verstrecken, streckzwirnen, streckspulen, streckschären, streckschlichten und strecktexturieren.

Die Verstreckung zu sogenanntem Glattgarn kann dabei in ein und 5 demselben Arbeitsgang mit dem Schnellspinnen (sog. fully drawn yarn, "FDY", oder fully oriented yarn, "FOY"), oder in einem getrenntem Arbeitsgang erfolgen. Das Streckschären, Streckschlichten und die Strecktexturierung führt man im allgemeinen in einem vom Schnellspinnen getrennten Arbeitsgang durch.

10

Die erfindungsgemäßen Fäden kann man in an sich bekannter Weise zu Fasern weiterverarbeiten. Flächengebilde können beispielsweise durch Weben, Wirken oder Stricken hergestellt werden.

- 15 Die erfindungsgemäßen schnellgesponnenen Fäden haben gegenüber Fäden des Standes der Technik den Vorteil, daß sie eine verbesserte Höchstzugkraft, einen steileren Zugkraft-Längenänderungsverlauf sowie eine verbesserte Kräuselbeständigkeit aufweisen. Des weiteren besitzen die erfindungsgemäßen Fäden nach den bisherigen Beobachtungen eine geringere Anzahl an Streckfehlern gegenüber bislang bekannten schnellgesponnenen Polycaprolactam-Fäden.
- Die weiteren Untersuchungen haben ergeben, daß sich das erfindungsgemäß verwendete Polycaprolactam durch eine verminderte Ela25 stizität der Schmelze auszeichnet und bei der Fadenbildung eine spezielle Kristallmorphologie entwickelt. Es wird vermutet, daß die verbesserten Eigenschaften der erfindungsgemäßen Fäden mit dem speziellen elastischen Verhalten der Polymerschmelze und mit der speziellen Morphologie der Fäden in Zusammenhang stehen.

30

Beispiele

Zur Herstellung von Polycaprolactam wurde ein VK-Rohr mit mechanisch durchmischter erster Reaktionszone nach EP-A 20,946 verwen-35 det. Das VK-Rohr hatte ein Füllvolumen von 340 l und wurde mit einem Wärmeträgeröl beheizt.

Die Relative Viskosität RV des Polycaprolactams bzw. der versponnenen Fäden wurde bei einer Konzentration von 1 g pro 100 ml in 40 96 gew.-%iger Schwefelsäure bei 25°C bestimmt.

Der Restfeuchtegehalt wurde nach der Dampfdruckmethode mit dem Ackermann-Gerät bestimmt.

45 Der Gehalt an chemisch gebundener Dicarbonsäure und chemisch gebundenem Diamin errechnet sich aus der Zugabemenge. Man kann den Gehalt auch durch Hydrolyse des Polycaprolactams in verdünnter

Mineralsäure und anschließende Analyse des so erhaltenen Gemischs bestimmen.

Zur Charakterisierung der Schmelze-Elastizität des Polycaprolactiams wurde die bei oszillatorischer Scherung bestimmte Elastische Nachgiebigkeit $J_{\rm e}$ der erfindungsgemäß mit Dicarbonsäure-geregelten Proben auf die Nachgiebigkeit $J_{\rm e,\,Ref}$ von Propionsäure-geregelten Standardprodukten gleicher Viskosität bezogen.

- 10 Die Messungen wurden mit einem Rheometrics Dynamic Spectrometer RDS2 (Fa. Rheometrics) unter Verwendung einer Platte-Platte-Anordnung (Radius 25 mm, Abstand 1 mm) bei einer Temperatur von 250°C und einer Scheramplitude von 0,3 durchgeführt. Gemessen wurden der Speichermodul G' und der Verlustmodul G' für Kreisfre-
- 15 quenzen von 0,3 rad/sec bis 100 rad/sec. In der Meßkurve wurde die Kreisfrequenz markiert, bei welcher der Verlustmodul gerade den Wert G''=10³ Pa aufwies. Aus dem dazugehörigen Speichermodul G' berechnete sich die Nachgiebigkeit nach der Gleichung 1 zu

20
$$J_e = G'/(G'')^2 = G'/10^6 Pa^2$$
 (G1. 1)

In analoger Weise wurde als Referenz für ein Propionsäure-geregeltes Produkt gleicher Viskosität die Nachgiebigkeit J_{e,Ref} bestimmt. Schließlich wurde als relative Meßzahl R für die Schmel-25 ze-Elastizität das Verhältnis (Gleichung 2)

$$R = J_e/J_{e,Ref}$$
 (G1. 2)

berechnet. Letzteres stellt eine rheologische Kennzahl dar, die 30 Unterschiede in der Elastizität der Schmelze mit sehr hoher Auflösung zu detektieren erlaubt.

Die Höchstzugkraftdehnung wurde mit einem Uster-Tensorapid-I-Meßgerät bestimmt, wobei die Einspannlänge bei vororientierten Fäden
35 (POY) 200 mm, bei verstreckten und texturierten Fäden 500 mm betrug. Die Prüfzeit bis zum Bruch der Fäden lag im Bereich 20±2
Sekunden. Die Vorspannkraft betrug bei POY 0,025 cN/dtex, bei
verstreckten Fäden 0,05 cN/dtex und bei texturierten Fäden 0,2
cN/dtex.

Die feinheitsbezogene Höchstzugkraft R_{H} wurde nach Gleichung 3 berechnet

$$R_{\rm H} = F_{\rm H}/Tt_{\rm V} \tag{G1. 3}$$

wobei $F_{\rm H}$ die Höchstzugkraft [cN] und Tty die Ausgangsfeinheit [dtex] bedeuten. Als Höchstzugkraft wurde der größte Wert bei den Höchstzugkraftdehnungs-Messungen verwendet.

5 Die Höchstzugkraftdehnung E_H wurde als Verhältnis der Längenänderung Δl bei Erreichen der Höchstzugkraft zur Ausgangslänge l_v der Meßprobe gemäß Gleichung 4 bestimmt:

$$E_{\rm H} = \Delta 1 \cdot 100\% / 1_{\rm V} \tag{G1.4}$$

10

wobei sich Δl aus der Differenz der Länge der Probe bei Höchstzugkraft, $l_{\rm H}$, und der Ausgangslänge $l_{\rm v}$ errechnet.

Parallel zu diesen Bestimmungen wurden Zugkraft-Längenänderungs-15 diagramme aufgezeichnet.

Die Schärfehler wurden mit einem Lindly Standard Yarn Inspector Series 1900 bei 600 m/min Schärgeschwindigkeit ermittelt.

20 Die Einkräuselung der texturierten Fäden wurde nach DIN 53 840 bestimmt.

Die Kennkräuselung der texturierten Fäden wurde nach DIN 53 840 bestimmt.

25

Die Kräuselbeständigkeit der texturierten Fäden wurde nach DIN 53 840 bestimmt.

Für einige ausgewählte Beispiele wurde die Morphologie der ges30 ponnenen Fäden mittels Röntgenkleinwinkelstreuung (RKWS) charakterisiert. Die RKWS-Messungen wurden in einer unter Vorvakuum
stehenden Kiessig-Lochkammer durchgeführt. Die Blenden in der
Kollimatorröhre waren 0,4 bzw. 0,3 mm im Durchmesser, der Abstand
A zwischen Faserprobe und Röntgenplanfilm (AGFA-GEVAERT, Os-

- 35 ray M3) betrug 400 mm. Als Strahlenquelle diente eine mit 37 kV und 36 mA betriebene Cu-Röhre, deren mittels Graphit-Primärmonochromator selektierte K α -Linie (Wellenlänge λ = 0,15418 nm) für die Messungen verwendet wurde. Für die RKWS-Untersuchungen wurden die POY-Fäden über einen Rahmen gewickelt, wobei auf eine exakte
- **40** Parallellage der Einzelfäden geachtet wurde. Die 0,7 bis 1 mm dicken Faserbündel wurden vom Röntgenstrahl senkrecht getroffen, wobei die Faserachse vertikal stand. Die Belichtungszeit betrug 20 oder 40 h.
- **45** Die von der kristallin-amorphen Überstruktur der POY-Fäden herrührenden Meridianreflexe der RKWS-Filme wurden mit Hilfe eines Fotometers (Microdensitometer 3CS, Fa. Joyce Loebl) ausgewertet.

Die Meridianreflexe wurden dabei auf der durch das Meridianmaximum laufenden Parallelen zum Filmäquator unter Verwendung eines Graukeils der Schwärzung D = 0.95 abgetastet. Die Halbwertsbreite der resultierenden Fotometerkurve ist ein Maß für die Dicke

5 $\Lambda_{\tilde{\tau}}$ der Kristallfibrillen senkrecht zur Faserachse. Für die laterale Kristalldicke $\Lambda_{\tilde{\tau}}$ folgt angenähert:

 $\Lambda_{\bar{\epsilon}} \approx \lambda \, (\text{nm}) \, / \, \text{B} \, (\text{rad})$

(G1.5)

10

wobei λ die Röntgenwellenlänge und B(rad) die in Bogenmaß gemessene Halbwertsbreite der Fotometerkurve sind. B(rad) ergibt sich aus der in mm gemessenen Halbwertsbreite B(mm) gemäß

15

 $B(rad) = B(mm)/A \cdot F$ (G1. 6)

20 Hier ist A der Abstand zwischen Faserprobe und Röntgenfilm und F der Übersetzungsfaktor des Fotometers. Mit A=400~mm und F=5~wird Gl. 5

25 $\Lambda_F \approx [\lambda(nm)/B(mm)] \cdot 2 \cdot 10^3$ (G1. 7)

Zum Verspinnen wurde das Polycaprolactam in einem Extruder (Fa. Barmag 3E-24S, Schnecke 38 mm Durchmesser, L/D=24) aufgeschmolzen und durch Düsen (Lochzahl 12, Lochdurchmesser 0,20 mm, Kapillarlänge 0,40 mm) gepreßt. Die hierbei erhaltenen Fäden wurden zuerst durch einen Blasschacht (Höhe 1600 mm, Queranblasung 0,4 m/sec mit Luft von 22°C und 65% relativer Feuchtigkeit) und anschließend durch einen Fallschacht (Höhe 2000 mm) geleitet, auf einer Pilotspinnstelle der Fa. EMS-Inventa über 2 Galetten-Duos mit 150 mm Durchmesser abgezogen und mit einer Aufspulmaschine der Fa. Barmag SW 46 1S-900 aufgewickelt.

Der Abstand Düse-Öler betrug 1300 mm.

40

Die Verstreckung erfolgte kalt mit 740 m/min auf einer Streck-zwirnmaschine (J5/10a, Fa. Rieter).

Die Strecktexturierung wurde auf einer Barmag FK6L-10 Strecktex-45 turiermaschine bei 600 bzw. 800 m/min durchgeführt. A Herstellung von Polycaprolactam

Beispiel 1

- 5 Geschmolzenes Caprolactam mit einem Gehalt von 0,5 Gew.-% Wasser und 0,53 Gew.-% Terephtalsäure als Kettenregler wurde dem VK-Rohr bei Normaldruck in der ersten Reaktionszone kontinuierlich unter Rühren zugeführt. Der Durchsatz betrug 25 kg/h. Gleichzeitig wurde eine Mischung aus 70 Gew.-% Polycaprolactam (RV = 1,9) und
- 10 30 Gew.-% Titandioxid (Anatas-Modifikation) in einer Menge von 225 g/h in die erste Polymerisationszone eingetragen. Die Temperatur der ersten Reaktionszone betrug 252°C. Die in weiteren Reaktionszonen freiwerdende Polymerisationswärme wurde durch entsprechende Kühlung mit innenliegenden Wärmeaustauschern abgeführt.
- 15 Die Temperatur der letzten Reaktionszone betrug 265°C.

Das Produkt hatte nach Extraktion mit siedendem Wasser und anschließender Trocknung eine Rel. Viskosität von 2,39, einen Gehalt an (chemisch gebundener) Terephtalsäure von 36 mMol/kg, 20 einen Restfeuchtegehalt von 0,046 Gew.-% und einen Titandioxidgehalt von 0,3 Gew.-%. Die elastische Nachgiebigkeit Je betrug 8,3·10⁻⁶ Pa⁻¹ und die relative Maßzahl R = 0,78.

Beispiel 2

25

Caprolactam wurde mit 0,80 Gew.-% Terephtalsäure als Kettenregler analog zu Beispiel 1 polymerisiert. Der Durchsatz betrug 30 kg/h und die Dosierung der Titandioxid-Mischung 270 g/h. Die übrigen Versuchsbedingungen von Beispiel 1 wurden beibehalten.

30

Das Produkt hatte eine Rel. Viskosität von 2,32 und einen Gehalt an (chemisch gebundener) Terephtalsäure von 54 mMol/kg. Die Elastische Nachgiebigkeit J_e betrug 5,1·10⁻⁶ Pa⁻¹ und R = 0,48. Der Titandioxidgehalt betrug 0,3 Gew.-%, der Restfeuchtegehalt lag bei 0,016 Gew.-%.

Beispiel 3

Caprolactam mit einem Wassergehalt von 0,7 Gew.-% wurde mit 0,21

40 Gew.-% Terephtalsäure als Kettenregler bei einem Überdruck von 30 kPa analog zu Beispiel 1 polymerisiert. Der Durchsatz betrug 34 kg/h. Die Temperatur der ersten Reaktionszone wurde auf 240°C eingestellt. Es wurde kein Titandioxid zugesetzt.

Das Produkt hatte eine Rel. Viskosität von 2,71 und einen Gehalt an (chemisch gebundener) Terephtalsäure von 14 mMol/kg. Der Restfeuchtegehalt betrug 0,019 Gew.-%.

5 Beispiel 4

Caprolactam mit einem Wassergehalt von 0,6 Gew.-% wurde mit 0,29 Gew.-% Terephtalsäure als Kettenregler analog zu Beispiel 3 polymerisiert. Die Temperatur der ersten Reaktionszone wurde auf 245°C

10 eingestellt. Die übrigen Versuchsbedingungen von Beispiel 3 wurden beibehalten. Es wurde kein Titandioxid zugesetzt.

Das Produkt hatte eine Rel. Viskosität von 2,71 und einen Gehalt an (chemisch gebundener) Terephtalsäure von 19 mMol/kg. Der Rest15 feuchtegehalt betrug 0,021 Gew.-%.

Beispiel 5a

Caprolactam mit einem Wassergehalt von 0,6 Gew.-% wurde mit 0,37

20 Gew.-% Terephtalsäure als Kettenregler analog zu Beispiel 3 polymerisiert. Die Temperatur der ersten Reaktionszone wurde auf 251°C eingestellt. Die übrigen Versuchsbedingungen von Beispiel 3 wurden beibehalten. Es wurde kein Titandioxid zugesetzt.

25 Das Produkt hatte eine Rel. Viskosität von 2,67 und einen Gehalt an (chemisch gebundener) Terephtalsäure von 25 mMol/kg. Der Restfeuchtegehalt betrug 0,091 Gew.-%.

Beispiel 5b

30

Caprolactam mit einem Gehalt von 0,5 Gew.-% Wasser und 0,26 Gew.-% Adipinsäure als Kettenregler wurde analog Beispiel 3 polymerisiert. Der Durchsatz betrug 35 kg/h. Die Temperatur der ersten Reaktionszone wurde auf 250°C eingestellt. Es wurde kein 35 Titandioxid zugesetzt.

Das Produkt hatte eine relative Viskosität von 2,67 und einen Gehalt an chemisch gebundener Adipinsäure von 20 mMol/kg. Der

Restfeuchtegehalt betrug 0,018 Gew.-%.

40

Beispiel 5c

Caprolactam wurde unter Zusatz von 0,5 Gew.-% Wasser, 0,81 Gew.-% Lithiumsalz der 5-Sulfoisophthalsäure als Kettenregler und

45 0,18 Gew.-% Titandioxid polymerisiert. Das Produkt hatte nach der Extraktion mit siedendem Wasser und anschließender Trocknung eine

relative Viskosität von 2,55, einen Titandioxidgehalt von 0,20 Gew.-% und einen Restfeuchtegehalt von 0,031 Gew.-%.

B Schnellspinnen von Polycaprolactam

Beispiel 6

Das in Beispiel 1 hergestellte Polycaprolactam wurde mit einer Schmelze-Temperatur von 265°C (a) bei 4500 m/min und (b) bei 5500 10 m/min versponnen. Die RV des Fadens betrug 2,48. Der Spinntiter betrug bei (a) dtex 50 f 12 und (b) dtex 41 f 12. Die bei einer Spinngeschwindigkeit von 4500 m/min erhaltenen und anschließend verstreckten Fäden hatten einen Titer von dtex 44 f 12.

15 Tabelle 1 zeigt die Ergebnisse.

Vergleichsbeispiel 1

Der Versuch aus Beispiel 6 wurde mit einem handelsüblichen Poly20 caprolactam (Kettenregler: Propionsäure, Gehalt im Produkt = 40 mMol/kg; RV = 2,37; Titandioxid-Gehalt = 0,3 Gew.-%; elastische Nachgiebigkeit 11,5·10⁻⁶ Pa⁻¹; Restfeuchtigkeitsgehalt 0,044 Gew.-%) unter sonst gleichen Bedingungen wiederholt.

25 Tabelle 1 zeigt die Ergebnisse.

Beispiel 7

Das in Beispiel 2 hergestellte Polycaprolactam wurde mit einer 30 Schmelze-Temperatur von 265°C (a) bei 5500 m/min und (b) bei 6000 m/min versponnen. Die RV des Fadens betrug 2,31. Der Spinntiter betrug (a) dtex 42 f 12 und (b) dtex 43 f 12.

Tabelle 2 zeigt die Ergebnisse.

35

Vergleichsbeispiel 2

Der Versuch aus Beispiel 7 wurde mit dem gleichen handelsüblichen Polycaprolactam aus Vergleichsbeispiel 1 unter sonst gleichen Be40 dingungen wiederholt.

Tabelle 2 zeigt die Ergebnisse.

Beispiel 8

Das in Beispiel 3 hergestellte Polycaprolactam wurde mit einer Schmelze-Temperatur von 275°C und (a) bei 4500 m/min, (b) bei 5500 m/min und (c) bei 6000 m/min versponnen. Die RV des Fadens betrug 2,79. Der Spinntiter betrug (a) dtex 54 f 12, (b) dtex 51 f 12 und (c) dtex 52 f 12. Der Strecktiter war dtex 45 f 12, die Spinngeschwindigkeit 4500 m/min.

Tabelle 3 zeigt die Ergebnisse.

10 Vergleichsbeispiel 3

Der Versuch aus Beispiel 8 wurde mit einem handelsüblichen Polycaprolactam (Kettenregler: Propionsäure, Gehalt im Produkt = 20 mMol/kg; RV = 2,68; elastische Nachgiebigkeit $10.0 \cdot 10^{-6}$ Pa⁻¹;

15 Restfeuchtigkeitsgehalt 0,012 Gew.-%) unter sonst gleichen Bedingungen wiederholt.

Tabelle 3 zeigt die Ergebnisse.

20 Beispiel 9

Das in Beispiel 4 hergestellte Polycaprolactam wurde mit einer Schmelze-Temperatur von 275°C bei 4500 m/min versponnen. Die RV des Fadens betrug 2,83. Der Spinntiter war dtex 54 f 12. An-

25 schließend wurde auf einer Strecktexturiermaschine (Fa. Barmag FK 6L-10) bei 600 m/min und einer Heizertemperatur von 180°C bei einem D:Y-Verhältnis von 2,33 zu HE-Garn strecktexturiert (Scheibenkombination und Anordnung: Ceratex Vollkeramikscheiben in der Anordnung 1-5-1).

30

Tabelle 4 zeigt die Ergebnisse.

Vergleichsbeispiel 4

35 Der Versuch aus Beispiel 9 wurde mit dem handelsüblichen Polycaprolactam aus Vergleichsbeispiel 3 (Restfeuchtegehalt 0,017 Gew.-%) unter sonst gleichen Bedingungen wiederholt.

Tabelle 4 zeigt die Ergebnisse.

40

Beispiel 10

Das in Beispiel 5a hergestellte Polycaprolactam wurde mit einer Schmelze-Temperatur von 275°C bei 5500 m/min versponnen. Die RV des Fadens betrug 2,69. Der Spinntiter betrug dtex 54 f 12.

Tabelle 5 zeigt die Ergebnisse.

Vergleichsbeispiel 5

5 Der Versuch aus Beispiel 10 wurde mit einem handelsüblichen Polycaprolactam (Kettenregler: Propionsäure, Gehalt im Produkt = 20 mMol/kg; RV = 2,66; elastische Nachgiebigkeit 10,0·10-6 Pa-1; Restfeuchtigkeitsgehalt 0,098 Gew.-%) unter sonst gleichen Bedingungen wiederholt.

10

Tabelle 5 zeigt die Ergebnisse.

Beispiel 11

- 15 Ein analog zu Beispiel 5a hergestelltes Polycaprolactam (0,37 Gew.-% Terephtalsäure als Kettenregler, Relative Viskosität 2,67, Gehalt an chemisch gebundener Terephtalsäure im Endprodukt 25 mMol/kg, Restfeuchtegehalt von 0,02 Gew.-%) wurde bei einer Schmelzetemperatur von 275°C bei 4500 m/min versponnen. Die RV des
- 20 Fadens betrug 2,78. Der Spinntiter betrug dtex 54 f 12. Anschließend wurde auf einer Strecktexturiermaschine (Fa. Barmag, FK6L-10) bei 800 m/min, einer Heizertemperatur von 180°C mit einer Scheibenkombination Ceratex 1-5-1 und einem D:Y-Verhältnis von 2,2 strecktexturiert.

25

Tabelle 6 zeigt die Ergebnisse.

Vergleichsbeispiel 6

- 30 Der Versuch aus Beispiel 11 wurde mit einem handelsüblichen Polycaprolactam (Kettenregler: Propionsäure, Gehalt im Produkt = 20 mMol/kg; RV = 2,68; Restfeuchtegehalt 0,017 Gew.-%) unter sonst gleichen Bedingungen wiederholt.
- 35 Tabelle 6 zeigt die Ergebnisse.

Vergleichsbeispiel 7 (analog zu DE-A 40 19 780)

Polycaprolactam, hergestellt analog zu Beispiel 4 der

40 DE-A 40 19 780, mit einer relativen Viskosität von 2,36, einem
Gehalt an Titandioxid von 0,03 Gew.-% und einem Restfeuchtegehalt
von 0,04 Gew.-%, wurde in einem Extruder (Barmag 3E, 3-ZonenSchnecke 30 mm Durchmesser mit LTM-Teil (Low-Temperature-Mixing),

L/D = 24) bei 269°C aufgeschmolzen und durch Düsen (13 Loch, Loch-

45 durchmesser 0,20 mm, Kapillarlänge 0,40 mm) gepreßt. Anschließend wurden die Fäden in einem Blasschacht (Länge 1500 mm, mit Queranblasung) mit Luft von 24°C und 40% relativer Feuchtigkeit abge-

kühlt und anschließend durch einen Fallschacht von 2200 mm Länge zur Aufspulung geführt.

Die Aufspulung erfolgte galettenlos mit einem Spulkopf der 5 Fa. Barmag, (SW46 SSD) bei 4250 m/min. Der Spinntiter war dtex 56 f 13.

Der Abstand Düse-Öler betrug 1300 mm.

10 Die Verstreckung erfolgte kalt auf einer Streckzwirnmaschine (Fa. Rieter, J5/10a) mit 605 m/min zum Strecktiter dtex 44 f 13.

Tabelle 7 zeigt die Ergebnisse.

15 Vergleichsbeispiel 8

Der Versuch aus Vergleichsbeispiel 7 wurde mit handelsüblichem Polycaprolactam (Kettenregler: Propionsäure, Gehalt im Produkt = 40 mMol/kg; RV = 2,36, Titandioxid: 0,03%, Restfeuchtig-

20 keitsgehalt: 0,04 Gew.-%) unter sonst gleichen Bedingungen wiederholt.

Beispiel 12

25 Das in Beispiel 5b hergestellte Polycaprolactam wurde mit einer Schmelzetemperatur von 275°C (a) bei 4500 m/min, (b) 5500 m/min und (c) 6000 m/min versponnen. Die RV des Fadens betrug 2,78. Der Spinntiter betrug bei (a) dtex 53 f 12, (b) dtex 53 f 12 und (c) dtex 54 f 12. Die bei einer Spinngeschwindigkeit von 4500 m/min erhaltenen und anschließend verstreckten Fäden hatten einen Titer

Tabelle 8 zeigt die Ergebnisse.

35 Beispiel 13

von dtex 44 f 12.

Das in Beispiel 5c hergestellte Polycaprolactam wurde mit einer Schmelzetemperatur von 275° C (a) bei 4500 m/min, (b) 5500 m/min und (c) 6000 m/min versponnen. Die RV des Fadens betrug 2,57. Der

- 40 Spinntiter betrug bei (a) dtex 54 f 12, (b) dtex 54 f 12 und (c) dtex 55 f 12. Die bei einer Spinngeschwindigkeit von 4500 m/min erhaltenen und anschließend verstreckten Fäden hatten einen Titer von dtex 44 f 12.
- 45 Tabelle 8 zeigt die Ergebnisse.

Vergleichsbeispiel 9

Die Versuche aus Beispiel 12 und 13 wurden mit einem handelsüblichen Polycaprolactam (Kettenregler: Propionsäure; Gehalt im 5 Produkt: 20 mMol/kg; RV: 2,72; Restfeuchtegehalt: 0,033 Gew.-%) unter sonst gleichen Bedingungen wiederholt.

Tabelle 8 zeigt die Ergebnisse.

Tabelle 1: Beispiel 6 und Vergleichsbeispiel 1

	Berspiel b	el 6	Vergieichsbeispiel i	perspier i
	(a)	(q)	(a)	(q)
Abzugsgeschwindigkeit m/min	4500	5500	4500	5500
POY (preoriented yarn) feinheitsbez Höchstzugkraft cN/dtex	4,5	4,6	4,3	4,2
	57	53	58	54
Verstreckte Fäden				
feinheitsbez. Höchstzugkraft cN/dtex	4,8		4,6	
Höchstzugkraftdehnung %	38		38	
Streckfehler/100 kg	0,3		1,0	
Schärfehler/100 km	0,02		0,03	

Das Beispiel 6 zeigt, daß die feinheitsbezogene Höchstzugkraft der Fäden höher liegt und die Weiterverarbeitung mit einer geringeren Fehlerzahl erfolgte als beim Vergleichsbeispiel 1.

Tabelle 2: Beispiel 7 und Vergleichsbeispiel 2

		Beispiel 7	iel 7	Vergle beisp	Vergleichs- beispiel 2
		(a)	(q)	(a)	(q)
Abzugsgeschwindigkeit	m/min	5500	0009	5500	0009
POY (preoriented yarn) feinheitsbez. Höchstzugkraft	cN/dtex	4,8	4,8	4,2	4,4
Höchstzugkraftdehnung	o40	55	51	54	50
Laterale Kristalldicke	[wu]	4,7	5,9	8,0	9,4

In diesen Beispielen liegt die feinheitsbezogene Höchstzugkraft der Fäden (POY) um 9-14 % höher als bei Fäden aus dem Stand der Technik.

Tabelle 3: Beispiel 8 und Vergleichsbeispiel 3

		<u>a</u>	Beispiel 8	3	Vergle	Vergleichsbeispiel 3	piel 3
		(a)	(q)	(c)	(a)	(q)	(c)
Abzugsgeschwindigkeit	m/min	4500	2500	0009	4500	5500	0009
POY (preoriented yarn) feinheitsbez. Höchstzugkraft	cN/dtex	4,19	4, 39	67,43	3,72	3,81	3,75
Höchstzugkraftdehnung	æ	72	62	99	75	99	59
Laterale Kristalldicke	[wu]	9,1			10,5		
Verstreckte Fäden							
feinheitsbez. Höchstzugkraft	cN/dtex	4,73			4,38		
Höchstzugkraftdehnung	P.	39			36		

auch bei ihrem relativ geringen Dicarbonsäuregehalt im POY um 3-18 % höher liegt als beim Vergleichsmaterial und daß bei Abzugsgeschwindigkeiten von 6000 m/min eine weitere Steigerung der Werte ein-Diese Beispiele zeigen, daß die feinheitsbezogene Höchstzugkraft der erfindungsgemäßen Fäden (POY) tritt.

Tabelle 4: Beispiel 9 und Vergleichsbeispiel 4

		Beispiel 9	Vergleichs- beispiel 4
POY (preoriented yarn) feinheitsbez. Höchstzugkraft	cN/dtex	4,45	3,79
Höchstzugkraftdehnung	₽₽	70	78
Strecktexturierte Fäden			
Streckverhältnis		1:1,25	1:1,31
Titer	dtex	45 f 12	43 f 12
feinheitsbez. Höchstzugkraft	cN/dtex	8'5	4,4
Höchstzugkraftdehnung	οψο	29	29
Einkräuselung	8 3	. 65	59
Kennkräuselung	K &	43	41
Kräuselbeständigkeit	В 8	84	77

19 % und im strecktexturierten Garn um 9 % höher als beim Vergleichsmaterial. Die Kräuselbeständigkeit In diesem Beispiel liegen die feinheitsbezogenen Höchstzugkräfte der erfindungsgemäßen Fäden (POY) um ist bei den erfindungsgemäßen Polycaprolactamfäden wesentlich erhöht (9 %).

Tabelle 5: Beispiel 10 und Vergleichsbeispiel 5

		Beispiel 10 Vergleichs- beispiel 5	Vergleichs- beispiel 5
POY (preoriented yarn)		4,9	4,5
feinheitsbez. Höchstzugkraft	cN/dtex		
Höchstzugkraftdehnung	**	53,9	55,5

Fäden im Vergleich zum Stand der Technik. Wie das Beispiel zeigt, ist die Kombination von hoher Festigkeit und niedriger Höchstzugkraftdehnung, die durch Verwirbelung noch reduziert werden kann, für POY ungewöhnlich. Es zeigt die hervorragende Eignung der erfindungsgemäßen Fäden zur direkten Weiterver-Das Beispiel demonstriert die ausgezeichnete feinheitsbezogene Höchstzugkraft der erfindungsgemäßen wendung, d.h. ohne zusätzliche Verstreckung, als POY "ready to use " ("as spun").

Tabelle 6: Beispiel 11 und Vergleichsbeispiel 6

		Beispiel 11	1
			beispiel 6
POY (preoriented yarn)		4,27	3,79
feinheitsbez. Höchstzugkraft	cN/dtex		
Höchstzugkraftdehnung	æ	99	78
Laterale Kristalldicke	[wu]	1,7	10,5
Strecktexturierte Fäden			
Streckverhältnis		1:1,25	1:1,31
Titer	dtex	45 f 12	43 f 12
feinheitsbez. Höchstzugkraft	cN/dtex	4,90	4,36
Höchstzugkraftdehnung	op op	30	29
Einkräuselung	육 급	57	58
Kennkräuselung	K &	40	39
Kräuselbeständigkeit	В 8	83	9,2

höht und zeigt die Eignung der erfindungsgemäßen Fäden auch für hohe Strecktexturiergeschwindigkeiten. texturierten Garn um 12 % höher als beim Vergleichsmaterial. Die Kräuselbeständigkeit ist um 9 % er-In diesem Beispiel liegt die feinheitsbezogene Höchstzugkraft der erfindungsgemäßen Fäden im streck-

Tabelle 7: Vergleichsbeispiele 7 und 8

		Vergleichs-	Vergleichs-
		beispiel 7	beispiel 8
POY		4,43	4,31
feinheitsbez. Höchstzugkraft	[cN/dtex]		
Höchstzugkraftdehnung	[8]	68	68
Verstreckte Fäden:		4,95	4,98
feinheitsbez. Höchstzugkraft	[cN/dtex]		
Höchstzugkraftdehnung	[8]	35	34
Streckfehler/100 kg		1,1	0
Schärfehler/100 km		0,31	0.17

noch innerhalb der Bestimmungsgenauigkeit. Bei den verstreckten Fäden läßt sich keine Verbesserung ge-Diese Vergleichsbeispiele zeigen, daß bei einer Abzugsgeschwindigkeit von 4250 m/min und einer RV von 2,36 im Falle des Dicarbonsäure-geregelten Produktes (Vergl.-Bsp. 7) die feinheitsbezogene Höchstzugkraft des POY nur um 2,8 % besser ist als bei einem Monocarbonsäure-geregelten Produkt. Dies liegt genüber einem Produkt aus dem Stand der Technik (Vergl.-Bsp. 8) erkennen.

Tabelle 8: Beispiel 12, 13 und Vergleichsbeispiel 9

	Beis	Beispiel 12	2	Beis	Beispiel 13	3	Vergleichs- beispiel 9	ichs-	
	(a)	(q)	(၁)	(a)	(q)	(c)	(a)	(q)	(c)
Abzugsgeschwindigkeit [m/min]	4500	5500	0009	4500	5500	4500 5500 6000	4500	5500	0009
POY (preoriented yarn) feinheitsbez. Höchstzugkraft [cN/dtex]	4,6	4,6	4,7	4,6	4,8	4,8	4,1	4,2	4,1
Höchstzugkraftdehnung [%]	70	61	54	89	59	54	77	65	09
verstreckte Fäden feinheitsbez. Höchstzugkraft [cN/dtex]	2,3			5,5			4,9		
Höchstzugkraftdehnung [%]	39			36			40		

In diesen Beispielen liegen die feinheitsbezogene Höchstzugkraft der Fäden im POY und verstreckten Fäden um 8 bis 17 % höher als bei Fäden aus dem Stand der Technik.

Patentansprüche

- 1. Fäden mit einer relativen Viskosität RV von 2,0 bis 3,0 (gemessen bei einer Konzentration von 1 g Fäden pro 100 ml in 96
 gew.-%iger Schwefelsäure) auf der Basis von Polycaprolactam,
 erhältlich durch
- (a) Extrudieren einer im wesentlichen aus Polycaprolactam bestehenden Schmelze durch eine Spinndüse, so daß Polycaprolactamfilamente gebildet werden;
 - (b) Abkühlen der so hergestellten Filamente und
- (c) Abziehen der abgekühlten Filamente mit einer Geschwindigkeit von mindestens [3600 + 1250 · (3,0 - RV)] m/min, und

wobei das verwendete Polycaprolactam in Gegenwart von mindestens einer Dicarbonsäure, ausgewählt aus der Gruppe aus

20

25

- C₄-C₁₀-Alkandicarbonsäuren,
- C₅-C₈-Cycloalkandicarbonsäuren,
- Benzol- und Naphthalindicarbonsäuren, die bis zu zwei Sulfonsäuregruppen tragen können und deren Carbonsäuregruppen nicht benachbart sind,
- N-C₁-C₆-Alkyl-N, N-di(C₄-C₁₀-alkancarbonsäure) amin,
- 1,4-Piperazin-di(C₁-C₁₀-alkancarbonsäure)

hergestellt wurde.

30

2. Fäden gemäß Anspruch 1, dadurch gekennzeichnet, daß das Polycaprolactam in Gegenwart von mindestens einem N, N-Di- $(C_1-C_6-alkyl)$ amino- $(C_2-C_{12}-alkyl)$ amin hergestellt wurde.

35

- 3. Fäden gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fäden eine Höchstzugkraftdehnung von höchstens 100% aufweisen.
- 40 4. Verfahren zur Herstellung von Fäden mit einer relativen Viskosität RV von 2,0 bis 3,0 (gemessen bei einer Konzentration von 1 g Fäden pro 100 ml in 96 gew.-%iger Schwefelsäure) auf der Basis von Polycaprolactam gemäß Anspruch 1, dadurch gekennzeichnet, daß man

- (a) eine im wesentlichen aus Polycaprolactam bestehende Schmelze durch eine Spinndüse extrudiert, so daß Polycaprolactamfilamente gebildet werden;
- (b) die so hergestellten Filamente abkühlt und
- 5 (c) die abgekühlten Filamente mit einer Geschwindigkeit von mindestens [3600 + 1250·(3,0 RV)] m/min abzieht,

wobei das verwendete Polycaprolactam in Gegenwart von mindestens einer Dicarbonsäure, ausgewählt aus der Gruppe aus

10

- C₄-C₁₀-Alkandicarbonsäuren,
- C₅-C₈-Cycloalkandicarbonsäuren,
- Benzol- und Naphthalindicarbonsäuren, die bis zu zwei Sulfonsäuregruppen tragen können und deren Carbonsäuregruppen nicht benachbart sind,
- $N-C_1-C_6-Alkyl-N$, $N-di(C_4-C_{10}-alkancarbonsäure)$ amin,
- 1,4-Piperazin-di(C₁-C₁₀-alkancarbonsäure)

hergestellt wurde.

20

15

- 5. Verfahren zur Herstellung von Fäden auf der Basis von Polycaprolactam gemäß Anspruch 4, dadurch gekennzeichnet, daß man
 Polycaprolactam verwendet, das in Gegenwart von mindestens
 einem N,N-Di- $(C_1-C_6-alkyl)$ amino- $(C_2-C_{12}-alkyl)$ amin oder
- einem primären $C_4-C_{12}-Alkylamin$ oder $C_6-Aryl-C_1-C_4-alkylamin$ hergestellt wurde.
 - 6. Fäden gemäß den Ansprüchen 1 bis 5.
- 30 7. Verwendung der gemäß den Ansprüchen 1 bis 5 hergestellten Fäden zur Herstellung von Fasern und Flächengebilden.
 - 8. Fasern und Flächengebilde gemäß Anspruch 7.

35

40

Schnellgesponnene Fäden auf der Basis von Polycaprolactam und Verfahren zu ihrer Herstellung

5 Zusammenfassung

Fäden mit einer relativen Viskosität RV von 2,0 bis 3,0 (gemessen bei einer Konzentration von 1 g Fäden pro 100 ml in 96 gew.-%iger Schwefelsäure) auf der Basis von Polycaprolactam, erhältlich

- 10 durch
 - (a) Extrudieren einer im wesentlichen aus Polycaprolactam bestehenden Schmelze durch eine Spinndüse, so daß Polycaprolactamfilamente gebildet werden;
- 15 (b) Abkühlen der so hergestellten Filamente und
 - (c) Abziehen der abgekühlten Filamente mit einer Geschwindigkeit von mindestens [$3600 + 1250 \cdot (3, 0 RV)$] m/min, und

wobei das verwendete Polycaprolactam in Gegenwart von mindestens 20 einer Dicarbonsäure ausgewählt aus der Gruppe aus

- C₄-C₁₀-Alkandicarbonsäuren,
- C₅-C₉-Cycloalkandicarbonsäuren,
- Benzol- und Naphthalindicarbonsäuren, die bis zu zwei Sulfon-25 säuregruppen tragen können und deren Carbonsäuregruppen nicht benachbart sind,
 - $N-C_1-C_6-Alkyl-N$, $N-di(C_4-C_{10}-alkancarbonsäure)$ amin,
 - 1,4-Piperazin-di(C_1 - C_{10} -alkancarbonsäure)

hergestellt wurde, sowie ein Verfahren zur Herstellung dieser Fäden, deren Verwendung zur Herstellung von Fasern und Flächengebilden sowie Fasern und Flächengebilde aus diesen Fäden.

35

40