

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2017250791 B2

(54) Title
Adeno-associated virus vector delivery of micro-dystrophin to treat muscular dystrophy

(51) International Patent Classification(s)
C12N 15/86 (2006.01) **A61P 21/00** (2006.01)
A61K 48/00 (2006.01) **C07K 14/47** (2006.01)

(21) Application No: **2017250791** (22) Date of Filing: **2017.04.14**

(87) WIPO No: **WO17/181015**

(30) Priority Data

(31) Number (32) Date (33) Country
62/323,163 **2016.04.15** **US**
62/473,253 **2017.03.17** **US**

(43) Publication Date: **2017.10.19**
(44) Accepted Journal Date: **2022.11.24**

(71) Applicant(s)
Research Institute at Nationwide Children's Hospital

(72) Inventor(s)
Rodino-Klapac, Louise;Mendell, Jerry R.

(74) Agent / Attorney
WRAYS PTY LTD, L7 863 Hay St, Perth, WA, 6000, AU

(56) Related Art
WO 2015/197232 A1
TAEYOUNG KOO ET AL, "Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog", THE JOURNAL OF GENE MEDICINE, (2011-09-01), vol. 13, no. 9, doi:10.1002/jgm.1602, ISSN 1099-498X, pages 497 - 506.
RODINO-KLAPAC L et al., 'Persistent Expression of FLAG-tagged Microdystrophin in Nonhuman Primates Following Intramuscular and Vascular Delivery', MOLECULAR THERAPY. (2010), vol. 18, no. 1, pages 109-117.
CHICOINE L et al., 'Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery', MOLECULAR THERAPY. (2014), vol. 22, no. 2, pages 338-347.

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *with sequence listing part of description (Rule 5.2(a))*

ADENO-ASSOCIATED VIRUS VECTOR DELIVERY OF MICRO-DYSTROPHIN TO TREAT MUSCULAR DYSTROPHY

[0001] This application claims priority benefit of United States Provisional Application No. 62/323,163, filed April 15, 2016 and United States Provisional Application No. 62/473,253, filed March 17, 2017, both of which are incorporated by reference herein in their entirety.

FIELD OF INVENTION

[0002] The invention provides gene therapy vectors, such as adeno-associated virus (AAV) vectors, expressing a miniaturized human micro-dystrophin gene and methods of using these vectors to reduce and prevent fibrosis in subjects suffering from muscular dystrophy. The invention also provides for combination gene therapy methods to protect muscle fibers from injury, increase muscle strength.

BACKGROUND

[0003] The importance of muscle mass and strength for daily activities, such as locomotion and breathing, and for whole body metabolism is unequivocal. Deficits in muscle function produce muscular dystrophies (MDs) that are characterized by muscle weakness and wasting and have serious impacts on quality of life. The most well-characterized MDs result from mutations in genes encoding members of the dystrophin-associated protein complex (DAPC). These MDs result from membrane fragility associated with the loss of sarcolemmal-cytoskeleton tethering by the DAPC. Duchenne Muscular Dystrophy (DMD) is one of the most devastating muscle diseases affecting 1 in 5000 newborn males.

[0004] This application includes two translational approaches to develop treatment for DMD. Fibrotic infiltration is profound in DMD and is a significant impediment to any potential therapy. It is also important to consider that gene replacement alone is hampered by the severity of fibrosis, already present in very young children with DMD. In fact, muscle biopsies at the usual age of diagnosis, between 4-5 years old, show very significant levels of fibrosis.

[0005] DMD is caused by mutations in the DMD gene leading to reductions in mRNA and the absence of dystrophin, a 427 kD sarcolemmal protein associated with the dystrophin-associated protein complex (DAPC) (Hoffman et al., Cell 51(6):919-

28, 1987). The DAPC is composed of multiple proteins at the muscle sarcolemma that form a structural link between the extra-cellular matrix (ECM) and the cytoskeleton via dystrophin, an actin binding protein, and alpha-dystroglycan, a laminin-binding protein. These structural links act to stabilize the muscle cell 5 membrane during contraction and protect against contraction-induced damage. With dystrophin loss, membrane fragility results in sarcolemmal tears and an influx of calcium, triggering calcium-activated proteases and segmental fiber necrosis (Straub et al., *Curr Opin. Neurol.* 10(2): 168-75, 1997). This uncontrolled cycle of muscle degeneration and regeneration ultimately exhausts the muscle stem cell population 10 (Sacco et al., *Cell*, 2010. 143(7): p. 1059-71; Wallace et al., *Annu Rev Physiol*, 2009. 71: p. 37-57), resulting in progressive muscle weakness, endomysial inflammation, and fibrotic scarring.

[0006] Without membrane stabilization from dystrophin or a micro-dystrophin, DMD will manifest uncontrolled cycles of tissue injury and repair and ultimately 15 replace lost muscle fibers with fibrotic scar tissue through connective tissue proliferation. Fibrosis is characterized by the excessive deposits of ECM matrix proteins, including collagen and elastin. ECM proteins are primarily produced from cytokines such as TGF β that is released by activated fibroblasts responding to stress and inflammation. Although the primary pathological feature of DMD is myofiber 20 degeneration and necrosis, fibrosis as a pathological consequence has equal repercussions. The over-production of fibrotic tissue restricts muscle regeneration and contributes to progressive muscle weakness in the DMD patient. In one study, the presence of fibrosis on initial DMD muscle biopsies was highly correlated with poor motor outcome at a 10-year follow-up (Desguerre et al., *J Neuropathol Exp Neurol*, 25 2009. **68**(7): p. 762-7). These results point to fibrosis as a major contributor to DMD muscle dysfunction and highlight the need to develop therapies that reduce fibrotic tissue. Most anti-fibrotic therapies that have been tested in mdx mice act to block 30 fibrotic cytokine signaling through inhibition of the TGF β pathway. MicroRNAs (miRNAs) are single-stranded RNAs of ~22 nucleotides that mediate gene silencing at the post-transcriptional level by pairing with bases within the 3' UTR of mRNA, inhibiting translation or promoting mRNA degradation. A seed sequence of 7 bp at the 5' end of the miRNA targets the miRNA; additional recognition is provided by the remainder of the targeted sequence, as well as its secondary structure. MiRNAs play

an important role in muscle disease pathology and exhibit expression profiles that are uniquely dependent on the type of muscular dystrophy in question (Eisenberg et al. Proc Natl Acad Sci U S A, 2007. **104**(43): p. 17016-21). A growing body of evidence suggests that miRNAs are involved in the fibrotic process in many organs including 5 heart, liver, kidney, and lung (Jiang et al., Proc Natl Acad Sci U S A, 2007. **104**(43): p. 17016-21). Recently, the down-regulation of miR-29 was shown to contribute to cardiac fibrosis (Cacchiarelli et al., Cell Metab, 2010. **12**(4): p. 341-51) and reduced expression of miR-29 was genetically linked with human DMD patient muscles (Eisenberg et al. Proc Natl Acad Sci U S A, 2007. **104**(43): p. 17016-2). The miR-29 10 family consists of three family members expressed from two bicistronic miRNA clusters. MiR-29a is coexpressed with miR-29b (miR-29b-1); miR-29c is co-expressed with a second copy of miR-29b (miR-29b-2). The miR-29 family shares a conserved seed sequence and miR-29a and miR-29b each differ by only one base 15 from miR-29c. Furthermore, electroporation of miR-29 plasmid (a cluster of miR-29a and miR-29b-1) into mdx mouse muscle reduced the expression levels of ECM components, collagen and elastin, and strongly decreased collagen deposition in muscle sections within 25 days post-treatment (Cacchiarelli et al., Cell Metab, 2010. **12**(4): p. 341-51).

[0007] Adeno-associated virus (AAV) is a replication-deficient parvovirus, the 20 single-stranded DNA genome of which is about 4.7 kb in length including 145 nucleotide inverted terminal repeat (ITRs). There are multiple serotypes of AAV. The nucleotide sequences of the genomes of the AAV serotypes are known. For example, the nucleotide sequence of the AAV serotype 2 (AAV2) genome is presented in Srivastava et al., *J Virol*, 45: 555-564 (1983) as corrected by Ruffing et 25 al., *J Gen Virol*, 75: 3385-3392 (1994). As other examples, the complete genome of AAV-1 is provided in GenBank Accession No. NC_002077; the complete genome of AAV-3 is provided in GenBank Accession No. NC_1829; the complete genome of AAV-4 is provided in GenBank Accession No. NC_001829; the AAV-5 genome is provided in GenBank Accession No. AF085716; the complete genome of AAV-6 is 30 provided in GenBank Accession No. NC_001862; at least portions of AAV-7 and AAV-8 genomes are provided in GenBank Accession Nos. AX753246 and AX753249, respectively (see also U.S. Patent Nos. 7,282,199 and 7,790,449 relating to AAV-8); the AAV-9 genome is provided in Gao et al., *J. Virol.*, 78: 6381-6388

(2004); the AAV-10 genome is provided in *Mol. Ther.*, 13(1): 67-76 (2006); and the AAV-11 genome is provided in *Virology*, 330(2): 375-383 (2004). The AAVrh74 serotype is described in Rodino-Klapac *et al.* *J. Trans. Med.* 5: 45 (2007). *Cis*-acting sequences directing viral DNA replication (rep), encapsidation/packaging and host cell chromosome integration are contained within the ITRs. Three AAV promoters (named p5, p19, and p40 for their relative map locations) drive the expression of the two AAV internal open reading frames encoding rep and cap genes. The two rep promoters (p5 and p19), coupled with the differential splicing of the single AAV intron (e.g., at AAV2 nucleotides 2107 and 2227), result in the production of four rep proteins (rep 78, rep 68, rep 52, and rep 40) from the rep gene. Rep proteins possess multiple enzymatic properties that are ultimately responsible for replicating the viral genome. The cap gene is expressed from the p40 promoter and it encodes the three capsid proteins VP1, VP2, and VP3. Alternative splicing and non-consensus translational start sites are responsible for the production of the three related capsid proteins. A single consensus polyadenylation site is located at map position 95 of the AAV genome. The life cycle and genetics of AAV are reviewed in Muzychka, *Current Topics in Microbiology and Immunology*, 158: 97-129 (1992).

[0008] AAV possesses unique features that make it attractive as a vector for delivering foreign DNA to cells, for example, in gene therapy. AAV infection of cells in culture is noncytopathic, and natural infection of humans and other animals is silent and asymptomatic. Moreover, AAV infects many mammalian cells allowing the possibility of targeting many different tissues *in vivo*. Moreover, AAV transduces slowly dividing and non-dividing cells, and can persist essentially for the lifetime of those cells as a transcriptionally active nuclear episome (extrachromosomal element). The AAV proviral genome is infectious as cloned DNA in plasmids which makes construction of recombinant genomes feasible. Furthermore, because the signals directing AAV replication, genome encapsidation and integration are contained within the ITRs of the AAV genome, some or all of the internal approximately 4.3 kb of the genome (encoding replication and structural capsid proteins, rep-cap) may be replaced with foreign DNA such as a gene cassette containing a promoter, a DNA of interest and a polyadenylation signal. The rep and cap proteins may be provided *in trans*. Another significant feature of AAV is that it is an extremely stable and hearty virus. It easily withstands the conditions used to inactivate adenovirus (56° to 65°C for

several hours), making cold preservation of AAV less critical. AAV may even be lyophilized. Finally, AAV-infected cells are not resistant to superinfection.

[0009] Multiple studies have demonstrated long-term (> 1.5 years) recombinant AAV-mediated protein expression in muscle. See, Clark *et al.*, *Hum Gene Ther*, 8: 5 659-669 (1997); Kessler *et al.*, *Proc Nat. Acad Sc. USA*, 93: 14082-14087 (1996); and Xiao *et al.*, *J Virol*, 70: 8098-8108 (1996). See also, Chao *et al.*, *Mol Ther*, 2:619-623 (2000) and Chao *et al.*, *Mol Ther*, 4:217-222 (2001). Moreover, because muscle is highly vascularized, recombinant AAV transduction has resulted in the appearance of transgene products in the systemic circulation following intramuscular injection as 10 described in Herzog *et al.*, *Proc Natl Acad Sci USA*, 94: 5804-5809 (1997) and Murphy *et al.*, *Proc Natl Acad Sci USA*, 94: 13921-13926 (1997). Moreover, Lewis *et al.*, *J Virol*, 76: 8769-8775 (2002) demonstrated that skeletal myofibers possess the necessary cellular factors for correct antibody glycosylation, folding, and secretion, indicating that muscle is capable of stable expression of secreted protein therapeutics.

15 **[0010]** Functional improvement in patients suffering from DMD and other muscular dystrophies require both gene restoration and reduction of fibrosis. There is a need for methods of reducing fibrosis that may be paired with gene restoration methods for more effective treatments of DMD and other muscular dystrophies. miR29 is a potential gene regulator and an ideal candidate for reducing muscle 20 fibrosis.

SUMMARY OF INVENTION

[0011] The present invention is directed to gene therapy methods that directly reduce the three primary components of connective tissue (collagen 1, collagen 3 and fibronectin) by delivering the microRNA miR29. In this system, the miR29 binds to 25 the 3' UTR of the collagen and fibronectin gene to down regulate expression. The invention is directed to gene therapy vectors, e.g. AAV, expressing the guide strand of the microRNA miR29 and method of delivering miR29 to the muscle to reduce and/or prevent fibrosis.

30 **[0012]** In addition, the invention provides for combination therapies and approaches for reducing and preventing fibrosis using gene therapy vectors deliver miR-29 to suppress fibrosis along with micro-dystrophin to address the gene defect

observed in DMD. As shown in Examples 5-7, the combination treatment resulted in a greater reduction in fibrosis, increased muscle size and increased muscle force.

[0013] In one embodiment, the invention provides for a rAAV vector expressing miR-29. For example, the rAAV vector comprises a polynucleotide sequence expressing miR29c such as a nucleotide sequence comprising the miR-29c target guide strand of SEQ ID NO: 3, the miR-29c guide strand of SEQ ID NO: 4 and the natural miR-30 back bone and stem loop (SEQ ID NO: 5). An exemplary polynucleotide sequence comprising the miR-29c cDNA in a miR-30 backbone is set out as SEQ ID NO: 2 (Figure 1).

[0013a] In another embodiment, the invention provides for a recombinant AAVrh.74 vector comprising in the 5' to 3' direction an inverted terminal repeat (ITR), a muscle-specific control element, a chimeric intron sequence, the nucleotide sequence of SEQ ID NO: 7, a poly A tail, and an ITR.

[0014] An exemplary rAAV of the invention is the pAAV.CMV.Mir29C which comprises the nucleotide sequence of SEQ ID NO: 1; wherein the CMV promoter spans nucleotides 120-526, an EF1a intron spans nucleotides 927-1087 and nucleotides 1380-1854, the guide stand of miR-29c spans nucleotide 1257-1284 and the shRNA-miR29-c with primary seed sequence spans nucleotides 1088-1375, and the poly A sequence spans nucleotides 1896-2091. In one aspect, the rAAV vectors of the invention are AAV1, AAV2, AAV4, AAV5, AAV6, AAV7, AAVrh.74, AAV8, AAV9, AAV10, AAV11, AAV12 or AAV13.

[0015] Another exemplary rAAV of the invention is the pAAV.MHC.Mir29C which comprises the nucleotide sequence of SEQ ID NO: 12; wherein the MCK enhancer spans nucleotides 190-395, the MHC promoter spans nucleotides 396-753, an EF1a intron spans nucleotides 1155-1315 and nucleotides 1609-2083, the guide stand of miR-29c spans nucleotide 1487-1512 and the shRNA-miR29-c with primary seed sequence spans nucleotides 1316-1608, and the poly A sequence spans nucleotides 2094-2146. In one aspect, the rAAV vectors of the invention are AAV1, AAV2, AAV4, AAV5, AAV6, AAV7, AAVrh.74, AAV8, AAV9, AAV10, AAV11, AAV12 or AAV13.

[0016] In another aspect, the rAAV vectors of the invention may be operably linked to a muscle-specific control element. For example the muscle-specific control element is human skeletal actin gene element, cardiac actin gene element, myocyte-specific enhancer binding factor MEF, muscle creatine kinase (MCK), tMCK (truncated MCK), myosin heavy chain (MHC), C5-12 (synthetic promoter), murine creatine kinase enhancer element, skeletal fast-twitch troponin C gene element, slow-

twitch cardiac troponin C gene element, the slow-twitch troponin I gene element, hypoxia-inducible nuclear factors, steroid-inducible element or glucocorticoid response element (GRE).

5 [0017] For example, any of the rAAV vectors of the invention are operably linked to the muscle-specific control element comprising the MCK enhancer nucleotide sequence of SEQ ID NO: 10 and/or the MCK promoter sequence of SEQ ID NO: 11.

[0018] The invention also provides for pharmaceutical compositions (or sometimes referred to herein as simply “compositions”) comprising any of the rAAV vectors of the invention.

10 [0019] In another embodiment, the invention provides for methods of producing a rAAV vector particle comprising culturing a cell that has been transfected with any rAAV vector of the invention and recovering rAAV particles from the supernatant of the transfected cells. The invention also provides for viral particles comprising any of the recombinant AAV vectors of the invention.

15 [0020] In another embodiment, the invention provides for methods of reducing fibrosis in a subject in need comprising administering a therapeutically effective amount of any rAAV vector of the invention expressing miR-29. For example, any of the rAAV of the invention are administered to subjects suffering from muscular dystrophy to reduce fibrosis, and in particular reduces fibrosis in skeletal muscle or in 20 cardiac muscle of the subject. These methods may further comprise the step of administering a rAAV expressing micro-dystrophin.

[0021] “Fibrosis” refers to the excessive or unregulated deposition of extracellular matrix (ECM) components and abnormal repair processes in tissues upon injury including skeletal muscle, cardiac muscle, liver, lung, kidney, and pancreas. The 25 ECM components that are deposited include fibronectin and collagen, e.g. collagen 1, collagen 2 or collagen 3.

[0022] In another embodiment, the invention provides for methods of preventing fibrosis in a subject in need comprising administering a therapeutically effective amount of the any recombinant AAV vector of the invention expressing miR-29. For 30 example, any of the rAAV of the invention are administered to subjects suffering from muscular dystrophy to prevent fibrosis, e.g. the rAAV of the invention expressing miR-29 are administered before fibrosis is observed in the subject. In

addition, the rAAV of the invention expressing miR-29 are administered to a subject at risk of developing fibrosis, such as those suffering or diagnosed with muscular dystrophy, e.g. DMD. The rAAV of the invention are administered to the subject suffering from muscular dystrophy in order to prevent new fibrosis in these subjects.

5 These methods may further comprise the step of administering a rAAV expressing micro-dystrophin.

[0023] The invention also provides for methods of increasing muscular force and/or muscle mass in a subject suffering from muscular dystrophy comprising administering a therapeutically effective amount of any of the rAAV vector of the invention 10 expressing miR-29. These methods may further comprise the step of administering a rAAV expressing micro-dystrophin.

The terms “combination therapy” and “combination treatment” refer to administration of a rAAV vector of the invention expressing miR-29 and a rAAV vector expressing micro-dystrophin.

15 **[0024]** In any of the methods of the invention, the subject may be suffering from muscular dystrophy such as DMD, Becker muscular dystrophy or any other dystrophin-associated muscular dystrophy. In addition, in any of the methods of the invention, the subject may be suffering from dystrophinopathy.

20 **[0025]** In another embodiment, the invention provides for recombinant AAV vectors comprising a nucleotide sequence encoding a micro-dystrophin protein. The invention provides for a rAAV comprising a) a nucleotide sequence having at least 85% identity to the nucleotide sequence SEQ ID NO: 7 and encodes a functional micro-dystrophin protein, b) the nucleotide sequence of SEQ ID NO: 7, or c) the nucleotide sequence of SEQ ID NO: 9.

25 **[0026]** An exemplary rAAV expressing micro-dystrophin of the invention is the pAAV.mck.micro-dystrophin which comprises the nucleotide sequence of SEQ ID NO: 9 and shown in Figure 10 and 11. This rAAV vector comprises the MCK promoter, a chimeric intron sequence, the coding sequence for the micro-dystrophin gene, polyA, ampicillin resistance and the pGEX plasmid backbone with pBR322 30 origin or replication. In one aspect, the recombinant AAV vectors of the invention are AAV1, AAV2, AAV4, AAV5, AAV6, AAV7, AAVrh.74, AAV8, AAV9, AAV10, AAV11, AAV12 or AAV13.

[0027] The invention provides for rAAV vectors encoding a micro-dystrophin protein that is, e.g., at least at least 65%, at least 70%, at least 75%, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89%, more typically at least 90%, 91%, 92%, 93%, or 94% and even more typically at least 95%, 96%, 97%, 98% or 99% sequence identity to SEQ ID NO: 8, wherein the protein retains micro-dystrophin activity. The micro-dystrophin protein provides stability to the muscle membrane during muscle contraction, e.g. micro-dystrophin acts as a shock absorber during muscle contraction.

[0028] The invention provides for rAAV vectors expressing micro-dystrophin comprising a nucleotide sequence that has at least 65%, at least 70%, at least 75%, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89%, more typically at least 90%, 91%, 92%, 93%, or 94% and even more typically at least 95%, 96%, 97%, 98% or 99% sequence identity to SEQ ID NO: 7, and encodes a functional micro-dystrophin protein.

15 **[0029]** The invention provides for rAAV vectors expressing micro-dystrophin comprising a nucleotide sequence that hybridizes under stringent conditions to the nucleic acid sequence of SEQ ID NOS: 7, or compliments thereof, and encodes a functional micro-dystrophin protein.

[0030] The term “stringent” is used to refer to conditions that are commonly understood in the art as stringent. Hybridization stringency is principally determined by temperature, ionic strength, and the concentration of denaturing agents such as formamide. Examples of stringent conditions for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68°C or 0.015 M sodium chloride, 0.0015M sodium citrate, and 50% formamide at 42°C. See Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, (Cold Spring Harbor, N.Y. 1989). More stringent conditions (such as higher temperature, lower ionic strength, higher formamide, or other denaturing agent) may also be used, however, the rate of hybridization will be affected. In instances wherein hybridization of deoxyoligonucleotides is concerned, additional exemplary stringent hybridization conditions include washing in 6x SSC 0.05% sodium pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-base oligos), 55°C (for 20-base oligos), and 60°C (for 23-base oligos).

[0031] Other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate, NaDODSO₄, (SDS), ficoll, Denhardt's 5 solution, sonicated salmon sperm DNA (or other non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The concentration and types of these additives can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4, however, at typical ionic strength conditions, the rate of 10 hybridization is nearly independent of pH. See Anderson et al., Nucleic Acid Hybridisation: A Practical Approach, Ch. 4, IRL Press Limited (Oxford, England). Hybridization conditions can be adjusted by one skilled in the art in order to accommodate these variables and allow DNAs of different sequence relatedness to form hybrids.

15 **[0032]** In another aspect, the rAAV vectors expressing micro-dystrophin comprises the coding sequence of the micro-dystrophin gene operably linked to a muscle-specific control element. For example, the muscle-specific control element is human skeletal actin gene element, cardiac actin gene element, myocyte-specific enhancer binding factor MEF, muscle creatine kinase (MCK), tMCK (truncated MCK), myosin 20 heavy chain (MHC), C5-12 (synthetic promoter), murine creatine kinase enhancer element, skeletal fast-twitch troponin C gene element, slow-twitch cardiac troponin C gene element, the slow-twitch troponin I gene element, hypoxia-inducible nuclear factors, steroid-inducible element or glucocorticoid response element (GRE).

25 **[0033]** In addition, the invention provides for rAAV vectors expressing micro-dystrophin comprising a muscle-specific control element comprising the nucleotide sequence of SEQ ID NO: 10 or SEQ ID NO: 11.

[0034] The invention also provides for pharmaceutical compositions (or sometimes referred to herein as simply "compositions") comprising any of the rAAV vectors of the invention.

30 **[0035]** In another embodiment, the invention provides for methods of producing a rAAV vector particle comprising culturing a cell that has been transfected with any rAAV vector of the invention and recovering rAAV particles from the supernatant of

the transfected cells. The invention also provides for viral particles comprising any of the recombinant AAV vectors of the invention.

[0036] The invention also provides for methods of producing a functional micro-dystrophin protein comprising infecting a host cell with a recombinant AAV vector 5 expressing micro-dystrophin of the invention and expressing a functional micro-dystrophin protein in the host cell.

[0037] In another embodiment, the invention provides for methods of reducing fibrosis in a subject in need comprising administering a therapeutically effective amount of any rAAV vector of the invention expressing micro-dystrophin. For 10 example, any of the rAAV of the invention are administered to subjects suffering from muscular dystrophy or dystrophinopathy to reduce fibrosis, and in particular reduces fibrosis in skeletal muscle or in cardiac muscle of the subject.

[0038] In another embodiment, the invention provides for methods of preventing fibrosis in a subject in need comprising administering a therapeutically effective 15 amount of the any recombinant AAV vector of the invention expressing micro-dystrophin. For example, any of the rAAV of the invention are administered to subjects suffering from muscular dystrophy or dystrophinopathy to prevent fibrosis, e.g. the rAAV of the invention expressing micro-dystrophin are administered before fibrosis is observed in the subject. In addition, the rAAV of the invention expressing 20 micro-dystrophin are administered to a subject at risk of developing fibrosis, such as those suffering or diagnosed with dystrophinopathy or muscular dystrophy, e.g. DMD or Becker muscular dystrophy. The rAAV of the invention are administered to the subject suffering from dystrophinopathy or dystrophinopathy muscular dystrophy in order to prevent new fibrosis in these subjects.

25 [0039] The invention also provides for methods of increasing muscular force and/or muscle mass in a subject suffering from muscular dystrophy or dystrophinopathy comprising administering a therapeutically effective amount of any of the rAAV vector of the invention expressing miR-29.

[0040] Any of the foregoing methods comprising the step of administering the 30 rAAV expressing miR-29c of the invention may comprise a further step of administering any of the rAAV expressing the micro-dystrophin described herein. The terms “combination therapy” and “combination treatment” refer to administration

of a rAAV vector of the invention expressing miR-29 and an rAAV vector expressing micro-dystrophin.

[0041] In the methods of administering an rAAV vector expressing miR-29 and an rAAV vector expressing the micro-dystrophin protein, these rAAV vectors may be 5 administered concurrently, or administered consecutively with the rAAV vector expressing miR29 administered immediately before the rAAV expressing the micro-dystrophin protein, or administered consecutively with the rAAV vector expressing miR29 is administered immediately after the rAAV expressing the micro-dystrophin protein. Alternatively, the methods of the invention are carried out wherein the AAV 10 vector expressing the micro-dystrophin protein is administered within about 1-5 hours or 5-12 hours or 12 to 15 hours or 15 to 24 hours after administering the rAAV expressing miR-29 or the methods of the invention are carried out wherein the AAV vector expressing the micro-dystrophin protein is administered within about 1-5 hours or 5-12 hours or 12 to 15 hours or 15 to 24 hours before administering the rAAV 15 expressing miR-29. Alternatively, the methods of the invention are carried out wherein the AAV vector expressing the micro-dystrophin protein is administered within about 1 or 6 or 12 or 24 hours after administering the rAAV expressing miR-29 or the methods of the invention are carried out wherein the AAV vector expressing the micro-dystrophin protein is administered within about 1 or 6 or 12 or 24 hours 20 before administering the rAAV expressing miR-29.

[0042] The invention contemplates administering any of the AAV vectors of the invention to patients diagnosed with dystrophinopathy or muscular dystrophy, such as DMD or Becker Muscular dystrophy, before fibrosis is observed in the subject or before the muscle force has been reduced in the subject or before the muscle mass has 25 been reduced in the subject.

[0043] The invention also contemplates administering any of the rAAV of the invention to a subject suffering from dystrophinopathy or muscular dystrophy, such as DMD or Becker Muscular dystrophy, who already has developed fibrosis, in order to prevent new fibrosis in these subjects. The invention also provides for administering 30 any of the rAAV of the invention to the patient suffering from muscular dystrophy who already has reduced muscle force or has reduced muscle mass in order to protect the muscle from further injury.

[0044] In any of the methods of the invention, the rAAV vector are administered by intramuscular injection or intravenous injection.

[0045] In addition, in any of the methods of the invention, the rAAV vector or composition is administered systemically. For examples, the rAAV vector or 5 composition is parentally administration by injection, infusion or implantation.

[0046] In another embodiment, the invention provides for composition comprising any of the rAAV vectors expressing miR29 or any of the rAAV vectors expressing micro-dystrophin or comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin for reducing fibrosis in a subject in needIn 10 addition, the invention provides for compositions comprising any of the recombinant AAV vectors expressing miR29 or any of the rAAV vectors expressing micro-dystrophin or comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin for preventing fibrosis in a patient suffering from dystrophinopathy or muscular dystrophy, such as DMD or Becker Muscular 15 dystrophy.

[0047] The invention also provides for compositions comprising any of the rAAV vectors of the invention expressing miR29 or any of the rAAV vectors expressing micro-dystrophin protein or comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin protein for increasing muscular force 20 and/or muscle mass in a subject suffering from dystrophinopathy or muscular dystrophy, such as DMD or Becker Muscular dystrophy.

[0048] In a further embodiment, the invention provides for compositions comprising any of the rAAV vectors of the invention expressing miR29 or any of the rAAV vectors expressing micro-dystrophin protein or comprising both a rAAV vector 25 expressing miR-29 and a rAAV vector expressing micro-dystrophin protein for treatment of dystrophinopathy or muscular dystrophy, such as DMD or Becker Muscular dystrophy.

[0049] The compositions of the invention are formulated for intramuscular injection or intravenous injection. The composition of the invention is also 30 formulated for systemic administration, such as parentally administration by injection, infusion or implantation. In addition, any of the compositions are formulated for

administration to a subject suffering from dystrophinopathy or muscular dystrophy, such as DMD, Becker muscular dystrophy or any other dystrophin associated muscular dystrophy.

[0050] In a further embodiment, the invention provides for use of any of the rAAV vectors of the invention expressing miR29 or any of the rAAV vectors expressing micro-dystrophin or comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin for preparation of a medicament for reducing fibrosis in a subject in need. For example, the subject is in need suffering from dystrophinopathy or muscular dystrophy, such as DMD, Becker muscular dystrophy or any other dystrophin associated muscular dystrophy.

[0051] In another embodiment, the invention provides for use of any of the rAAV vectors of the invention expressing miR29 or any of the rAAV vectors expressing micro-dystrophin or comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin for the preparation of a medicament for preventing fibrosis in a subject suffering from muscular dystrophy. In addition, the invention provides for use of the recombinant AAV vectors of the invention expressing miR29 or any of the rAAV vectors expressing micro-dystrophin or comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin for the preparation of a medicament for the increasing muscular strength and/or muscle mass in a subject suffering from dystrophinopathy or muscular dystrophy, such as DMD or Becker Muscular dystrophy.

[0052] The invention contemplates use of any of the AAV vectors of the invention for the preparation of a medicament for administration to a patient diagnosed with DMD before fibrosis is observed in the subject or before the muscle force has been reduced in the subject or before the muscle mass has been reduced in the subject.

[0053] The invention also contemplates use of any of the AAV vectors of the invention for the preparation of a medicament for administration to administering any of the rAAV of the invention to a subject suffering from muscular dystrophy who already has developed fibrosis, in order to prevent new fibrosis in these subjects. The invention also provides for administering any of the rAAV of the invention to the

patient suffering from muscular dystrophy who already has reduced muscle force or has reduced muscle mass in order to protect the muscle from further injury.

[0054] The invention also provides for use of the rAAV vectors of the invention expressing miR296 or any of the rAAV vectors expressing micro-dystrophin or 5 comprising both a rAAV vector expressing miR-29 and a rAAV vector expressing micro-dystrophin for the preparation of a medicament for treatment of muscular dystrophy.

[0055] In any of the uses of the invention, the medicament is formulated for intramuscular injection. In addition, any of the medicaments may be prepared for 10 administration to a subject suffering from muscular dystrophy such as DMD or any other dystrophin associated muscular dystrophy.

[0056] In addition, any of the medicaments of the invention may be a combination therapy in which the rAAV vectors expressing miR-29 and rAAV vectors expressing micro-dystrophin are administered concurrently, or administered consecutively with 15 the rAAV vector expressing miR29 administered immediately before the rAAV expressing micro-dystrophin, or administered consecutively with the rAAV vector expressing miR29 administered immediately after the rAAV expressing micro-dystrophin. Alternatively, the medicament comprises administration of the AAV vector expressing micro-dystrophin administered within about 1-5 hours after 20 administering the rAAV expressing miR-29 or the medicament comprises the AAV vector expressing micro-dystrophin administered within about 1-5 hours before administering the rAAV expressing miR-29.

BRIEF DESCRIPTION OF DRAWING

[0057] **Figure 1** provide a schematic of rAAV vector scAAVCrh.74.CMV.miR29c 25 and the nucleotide sequence of the miR-29c in a natural miR-30 backbone and the nucleotide sequence of the predicted hairpin structure.

[0058] **Figure 2A-CD** illustrates that injection of miR-29c into muscle reduces collagen throughout the muscle and restores miR-29c expression.

[0059] **Figure 3A-3C** demonstrates that injection of miR-29c improves absolute 30 muscle force (panel A) and specific muscle force (panel B) but does not protect against contraction-induced damage (panel C).

[0060] **Figure 4A-4C** displays the number of muscle fibers expression micro-dystrophin to measure of efficacy of transgene delivery.

[0061] **Figure 5A-5C** demonstrates that co-delivery of miR-29c with micro-dystrophin reduces collagen expression (panel A) and fibrosis-induced dystrophin expression.

[0062] **Figure 6A-6D** illustrates that intramuscular injection of miR-29c /micro-dystrophin inhibits extracellular matrix (ECM) in mdx/utrn^{+/−} mice as measured by collagen 1 alpha (panel A), collagen 3 alpha (panel B) , fibronectin (panel C) and TGF- β (panel D).

10 **[0063]** **Figure 7A-7C** demonstrates the intramuscular injection of miR-29c increased absolute force (panel A), normalized specific force (panel B) and added protection from contraction-induce damage(panel C) in the muscle.

15 **[0064]** **Figure 8** illustrates that the miR-29c/μ-dys combination increases muscle size in mice treated at 3 months of age. Sections of treated and untreated mdx/utrn^{+/−} gastrocnemius muscles stained with picrosirius Red to stain for collagen are shown. Fibrotic areas are pink and intact muscle is in green. On the macroscopic level, miR-29c/μ-dys combination decreases fibrosis and increases total cross sectional area.

20 **[0065]** **Figure 9A-F** demonstrates that treatment with miR-29c co-delivered with micro-dystrophin increased muscle hypertrophy and hyperplasia as shown by an increase in the overall weight of the injected gastroc compared to either one injected alone (panel A), an increase in the an increase in average fiber size (panel B), an increase in cross-sectional area of the muscle (panel D; uninjected: 24.6 vs. miR-29c: 26.3 vs. micro-dys: 26.6 vs. micro-dys/miR-29c: 33.1) and an increase in the number of muscle fibers (panel E) but the number of muscle fibers per unit area was not affected (panel F). Panel C compares mdx/utrn^{+/−} controls with miR-29c/μ-dys treated mdx/utrn^{+/−}, the average diameter increased from 25.96 to 30.97 μ m

25 **[0066]** **Figure 10A-G** demonstrates that early treatment of AAV.miR-29c/micro-dystrophin combination therapy is more effective at reducing fibrosis and ECM expression. Panel A shows picrosirius red staining of wild-type, uninjected, AAV.miR-29c, AAV.micro-dystrophin, and AAV.miR-29c/AAV.micro-dystrophin of mice injected at 4-5 wks of age taken out twelve weeks post-injection. Panel B provides quantification of picrosirius red staining showing co-treated muscle had a

51.1% reduction in collagen compared to uninjected GAS muscle. Panel C demonstrates that qRT-PCR confirms an increase in miR-29c transcript levels in the treated cohorts. Semi-quantitative qRT-PCR shows a significant reduction in collagen I and III (panels d, e), fbn (panel f) and TGF- β 1 (panel g) levels in the 5 AAV.miR-29c/AAV.micro-dystrophin treated muscle compared to the contralateral limb and each of the single therapies Error bars, SEM for n=5 (scAAVrh.74.CMV.miR-29c), n=5 (scAAVrh.74.CMV.miR-29c/ssAAVrh.74.MCK.micro-dystrophin), n=6 (ssAAVrh.74.MCK.micro-dystrophin), n=9 (mdx/utrn^{+/} mice). 1-way ANOVA (*p<0.05, ** p<0.01, *** 10 p<0.001)

[0067] **Figure 11** demonstrates early combination therapy restores force and protects against contraction-induced damage. Measurement of absolute (panel A) and normalized specific force (panel b) following tetanic contraction in all three treatment injected GAS muscles were significantly increased compared to untreated mdx/utrn^{+/} 15 muscle (panel C). Muscles were then assessed for loss of force following repetitive eccentric contractions. Only mice co-treated with miR-29c/micro-dystrophin and micro-dystrophin alone showed a protection from loss of force compared with untreated mdx/utrn^{+/} muscles (blue). Two-way analysis of variance demonstrates significance in decay curves Error bars, SEM for n=5 (rAAVrh.74.CMV.miR-29c), 20 n=6 (rAAVrh.74.CMV.miR-29c/rAAVrh.74.MCK.micro-dystrophin), n=5 (rAAVrh.74.MCK.micro-dystrophin), n=15 (mdx/utrn^{+/} mice). 1-way ANOVA (*p<0.05, **p<0.01, *** p<0.001, ****p<0.0001).

[0068] **Figure 12** illustrates miR-29c/micro-dystrophin combination treatment increases muscle size in mice treated at 1 month of age. Treated and untreated 25 mdx/utrn^{+/} GAS muscles were sectioned and staining with picrosirius Red to stain for collagen. Fibrotic areas are pink and intact muscle is in green. On the macroscopic level, miR-29c/micro-dystrophin combination decreases fibrosis and increases total cross sectional area.

[0069] **Figure 13A – 13G** demonstrates that early treatment (at 4-5 weeks) of 30 AAV.MCK.miR-29c/micro-dystrophin combination therapy is more effective at reducing fibrosis and ECM expression. Panel A provide picrosirius red staining of uninjected and AAV.MCK.miR-29c/AAV.MCK.micro-dystrophin of mice injected at 4-5wks of age taken out twelve weeks post-injection. Original magnification, x20

Panel B provides quantification of picrosirius red staining demonstrating co-treated muscle had a 50.9% reduction in collagen compared to untreated GAS muscle. Panel C provides qRT-PCR confirming an increase in miR-29c transcript levels in the treated cohort. Semi-quantitative qRT-PCR shows a significant reduction in Collagen 5 1A (Col1A; panel D) and Collagen 3A (Col3A; panel E), Fibronectin (Fbn; panel F) and Tgf β 1 (panel G) levels in the AAV.MCK.miR-29c/AAV.micro-dystrophin treated muscle compared to the contralateral limb therapies. (*p<0.05, ****p<0.0001).

[0070] **Figure 14A – 14G** demonstrates that late treatment (treatment at 12 weeks) with AAV.MCK.miR-29c/micro-dystrophin combination therapy is effective at 10 reducing fibrosis and ECM expression. Panel A provides picrosirius red staining of untreated, AAV.MCK.miR-29c and AAV.MCK.miR-29c/AAV.micro-dystrophin twelve weeks post-injection. Original magnification, x20. Panel B provides 15 quantification of picrosirius red staining which demonstrates that co-treated muscle had a 30.3 % reduction in collagen compared to untreated GAS muscle. Panel C provides qRT-PCR confirming an increase in miR-29c transcript levels in the treated cohorts. Semi-quantitative qRT-PCR demonstrated a significant reduction in Collagen 1A (Col1A; panel D), Collagen 3A (Col3A; panel E), Fibronectin (Fbn; Panel F) and Tgf β 1 (panel G) levels in the AAV.miR-29c/AAV.micro-dystrophin treated muscle compared to the contralateral limb. One-way ANOVA. All data 20 represent mean \pm SEM. (** p<0.01, ****p<0.0001).

[0071] **Figure 15A-15C** demonstrates that early combination therapy (treatment at 4-5 weeks) restored force and protected against contraction-induced damage. Measurement of absolute (panel A) and normalized specific force (panel B) following tetanic contraction MCK.miR-29c/micro-dystrophin injected GAS muscles were 25 significantly increased compared to untreated mdx/utrn $^{+/-}$ muscle. (C) Muscles were then assessed for loss of force following repetitive eccentric contractions. Mice co-treated with miR-29c/micro-dystrophin and micro-dystrophin alone showed protection from loss of force compared with untreated mdx/utrn $^{+/-}$ muscles (red). Two-way ANOVA. All data represent mean \pm SEM (****p<0.0001).

30 [0072] **Figure 16A – 16C** demonstrates that late combination therapy restored force and protected against contraction-induced damage. Measurement of absolute (panel A) and normalized specific force (panel B) following tetanic contraction rAAV.MCK.miR-29c and rAAV expressing micro-dystrophin injected GAS muscles

were significantly increased compared to untreated *mdx/utrn^{+/−}* muscle. In Panel C, muscles were then assessed for loss of force following repetitive eccentric contractions. Mice co-treated with rAAV.MCK.miR-29c/rAAV expressing micro-dystrophin showed a protection from loss of force compared with untreated *5 mdx/utrn^{+/−}* muscles (red). Two-way ANOVA. All data represent mean ± SEM (**p<0.01, ****p<0.0001).

[0073] **Figure 17A-17D** demonstrates that combination treatment increases muscle hypertrophy 3 months post injection. Panel A demonstrates that rAAV. MCK.miR-29c co-delivered with rAAV expressing micro-dystrophin failed to increase the *10* overall weight of the injected GAS. Panel B demonstrates that rAAV.MCK.miR-29c/rAAV expressing micro-dystrophin combination treatment induced an increase in average fiber size. Comparing *mdx/utrn^{+/−}* controls with miR-29c/micro-dystrophin treated *mdx/utrn^{+/−}*, the average diameter increased from 28.96 to 36.03 μ m . Panel C shows that co-delivery produced a shift towards wild-type fiber size distribution. *15* Panel D provided the number of muscle fibers per mm² in the miR-29c/micro-dystrophin combination treatment was significantly less than untreated mice and wild-type (****p<0.01, ****p<0.0001).

[0074] **Figure 18A-18B** provides the nucleic acid sequence (SEQ ID NO: 1 pAAV.CMV.Mir29C) of an exemplary rAAV vector comprising the mature guide *20* strand of miR-29c (nucleotides 1257-1284) and the natural mi-30 backbone (nucleotides 1088-1375). The construct also comprises the CMV promoter (nucleotides 120-526), two EF1a introns at nucleotides 927-1087 and 1380-1854 and a polA at nucleotides 1896-2091.

[0075] **Figure 19** provides a schematic of the rAAV vector pAAV.MCK.micro-*25* dystrophin.

[0076] **Figure 20A-D** provides the nucleic acid sequence (SEQ ID NO: 9; pAAV.MCK.micro-dystrophin) of an exemplary rAAV vector expressing micro-dystrophin.

[0077] **Figure 21A-D** provides the nucleotide sequence of the human micro-*30* dystrophin nucleotide sequence (SEQ ID NO: 7)

[0078] **Figure 22** provides the nucleotide sequence (SEQ ID NO: 12 pAAV.MCK.Mir29C) of an exemplary rAAV vector comprising the mature guide

strand of miR-29c (nucleotides 1487-1512) and the natural mi-30 backbone (nucleotides 1088-1375). The construct also comprises the MCK enhancer (nucleotides 190-395), MCK promoter (nucleotides 396-753), two EF1a introns at nucleotides 1155-1315 and 1609-2083 and a polA at nucleotides 2094-2148.

5

DETAILED DESCRIPTION

[0079] The present invention provides for gene therapy vectors, e.g. rAAV vectors, overexpressing miR-29 microRNA and methods of reducing and preventing fibrosis in muscular dystrophy patients. The present invention also provides for combination 10 gene therapy methods which comprise administering a gene therapy vector expressing miR-29 in combination with a gene therapy vector expressing micro-dystrophin that is deleted in DMD patients.

[0080] Muscle biopsies taken at the earliest age of diagnosis of DMD reveal prominent connective tissue proliferation. Muscle fibrosis is deleterious in multiple 15 ways. It reduces normal transit of endomysial nutrients through connective tissue barriers, reduces the blood flow and deprives muscle of vascular-derived nutritional constituents, and functionally contributes to early loss of ambulation through limb contractures. Over time, treatment challenges multiply as a result of marked fibrosis in muscle. This can be observed in muscle biopsies comparing connective tissue 20 proliferation at successive time points. The process continues to exacerbate leading to loss of ambulation and accelerating out of control, especially in wheelchair-dependent patients.

[0081] Without a parallel approach to reduce fibrosis it is unlikely that the benefits of exon skipping, stop-codon read-through, or gene replacement therapies can ever be 25 fully achieved. Even small molecules or protein replacement strategies are likely to fail without an approach to reduce muscle fibrosis. Previous work in aged *mdx* mice with existing fibrosis treated with AAV.micro-dystrophin demonstrated that we could not achieve full functional restoration (*Human molecular genetics* **22**, 4929-4937 (2013)). It is also known that progression of DMD cardiomyopathy is accompanied 30 by scarring and fibrosis in the ventricular wall. Micro-RNA delivery is particularly innovative because of lack of immune barriers and relative ease of delivery. Micro-

RNAs are small (~200bp) and can therefore be packaged in AAV along with a therapeutic cassette to correct or bypass the genetic defect.

[0082] As used herein, the term "AAV" is a standard abbreviation for adeno-associated virus. Adeno-associated virus is a single-stranded DNA parvovirus that grows only in cells in which certain functions are provided by a co-infecting helper virus. There are currently thirteen serotypes of AAV that have been characterized. General information and reviews of AAV can be found in, for example, Carter, 1989, *Handbook of Parvoviruses*, Vol. 1, pp. 169-228, and Berns, 1990, *Virology*, pp. 1743-1764, Raven Press, (New York). However, it is fully expected that these same principles will be applicable to additional AAV serotypes since it is well known that the various serotypes are quite closely related, both structurally and functionally, even at the genetic level. (See, for example, Blacklowe, 1988, pp. 165-174 of *Parvoviruses and Human Disease*, J. R. Pattison, ed.; and Rose, *Comprehensive Virology* 3:1-61 (1974)). For example, all AAV serotypes apparently exhibit very similar replication properties mediated by homologous rep genes; and all bear three related capsid proteins such as those expressed in AAV2. The degree of relatedness is further suggested by heteroduplex analysis which reveals extensive cross-hybridization between serotypes along the length of the genome; and the presence of analogous self-annealing segments at the termini that correspond to "inverted terminal repeat sequences" (ITRs). The similar infectivity patterns also suggest that the replication functions in each serotype are under similar regulatory control.

[0083] An "AAV vector" as used herein refers to a vector comprising one or more polynucleotides of interest (or transgenes) that are flanked by AAV terminal repeat sequences (ITRs). Such AAV vectors can be replicated and packaged into infectious viral particles when present in a host cell that has been transfected with a vector encoding and expressing rep and cap gene products.

[0084] An "AAV virion" or "AAV viral particle" or "AAV vector particle" refers to a viral particle composed of at least one AAV capsid protein and an encapsidated polynucleotide AAV vector. If the particle comprises a heterologous polynucleotide (i.e. a polynucleotide other than a wild-type AAV genome such as a transgene to be delivered to a mammalian cell), it is typically referred to as an "AAV vector particle" or simply an "AAV vector". Thus, production of AAV vector particle necessarily

includes production of AAV vector, as such a vector is contained within an AAV vector particle.

AAV

[0085] Recombinant AAV genomes of the invention comprise nucleic acid 5 molecule of the invention and one or more AAV ITRs flanking a nucleic acid molecule. AAV DNA in the rAAV genomes may be from any AAV serotype for which a recombinant virus can be derived including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV- 10, AAV-9, AAV-10, AAV-11, AAV-12 and AAV-13. Production of pseudotyped rAAV is 10 disclosed in, for example, WO 01/83692. Other types of rAAV variants, for example rAAV with capsid mutations, are also contemplated. See, for example, Marsic et al., Molecular Therapy, 22(11): 1900-1909 (2014). As noted in the Background section above, the nucleotide sequences of the genomes of various AAV serotypes are known in the art. To promote skeletal muscle specific expression, AAV1, AAV6, AAV8 or 15 AAVrh.74 may be used.

[0086] DNA plasmids of the invention comprise rAAV genomes of the invention. The DNA plasmids are transferred to cells permissible for infection with a helper virus of AAV (e.g., adenovirus, E1-deleted adenovirus or herpes virus) for assembly 20 of the rAAV genome into infectious viral particles. Techniques to produce rAAV particles, in which an AAV genome to be packaged, rep and cap genes, and helper virus functions are provided to a cell, are standard in the art. Production of rAAV requires that the following components are present within a single cell (denoted herein 25 as a packaging cell): a rAAV genome, AAV rep and cap genes separate from (*i.e.*, not in) the rAAV genome, and helper virus functions. The AAV rep and cap genes may be from any AAV serotype for which recombinant virus can be derived and may be from a different AAV serotype than the rAAV genome ITRs, including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV- 7, AAVrh.74, AAV-8, AAV-9, AAV-10, AAV-11, AAV-12 and AAV-13. Production of pseudotyped rAAV is disclosed in, for example, WO 01/83692 which is 30 incorporated by reference herein in its entirety.

[0087] A method of generating a packaging cell is to create a cell line that stably expresses all the necessary components for AAV particle production. For example, a

plasmid (or multiple plasmids) comprising a rAAV genome lacking AAV rep and cap genes, AAV rep and cap genes separate from the rAAV genome, and a selectable marker, such as a neomycin resistance gene, are integrated into the genome of a cell. AAV genomes have been introduced into bacterial plasmids by procedures such as 5 GC tailing (Samulski et al., 1982, Proc. Natl. Acad. S6. USA, 79:2077-2081), addition of synthetic linkers containing restriction endonuclease cleavage sites (Laughlin et al., 1983, Gene, 23:65-73) or by direct, blunt-end ligation (Senapathy & Carter, 1984, J. Biol. Chem., 259:4661-4666). The packaging cell line is then infected with a helper virus such as adenovirus. The advantages of this method are 10 that the cells are selectable and are suitable for large-scale production of rAAV. Other examples of suitable methods employ adenovirus or baculovirus rather than plasmids to introduce rAAV genomes and/or rep and cap genes into packaging cells.

[0088] General principles of rAAV production are reviewed in, for example, Carter, 1992, Current Opinions in Biotechnology, 1533-539; and Muzyczka, 1992, 15 Curr. Topics in Microbial. and Immunol., 158:97-129). Various approaches are described in Ratschin et al., Mol. Cell. Biol. 4:2072 (1984); Hermonat et al., Proc. Natl. Acad. Sci. USA, 81:6466 (1984); Tratschin et al., Mol. Cell. Biol. 5:3251 (1985); McLaughlin et al., J. Virol., 62:1963 (1988); and Lebkowski et al., 1988 Mol. Cell. Biol., 7:349 (1988). Samulski et al. (1989, J. Virol., 63:3822-3828); U.S. Patent 20 No. 5,173,414; WO 95/13365 and corresponding U.S. Patent No. 5,658.776 ; WO 95/13392; WO 96/17947; PCT/US98/18600; WO 97/09441 (PCT/US96/14423); WO 97/08298 (PCT/US96/13872); WO 97/21825 (PCT/US96/20777); WO 97/06243 (PCT/FR96/01064); WO 99/11764; Perrin et al. (1995) Vaccine 13:1244-1250; Paul 25 et al. (1993) Human Gene Therapy 4:609-615; Clark et al. (1996) Gene Therapy 3:1124-1132; U.S. Patent. No. 5,786,211; U.S. Patent No. 5,871,982; and U.S. Patent. No. 6,258,595. The foregoing documents are hereby incorporated by reference in their entirety herein, with particular emphasis on those sections of the documents relating to rAAV production.

[0089] The invention thus provides packaging cells that produce infectious rAAV. 30 In one embodiment packaging cells may be stably transformed cancer cells such as HeLa cells, 293 cells and PerC.6 cells (a cognate 293 line). In another embodiment, packaging cells are cells that are not transformed cancer cells, such as low passage 293 cells (human fetal kidney cells transformed with E1 of adenovirus), MRC-5 cells

(human fetal fibroblasts), WI-38 cells (human fetal fibroblasts), Vero cells (monkey kidney cells) and FRhL-2 cells (rhesus fetal lung cells).

[0090] Recombinant AAV (*i.e.*, infectious encapsidated rAAV particles) of the invention comprise a rAAV genome. In exemplary embodiments, the genomes of 5 both rAAV lack AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genomes. Examples of rAAV that may be constructed to comprise the nucleic acid molecules of the invention are set out in International Patent Application No. PCT/US2012/047999 (WO 2013/016352) incorporated by reference herein in its entirety.

10 **[0091]** The rAAV may be purified by methods standard in the art such as by column chromatography or cesium chloride gradients. Methods for purifying rAAV vectors from helper virus are known in the art and include methods disclosed in, for example, Clark *et al.*, *Hum. Gene Ther.*, 10(6): 1031-1039 (1999); Schenpp and Clark, *Methods Mol. Med.*, 69 427-443 (2002); U.S. Patent No. 6,566,118 and WO 15 98/09657.

[0092] In another embodiment, the invention contemplates compositions comprising rAAV of the present invention. Compositions of the invention comprise rAAV and a pharmaceutically acceptable carrier. The compositions may also comprise other ingredients such as diluents and adjuvants. Acceptable carriers, 20 diluents and adjuvants are nontoxic to recipients and are preferably inert at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants such as ascorbic acid; low molecular weight polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrans; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counter ions such as sodium; and/or nonionic surfactants such as Tween, pluronics or polyethylene glycol (PEG).

25 **[0093]** Titers of rAAV to be administered in methods of the invention will vary depending, for example, on the particular rAAV, the mode of administration, the treatment goal, the individual, and the cell type(s) being targeted, and may be

determined by methods standard in the art. Titers of rAAV may range from about 1×10^6 , about 1×10^7 , about 1×10^8 , about 1×10^9 , about 1×10^{10} , about 1×10^{11} , about 1×10^{12} , about 1×10^{13} to about 1×10^{14} or more DNase resistant particles (DRP) per ml. Dosages may also be expressed in units of viral genomes (vg).

5 [0094] Methods of transducing a target cell with rAAV, *in vivo or in vitro*, are contemplated by the invention. The *in vivo* methods comprise the step of administering an effective dose, or effective multiple doses, of a composition comprising a rAAV of the invention to an animal (including a human being) in need thereof. If the dose is administered prior to development of a disorder/disease, the
10 administration is prophylactic. If the dose is administered after the development of a disorder/disease, the administration is therapeutic. In embodiments of the invention, an effective dose is a dose that alleviates (eliminates or reduces) at least one symptom associated with the disorder/disease state being treated, that slows or prevents progression to a disorder/disease state, that slows or prevents progression of a
15 disorder/disease state, that diminishes the extent of disease, that results in remission (partial or total) of disease, and/or that prolongs survival. An example of a disease contemplated for prevention or treatment with methods of the invention is FSHD.

[0095] Combination therapies are also contemplated by the invention. Combination as used herein includes both simultaneous treatment and sequential
20 treatments. Combinations of methods of the invention with standard medical treatments (*e.g.*, corticosteroids) are specifically contemplated, as are combinations with novel therapies.

[0096] Administration of an effective dose of the compositions may be by routes standard in the art including, but not limited to, intramuscular, parenteral, intravenous,
25 oral, buccal, nasal, pulmonary, intracranial, intraosseous, intraocular, rectal, or vaginal. Route(s) of administration and serotype(s) of AAV components of the rAAV (in particular, the AAV ITRs and capsid protein) of the invention may be chosen and/or matched by those skilled in the art taking into account the infection and/or disease state being treated and the target cells/tissue(s) that are to express the miR-29
30 miRNA and/or micro-dystrophin.

[0097] The invention provides for local administration and systemic administration of an effective dose of rAAV and compositions of the invention including

combination therapy of the invention. For example, systemic administration is administration into the circulatory system so that the entire body is affected. Systemic administration includes enteral administration such as absorption through the gastrointestinal tract and parental administration through injection, infusion or 5 implantation.

[0098] In particular, actual administration of rAAV of the present invention may be accomplished by using any physical method that will transport the rAAV recombinant vector into the target tissue of an animal. Administration according to the invention includes, but is not limited to, injection into muscle, the bloodstream and/or directly 10 into the liver. Simply resuspending a rAAV in phosphate buffered saline has been demonstrated to be sufficient to provide a vehicle useful for muscle tissue expression, and there are no known restrictions on the carriers or other components that can be co-administered with the rAAV (although compositions that degrade DNA should be avoided in the normal manner with rAAV). Capsid proteins of a rAAV may be 15 modified so that the rAAV is targeted to a particular target tissue of interest such as muscle. See, for example, WO 02/053703, the disclosure of which is incorporated by reference herein. Pharmaceutical compositions can be prepared as injectable formulations or as topical formulations to be delivered to the muscles by transdermal transport. Numerous formulations for both intramuscular injection and transdermal 20 transport have been previously developed and can be used in the practice of the invention. The rAAV can be used with any pharmaceutically acceptable carrier for ease of administration and handling.

[0099] The dose of rAAV to be administered in methods disclosed herein will vary depending, for example, on the particular rAAV, the mode of administration, the 25 treatment goal, the individual, and the cell type(s) being targeted, and may be determined by methods standard in the art. Titers of each rAAV administered may range from about 1x10⁶, about 1x10⁷, about 1x10⁸, about 1x10⁹, about 1x10¹⁰, about 1x10¹¹, about 1x10¹², about 1x10¹³, about 1x10¹⁴, or to about 1x10¹⁵ or more DNase resistant particles (DRP) per ml. Dosages may also be expressed in units 30 of viral genomes (vg) (i.e., 1x10⁷ vg, 1x10⁸ vg, 1x10⁹ vg, 1x10¹⁰ vg, 1x10¹¹ vg, 1x10¹² vg, 1x10¹³ vg, 1x10¹⁴ vg, 1x10¹⁵ respectively). Dosages may also be expressed in units of viral genomes (vg) per kilogram (kg) of bodyweight (i.e., 1x10¹⁰ vg/kg, 1x10¹¹ vg/kg, 1x10¹² vg/kg, 1x10¹³ vg/kg, 1x10¹⁴ vg/kg, 1x10¹⁵ vg/kg

respectively). Methods for titering AAV are described in Clark et al., *Hum. Gene Ther.*, 10: 1031-1039 (1999).

[00100] In particular, actual administration of rAAV of the present invention may be accomplished by using any physical method that will transport the rAAV recombinant vector into the target tissue of an animal. Administration according to the invention includes, but is not limited to, injection into muscle, the bloodstream and/or directly into the liver. Simply resuspending a rAAV in phosphate buffered saline has been demonstrated to be sufficient to provide a vehicle useful for muscle tissue expression, and there are no known restrictions on the carriers or other components that can be co-administered with the rAAV (although compositions that degrade DNA should be avoided in the normal manner with rAAV). Capsid proteins of a rAAV may be modified so that the rAAV is targeted to a particular target tissue of interest such as muscle. See, for example, WO 02/053703, the disclosure of which is incorporated by reference herein. Pharmaceutical compositions can be prepared as injectable formulations or as topical formulations to be delivered to the muscles by transdermal transport. Numerous formulations for both intramuscular injection and transdermal transport have been previously developed and can be used in the practice of the invention. The rAAV can be used with any pharmaceutically acceptable carrier for ease of administration and handling.

[00101] For purposes of intramuscular injection, solutions in an adjuvant such as sesame or peanut oil or in aqueous propylene glycol can be employed, as well as sterile aqueous solutions. Such aqueous solutions can be buffered, if desired, and the liquid diluent first rendered isotonic with saline or glucose. Solutions of rAAV as a free acid (DNA contains acidic phosphate groups) or a pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxpropylcellulose. A dispersion of rAAV can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. In this connection, the sterile aqueous media employed are all readily obtainable by standard techniques well-known to those skilled in the art.

[00102] The pharmaceutical carriers, diluents or excipients suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases

the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating actions of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, 5 water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of a dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by 10 various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by use of agents delaying absorption, for example, aluminum monostearate and gelatin.

15 [00103] Sterile injectable solutions are prepared by incorporating rAAV in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those 20 enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying technique that yield a powder of the active ingredient plus any additional desired ingredient from the previously sterile-filtered solution thereof.

[00104] Transduction with rAAV may also be carried out *in vitro*. In one 25 embodiment, desired target muscle cells are removed from the subject, transduced with rAAV and reintroduced into the subject. Alternatively, syngeneic or xenogeneic muscle cells can be used where those cells will not generate an inappropriate immune response in the subject.

[00105] Suitable methods for the transduction and reintroduction of transduced 30 cells into a subject are known in the art. In one embodiment, cells can be transduced *in vitro* by combining rAAV with muscle cells, *e.g.*, in appropriate media, and screening for those cells harboring the DNA of interest using conventional techniques such as Southern blots and/or PCR, or by using selectable markers. Transduced cells

can then be formulated into pharmaceutical compositions, and the composition introduced into the subject by various techniques, such as by intramuscular, intravenous, subcutaneous and intraperitoneal injection, or by injection into smooth and cardiac muscle, using *e.g.*, a catheter.

5 **[00106]** Transduction of cells with rAAV of the invention results in sustained expression of miR-29 or micro-dystrophin. The present invention thus provides methods of administering/delivering rAAV which express of miR-29 and or micro-dystrophin to an animal, preferably a human being. These methods include transducing tissues (including, but not limited to, tissues such as muscle, organs such 10 as liver and brain, and glands such as salivary glands) with one or more rAAV of the present invention. Transduction may be carried out with gene cassettes comprising tissue specific control elements. For example, one embodiment of the invention provides methods of transducing muscle cells and muscle tissues directed by muscle specific control elements, including, but not limited to, those derived from the actin 15 and myosin gene families, such as from the myoD gene family [See Weintraub *et al.*, *Science*, 251: 761-766 (1991)], the myocyte-specific enhancer binding factor MEF-2 [Cserjesi and Olson, *Mol Cell Biol* 11: 4854-4862 (1991)], control elements derived from the human skeletal actin gene [Muscat *et al.*, *Mol Cell Biol*, 7: 4089-4099 (1987)], the cardiac actin gene, muscle creatine kinase sequence elements [See 20 Johnson *et al.*, *Mol Cell Biol*, 9:3393-3399 (1989)] and the murine creatine kinase enhancer (mCK) element, control elements derived from the skeletal fast-twitch troponin C gene, the slow-twitch cardiac troponin C gene and the slow-twitch troponin I gene: hypoxia-inducible nuclear factors (Semenza *et al.*, *Proc Natl Acad Sci USA*, 88: 5680-5684 (1991)), steroid-inducible elements and promoters including 25 the glucocorticoid response element (GRE) (See Mader and White, *Proc. Natl. Acad. Sci. USA* 90: 5603-5607 (1993)), and other control elements.

[00107] Muscle tissue is an attractive target for *in vivo* DNA delivery, because it is not a vital organ and is easy to access. The invention contemplates sustained expression of miRNAs from transduced myofibers.

30 **[00108]** By “muscle cell” or “muscle tissue” is meant a cell or group of cells derived from muscle of any kind (for example, skeletal muscle and smooth muscle, *e.g.* from the digestive tract, urinary bladder, blood vessels or cardiac tissue). Such

muscle cells may be differentiated or undifferentiated, such as myoblasts, myocytes, myotubes, cardiomyocytes and cardiomyoblasts.

[00109] The term “transduction” is used to refer to the administration/delivery of the miiR29 guide strand or the coding region of the micro-dystrophin to a recipient cell either *in vivo* or *in vitro*, via a replication-deficient rAAV of the invention resulting in expression of a miR29 or micro-dystrophin by the recipient cell.

[00110] Thus, the invention provides methods of administering an effective dose (or doses, administered essentially simultaneously or doses given at intervals) of rAAV that encode miR29 and/or micro-dystrophin to a patient in need thereof.

10

EXAMPLES

Example 1

Confirmation of Duchenne Muscular Dystrophy Models

[00111] The *mdx* mouse provides a convenient, yet incomplete, animal model to study DMD pathogenesis. This model is a cross of the *mdx* mouse with a heterozygous knockout of the utrophin gene (*mdx:utrn+/-*), which presents with increased fibrosis and more faithfully recapitulates the pathology of human DMD. *Mdx* mice have a nonsense mutation in exon 23 of DMD that results in a relatively mild phenotype and a near-normal life span. By 3 weeks of age, the diaphragm and limb muscle of *mdx* mice develop signs of endomysial inflammation. These symptoms subside in the limb muscle after the mice reach adulthood while the inflammation in the diaphragm muscle continues to progressively worsen. In *mdx* mice lacking telomerase, muscular dystrophy progressively worsens with age; *mdx* mice lacking utrophin (DKO) have a phenotype more characteristic of human DMD with early onset muscle weakness, severe fibrosis, and premature death. Utrophin, an autosomal paralog of the dystrophin, shares a high degree of sequence homology that may compensate for the lack of dystrophin in the *mdx* mouse in the double KO (dystrophin plus utrophin); a severe phenotype with early death is observed. The premature death in the DKO mouse precludes progression of inflammation and fibrosis, but the *mdx:utrn+/-* mouse presents a model with similarities to the human disease exhibiting a striking degree of fibrosis, and a longer survival than the DKO, providing a better model for our proposed translational studies. A recent report confirms the use of the *mdx:utrn+/-* mouse as an ideal model to study fibrosis in the

context of DMD. In the present study, increased fibrosis as measured by Sirius red staining was accompanied by increased collagen transcript levels and decreased mir29c levels.

Example 2

5 Delivery of miR29 to DMD Mice Reduces Fibrosis

[00112] Preliminary studies have demonstrated that there is a significant increase in Sirius Red staining for collagen and a decrease in miR-29c levels in human DMD patients and the *mdx/utrn^{+/−}* mouse. Gene delivery of miR-29 using muscle specific AAV vectors is potentially safe and efficient. To generate the rAAV vector, referred 10 to herein as rAAVrh.74.CMV.miR29c, the 22 nucleotide miR29c sequence (target strand SEQ ID NO: 3 and guide strand SEQ ID NO: 4) was cloned into a miR-30 scaffold driven by a CMV promoter. The expression cassette (SEQ ID NO: 2) was cloned into a self-complementary AAV plasmid and packaged using AA Vrh.74, a serotype known to express well in muscle. The miR-29c cDNA was synthesized 15 using a custom primer containing the miR-29c target (sense) strand, miR-30 stem loop and miR-29c guide (antisense) strand in the miR-30 backbone. Three bases of the miR-29c sequence were modified. This sequence was then cloned into a self-complementary AAV ITR containing plasmid driven by the CMV promoter and polyA sequence.

20 [00113] As shown in Figure 1, the pAAV.CMV.miR29C plasmid contains the mir29c cDNA in a miR-30 stem loop backbone flanked by AAV2 inverted terminal repeat sequences (ITR). It is this sequence that was encapsidated into AA Vrh.74 virions. In addition, a few nucleotides within the miR-29c target sequence were 25 changed to mimic Watson-crick pairing at this site as in shRNA-miR(luc). According to ShRNA-luc design, the hairpin should be perfectly complementary throughout its length. Plus, the more changes to the passenger strand, the more likely the elimination of any endogenous mechanism that regulates miR-29 processing that could recognize the miRNA via the stem. The 19th base of the guide strand was modified to a cytosine to mimic the nucleotide that precedes the cleavage site in 30 natural mi-29c sequence and the corresponding base on the other strand was changed to preserve pairing.

[00114] The gene therapy vector scrAAVrh.74.CMV.miR29c (1x10¹¹ vgs) was injected into the quadriceps muscle of 3 month old *mdx/utrn^{+/−}* miceQuadriceps

muscle was analyzed 3 months post-injection by Sirius Red staining and analyzed by NIH ImageJ software as described in Nevo et al. (PloS One, 6: e18049 (2011)).

MiR29c, collagen and elastin levels were quantified by RT-PCR. Delivery of miR-29c to young *mdx/utrn* ^{+/−} mice significantly increases mir-29c levels and a significant 5 reduction in Sirius red staining in the quadriceps muscle of 6 month old *mdx/utrn* ^{+/−} mice (3 months post injection). There was a reduction in collagen and elastin levels in the treated muscles when evaluated by RT-PCR.

10 [00115] Demonstration of increased fibrosis and decreased miR29 expression in the *mdx/utrn* ^{+/−} mice and dystrophin-deficient patients validates the mouse model as being representative of the human disease. Initial results using AAV-delivered miR29 as an anti-fibrotic therapy suggest that there is significant beneficial effect with reduction in Sirius Red staining and collagen and elastin levels, which are key contributors in fibrosis.

Example 3

15 Injection of MiR-29c Reduces Collagen and Restores miR-29c

10 [00116] To determine whether rAAVrh.74.CMV.MiR-29c could reduce fibrosis, 12-week-old *mdx/utrn* ^{+/−} mice received an intramuscular injection of rAAVrh.74.CMV.MiR-29c at 5×10^{11} vgs to the left gastrocnemius (GAS) muscle. The mice were analyzed at 12 weeks post injection. Picosirius red staining revealed 20 a significant decrease in collagen staining throughout the GAS muscles (Fig. 2a) compared to the untreated contralateral *mdx/utrn* ^{+/−} GAS muscle. Quantification of the picosirius red staining shows that treated muscle had a 18.3% reduction in collagen compared to the untreated muscle (treated- $23.3\% \pm 1.3$ vs. untreated- $29.5\% \pm 0.7$)(Fig2b). To confirm overexpression of miR-29c in treated muscle, total RNA 25 was extracted from the GAS muscle from 24 week old WT, miR-29c treated and *mdx/utrn* ^{+/−} mice and subjected to quantitative reverse-transcription –PCR (qRT-PCR) analysis for miR-29c expression. The results showed that miR-29c was significantly increased in the GAS muscle of the treated mice compared to untreated mice (Fig. 2d).

30

Example 4

MiR-29c Improves Absolute and Specific Muscle Force but does not protect against Contraction-Induced Damage

[00117] Knowing that fibrosis can impact muscle function, we wanted to test whether reducing fibrosis by increasing expression of MiR-29c could protect mdx/utrn^{+/−} muscle from contraction-induced injury and increase overall force. The functional properties of the gastrocnemius muscle from mdx/utrn^{+/−} mice treated with 5 rAAVrh.74.CMV.MiR-29c were assessed. Twelve weeks post injection, the GAS was isolated to perform *in vivo* force measurements.

[00118] The GAS procedure follows the protocol listed in Hakim et al., (Methods Mol Biol. 709: 75-89, 2011) for analyzing transverse abdominal muscle physiology but adapted for the GAS. Briefly, mice were anesthetized using ketamine/xylazine 10 mixture. The hind limb skin was removed to expose the GAS muscle and the Achilles tendon. The distal tendon was dissected out and a double square knot was tied around the tendon with 4-0 suture as close to the muscle as possible, another second double square knot is tied right next to the first knot and then tendon is cut. The exposed muscle was constantly dampened with saline. Mice were then transferred to a thermal 15 controlled platform and maintained at 37°. The knee was secured to the platform with a needle through the patella tendon, the tendon suture to the level arm of the force transducer (Aurora Scientific, Aurora, ON, Canada), and the foot was secured with tape. The GAS muscle contractions were elicited by stimulating the sciatic nerve via bipolar platinum electrodes. Once the muscle was stabilized, the optimal length was 20 determined by incremental stretching the muscle until the maximum twitch force was achieved. After a 3-minute rest period, the GAS was stimulated at 50,100,150, and 200 Hz, allowing a 1-minute rest period between each stimulus to determine maximum tetanic force. Muscle length was measured. Following a 5-minute rest, the 25 susceptibility of the GAS muscle to contraction-induced damage was assessed. After 500 ms of stimulation, the muscle was lengthened by 10% of the optimal length. This consisted of stimulating the muscle at 150Hz for 700ms. After the stimulation, the muscle was returned to the optimal length. The cycle was repeated every minute for a total of 5 cycles. Specific force was calculated by dividing the maximum tetanic force by the GAS muscle cross sectional area. After the eccentric contractions, the 30 mice were then euthanized and the GAS muscle was dissected out, weighed and frozen for analysis.

[00119] Each GAS was subjected to a series of repeated eccentric contraction. By comparing the force ratio of each contraction versus the first contraction revealed that

after the fifth contraction untreated muscle decayed to 0.56 ± 0.05 versus treated 0.50 ± 0.04 ($p \leq 0.0001$). The injected group showed a slight decrease in the degree of protection compared to WT controls, that decayed to 0.92 ± 0.02 (Fig. 3c). This data shows that reducing fibrosis by increasing expression of miR-29c leads to increase in 5 both absolute and specific force but does not significantly protect muscle from contraction-induced injury.

[00120] rAAVrh.74.MiR-29c treated GAS muscle showed significant improvement in absolute force when compared to untreated mdx/utrn^{+/−} GAS muscle (rAAV.miR-29c- 2277 ± 161.7 vs. mdx/utrn^{+/−} untreated- 1722 ± 145.7 ; Fig. 3a), and also 10 normalized specific force in rAAVrh.74.miR-29c treated GAS muscle specific improvement when compared to untreated GAS muscle (rAAV.miR-29c- 204.7 ± 11.7 vs. mdx/utrn^{+/−} untreated- 151.6 ± 14.5 ; Fig. 3b). Force was still significantly reduced when compared to wild-type controls (rAAV.miR-29c- 204.7 ± 11.7 vs. wild-type- 312.0 ± 34.1).

15

Example 5 Co-delivery with Micro-Dystrophin Further Reduces fibrosis

[00121] To determine whether miR-29c/micro-dystrophin combined gene therapy approach would be more beneficial at reducing fibrosis, 12-week-old mdx/utrn^{+/−} mice received an intramuscular injection of rAAVrh.74.CMV.MiR-29c at 5×10^{11} vgs 20 to the left gastrocnemius muscle. The following gene therapy vectors were administered by intramuscular injection (IM) into the left gastrocnemius (GAS) muscle of 3 month old mdx/utrn^{+/−} mice, a DMD mouse model: scAAVrh.74.CMV.miR-29c alone, co-delivered with rAAVrh.74.MCK.micro-dystrophin, and rAAVrh.74.MCK.micro-dystrophin alone.

25

[00122] The pAAV.MCK.micro-dystrophin plasmid contains the human micro-dystrophin cDNA expression cassette flanked by AAV2 inverted terminal repeat sequences (ITR) as shown in Fig. 10. It is this sequence that was encapsidated into AAV rh.74 virions. The pAAV.MCK.micro-dystrophin plasmid was constructed by inserting the MCK expression cassette driving a codon optimized human micro-dystrophin cDNA sequence into the AAV cloning vector as described in Rodino-Klapac et al. (Mol Ther. 2010 Jan;18(1):109-17). A MCK promoter/enhancer sequence was used to drive muscle-specific gene expression and is composed of the mouse MCK core enhancer (206 bp) fused to the 351 bp MCK core promoter 30

(proximal). After the core promoter, the 53 bp endogenous mouse MCK Exon1 (untranslated) is present for efficient transcription initiation, followed by the SV40 late 16S/19S splice signals (97 bp) and a small 5'UTR (61 bp). The intron and 5' UTR are derived from plasmid pCMV β (Clontech). The micro-dystrophin cassette 5 has a consensus Kozak immediately in front of the ATG start and a small 53 bp synthetic polyA signal for mRNA termination. The human micro-dystrophin cassette contains the (R4–R23/Δ71–78) domains. The complementary DNA was codon optimized for human usage and synthesized by GenScript (Piscataway, NJ).

[00123] The mice were analyzed at 12 and 24 weeks post injection. First, the 10 number of muscle fibers expressing micro-dystrophin was used to assess the efficacy of transgene delivery and to make sure we had similar levels of micro-dystrophin expressed in each group. We found that micro-dystrophin was not different between cohorts treated with micro-dystrophin alone ($71.85\pm2.25\%$) compared with miR-29c/micro-dystrophin combination therapy ($75.03\pm1.91\%$) (Fig.4).

[00124] GAS muscle was analyzed 12 months post-injection to assess collagen 15 accumulation by Sirius Red staining and subsequent quantification with ImageJ. Additional outcomes included miR-29c and collagen transcript levels, force measurements in the GAS muscle, fiber diameter measurements and western blot analysis for proteins involved in muscle regeneration (MyoD, Myogenin). The 20 amount of fibrosis was analyzed by picosirius red staining, which revealed a significant decrease in collagen staining throughout the GAS muscles in all treated groups (Fig. 5a) compared to the untreated contralateral mdx/utrn $^{+/-}$ GAS muscle or micro-dystrophin alone. Quantification of the picosirius red staining shows that co-treated muscle had a 40.8% reduction in collagen compared to the untreated muscle 25 (treated- 17.47 ± 0.75 vs. untreated- 29.5 ± 0.7) (Fig. 5b). To confirm expression of miR-29c, qRT-PCR was performed on the GAS muscle and all treatment groups had an increase in miR-29c compared to untreated muscle (Fig. 5c).

[00125] Analogous to DMD tissue, a significant reduction in miR-29c levels in mdx/utrn $^{+/-}$ muscle was observed which correlated with increased fibrosis measured 30 by picosirius red staining. Following 3 months of treatment with scAAV.miR-29c alone, there was a significant reduction in fibrosis (treated- 23.5 ± 1.3 vs. untreated- 27.8 ± 0.6) in the GAS muscle. When co-delivered with micro-dystrophin, further reduction in collagen (41%) was observed by picosirius red staining (combination

treatment: $17.47\% \pm 0.75$ vs. untreated: $29.5\% \pm 0.7$ ($p < 0.0001$) (Fig. 5b). To confirm expression of miR-29c, qRT-PCR was performed on the GAS muscle and all treatment groups had an increase in miR-29c compared to untreated muscle (Fig. 5b).

[00126] At 24 weeks post-injection, the results were similar to those observed 12 weeks post injection. There was a 47% reduction in collagen by picrosirius red staining compared to the untreated muscle (combination treatment: 16.5 ± 1.23 vs. untreated: 31.07 ± 0.93 ; $p < 0.0001$) and a coincident increase in miR-29c transcript level.

[00127] To further validate reduction of collagen observed by picrosirius red staining, qRT-PCR was performed on the muscle to quantify transcript levels of Col1A, Col3A and also another ECM component, fibronectin (Fbn). qRT-PCR analysis detected a decrease in Col1A and Col3A following each treatment, however only the cohort treated with both micro-dystrophin and miR-29c showed significant reduction (Fig. 6a and 6b). The analysis revealed that Fbn was significantly reduced only in the co-treated cohort (Fig. 6c).

[00128] TGF- β 1 has been previously shown to be up regulated in dystrophic muscle, likely playing a role in the initiation of the fibrotic cascade. TGF- β 1 is a known pro-fibrotic cytokine that down regulates miR-29c and is responsible for conversion of myoblasts to myofibroblasts with an increase in collagen and muscle fibrogenesis. qRT-PCR analysis shows that co-treated muscle had significantly lower levels of TGF- β 1 compared to uninjected muscle and either treatment alone (Fig. 6d). At 6 months post injection, co-treated muscle continued to show reduced Col1A, Col3A, Fbn and TGF- β 1 levels, whereas only slight reductions in Col1A mRNA levels in the miR-29 and the micro-dystrophin only groups were observed

[00129] An increase in specific and absolute force was observed in the muscle treated with miR-29c alone compared to the untreated limb, which when combined with micro-dystrophin led to absolute and specific force that were not significantly different than wild-type. We also observed a significant increase in gastroc weight in those muscles that were co-treated.

[00130] Initial results using rAAV.miR-29c as an anti-fibrotic therapy suggest that there is beneficial effect with reduction in collagen levels, a key contributor in

fibrosis. Moreover, when combined with micro-dystrophin to improve membrane stability, miR29 up regulation normalized muscle force.

Example 6

5 Further Increase in Absolute Force and Added Protection from Contraction-induced Damage

[00131] Knowing that miR-29-treated muscle had a modest but significant increase in absolute and specific force, the combination therapy of miR-29c overexpression and micro-dystrophin gene replacement impact on muscle function was investigated. Twelve weeks post injection, we isolated the GAS for which we performed in vivo 10 force measurements. The rAAVrh.74.MiR-29c vector described above in Example 2 and a rAAV

[00132] Co-treated rAAVrh.74.MiR-29c and rAAV expressing Micro-Dys treated GAS muscle showed significant improvement in absolute force when compared to untreated mdx/utrn^{+/−} GAS muscle (co-treated- 3582.4 ± 79.4 nM vs. mdx/utrn^{+/−} 15 untreated- 1722 ± 145.7 nM vs. wild-type- 3005 ± 167.3 nM) (Fig. 7), and also normalized specific force in rAAVrh.74.miR-29c/micro-dys treated GAS muscle specific improvement when compared to untreated GAS muscle (co-treated mice- 244.2 ± 6.6 nM/mm² vs. mdx/utrn^{+/−} untreated- 151.6 ± 14.5 nM/mm² vs. 312.0 ± 34.1 nM/mm²) (Fig 7). Both absolute and specific force was not significantly 20 different from wild-type controls.

[00133] Each GAS was subjected to a series of repeated eccentric contraction. By comparing the force ratio of each contraction versus the first contraction revealed that after the fifth contraction untreated muscle decayed to 0.54 ± 0.06 versus co-treated 25 0.66 ± 0.04 ($p \leq 0.0001$), which can be contributed to the micro-dystrophin since the micro-dystrophin alone also decayed to 0.66 ± 0.04 . The treated group was still significantly lower than wild-type that decayed to 0.92 ± 0.02 (Fig. 7c). Similar findings were seen at 24 weeks post injection This data shows that reducing fibrosis and gene replacement leads to increase in both absolute and specific force and significantly protects muscle from contraction-induced injury.

30 Example 7

Combination treatment increases muscle hypertrophy and hyperplasia

[00134] MiR-29c co-delivered with micro-dystrophin increased the overall weight of the injected gastroc compared to either one injected alone at three months of age

(Fig. 8, Fig. 9a). To investigate the source of increased muscle mass, myofiber diameters are measured. miR-29c/μ-dys combination treatment demonstrated an increase in average fiber size. Comparing mdx/utrn^{+/−} controls with miR-29c/μ-dys treated mdx/utrn^{+/−}, the average diameter increased from 25.96 to 30.97 μm (Fig. 9b). 5 The co-delivery produced a shift towards wild-type fiber size distribution (Fig. 9c). Although the average fiber size was increased does not explain the ~30% increase in gross muscle weight. Total cross-sectional area of the muscle was also measured. Gastroc muscles from all groups were full slide scanned and the total area was measured. Muscles co-treated with micro-dys/miR-29c had a significant increase in 10 cross sectional area compared to untreated and either treatment alone (uninjected: 24.6 vs. miR-29c: 26.3 vs. micro-dys: 26.6 vs. micro-dys/miR-29c: 33.1) (Fig. 8, Fig. 9d).

15 **[00135]** miR-29c has been reported it to play a role in the myoD/Pax7/myogenin pathway and it was hypothesized that miR-29c may be impacting regeneration and activation of satellite cells (muscle stem cells) to differentiate in myogenic lineage. To test this, the total number of muscle fibers from the full slide scanned images was counted. An increased number of muscle fibers following miR-29c/μ-dys combination treatment (Fig. 9e). Finally, given that muscle fiber diameters in 20 mdx/utrn^{+/−} mice are heterogeneous with many small fibers and some hypertrophic fibers, it was determined whether the number of fibers per unit area (cells/mm²) was affected with treatment. miR-29c/μ-dys combination treatment was not different than wild-type (Fig. 9f).

Example 8

Early Treatment With Combination Prevents Fibrosis

25 **[00136]** In view of the potential importance of combinatorial miR-29c and micro-dystrophin as a prophylactic therapy for DMD, a cohort of younger mdx/utrn^{+/−} mice were treated at 4 weeks of age. Using the same paradigm as for other groups as described herein, the following treatments were compared for efficacy for prevention of fibrosis by intramuscular injection of GAS: scAAVrh.74.CMV.miR-29c alone, 30 ssAAVrh74.MCK.micro-dystrophin + scAAVrh.74.CMV.miR-29c combination therapy, or ssAAVrh74.MCK.micro-dystrophin alone at the same dose. The mice were necropsied 12 weeks post injection. A significant decrease in collagen staining throughout the GAS muscles in all treated groups compared to the untreated

contralateral *mdx/utrn*^{+/−} GAS muscle was observed (Fig. 10A). Quantification of the picrosirius red staining showed that muscle co-treated with micro-dystrophin/miR-29c had a 51% reduction in collagen compared to the untreated muscle (treated- 11.32%± 1.18 vs. untreated-23.15% ±0.90) (p<0.0001) (Fig. 10) and qRT-PCR confirmed

5 Col1A, Col3A, Fbn and TGF-β1 reduction following combinatorial therapy (Fig. 10D and E).

Example 9

Early Combination Therapy Restores Force and Protects from Contraction-Induced Damage Better than Late Treatment

10

[00137] *In vivo* force measurement was carried out on the GAS of the mice treated early with the combination therapy as described in Example 8. In 4-week-old *mdx/utrn*^{+/−} mice, co-treatment using miR-29c/micro-dystrophin showed significant improvement in absolute force when compared to untreated *mdx/utrn*^{+/−} mice and there was no difference from wild type (co-treated: 2908± 129.5 mN vs. untreated: 1639.4± 116.9 mN vs. wild-type: 3369.73± 154.1 mN). Specific force was also normalized to wild type levels following combinatorial therapy (co-treated 338.9 ± 22.34 mN/mm² vs. untreated 184.3 ± 13.42 mN/mm² vs. WT 364.3 ± 7.79 mN/mm²) (Fig. 11A and B and 12).

15

[00138] Next, each GAS was subjected to a series of repeat eccentric contractions. By comparing the force ratio of each contraction by the fifth contraction, untreated muscle decayed to 0.53± 0.04 versus co-treated 0.82± 0.04 (p ≤ 0.0001). The combinatorial treatment group was slightly lower than wild type but not significantly different, which decayed to 0.93 ± 0.01 (Fig. 11C). These data show that reducing 25 fibrosis and gene replacement lead to increase in both absolute and specific force and significantly protects muscle from contraction-induced injury.

25

[00139] These experiments suggest that gene replacement should be started in the newborn period. Efforts are clearly moving in the direction of identifying DMD and other muscular dystrophies in the newborn period. The Ohio Newborn Screening Study illustrates the potential for identification of DMD in newborns using CK 7 Neurol. as a biomarker (>2000 U/L) with DNA confirmation on the same dried blood spot (Mendell et al., Ann. Neurol. 71: 304-313, 2012). This methodology is now being extended to other states in the USA (PPMD May 16, 2016: Next Steps with

Newborn Screening) and in other countries, particularly the UK (UK National Screening Committee) and China (Perkin Elmer™ launches screening in China).

[00140] miR-29 has also shown promise as a treatment modality for cardiac, pulmonary, and liver fibrosis. Myocardial infarction in mice and humans is 5 associated with miR-29 down-regulation. Rooij et al. (Proc. Natl. Acad. Sci, USA 105:13027-13032, 2008) demonstrated that exposing fibroblasts to a miR-29b mimic decreased collagen transcripts providing a path for clinical translation for cardiac fibrosis. Subsequent studies showed that in a bleomycin-induced pulmonary fibrosis mouse model, attenuation of fibrosis could be achieved using the Sleeping Beauty 10 (SB) transposon system-based delivery of miR-29b.14. Currently, a miR-29b mimic is in a clinical Phase 1 Safety-Tolerability local intradermal trial in healthy volunteers (miRagen Therapeutics™ MRG-201). Compared to miR-29 oligonucleotide delivery that would require repeated administration related to the half-life of the oligonucleotides, AAV gene therapy could potentially provide a path for single- 15 delivery gene transfer.

Example 10

Treatment with Muscle Specific Expression of miR-29 and Micro-dystrophin Reduced Fibrosis and ECM Expression

[00141] AAV vectors comprising the miR29c sequence and a muscle specific 20 promoter MCK were also generated and tested as a combination therapy with AAV vectors expressing micro-dystrophin. To generate the rAAV vector, referred to herein as rAAV.MCK.miR29c, the 22 nucleotide miR29c sequence (target strand SEQ ID NO: 3 and guide strand SEQ ID NO: 4) was cloned into a miR-30 scaffold driven by a MCK promoter (SEQ ID NO: 11). The expression cassette (SEQ ID NO: 12) was 25 cloned into a single stranded AAV plasmid and packaged using AAVrh74, a serotype known to express well in muscle. The miR-29c cDNA was synthesized using a custom primer containing the miR-29c target (sense) strand, miR-30 stem loop and miR-29c guide (antisense) strand in the miR-30 backbone. Three bases of the miR-29c sequence were modified. This sequence was then cloned into a single stranded 30 AAV ITR containing plasmid driven by the MCK promoter and polyA sequence.

[00142] The pAAV.MCK.miR29C plasmid contains the mir29c cDNA in a miR-30 stem loop backbone flanked by AAV2 inverted terminal repeat sequences (ITR). It is this sequence that was encapsidated into AAVrh74 virions. In addition, a few

nucleotides with in the miR-29c target sequence were changed to mimic Watson-crick pairing at this site as in shRNA-miR(luc). According to ShRNA-luc design, the hairpin should be perfectly complementary throughout its length. Plus, the more changes to the passenger strand, the more likely the elimination of any endogenous 5 mechanism that regulates miR-29 processing that could recognize the miRNA via the stem. The 19th base of the guide strand was modified to a cytosine to mimic the nucleotide that precedes the cleavage site in natural mi-29c sequence and the corresponding base on the other strand was changed to preserve pairing.

[00143] Early treatment of AAV.MCK.miR-29c/micro-dystrophin combination 10 therapy was more effective at reducing fibrosis and ECM expression. 4-5-week-old mdx/utrn^{+/+} mice received an intramuscular injection of rAAVrh.74.MCK.MiR-29c and rAAVrh74.MCK.micro-dystrophin at 5x10¹¹ vgs to the left gastrocnemius muscle as described in Example 5. The muscles were harvested twelve weeks post injection. Picosirius red staining of muscle harvested from uninjected and mice injected with 15 combination therapy of rAAV.MCK.miR-29c/rAAV.MCK.micro-dystrophin showed co-treated muscle had a 50.9% reduction in collagen compared to untreated GAS muscle (See Fig. 13a and 13b). qRT-PCR confirmed an increase in miR-29c transcript levels in the treated cohort (Fig. 13c). Semi-quantitative qRT-PCR showed a significant reduction in Collagen A1 and Collagen 3A (Fig. 13d, e), Fibronectin 20 (Fig. 13f) and Tgf β 1 (Fig. 13g) levels in the AAV.MCK.miR-29c/AAV.micro-dystrophin treated muscle compared to the contralateral limb therapies. (*p<0.05, ****p<0.0001). Late treatment of AAV.MCK.miR-29c/micro-dystrophin combination therapy is effective at reducing fibrosis and ECM expression. Three month old mdx/utrn^{+/+} mice received an intramuscular injection of 25 rAAVrh.74.MCK.MiR-29c and rAAVrh.74.MCK.micro-dystrophin at 5x10¹¹ vgs to the left gastrocnemius muscle as described in Example 5. The muscles were harvested twelve weeks post injection. Picosirius red staining of untreated, AAV.MCK.miR-29c and AAV.MCK.miR-29c/AAV.micro-dystrophin treated muscle showed co-treated muscle had a 30.3 % reduction in collagen compared to untreated 30 GAS muscle (See Fig. 14a and 14b) qRT-PCR confirmed an increase in miR-29c transcript levels in the treated cohorts (Fig. 14c). Semi-quantitative qRT-PCR shows a significant reduction in Collagen 1A and Collagen 3A (Fig. 14d, e), Fibronectin (Fig. 14f) and Tgf β 1 (Fig. 14G) levels in the AAV.miR-29c/AAV.micro-dystrophin

treated muscle compared to the contralateral limb. One-way ANOVA. All data represent mean \pm SEM. (** p<0.01, ****p<0.0001).

Example 11

5 Early Combination Therapy Restores Force and Protects from Contraction-Induced Damage Better than Late Treatment

[00144] *In vivo* force measurement was carried out on the GAS of the mice treated early with the muscle-specific expression of miR-29 and micro-dystrophin, as described in Examples 8 and 9. In 4-week-old *mdx/utrn*^{+/−} mice, co-treatment using 10 rAAV.MCK.miR-29c/and rAAV expressing micro-dystrophin showed significant improvement in absolute force when compared to untreated *mdx/utrn*^{+/−} mice and there was no difference from wild type (Fig. 15a). Specific force was also normalized to wild type levels following combination therapy (Fig. 15b).

[00145] Muscles were then assessed for loss of force following repetitive eccentric 15 contractions as described in Example 9. Mice co-treated with rAAV.MCK.miR-29c/rAAV.MCK.micro-dystrophin and rAAV.MCK.micro-dystrophin alone showed a protection from loss of force compared with untreated *mdx/utrn*^{+/−} muscles (Fig. 15c).

[00146] In 12-week-old *mdx/utrn*^{+/−} mice, co-treatment using rAAV.MCK.miR-20 29c/and rAAV expressing micro-dystrophin restored force and protected against contraction-induced damage. Measurement of absolute (Fig. 16a) and normalized specific force (Fig. 16b) following tetanic contraction rAAV.MCK.miR-29c and rAAV expressing micro-dystrophin injected GAS muscles were significantly increased compared to untreated *mdx/utrn*^{+/−} muscle. Subsequently, muscles were 25 assessed for loss of force following repetitive eccentric contractions as described in Example 9. Mice co-treated with MCK.miR-29c/micro-dystrophin showed a protection from loss of force compared with untreated *mdx/utrn*^{+/−} muscles (Fig. 16c). These data show that reducing fibrosis and gene replacement lead to increase in both 30 absolute and specific force and significantly protects muscle from contraction-induced injury.

Example 12

Early Combination treatment increases muscle hypertrophy and hyperplasia

[00147] Co-delivery of rAAV.MCK.miR-29 with rAAV expressing micro-dystrophin did not increase overall weight of the injected gastroc compared to either

one injected alone at three months post-injection (Fig.17a). Myofiber diameters were also measured. miR-29c/micro-dystrophin combination treatment demonstrated an increase in average fiber size. Comparing *mdx/utrn^{+/−}* controls with miR-29c/micro-dystrophin treated *mdx/utrn^{+/−}*, the average diameter increased from 28.96 to 36.03 μ m (Fig. 17b). The co-delivery produced a shift towards wild-type fiber size distribution (Fig. 17c). The number of muscle fibers per mm² in the miR-29c/micro-dystrophin combination treatment was significantly less than untreated mice and wild-type (Fig. 17d; ***p<0.01, ****p<0.0001).

REFERENCES

- 10 1. Hoffman, E.P., Brown, R.H., Jr. & Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. *Cell* **51**, 919-928 (1987).
2. Straub, V. & Campbell, K.P. Muscular dystrophies and the dystrophin-glycoprotein complex. *Curr Opin Neurol* **10**, 168-175 (1997).
3. Sacco, A., *et al.* Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in *mdx/mTR* mice. *Cell* **143**, 1059-1071 (2010).
- 15 4. Wallace, G.Q. & McNally, E.M. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. *Annu Rev Physiol* **71**, 37-57 (2009).
5. Zhou, L. & Lu, H. Targeting fibrosis in Duchenne muscular dystrophy. *J Neuropathol Exp Neurol* **69**, 771-776 (2010).
- 20 6. Desguerre, I., *et al.* Endomysial fibrosis in Duchenne muscular dystrophy: a marker of poor outcome associated with macrophage alternative activation. *J Neuropathol Exp Neurol* **68**, 762-773 (2009).
7. Kim, J., *et al.* microRNA-directed cleavage of ATHB15 mRNA regulates 25 vascular development in *Arabidopsis* inflorescence stems. *Plant J* **42**, 84-94 (2005).
8. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. *Cell* **113**, 673-676 (2003).
9. Eisenberg, I., *et al.* Distinctive patterns of microRNA expression in primary 30 muscular disorders. *Proc Natl Acad Sci U S A* **104**, 17016-17021 (2007).
10. Jiang, X., Tsitsiou, E., Herrick, S.E. & Lindsay, M.A. MicroRNAs and the regulation of fibrosis. *FEBS J* **277**, 2015-2021 (2010).

11. van Rooij, E., *et al.* Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. *Proc Natl Acad Sci U S A* **105**, 13027-13032 (2008).
12. Cacchiarelli, D., *et al.* MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. *Cell Metab* **12**, 341-351 (2010).
13. DiPrimio, N., McPhee, S.W. & Samulski, R.J. Adeno-associated virus for the treatment of muscle diseases: toward clinical trials. *Curr Opin Mol Ther* **12**, 553-560 (2010).
14. Mendell, J.R., *et al.* Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. *Ann Neurol* **68**, 629-638 (2010).
15. Mendell, J.R., *et al.* Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. *Ann Neurol* **66**, 290-297 (2009).
16. Mendell, J.R., *et al.* A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. *Molecular therapy : the journal of the American Society of Gene Therapy* **23**, 192-201 (2015).
17. Carnwath, J.W. & Shotton, D.M. Muscular dystrophy in the mdx mouse: histopathology of the soleus and extensor digitorum longus muscles. *J Neurol Sci* **80**, 39-54 (1987).
18. Coulton, G.R., Morgan, J.E., Partridge, T.A. & Sloper, J.C. The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. *Neuropathol Appl Neurobiol* **14**, 53-70 (1988).
19. Cullen, M.J. & Jaros, E. Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. *Acta Neuropathol* **77**, 69-81 (1988).
20. Dupont-Versteegden, E.E. & McCarter, R.J. Differential expression of muscular dystrophy in diaphragm versus hindlimb muscles of mdx mice. *Muscle Nerve* **15**, 1105-1110 (1992).
21. Stedman, H.H., *et al.* The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. *Nature* **352**, 536-539 (1991).
22. Deconinck, A.E., *et al.* Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. *Cell* **90**, 717-727 (1997).

23. Grady, R.M., *et al.* Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. *Cell* **90**, 729-738 (1997).

24. Love, D.R., *et al.* An autosomal transcript in skeletal muscle with homology to dystrophin. *Nature* **339**, 55-58 (1989).

5 25. Tinsley, J.M., *et al.* Primary structure of dystrophin-related protein. *Nature* **360**, 591-593 (1992).

26. Tinsley, J., *et al.* Expression of full-length utrophin prevents muscular dystrophy in mdx mice. *Nat Med* **4**, 1441-1444 (1998).

10 27. Squire, S., *et al.* Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. *Hum Mol Genet* **11**, 3333-3344 (2002).

28. Rafael, J.A., Tinsley, J.M., Potter, A.C., Deconinck, A.E. & Davies, K.E. Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. *Nat Genet* **19**, 79-82 (1998).

15 29. Zhou, L., *et al.* Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. *J Neurol Sci* **264**, 106-111 (2008).

30. Gutpell, K.M., Hrinivich, W.T. & Hoffman, L.M. Skeletal Muscle Fibrosis in the mdx/utrn+/- Mouse Validates Its Suitability as a Murine Model of Duchenne Muscular Dystrophy. *PloS one* **10**, e0117306 (2015).

20 31. Rodino-Klapac, L.R., *et al.* Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. *Human molecular genetics* **22**, 4929-4937 (2013).

32. Cushing, L., *et al.* MIR-29 is a Major Regulator of Genes Associated with Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* (2010).

25 33. Roderburg, C., *et al.* Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. *Hepatology* **53**, 209-218 (2011).

34. Nevo, Y., *et al.* The Ras antagonist, farnesylthiosalicylic acid (FTS), decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy. *PloS one* **6**, e18049 (2011).

30 35. Rodino-Klapac, L.R., *et al.* A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. *J Transl Med* **5**, 45 (2007).

36. Mulieri, L.A., Hasenfuss, G., Ittleman, F., Blanchard, E.M. & Alpert, N.R. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. *Circ Res* **65**, 1441-1449 (1989).
37. Rodino-Klapac, L.R., *et al.* Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery. *Molecular therapy : the journal of the American Society of Gene Therapy* **18**, 109-117 (2010).
38. Grose, W.E., *et al.* Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer. *PLoS one* **7**, e39233 (2012).
39. Liu, M., *et al.* Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. *Mol Ther* **11**, 245-256 (2005).

Throughout the specification and claims, unless the context requires otherwise, the word "comprise" or variations such as "comprises" or "comprising", will be understood to imply 15 the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

What is claimed:

1. A recombinant AAVrh.74 vector comprising in the 5' to 3' direction an inverted terminal repeat (ITR), a muscle-specific control element, a chimeric intron sequence, the nucleotide sequence of SEQ ID NO: 7, a poly A tail, and an ITR.
- 5 2. The recombinant AAVrh.74 vector of claim 1 wherein the muscle-specific control element comprises the nucleotide sequence of SEQ ID NO: 10 or SEQ ID NO: 11.
3. The recombinant AAVrh.74 vector of claim 1 or 2 further comprising a chimeric intron sequence between said nucleotide sequence and said muscle-specific control element, wherein the chimeric intron sequence is set forth as nucleotides 844-993 of SEQ ID NO:9.
- .0 4. The recombinant AAVrh.74 vector of claim 1 further comprising a poly A tail 3' of said nucleotide sequence, wherein the sequence of said poly A tail is set forth as nucleotides 4585 to 4640 of SEQ ID NO:9.
5. A composition comprising the recombinant AAVrh.74 vector of any one of claims 1-4 and a pharmaceutically acceptance carrier.
- .5 6. A method of treating muscular dystrophy in a subject, the method comprising administering a therapeutically effective amount of the recombinant AAVrh.74 vector of any one of claims 1-4 or the composition of claim 5 to the subject.
7. A method of reducing or preventing fibrosis in a subject suffering from muscular dystrophy , the method comprising administering a therapeutically effective amount of the recombinant AAVrh.74 vector of any one of claims 1-4 or the composition of claim 5 to the subject.
- 20 8. A method of increasing muscular force or muscle mass in a subject suffering from muscular dystrophy , the method comprising administering a therapeutically effective amount of the recombinant AAVrh.74 vector of any one of claims 1-4 or the composition of claim 5.
- 25 9. The method of claim 7 or claim 8, wherein the composition is administered before fibrosis is observed in the subject or before muscle force is reduced in the subject or before muscle mass is reduced in the subject.

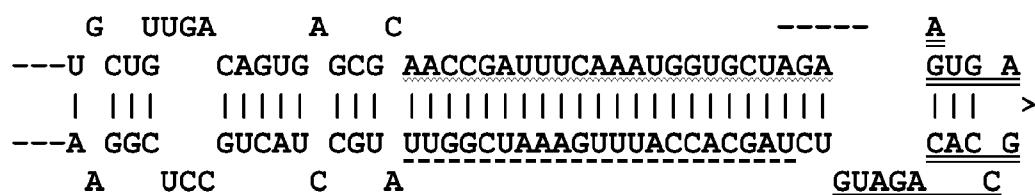
10. The method of any one of claims 7-9 wherein the subject is suffering from Duchenne muscular dystrophy or Becker muscular dystrophy.
11. The method of any one of claims 7-10 wherein the administering is by intramuscular administration, intravenous injection, parental administration or systemic administration.
- 5 12. A method of producing a functional micro-dystrophin protein comprising infecting a host cell with the recombinant AAVrh.74 vector of any one of claims 1-4 and expressing a functional micro-dystrophin protein in the host cell.
13. Use of the recombinant AAVrh.74 vector of any one of claims 1-4 or the composition of claim 5 in the preparation of a medicament for treatment of muscular dystrophy.
- .0 14. Use of the recombinant AAVrh.74 vector of any one of claims 1-4 or the composition of claim 5 in the preparation of a medicament for reducing or preventing fibrosis in a subject suffering from muscular dystrophy.
- .5 15. Use of the recombinant AAVrh.74 vector of any one of claims 1-4 or the composition of claim 5 in the preparation of a medicament for increasing muscular strength or muscle mass in a subject suffering from muscular dystrophy.
16. The use of any one of claims 13-15 wherein the medicament is administered before fibrosis is observed in the subject or before muscle force is reduced in the subject or before muscle mass is reduced in the subject.
- 20 17. The use of any one of claims 13-16, wherein the subject is suffering from Duchenne muscular dystrophy or Becker muscular dystrophy.
18. The composition or use of any one of claims 13-17, wherein the composition or medicament is formulated for intramuscular administration, intravenous injection, parental administration or systemic administration.
- 25 19. A method of producing a functional micro-dystrophin protein comprising infecting a host cell with a recombinant AAVrh.74 vector of any one of claims 1-4 and expressing a functional micro-dystrophin protein in the host cell.

Figure 1

SEQ ID NO: 2: miR-29C IN A miR-30 BACKBONE

GGCCGGCC~~gtttgaatgagggttcagtactttacagaat~~CGTTGCCTGCACATCTTGGAAACACTTGCTGGGATTACT
 TCTTCAGGTTAACCCAACAGAAGGCTGAGAAGGTATATTGCTGTTGACAGTGAGCGCAACCGA
 TTCAAAATGGTGCTAGAGTGAAGGCCACAGATGTCTAGCACCATTGAATCGGTTATGCCTACTG
 CCTCGGAATTCAAGGGCTACTTTAGGAGCAATTATCTTGTACTAAAACGTGAATAACCTTGCTA
 TCTCTTGATA~~CATTGGCCGGCC~~

FSE-I cut site (restriction site)


miR-30 backbone

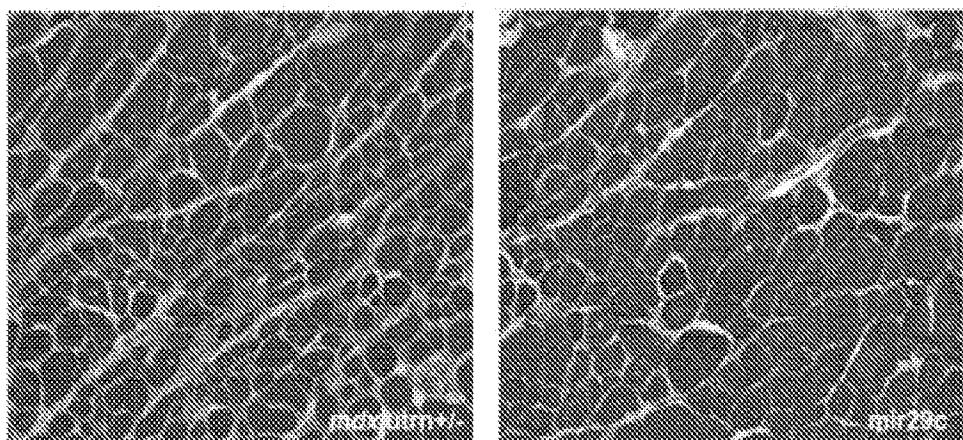
miR-30 stem loop (GTGAAGGCCACAGATG; SEQ ID NO: 5)

miR-29c target (sense) strand (ACCGATTCAAATGGTGCTAGA; SEQ ID NO:3)

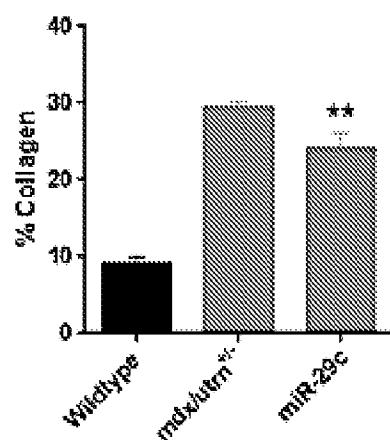
miR-29c guide (antisense) strand (TCTAGCACCATTGAAATCGGTTA; SEQ ID NO: 4)

Predicted hairpin structure (SEQ ID NO: 6)

miR-29C


a ~ ggc ucc ~ u
 ucucuuaca ca ugaccgauuc ugguguu cagag c
 ||||| ||||| ||||| ||||| ||||| ||||| u
 gggggaugu gu auuggcuuaag accacga guuu g
 a a ~ uuu uuu uuu u
 a a ~ uuu uuu uuu u

miR-30a


a uc ~ a
 gcg cuguaaacaaucc gacuggaagcu gug a
 ||||| ||||| ||||| ||||| ||||| ||||| u
 cgu gacguuuguagg cuacuuuucgg cac g
 c ~ guaaa c

shRNA-miR (luc)

-----UG UUGA A C ||| ||| A
 CUG CAGUG GCG CGCCUGAAGUCUCUAAUUA GUG A
 GGC GUCAU CGU CGGGACUUCAGAGACUAUUA GAG G
 -----A UCC C ||| GUAGA C
 Drosha Dicer

Figure 2A**Figure 2B**

Sirius Red

Figure 2C

miR-29c

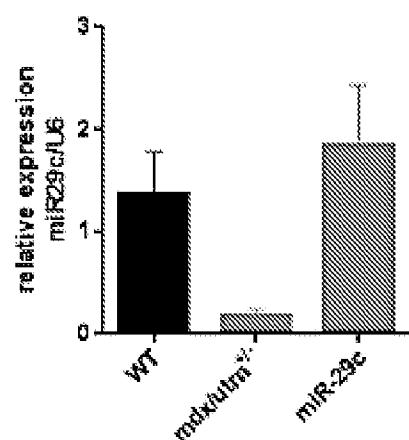


Figure 3A

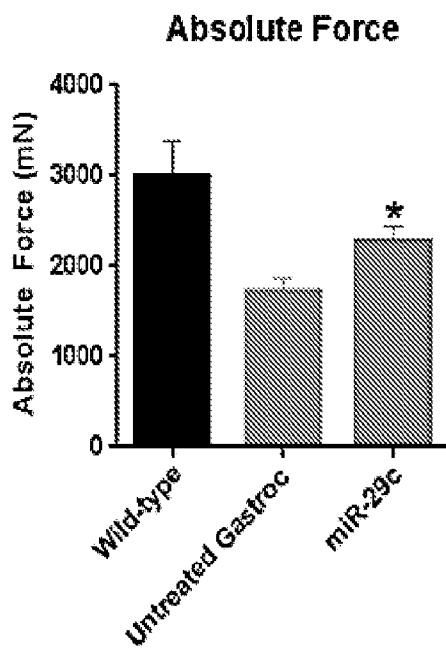


Figure 3B

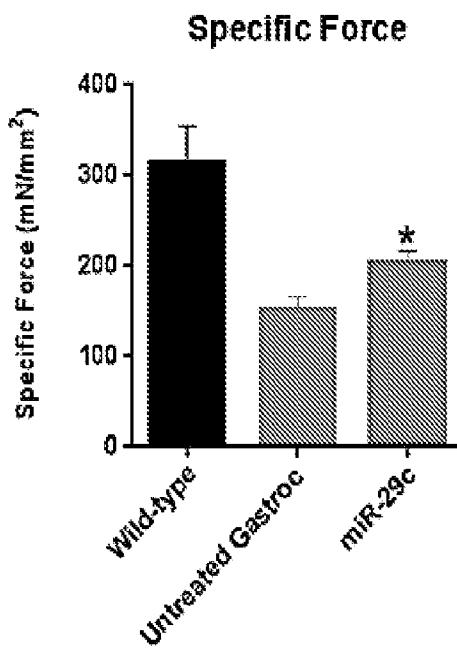


Figure 3C

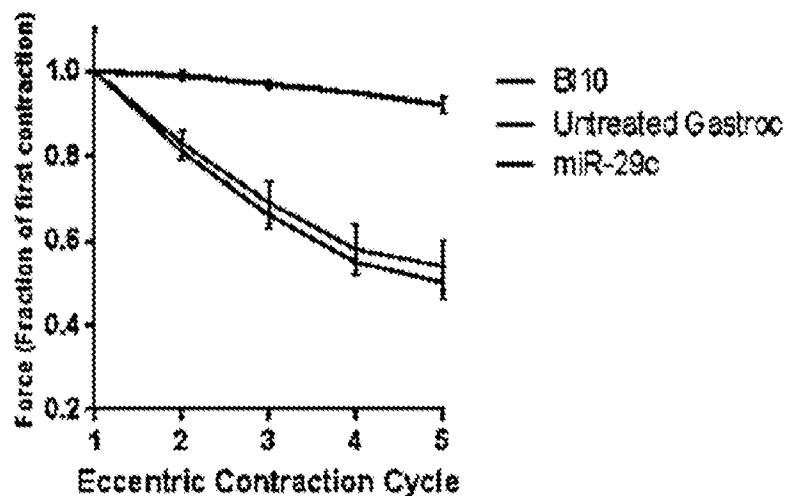


Figure 4C

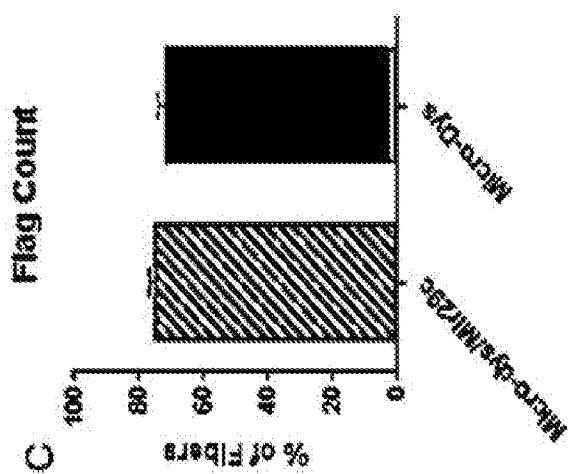


Figure 4B

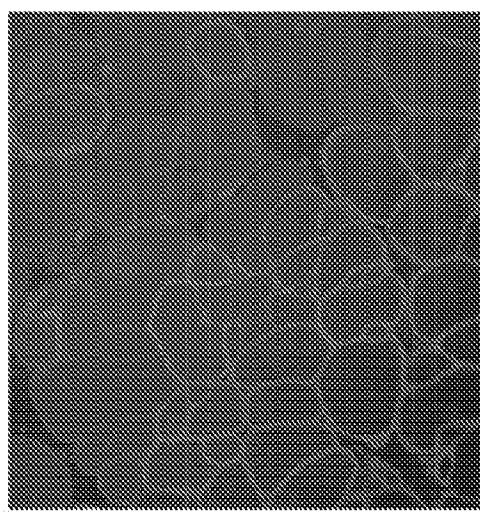
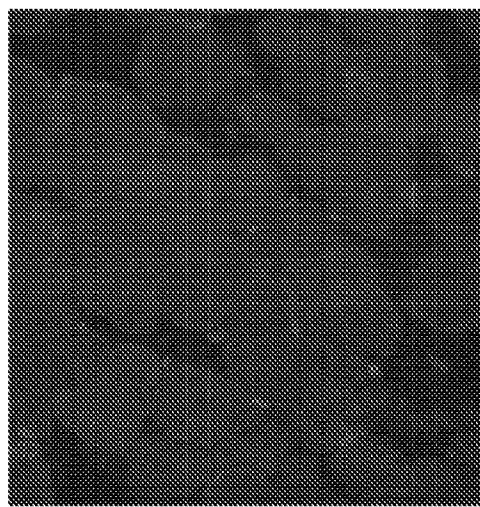
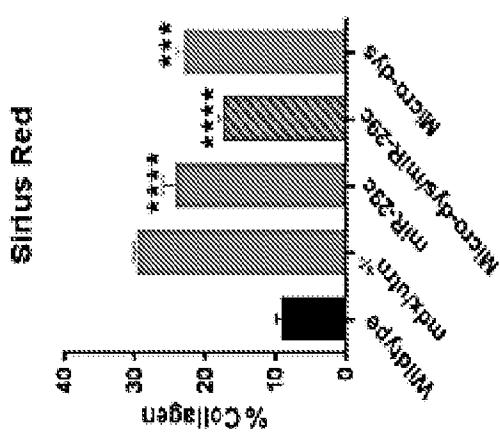
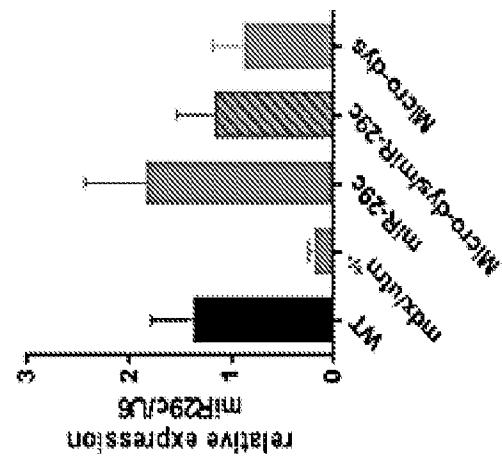
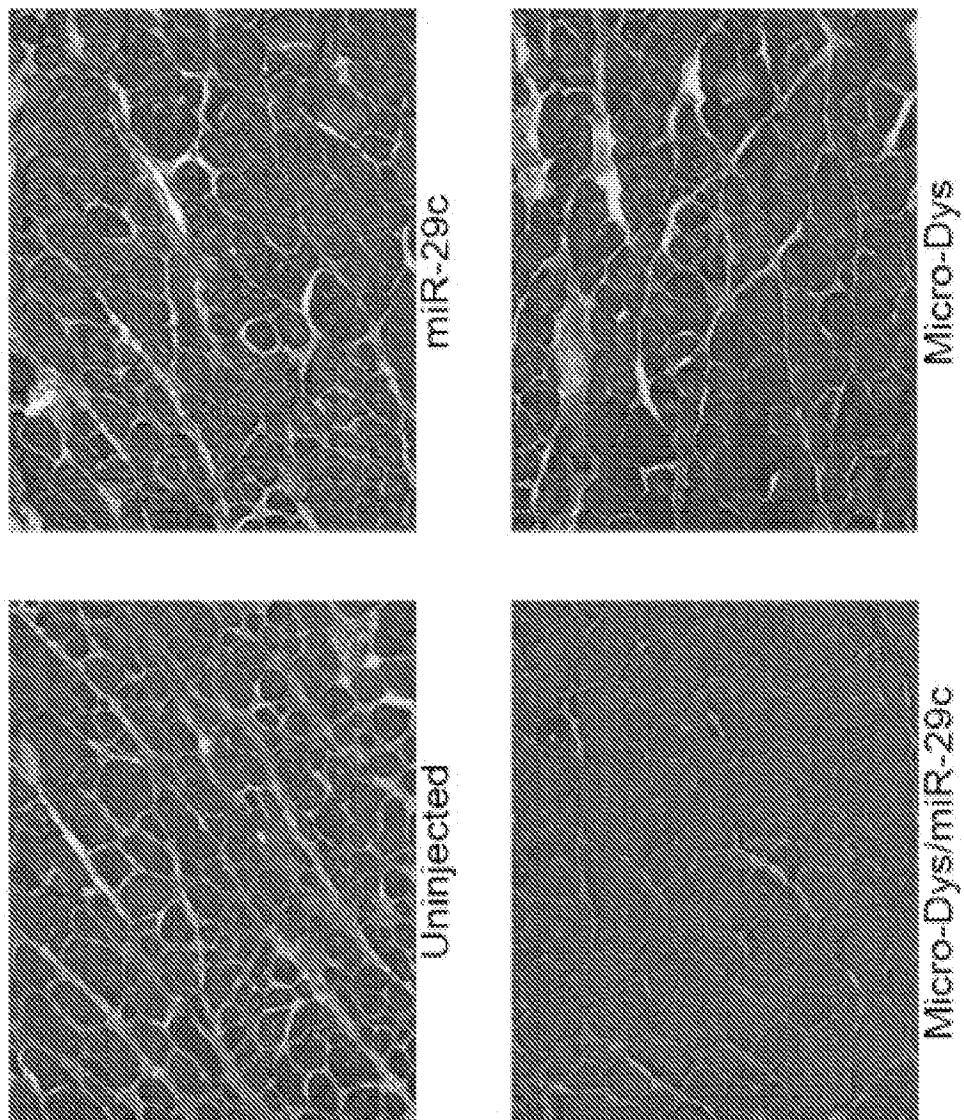
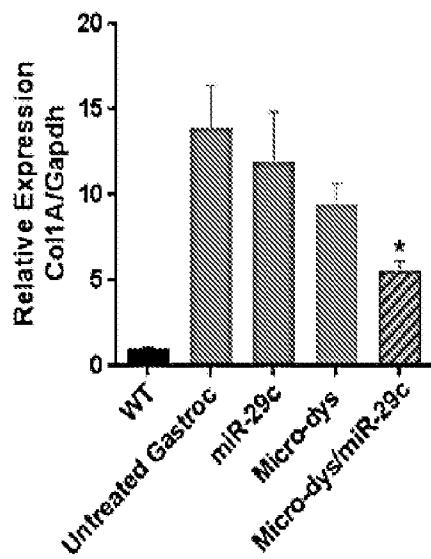







Figure 4A

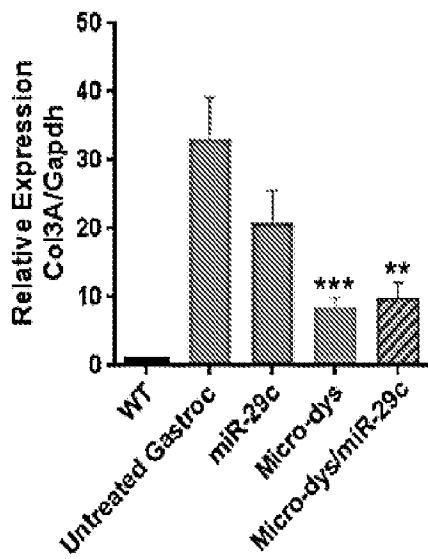


Figure 5B**Figure 5C****Figure 5A**

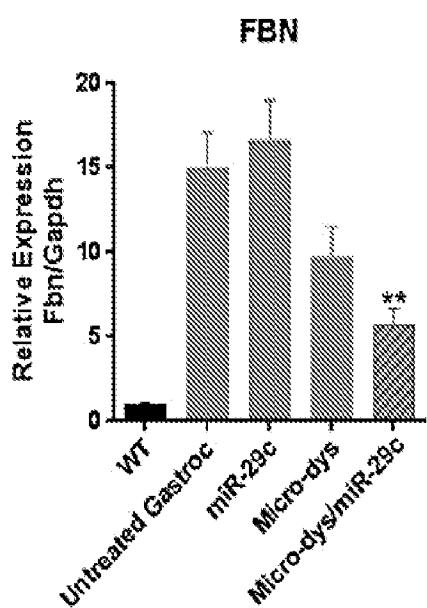

Figure 6A
Col1A

Figure 6B
Col3A

Figure 6C

Figure 6D

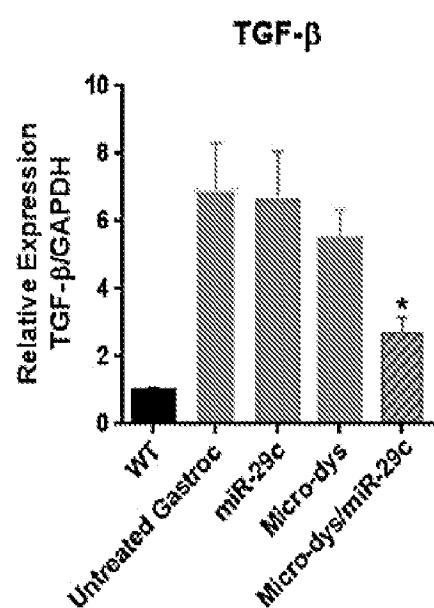


Figure 7A

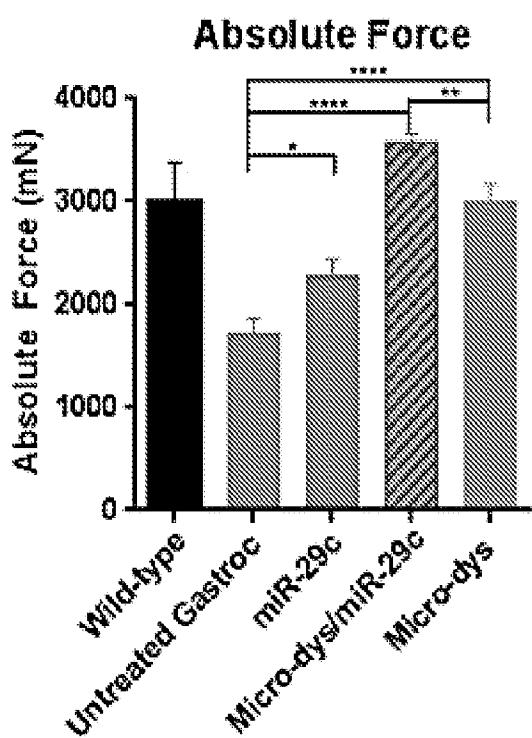


Figure 7B

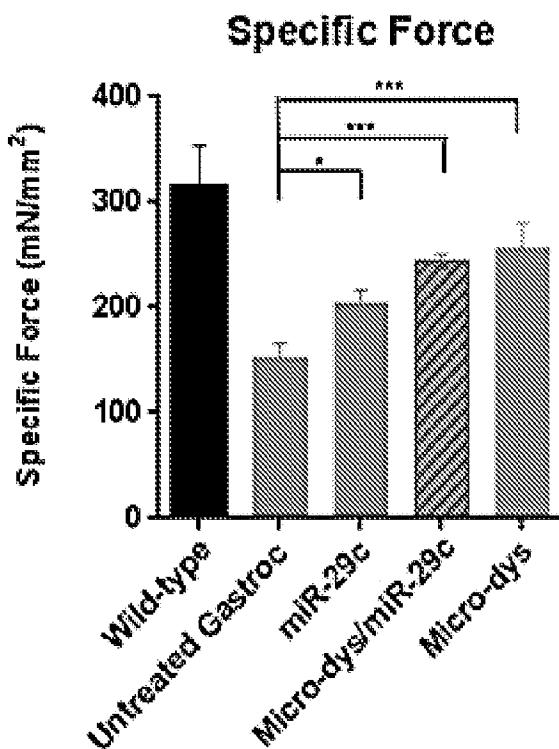
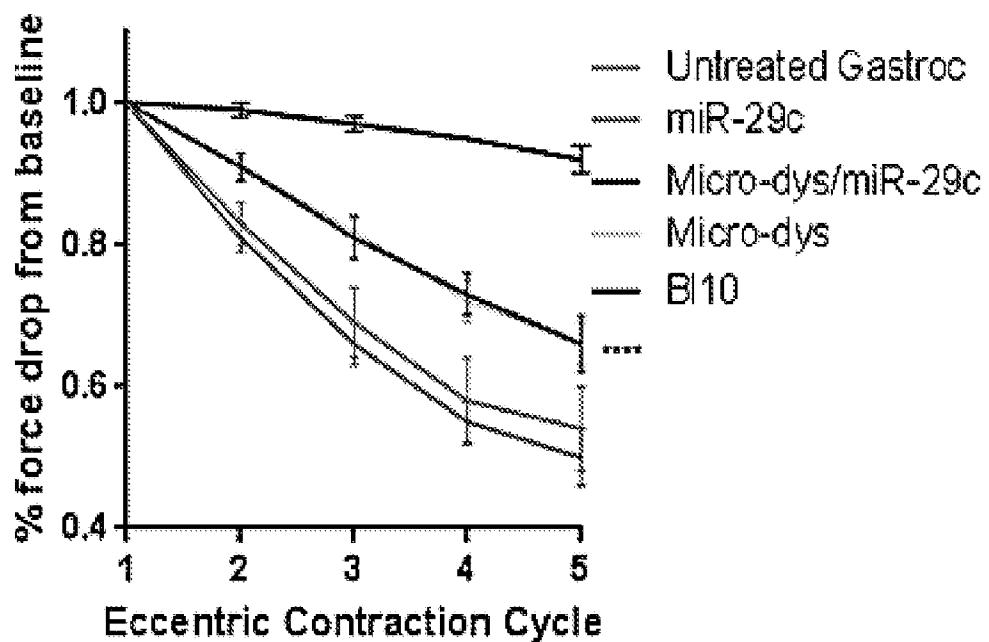
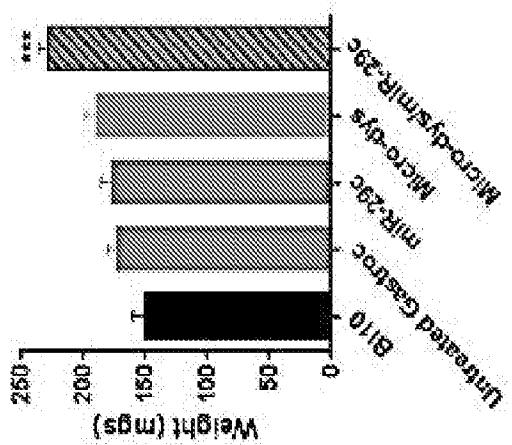




Figure 7C

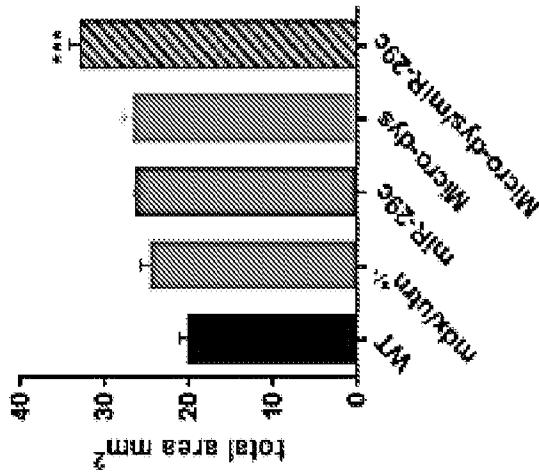
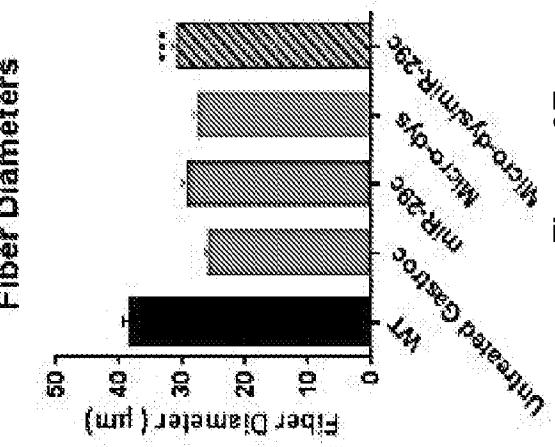
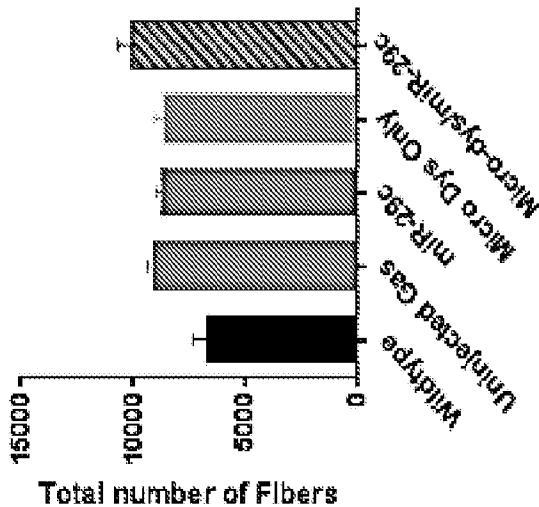
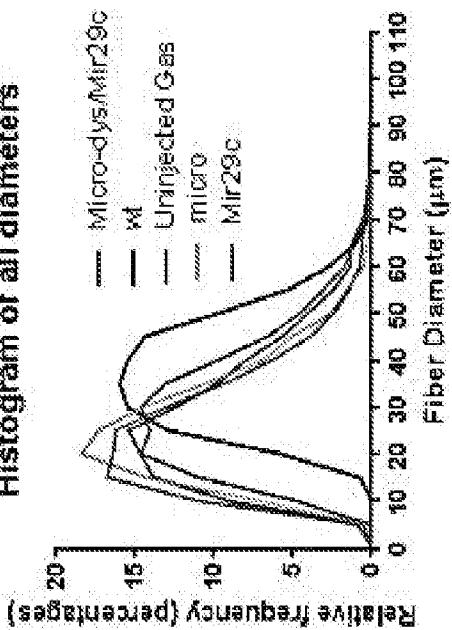
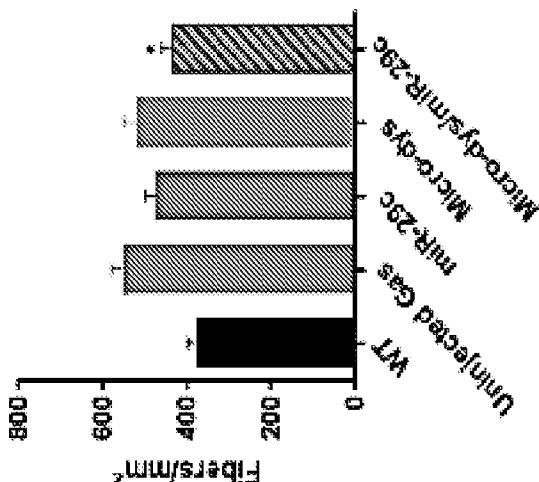


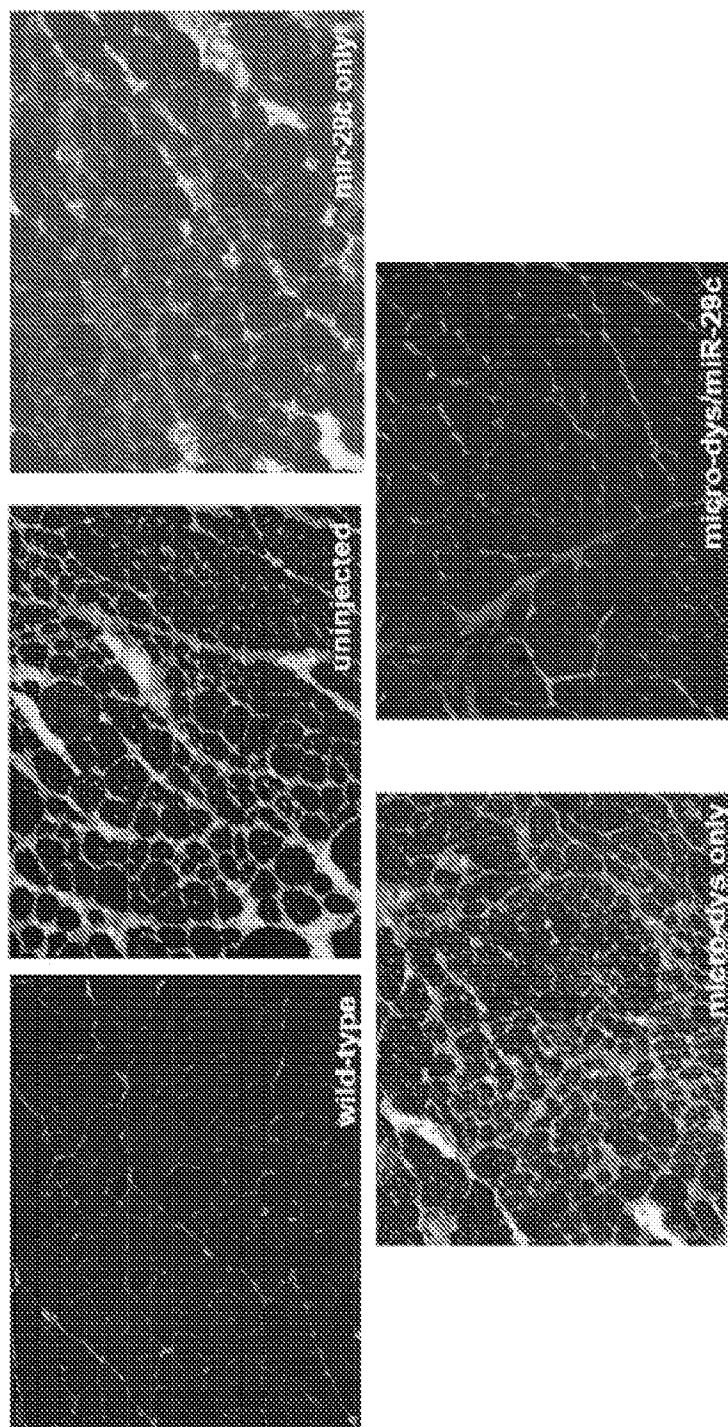
Figure 8

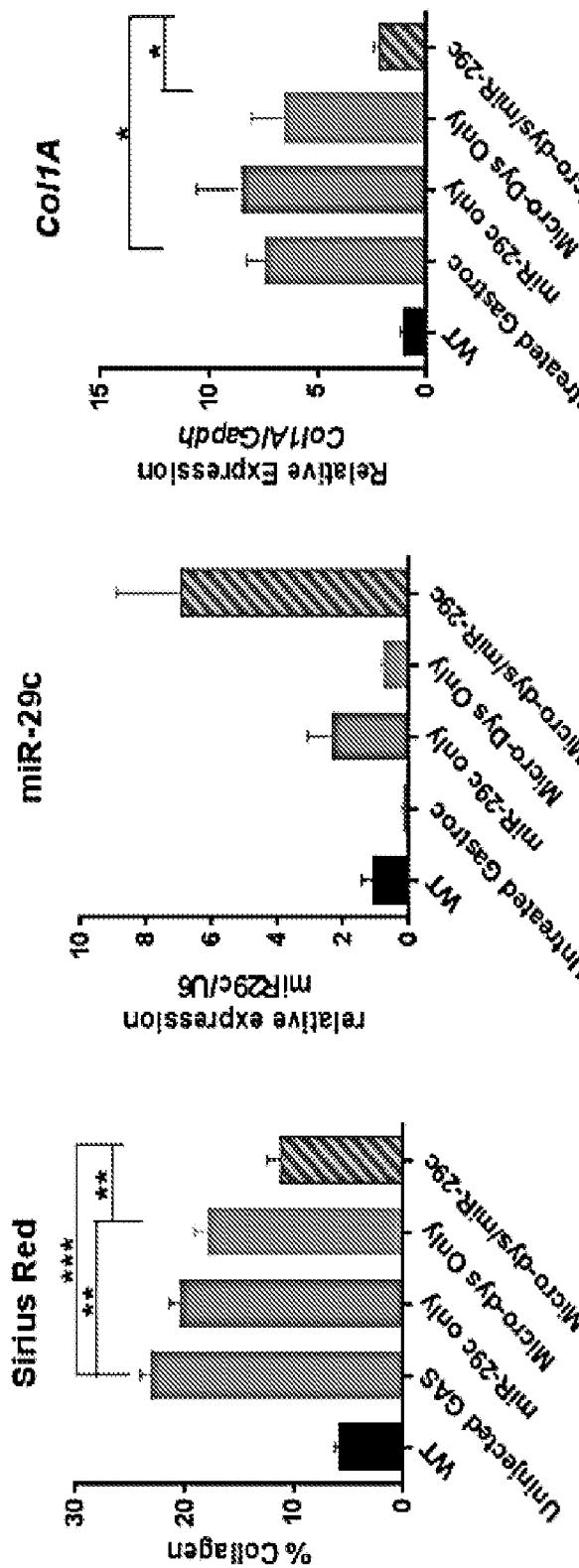
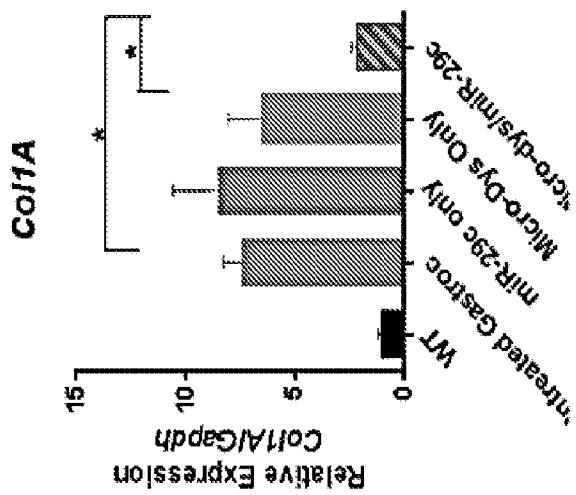
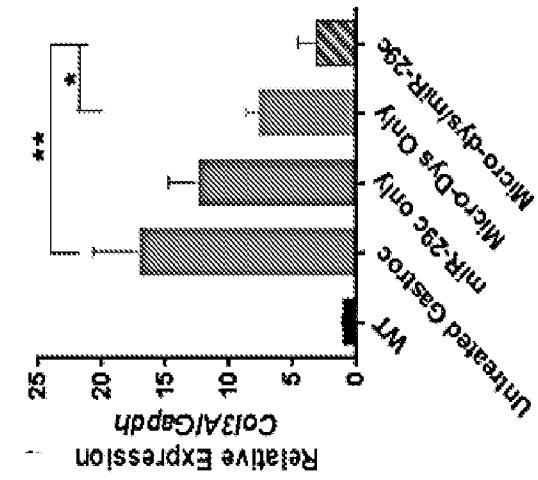
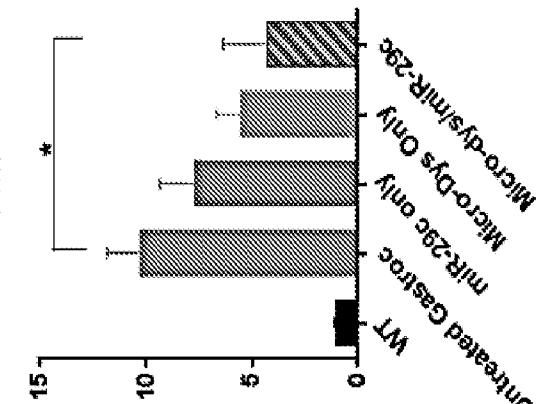
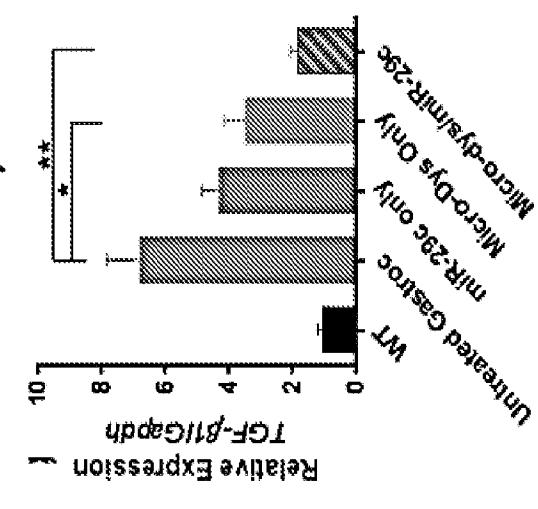

Figure 9A
Gas Weight

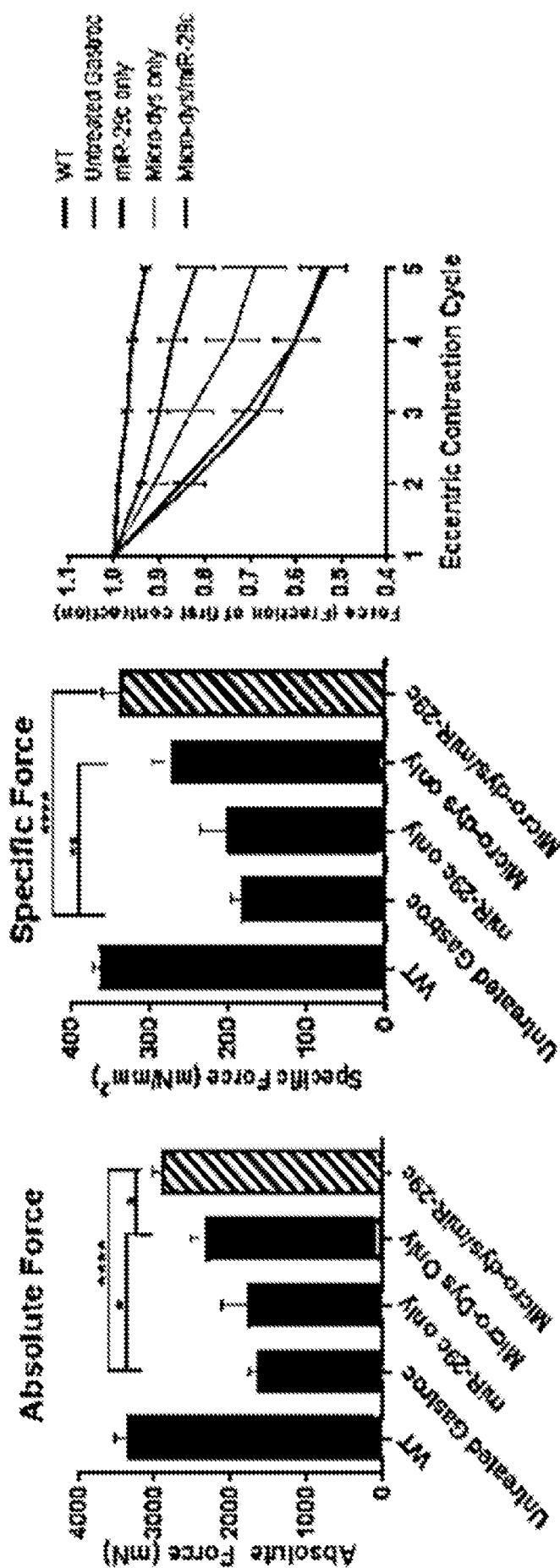

Figure 9D
Total Area


Figure 9B
Fiber Diameters


Figure 9E
total number of fibers








Figure 9C
Histogram of all diameters



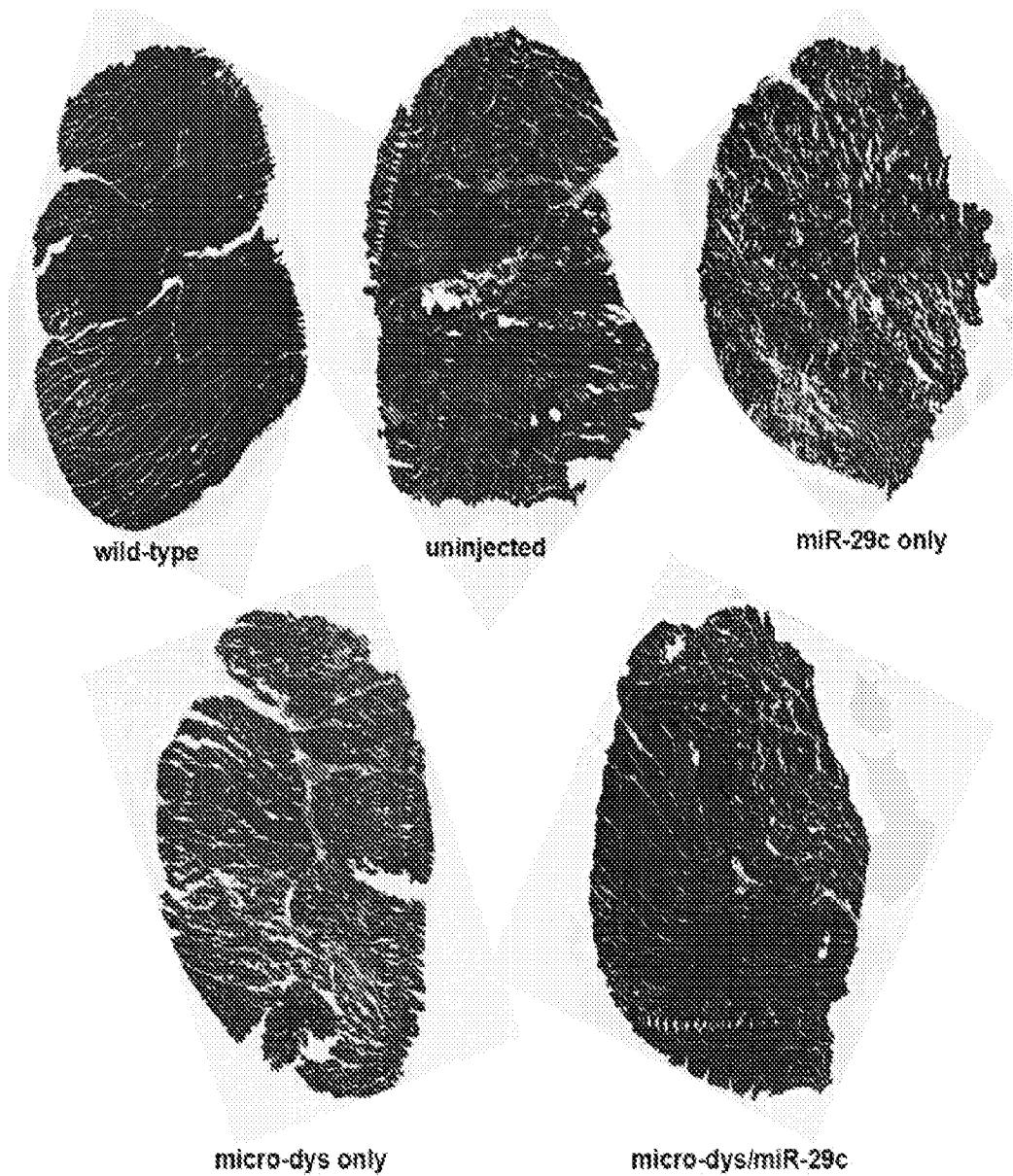

Figure 9F
Muscle Fibers/mm²

Figure 10A

Figure 10B**Figure 10D****Figure 10E****Figure 10F****Figure 10G**

Figure 12

Figure 13A

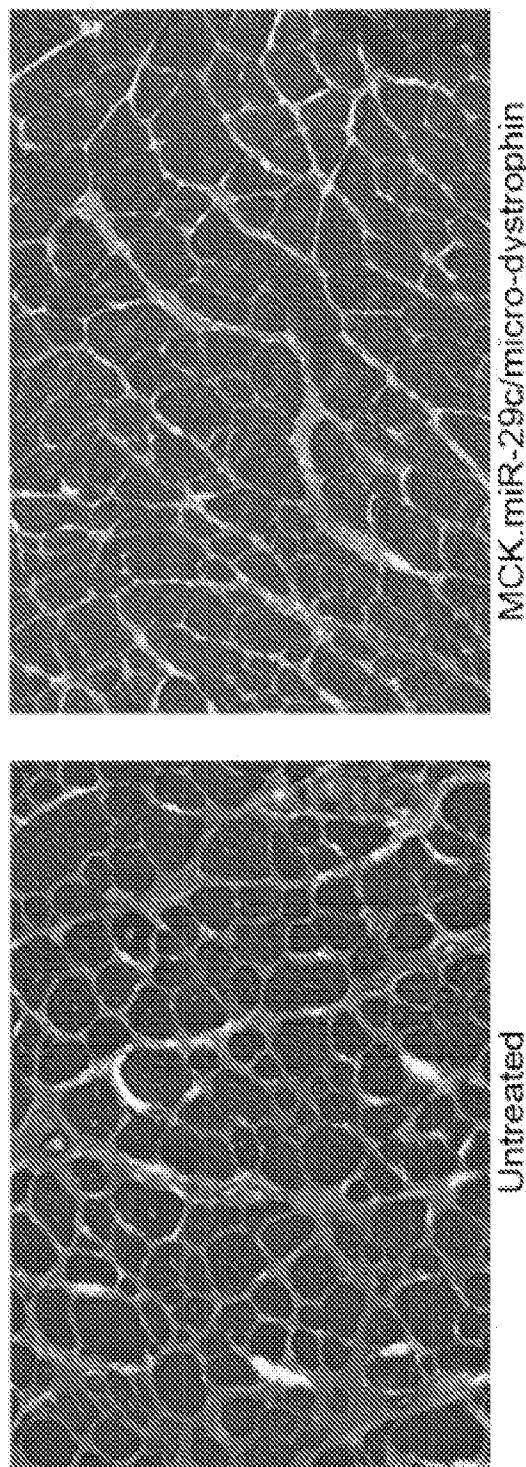


Figure 13D

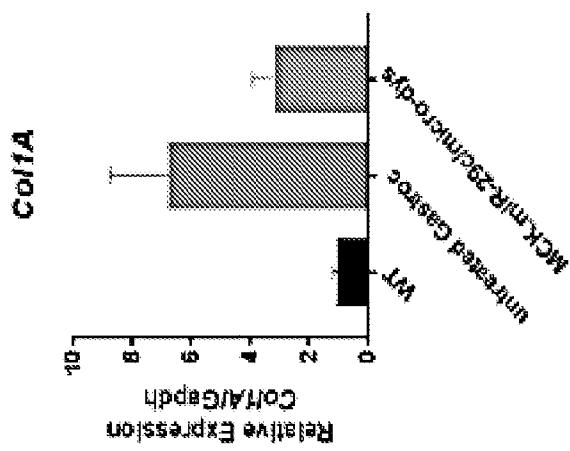


Figure 13C

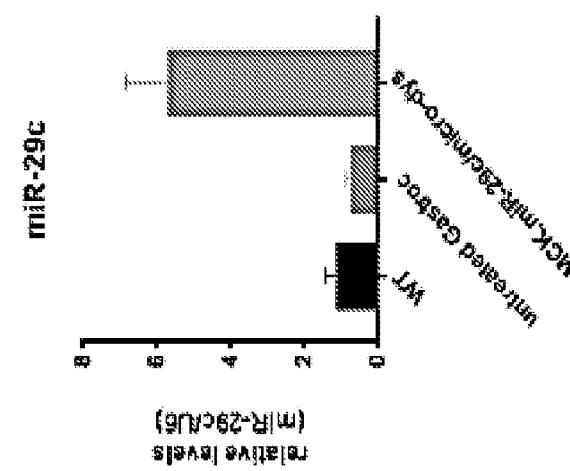


Figure 13B

Figure 13E

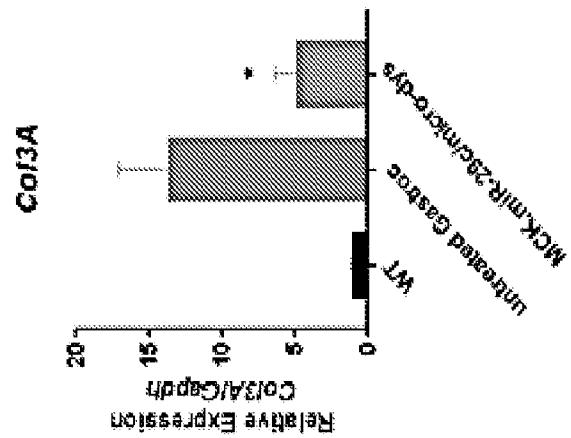


Figure 13F

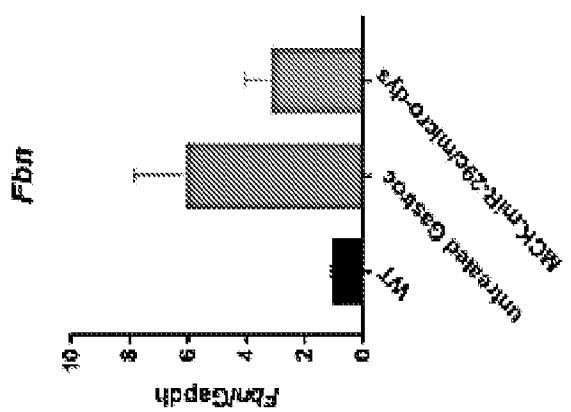
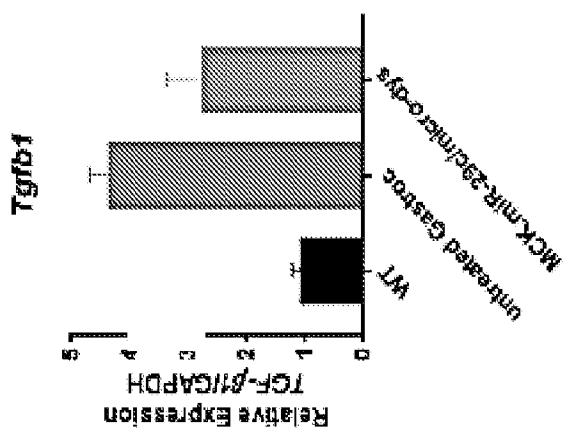



Figure 13G

Figure 14A

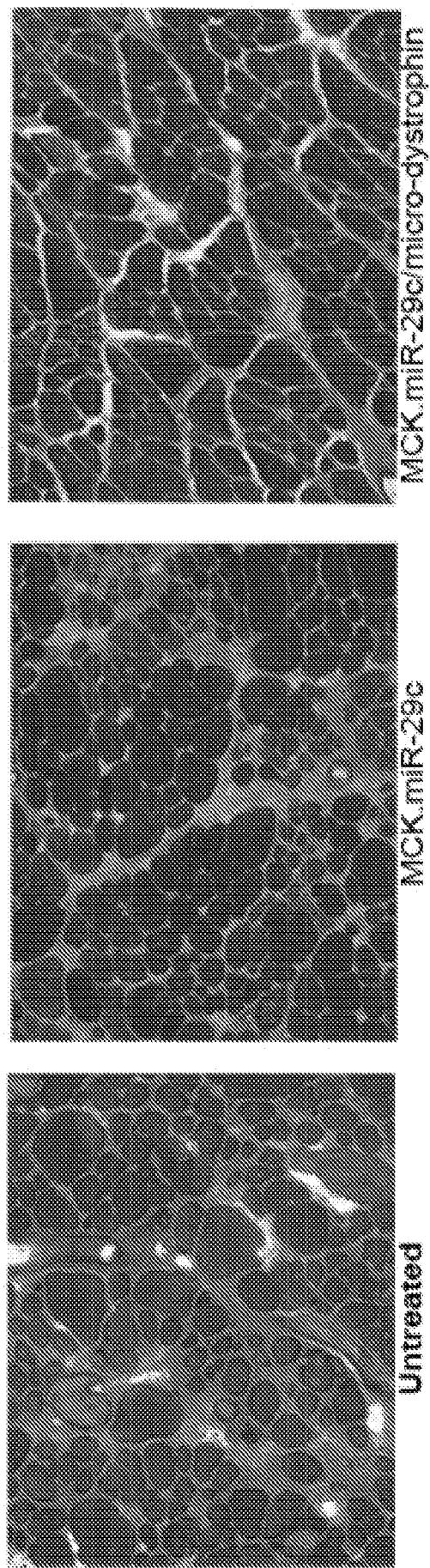


Figure 14D

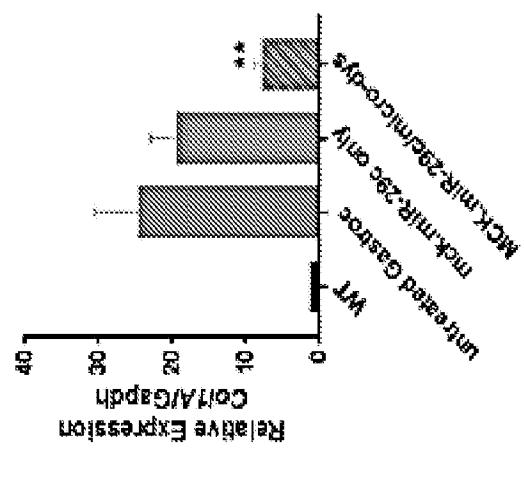

Col1A

Figure 14C

miR-29c levels

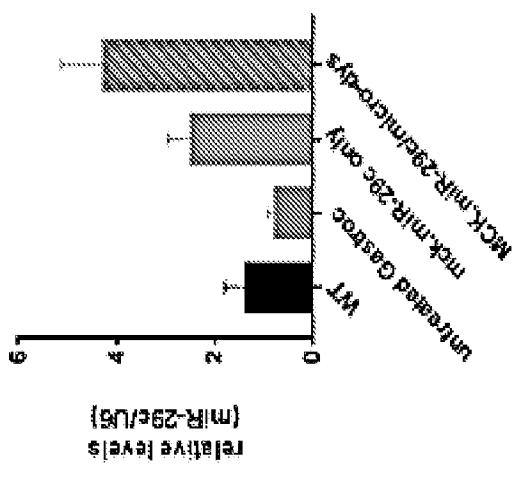


Figure 14B

Sirius Red

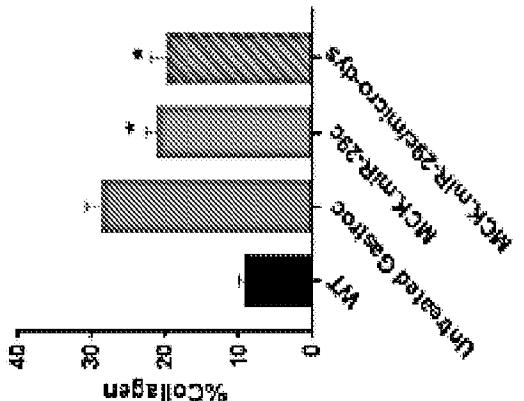


Figure 14G

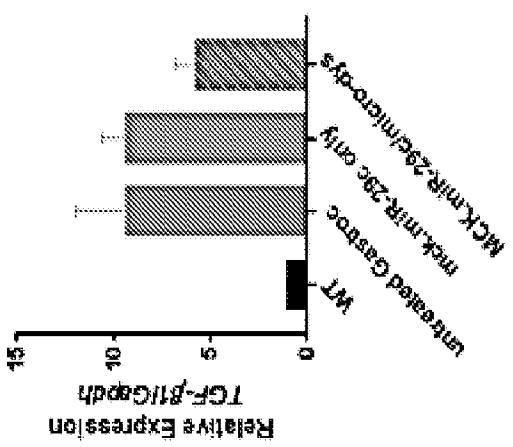

Tgfb1

Figure 14F

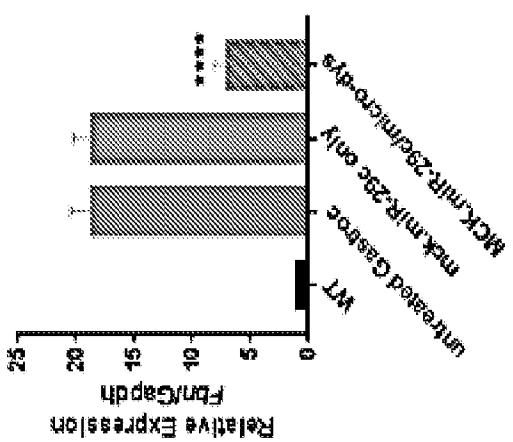
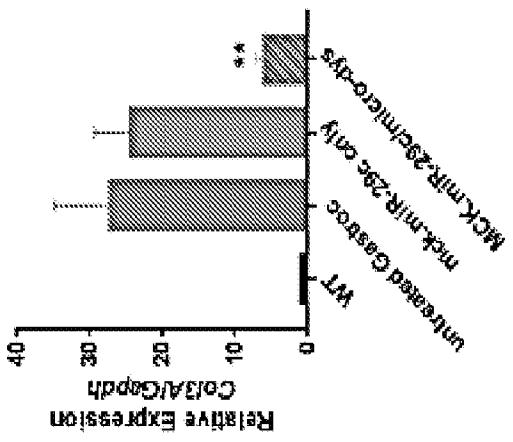


Fbn

Figure 14E

Col3A

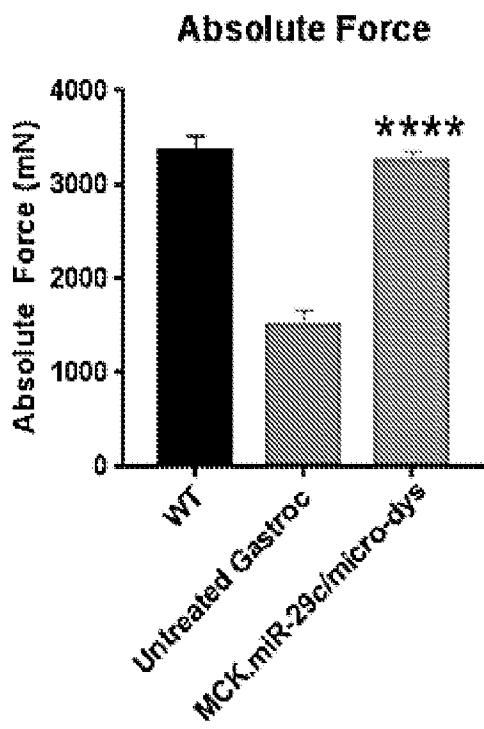
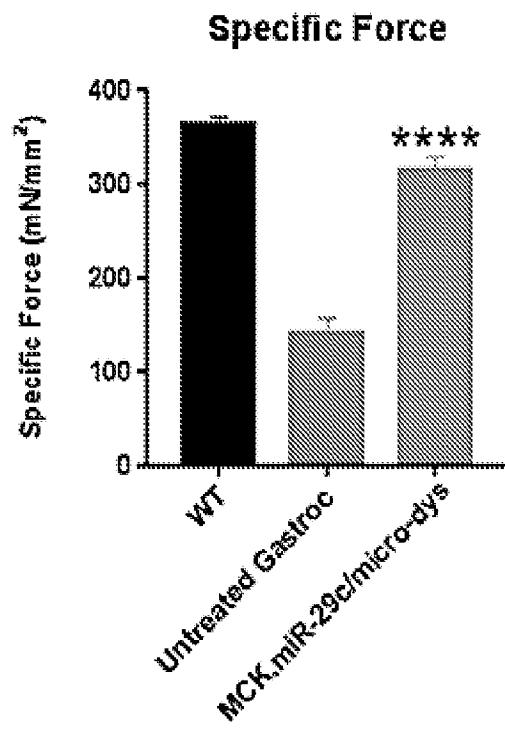



Figure 15A**Figure 15B****Figure 15C**

Figure 16A

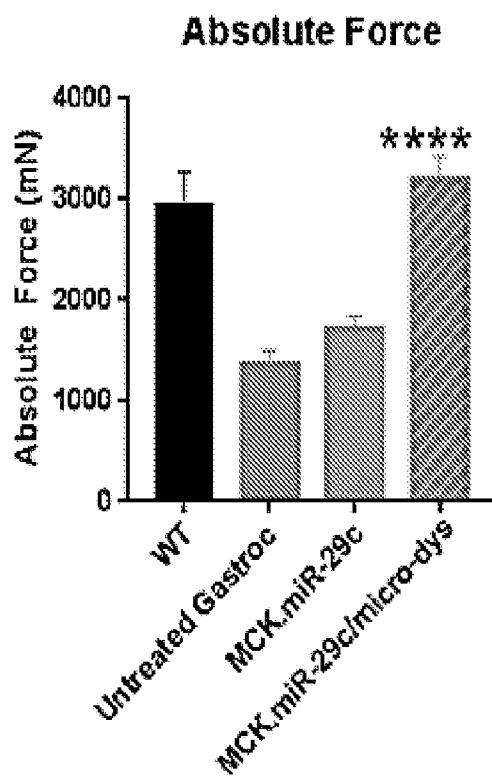


Figure 16B

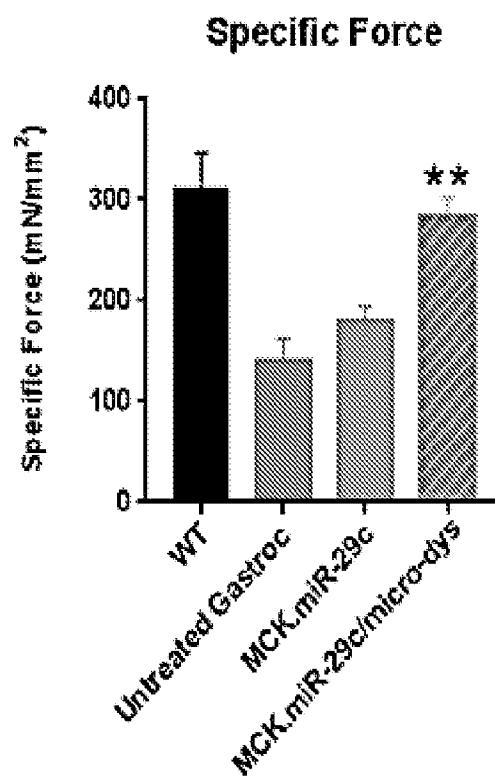
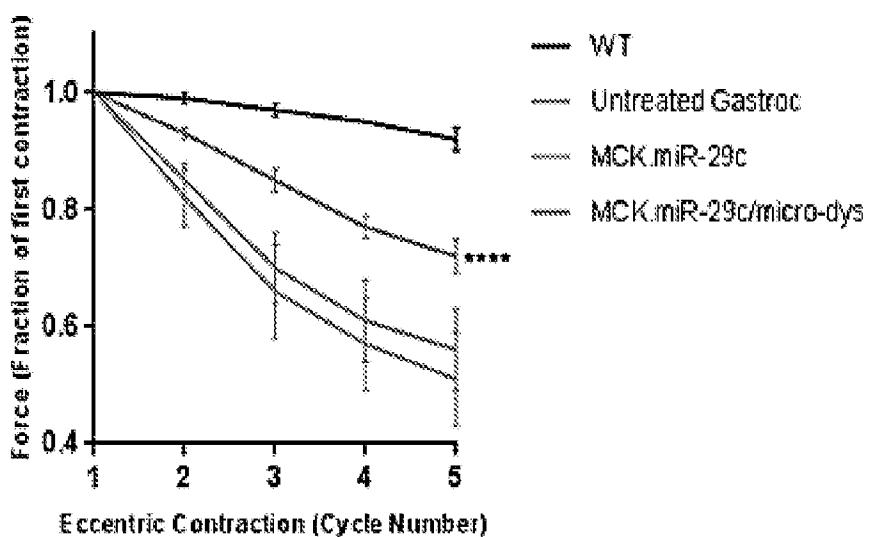
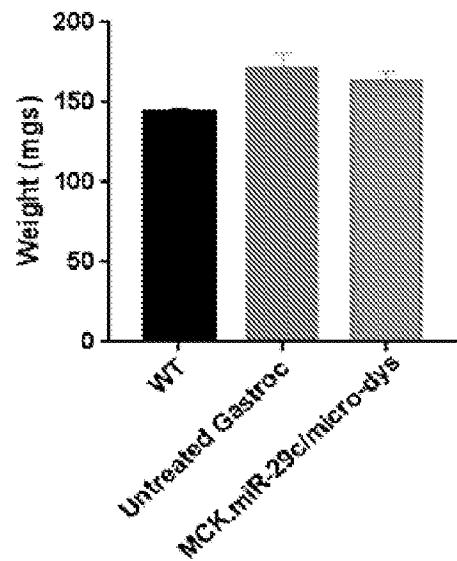
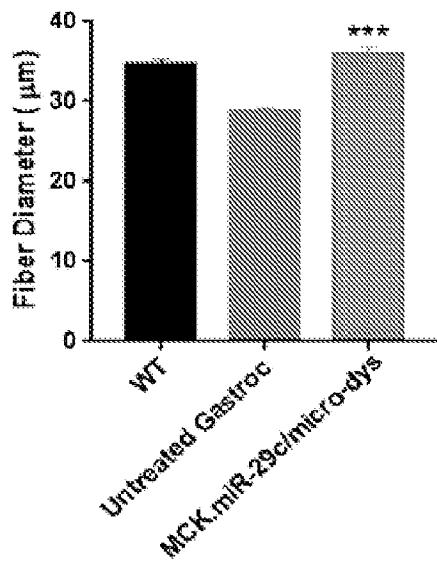
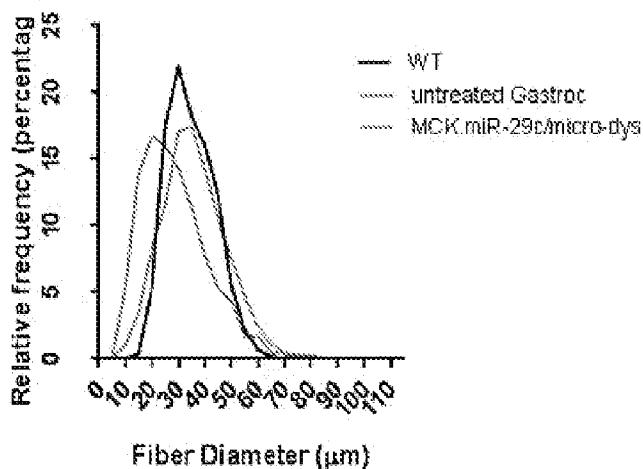
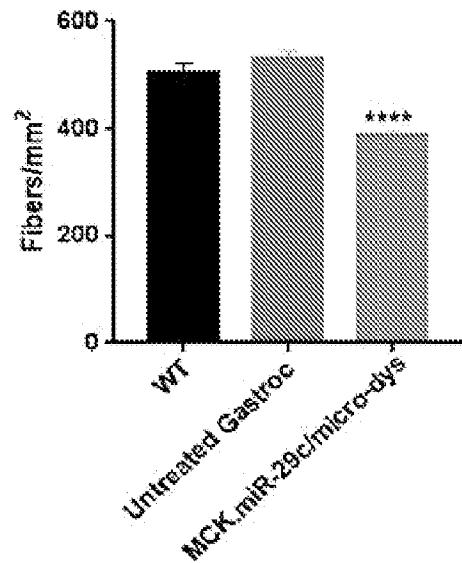
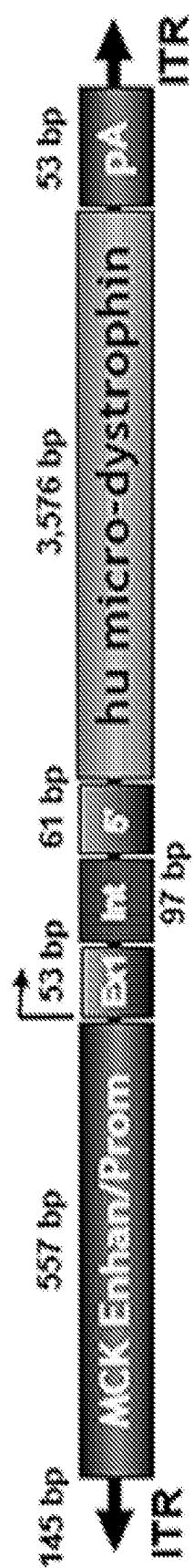







Figure 16C

Figure 17A**Gas weights****Figure 17B****Fiber Diameter****Figure 17C****Histogram of All diameters****Figure 17D****Number of fibers/mm²**


Figure 18A**pAAV.CMV.miR29C Sequence (SEQ ID NO: 1)**Main features:CMV promoter- 120-526EF1a Intron- 927-1087, 1380-1854miR-29c-1257-1284shRNA-miR29-c with primary seed sequence- 1088-1375PolyA- 1896-2091

CAGCAGCTGCGCGCTCGCTCGCTACTGAGGCCGCCGGCAAAGCCGGCGTCGGCGACCTTGGTCGCCCG
GCCTCAGTGAGCGAGCGAGCGCGAGAGAGGGAGTGGGTTAAACTCGTACATAACTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTCCTAGTAACGCCAATAGGGA
CTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCC
AAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCGCTGGCATTATGCCAGTACATGACCTATGGAC
TTCCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCGTTTGGCAGTACATCAATGG
GCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGAGTTGTTGGCAC
CAAATCAACGGGACTTCCAAAATGCTAACAACTCCGCCATTGACGCAAATGGCGGTAGGCCTGTACGG
TGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTGCAC
TCCATAGAAGACACCGGGACCGATCCAGCCTCCGACTCTAGAGGATCCGGACTCGAGGAACGAAACTGAAAACAGA
AAGTTAACTGGTAAGTTAGTCTTTGTCTTTATTCAAGGTCGGGATCCGGTGGTGCCTAAAGAACTG
CTCCTCAGTGGATGTTGCCTTACTCTAGGCCTGTACGGAAAGTGTACTCTGCTCTAAAGCTGCCAATTGAC
CCGGGGCCGATCCACCGGTCTTTCGAACGGGTTGCCGCCAGAACACAGGTAAGTGCCTGTGTTCCCG
CGGGCGCGACGGGGCCGTGCGTCCAGCGCACATGTTGGCGAGGCAGGGCTGCGAGCGCCACCGAG
AATCGGACGGGGTAGTCTCAAGCTGGCCGCTGTTGAATGAGGCTCAGTACTTACAGAATCGTGCCTGC
ACATCTGGAAACACTGCTGGATTACTCTTCAGGTTAACCAACAGAACAGGCTCGAGAACAGGTTATTGCTGTTG
ACAGTGAGCGAACCGATTCAAATGGTCTAGAGTGAAGCCACAGATGCTAGCACCATTTGAAATCGGTATG
CCTACTGCCTCGGAATTCAAGGGCTACTTAGGAGCAATTATCTGTTACTAAACTGAATACCTGCTATCTCTT
TGATACATTGGCCGGCTGCTGGTGCCTGGCCTCGCGCCGCGTATGCCCGCCCTGGCGCAAGGCTG
GCCCGGTCGGCACCAAGTGCCTGAGCGGAAAGATGGCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAATGGAG
GACGCGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCTTCCGTCTAGCCGTCG
CTTCATGTGACTCCACGGAGTACCGGGCGCCGTCAGGCACCTCGATTAGTCTCGAGCTTGGAGTACGTCGTC
TTAGGTTGGGGGGAGGGGTTTATGCGATGGAGTTCCCCACACTGAGTGGTGGAGACTGAAGTTAGGCCAG
CTTGGCACTTGATGTAATTCTCCTTGAATTGCCCCTTGTAGTTGGATCTGGTCATTCTCAAGCCTCAGACAG
TGTTCAAAGTTTTCTTCATTCAAGGTGCTGAAAAGCTAGCGCTACCGGACTCAGATCTGAGCTCAAGCT
GCGGGGATCCAGACATGATAAGATACTTGTGAGTTGGACAAACCACAAGTGAATGAGTGAAGGAAATGCT
TTATTGTGAAATTGTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAATAAACAGTTAACACAATT
GCATTCAATTGTTCAAGGTTCAAGGGGGAGGTGTTGGAGGTTTCACTAGTAGCATGGCTACGTAGATAAGT
AGCATGGCGGGTTAACATTAACTACAAGGAACCCCTAGTGTAGGGAGTTGGCCACTCCCTCTCGCGCTCGCTC
GCTCACTGAGGCCGGCGACCAAAGGTCGCCGACGCCGGGCTTGCCTGGCGGCCCTCAGTGAGCGAGCGAG
CGGCCAGCTGGCTAATAGCGAAGAGGCCGACCGATGCCCTCCAAACAGTGCAGCCTGAATGGCGAA
TGGAATTCCAGACGATTGAGCGTAAATGTAGGTATTCCATGAGCGTTTCTGTTGCAATGGCTGGCGTAA
TATTGTTCTGGATATTACAGCAAGGCCGATAGTTGAGTTCTCTACTCAGGCAAGTGTATTACTAATCAA
GAAGTATTGCGACAACGGTTAATTGCGTGTAGGGACAGACTCTTACTCGGTGGCCTACTGATTAAAAACAC
TTCTCAGGATTCTGGCGTACCGTCTGTCTAAACCTTAATCGGCCTCTGTTAGCTCCGCTCTGATTCTAA
CGAGGAAAGCACGTTACGTGCTCGTCAAAGCAAC

Figure 18B

CATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGGGTGGTGGTTACGCGCAGCGTACCGCTACACTTG
CCAGCGCCCTAGCGCCCGCTCTTCGCTTCTCCCTTCGCCACGTTGCCGGCTTCCCGTCAAGCTCT
AAATCGGGGGCTCCCTTAGGGTCCGATTAGTGCCTTACGGCACCTGACCCAAAAACTGATTAGGGTGAT
GGTTCACGTAGTGGGCCATGCCCTGATAGACGGTTTGCCTTGACGTTGGAGTCCACGTTCTTAATAGTG
GACTCTGTTCCAAACTGGAACAACTCAACCTATCTGGTCTATTCTTGATTATAAGGGATTGCCGATT
CGGCCTATTGGTAAAAATGAGCTGATTAAACAAAATTAAACGCAATTAAACAAATATTAACGTTACAATT
TAAATATTGCTTATAACATCTCCTGTTGGGGCTTCTGATTATCAACCGGGTACATATGATTGACATGCTA
GTTTACGATTACCGTTATCGATTCTCTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTGTAGAGACC
TCTCAAAATAGCTACCCCTCCGGCATGAATTATCAGCTAGAACGGTGAATATCATATTGATGGTGAATTGACT
GTCTCCGGCCTTCTCACCCGTTGAATCTTACCTACACATTACTCAGGCAATTAAACATATGAGGGTCT
AAAAATTATCCTTGCCTGAAATAAGGCTCTCCGCAAAAGTATTACAGGGTCAATGTTTGGTACAAC
CGATTAGCTTATGCTTGAGGCTTATTGCTTAATTGCTAATTCTTGCCTGCCTGATGATTATTGGATGTT
GGAATTCTGATGCGGTATTCTCCTTACGATCTGCGGTATTACCCGATATGGTCACTCTCAGTACAA
TCTGCTCTGATGCCGATAGTTAACGCCAGCCCCGACACCCGCAACACCCGCTGACGCCCTGACGGGCTTGCT
GCTCCGGCATCCGTTACAGACAAGCTGTGACCGTCTCCGGAGCTGCATGTGTCAGAGGTTTACCGTCATCA
CCGAAACGCGGAGACGAAAGGGCTCGTGAACGCTTATTTAGGTTATGTCATGATAATAATGGTTCT
AGACGTCAAGTGGCACTTCCGGGAAATGCGCGAACCCCTATTGTTATTCTAAATACATTCAAATATG
TATCCGCTCATGAGACAATAACCTGATAATGCTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATT
TCCGTGTCGCCCTATTCCCTTTGCGGATTTCGCTTGCCTGCTCACCCAGAACGCTGGTAAAGTAA
AAGATGCTGAAGATCAAGTGGTGCACGAGTGGTACATCGAATGGATCTAACAGCGTAAGATCCTTGAGA
GTTTCCGGGAAGAACGTTCCAATGATGAGCACTTTAAAGTCTGCTATGTGGCGGGTATTATCCGTT
GACGCCGGCAAGAGCAACTCGTCGCCGCATAACTATTCTCAGAATGACTGGTGAAGTACTCACCAGTCACA
GAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATGAGTGTGCTGCCATAACCATGAGTGATAACACTGCG
GCCAACTTACTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTGCACACATGGGGATCATGTA
ACTCGCCTGATCGTGGAACCGGAGCTGAATGAAGCCATACCAACGACGCGTGACACCACGATGCCGTA
GCAATGGCAACAACGTTGCGCAAACATTAACTGGCAACTACTCTAGCTTCCCGCAACAATTAAATAGACT
GGATGGAGGCGGATAAAGTGCAGGACCACTCTGCGCTCGGCCCTCCGGCTGGTGGTTATTGCTGATAAAT
CTGGAGCCGGTGAGCGTGGTCTCGCGGTATTCGAGCAGTGGGCCAGATGGTAAGCCCTCCGTATCGTAG
TTATCTACACGACGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTACTGA
TTAAGCATTGTAACTGTCAGACCAAGTTACTCATATACTTAGGTTATTGATGATTAAAACCTCATTTAATTAAAA
GGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTCTGTTCCACTGAGCGTCA
GACCCCGTAGAAAAGATCAAAGGATCTTCTGAGATCTTTCTGCGCGTAATCTGCTGCTGCAAACAAAAAA
ACCAACGCTACAGCGGTGGTTGTTGCCGATCAAGAGCTACCAACTCTTCCGAAGGTAACGGCTCAGC
AGAGCGCAGATACCAAATACTGTCCTCTAGTGTAGCGTAGTTAGGCCACACTCAAGAACACTGTAGCACC
CTACATACCTCGCTCTGCTAACCTGTTACCAAGTGGCTGCTGCCAGTGGCGATAAGTCGTGCTTACCGGGTGG
CTCAAGACGATAGTTACCGATAAGCGCAGCGGTGGCTGAACGGGGGGTCTGACACAGCCCAGCTGG
AGCGAACGACCTACACCGAATGAGATACCTACAGCGTGAGCTATGAGAAAGGCCACGCTCCGAAGGGAGA
AAGGCGGACAGGTATCCGTAAGCGGCAGGGTGGAACAGGGAGAGCGCACGAGGGAGCTCCAGGGGGAAAC
GCCTGGTATCTTATAGTCCTGTCGGTTGCCACCTCTGACTTGAGCGTGATTGGTGTGATGCTGTCAGGGGG
GGGGAGCCTATGGAAAAACGCCAGCAACGCCCTTTACGGTCTGGCTTGTGCTGGCTTGTGACATG
TTCTTCTGCGTTATCCCTGATTCTGTTGATAACCGTATTACGCCCTTGAGTGAGCTGATACCGCTGCCGAG
CCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGGCCAATACGCAAACCGCCTCCCG
CGCGTGGCCGATTATTAATG

Figure 19

Figure 20ASEQ ID NO: 9Main features:MCK promoterChimeric intron sequenceHuman micro-dystrophin sequencePoly A tailAmpicillin resistancepGEX plasmid backbone with pBR322 origin or replication

GCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCAATTAAATGCAGCTGGC
 GCGCTCGCTCGCTCACTGAGGCCGCCGGCAAAGCCCGGCGTCGGGCGACCTTT
 GGTGCCCCGGCCTCAGTGAGCGAGCGCGAGAGAGGGAGTGGCCAACCTCAT
 CACTAGGGGTTCTGTAGTTAATGATTAACCCGCCATGCTAATTATCTACGTAGCC
 ATGTCTAGACAGCCACTATGGGTCTAGGCTGCCATGTAAGGAGGCAAGGCCTGGG
GACACCCGAGATGCCTGGTTATAATTAAACCCAGACATGTGGCTGCTCCCCCCCCCA
ACACCTGCTGCCTGAGCCTCACCCCCACCCCGGTCCTGGGTCTTAGGCTCTGTACA
CCATGGAGGAGAAGCTCGCTCTAAAAATAACCCGTCCCTGGTGGCTGTGGGGGA
CTGAGGGCAGGCTGTAACAGGCTGGGGGCCAGGGCTTACGTGCCTGGGACTCC
CAAAGTATTACTGTTCCATGTTCCCGGAAGGGCCAGCTGTCCCCGCCAGCTAGA
CTCAGCACTTAGTTAGGAACCAGTGAGCAAGTCAGCCCTGGGGCAGCCCATA
AGGCCATGGGCTGGCAAGCTGCACGCCCTGGGTCCGGGTGGCACGGTGCCCCGG
GCAACGAGCTGAAAGCTCATCTGCTCTCAGGGCCCCCTCCCTGGGGACAGCCCCCTCC
TGGCTAGTCACACCCGTAGGCTCCTCTATATAACCCAGGGCACAGGGCTGCC
CGGGTCACCACCACCTCCACAGCACAGACAGACACTCAGGAGGCCAGCCAGGT
AAGTTAGTCTTTGTCTTTATTCAAGGTCCCGATCCGGTGGTGGTCAAATCAA
AGAACTGCTCCTCAGTGGATGTTGCCTTACTTCTAGGCCTGTACGGAAGTGTACTT
CTGCTCTAAAAGCTGCGGAATTGTACCCCGGCCACCATGCTGTGGTGGGAGG
AGGTGGAGGATTGTTATGAAAGGGAGGACGTGCAGAAGAAGACTTTACCAAGTGG
GTGAACGCTCAGTCAGCAAATTGGGAAGCAGCACATCGAGAATCTGTTTCCGAC
CTGCAGGATGGGAGACGGCTGGATCTGCTGGTAAGGACTGACTGGCCAGAAGCT
GCCCAAAGAGAAGGGGAGCACTAGGGTGCACGCCCTGAACAAACGTGAACAAAGCT
CTGAGAGTGCTGCAGAACACAACGTGGATCTGGTAATATTGGCAGTACTGATAT
CGTGGACGGGAACCACAAACTGACACTGGCCTGATCTGGAACATTATTCTGCACTG
GCAGGTAAAAATGTGATGAAGAACATCATGGCCGGGTGCAGCAGACCAATTCCG
AGAAGATCCTGCTGTCTGGGTGCGGCAGAGCACCCGAACATCCCCAGGTGAAC
GTGATTAACCTCACTACATCCTGGAGCGACGGCTGGCCCTGAATGCTCTGATTAC
AGCCACAGGCCTGATCTGTTGACTGGAATAGCGTGGTGTGCCAGCAGTCTGCCACA
CAGCGCCCTGGAACATGCCCTCAATATCGCTCGGTACCGACTGGGGATCGAAAAACT
GCTGGACCCAGAGGATGTGGACACTACATAACCCAGATAAAAAGCTATTCTGATGT
ACATTACTAGCCTGTTCCAGGTGCTGCCACAGCAGGTGTCTATTGAAGCCATTCA
AGGTGGAAATGCTGCCCGCCCCCCCCAAAGTGACTAAAGAGGGAGCATTTCAGCTG
CATCATCAGATGCATTACAGCCAGCAGATTACCGTGAGCCTGGCTCAGGGATATGA
GCGCACCAAGTAGTCCAAAACCACGGTTCAAGTCCTACGCTTATAAC

Figure 20B

CCAGGGCTGCCTACGTGACAACTAGCGACCCCTACTAGATCCCCCTTCCATCCCAGCA
CCTGGAGGCCAGAGGACAAGAGCTTGGTCCAGCCTGATGG
AAAGCGAGGTGAATCTGGATCGTACAGACAGCCCTGGAGGAGGTGCTGAGCTGG
CTGCTGAGTGTGAAGACACACTGCAGGCCAGGGCGAAATTCCAATGACGTGGA
AGTGGTGAAGGATCAGTCCACACACACAGAGGGCTATATGATGGACCTGACAGCTC
ACCAGGGCGCGTGGCAATATCCTGCAGCTGGCTCTAAACTGATCGGCACCGGG
AAACTGAGTGAGGACGAGGAAACAGAACAGAACAGTGCAGGAGCAGATGAACCTGCTGAACA
GCCGCTGGAGTGTCTGAGAGTGGCTAGTATGGAGAACAGTCCAACCTGACCCGG
GTGCTGATGGACCTGCAGAACAGAACACTGAAAGAGCTGAACGACTGGCTGACAAA
GACTGAGGAACGCACAAGGAAGATGGAGGAGGCCACTGGACCCGACCTGGAG
GATCTGAAGAGAACAGGTGCAGCAGCATAAGGTGCTGCAGGAGGATCTGGAACAGG
AGCAGGTGCGGGTGAACCTCCCTGACACATATGGTGGTGGTGGACGAATCTAGT
GGAGATCACGCCACCGCCCGCCCTGGAGGAACAGCTGAAGGTGCTGGGGACCGGTG
GCCAACATTTGCCGGTGGACCGAGGACAGGTGGGTGCTGCAGGACATCCTGC
TGAAATGGCAGAGGCTGACCGAGGAGCAGTGTCTGTTAGTGCTGGCTGAGCGAG
AAAGAGGACGCCGTGAACAAAGATCCACACAACCCGGCTTAAGGATCAGAACGAAAT
GCTGTCTAGCCTGCAGAAACTGGCTGTGCTGAAGGCCATCTGGAGAAAAAGAAC
AGAGCATGGCAAAACTGTATAGCCTGAAACAGGACCTGCTGAGCACCCCTGAAGAAC
AAAGAGCGTGAACCCAGAACAGAACAGAACGCTGGCTGGATAACTTGCCCGCTGCTGGGA
CAACCTGGTGCAGAAACTGGAGAAAAGTACAGCTCAGATCTCTCAGGCTGTGACCA
CAACCCAGCCTAGCCTGACCCAGACAAACCGTGATGGAAACCGTGACCCACCGTGACA
ACCCCGAAACAGATCCTGGTGAACATGCCAGGAAGAGGCTGCCACCTCCACCTCC
CCAGAAAGAACAGAACCCCTGGAGCGGCTGCAGGAGCTGCAGGAAGCCACTGACGAA
CTGGACCTGAAGCTGAGGCAGGCCGAAGTGATTAAGGGGTCTGGCAGCCTGTGGG
CGATCTGCTGATTGATTCCCTGCAGGACCACTGGAAAAGGTGAAGGCTCTGAGAG
GCGAAATTGCTCCACTGAAGGAGAACGTGAGTCATGTGAACGATCTGGCTAGACAG
CTGACAACACTGGCATCCAGCTGAGCCATACAATCTGAGCACACTGGAGGACCT
GAATAACCAGGTGGAAGCTGCTGCAGGTGGCTGTGGAAGACCGGGTGCAGCTGC
ATGAGGCCATCGCGACTTCGGACCAGCCAGCCAGCAGCACTTCTGAGCACATCCGTGC
AGGGGCCCTGGAGAGGGCATTCTCCAAACAAGGTGCCACTATATAATCACG
AGACCCAGACCAACTGTTGGGACCATCCAAAGATGACAGAACACTGTACCAAGCTCC
GCCGATCTGAACACGTGAGGTTAGCGCTTACAGAACCGCTATGAAGCTGAGACG
GCTGCAGAAGGCCCTGTGCCTGGATCTGCTGTCCTGTCCGCCGCTGCGATGCCCT
GGATCAGCATAATCTGAAGCAGAACGATCAGCCAATGGATATCCTGCAGATCATCA
ACTGCCTGACCAACTATCTACGACAGGCTGGAGCAGGAGCACAACAAACCTGGTGAAC
GTGCCTCTGTGCGTGGATATGTGCCTGAACGGCTGCTGAACGTGTATGACACTGGG
CGCACCGGCCGGATCAGAGTGCTGAGTTAAAAGTGGATTATCTCCCTGTGTAAG
GCCCACCTGGAGGGACAAGTACAGGTACCTGTTCAAGCAGGTGGCTAGTAGCACTGG
ATTTGTGACCAGCGCCCTGGGACTGCTGCTGCATGATAGTATCCAGATTCC
ACAGCTGGAGAGGGTAGTTCGGAGGATCTAACATCGAACCCAGCGTGC
GCTGTTCCAGTTGCCAATAACAAACCTGAAATCGAGGCTGCTCTGTTCCGTGGATT
GGATGCGCCTGGAACCAACAGAGCATGGTGTGGCTGCCGTGCTGCACAGAGTGG

Figure 20C

CTGCCGCCGAAACTGCCAAGCACCCAGGCTAAATGCAACATCTGCAAGGAATGTCCC
ATTATCGGCTTCGCTACAGGAGTCTGAAACATTAACTACGAT
ATTGCCAGAGCTGCTTCCGGAAAGAGTGGCAAAGGACACAAGATGCACTAC
CCTATGGTGGAAATTGCACCCCCAACTACATCTGGCGAAGATGTGCGCATTGCC
AAGGTGCTGAAGAATAAGTTGGACTAAGAGGTACTTCGCAAGCACCCCCGCAT
GGGGTATCTGCCAGTGCAGACAGTGGAGGAGACAATATGGAGACCGATAAA
TGTGAGCGGCCGCAATAAAAGATCTTATTTCATTAGATCTGTGTTGGTTTTG
TGTGTCTAGAGCATGGCTACGTAGATAAGTAGCATGGCGGTTAACATTAAC
AGGAACCCCTAGTGAATGGAGTTGCCACTCCCTCTGCGCGCTCGCTCACTG
AGGCCGGCGACCAAAGGTCGCCCCGACGCCGGCTTGGCCGGCTCAGTG
AGCGAGCGAGCGGCCAGCTGGCGTAATAGCGAAGAGGCCGCACCGATGCC
CCCAACAGTTGCGCAGCCTGAATGGCGAATGGAAGTTCCAGACGATTGAGCGTCAA
AATGTAGGTATTCCATGAGCGTTTCCTGTTGCAATGGCTGGCGTAATATTGTT
TGGATATTACAGCAAGGCCGATAGTTGAGTTCTACTCAGGCAAGTGATGTTA
TTACTAATCAAAGAAGTATTGCGACAACGGTAATTGCGTGTGGACAGACTCTT
TACTCGGTGGCCTCACTGATTAAAAACACTCTCAGGATTCTGGCGTACCGTT
GTCTAAATCCCTTAATCGGCCCTGTTAGCTCCGCTCTGATTCTAACGAGGAA
AGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCCCTGTAGCGCGCATT
AAGCGCGCGGGTGTGGTTACGCGCAGCGTACCGCTACACTGCCAGCGCCC
TAGCGCCGCTCCTTCGCTTCTCCCTTCCTCGCCACGTTGCCGGCTTCCC
CGTCAAGCTCTAAATCGGGGGCTCCCTTAGGTTCCGATTAGTGTGATTACGGCAC
CTCGACCCAAAAACTGATTAGGTTGATGGTCACGTAGTGGCCATGCCCTGA
TAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTTAATAGTGGACTCTGT
TCCAAACTGGAACAACACTCAACCCATCTGGCTATTCTTGATTATAAGGGAT
TTGCGATTTCGGCCTATTGGTAAAAAATGAGCTGATTAAACAAAATTAAACGC
GAATTAAACAAATATTACGTTACAATTAAATATTGCTTACAAATTCCCTG
TTTGGGGCTTCTGATTATCAACCGGGTACATATGATTGACATGCTAGTTAC
GATTACCGTTCATCGATTCTCTGTTGCTCCAGACTCTCAGGCAATGACCTGATAGC
CTTGTAGAGACCTCTAAAAATAGCTACCCCTCCGGCATGAATTATCAGCTAGA
ACGGTTGAATATCATATTGATGGTATTGACTGTCTCCGGCTTCTCACCGTTG
AATCTTACCTACACATTACTCAGGCATTGCAATTAAAATATGAGGGTTCTAAA
ATTTTATCCTTGCCTGAAATAAAGGCTCTCCGCAAAAGTATTACAGGGTCATA
ATGTTTGGTACAACCGATTAGCTTATGCTCTGAGGGTTATTGCTTAATTGCT
AATTCTTGCCTGCCTGTATGATTATTGGATGTTGGAAGTTCTGATGCGGTATT
TCTCCTTACGCATCTGTGGTATTACACCGCATATGGTGCACCTCAGTACAATC
TGCTCTGATGCCGCATAGTTAACCGAGCCCCGACACCCGCAACACCCGCTGACCG
CCCTGACGGGCTGTCTGCCCGCATCCGCTTACAGACAAGCTGTGACCGTCTCC
GGGAGCTGCATGTCAGAGGTTTACCGTCATCACCAGAACCGCGAGACGAAA
GGGCCTCGTGTACGCCTATTATAGGTTAATGTCATGATAATAATGGTTCTAG
ACGTCAGGTGGCACTTTGGGGAAATGTGCGCGAACCCCTATTGTTATTCT
AAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCGTATAATGCTTCAAT
AATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTT

Figure 20D

ATTCCTTTTGC~~GG~~CATTG~~C~~CTC~~T~~G~~T~~TG~~C~~T~~AC~~CC~~A~~G~~A~~A~~AC~~G~~C~~T~~GG~~T~~G~~
AA~~G~~T~~AA~~A~~A~~G~~A~~T~~G~~T~~G~~A~~A~~G~~A~~T~~C~~A~~G~~T~~T~~G~~GG~~T~~G~~C~~A~~C~~G~~A~~G~~T~~GG~~T~~T~~A~~C~~
ATCGA~~AC~~T~~GG~~A~~T~~C~~T~~CA~~A~~C~~A~~G~~CG~~T~~A~~A~~G~~A~~T~~C~~T~~G~~A~~G~~A~~T~~T~~T~~C~~G~~CC~~C~~G~~A~~AG~~A~~AC~~G~~T~~
TTT~~CC~~A~~A~~T~~G~~A~~T~~G~~A~~G~~C~~A~~T~~T~~AA~~A~~G~~T~~T~~C~~T~~G~~C~~T~~A~~T~~G~~G~~C~~G~~G~~T~~A~~T~~T~~A~~T~~G~~C~~
ACGCC~~GG~~C~~A~~A~~G~~G~~A~~C~~A~~T~~C~~G~~T~~C~~G~~C~~C~~C~~A~~T~~A~~C~~A~~T~~T~~T~~C~~C~~A~~G~~A~~T~~G~~A~~T~~T~~G~~
A~~G~~T~~A~~C~~T~~C~~A~~C~~A~~G~~T~~C~~A~~C~~A~~G~~A~~A~~A~~G~~C~~A~~T~~T~~A~~C~~G~~G~~A~~T~~G~~G~~C~~A~~G~~A~~G~~A~~A~~T~~T~~A~~A~~
T~~G~~C~~A~~G~~T~~G~~C~~T~~G~~C~~C~~A~~T~~A~~A~~C~~C~~A~~T~~G~~A~~T~~G~~A~~T~~A~~A~~C~~A~~T~~G~~C~~G~~C~~C~~A~~A~~T~~T~~T~~C~~T~~G~~A~~C~~A~~A~~C~~G~~
ATCGGAGGACC~~G~~A~~A~~G~~G~~G~~C~~T~~A~~A~~C~~C~~G~~C~~T~~T~~T~~T~~G~~C~~A~~A~~A~~C~~A~~T~~G~~GGGG~~G~~A~~T~~C~~A~~T~~G~~T~~A~~A~~C~~
TCGCCT~~T~~G~~A~~T~~C~~G~~T~~T~~GG~~G~~A~~C~~CC~~G~~G~~A~~G~~T~~G~~A~~A~~T~~G~~A~~G~~C~~C~~A~~T~~AC~~CA~~A~~A~~C~~G~~A~~G~~G~~C~~T~~G~~
ACACCACG~~A~~T~~G~~C~~C~~T~~G~~T~~A~~G~~C~~A~~T~~G~~C~~A~~A~~C~~A~~C~~G~~T~~T~~G~~C~~G~~C~~A~~A~~A~~C~~T~~A~~T~~A~~A~~C~~T~~G~~G~~C~~G~~A~~
CTACTTACTCTAGCTTCC~~GG~~C~~A~~A~~C~~A~~A~~T~~T~~A~~A~~T~~A~~G~~A~~T~~G~~G~~G~~A~~G~~G~~C~~G~~G~~A~~T~~A~~A~~G~~T~~T~~A~~
G~~C~~A~~G~~G~~A~~C~~A~~C~~T~~T~~C~~T~~G~~C~~G~~T~~C~~G~~G~~C~~C~~T~~T~~C~~C~~G~~G~~T~~G~~G~~T~~T~~A~~T~~T~~G~~C~~T~~A~~A~~A~~T~~C~~
G~~G~~A~~G~~C~~CC~~G~~T~~G~~A~~G~~C~~G~~T~~G~~GG~~G~~T~~T~~C~~G~~C~~G~~G~~T~~A~~T~~C~~A~~T~~T~~G~~C~~A~~G~~C~~A~~T~~GGGG~~G~~C~~A~~G~~T~~G~~T~~A~~A~~
GCC~~C~~T~~CC~~G~~T~~A~~T~~G~~T~~A~~G~~T~~T~~A~~T~~C~~A~~C~~G~~A~~CG~~GGG~~G~~A~~G~~T~~C~~A~~G~~G~~C~~A~~A~~T~~G~~G~~A~~T~~G~~A~~C~~G~~A~~
AA~~A~~T~~A~~G~~A~~C~~A~~G~~A~~T~~C~~G~~C~~T~~G~~A~~G~~A~~T~~A~~G~~G~~T~~G~~C~~C~~T~~A~~C~~T~~G~~A~~T~~A~~G~~C~~T~~A~~T~~G~~G~~T~~A~~A~~T~~G~~T~~C~~A~~G~~A~~
ACCAAGTTTACTCATATATACTT~~A~~G~~T~~T~~G~~A~~T~~T~~A~~A~~A~~A~~C~~T~~T~~C~~T~~T~~T~~A~~A~~T~~T~~A~~A~~A~~A~~G~~T~~
GATCTAGGT~~G~~A~~A~~G~~A~~T~~C~~T~~T~~T~~T~~G~~A~~T~~A~~T~~C~~T~~A~~G~~C~~AAA~~A~~A~~C~~C~~T~~T~~A~~A~~C~~G~~T~~G~~A~~G~~T~~T~~A~~
TTCGTTCCACTGAGCGT~~C~~A~~G~~A~~CC~~CG~~T~~A~~G~~A~~AA~~A~~A~~G~~A~~T~~C~~A~~C~~A~~A~~G~~A~~G~~A~~T~~C~~T~~T~~C~~T~~G~~A~~G~~A~~T~~C~~
TTTTTCT~~G~~C~~G~~C~~G~~T~~A~~A~~T~~C~~T~~G~~C~~T~~G~~C~~A~~A~~A~~C~~A~~A~~A~~A~~A~~A~~C~~C~~A~~C~~G~~G~~C~~T~~A~~C~~A~~G~~C~~G~~G~~T~~G~~
GGTTTGT~~T~~T~~G~~C~~CC~~G~~A~~T~~C~~A~~A~~G~~A~~G~~C~~T~~A~~C~~A~~A~~A~~C~~A~~A~~A~~A~~A~~A~~C~~C~~A~~G~~G~~T~~A~~A~~T~~G~~G~~C~~T~~T~~C~~A~~G~~
CAGAGCGCAG~~A~~T~~C~~A~~A~~A~~A~~T~~C~~T~~G~~C~~T~~T~~C~~A~~G~~T~~G~~A~~G~~G~~C~~G~~T~~A~~G~~T~~G~~A~~G~~G~~C~~A~~C~~C~~A~~
CAAGAAC~~T~~C~~T~~G~~A~~T~~G~~C~~A~~C~~C~~G~~C~~G~~T~~A~~C~~A~~A~~C~~A~~C~~T~~C~~G~~C~~T~~G~~C~~T~~A~~A~~C~~C~~T~~G~~G~~T~~A~~
TGCTGCCAGTGGCG~~A~~T~~G~~A~~G~~T~~C~~G~~T~~T~~C~~A~~C~~C~~GG~~G~~T~~T~~G~~G~~A~~C~~T~~A~~A~~G~~A~~C~~G~~A~~T~~G~~A~~T~~G~~T~~A~~
GGATAAGGCGCAGCGGTC~~G~~G~~C~~T~~G~~A~~A~~C~~GG~~GGGG~~G~~T~~T~~C~~G~~T~~G~~C~~A~~C~~A~~C~~G~~CCC~~G~~T~~T~~G~~G~~
AGCGAACGAC~~T~~A~~C~~A~~C~~CG~~A~~A~~C~~T~~G~~A~~G~~A~~T~~A~~C~~C~~T~~A~~C~~A~~G~~C~~G~~T~~G~~A~~G~~C~~T~~A~~G~~A~~A~~G~~C~~G~~C~~
ACGCTTCC~~G~~A~~AG~~GGG~~G~~A~~AA~~A~~AG~~GGCG~~G~~A~~C~~A~~G~~G~~T~~A~~T~~C~~G~~G~~T~~A~~A~~G~~C~~GGC~~G~~A~~GG~~GT~~C~~GG~~A~~
CAGGAGAGCGC~~A~~C~~G~~A~~G~~GGG~~G~~A~~G~~C~~T~~T~~C~~A~~G~~GGGG~~G~~A~~A~~C~~G~~C~~C~~T~~G~~G~~T~~A~~T~~T~~T~~A~~A~~G~~T~~C~~C~~
GTC~~GG~~G~~T~~T~~T~~C~~G~~C~~C~~A~~C~~C~~T~~T~~G~~A~~C~~T~~G~~A~~G~~G~~C~~T~~G~~A~~T~~T~~T~~T~~G~~G~~T~~A~~T~~G~~C~~T~~G~~T~~C~~A~~GG~~GGGG~~G~~
CGGAGCCT~~T~~A~~G~~G~~A~~A~~A~~A~~C~~G~~C~~A~~C~~G~~C~~G~~G~~C~~T~~T~~T~~T~~A~~C~~GG~~T~~T~~C~~T~~G~~G~~C~~C~~T~~T~~T~~G~~C~~G~~
TGGC~~C~~T~~T~~T~~G~~C~~T~~A~~C~~A~~T~~G~~T~~T~~T~~C~~C~~T~~G~~G~~T~~T~~A~~T~~C~~C~~C~~T~~G~~A~~T~~T~~C~~T~~G~~G~~G~~A~~T~~A~~A~~C~~G~~T~~A~~
TTACCGGGTT~~G~~G~~A~~T~~G~~G~~A~~G~~C~~T~~G~~A~~T~~C~~C~~G~~C~~C~~G~~A~~C~~C~~G~~A~~C~~G~~G~~C~~G~~C~~A~~G~~C~~
GAGTCAGTGAGCGACCAAGCGGAAGAGC

Figure 21A

SEQ ID NO: 7 : human micro-dystrophin gene

ATGCTGTGGTGGAGGAGGTGGAGGATTGTTATGAAAGGGAGGACGTGCAGAAGA
AGACTTTACCAAGTGGGTGAACGCTCAGTCAGCAAATTGGGAAGCAGCACATC
GAGAATCTGTTCCGACCTGCAGGATGGGAGACGGCTGCTGGATCTGCTGGAGG
ACTGACTGGCCAGAAGCTGCCAAAGAGAAGGGGAGCACTAGGGTGCACGCCCTGA
ACAACGTGAACAAAGCTCTGAGAGTGCTGCAGAACACAACAGTGGATCTGGTAAT
ATTGGCAGTACTGATATCGTGGACGGGAACCACAAACTGACACTGGCCTGATCTG
AACATTATTCTGCACTGGCAGGTGAAAAATGTGATGAAGAACATCATGGCCGGC
TGCAGCAGACCAATTCCGAGAAGATCCTGCTGTCTGGTGCAGACAGCACCCGC
AACTATCCCCAGGTGAACGTGATTAACCTCACTACATCCTGGAGCGACGGCTGCC
CTGAATGCTCTGATTCACAGCCACAGGCCTGATCTGTTGACTGGAATAGCGTGGT
TGCCAGCAGTCTGCCACACAGCGCCTGGAACATGCCTCAATATCGCTCGTACCA
CTGGGGATCGAAAAACTGCTGGACCCAGAGGATGTGGACACTACATACCCAGATAA
AAAGTCTATTCTGATGTACATTACTAGCCTGTTCCAGGTGCTGCCACAGCAGGTGTC
TATTGAAGCCATTCAAGGAGGTGGAAATGCTGCCCGCCCCCCTAAAGTGA
AGGAGCATTTCAGCTGCATCATCAGATGCATTACAGCCAGCAGATTACCGTGAGCC
TGGCTCAGGGATAATGAGCGCACCAGTAGTCCAAAACCACGGTCAAGTCCTACGCTT
ATACCCAGGCTGCCACGTGACAACTAGCGACCCACTAGATCCCCCTTCATCCC
AGCACCTGGAGGCCAGAGGACAAGAGCTTGGTCCAGCCTGATGGAAAGCGAG
GTGAATCTGGATCGGTACCAAGACAGCCCTGGAGGAGGTGCTGAGCTGGCTGAG
TGCTGAAGACACACTGCAGGCCAGGGCGAAATTCCAATGACGTGGAAAGTGGTA
AGGATCAGTCCACACACAGAGGGCTATATGATGGACCTGACAGCTCACCAGGG
CGCGTGGCAATATCCTGCAGCTGGCTCTAAACTGATGGCACCGGGAAACTGAG
TGAGGACGAGGAAACAGAAGTGCAGGAGCAGATGAACCTGCTGAACAGCCGCTGG
GAGTGTCTGAGAGTGGCTAGTATGGAGAAGCAGTCCAAACCTGCACCGGGTGTGAT
GGACCTGCAGAACCAAGGAAACTGAAAGAGCTGAACGACTGGCTGACAAAGACTGAG
GAACGCACAAGGAAGATGGAGGAGGAGCCACTGGGACCCGACCTGGAGGAGTCTGA
AGAGACAGGTGCAGCAGCATAAGGTGCTGCAGGAGGATCTGGAACAGGAGCAGGT
GCGGGTGAACCTCCCTGACACATATGGTGGT

Figure 21B

GGTGGTGGACGAATCTAGTGGAGATCACGCCACCGCCGCCCTGGAGGAACAGCTGA
AGGTGCTGGGGACCGGTGGCCAACATTGCCGGTGGACCGAGGGACAGGTGGGTG
CTGCTGCAGGACATCCTGCTGAAATGGCAGAGGCTGACCGAGGAGCAGTGTCTGTT
AGTGCCTGGCTGAGCGAGAAAGAGGGACGCCGTGAACAAGAATCCACACAAACCGGCTT
TAAGGATCAGAACGAAATGCTGTCTAGCCTGCAGAAACTGGCTGTGCTGAAGGCCG
ATCTGGAGAAAAGAACAGAGCATGGCAAACACTGTATAGCCTGAAACAGGACCTG
CTGAGCACCCCTGAAGAACAAAGAGCGTGACCCAGAACAGACAGAACGCTGGCTGGATA
ACTTTGCCCGCTGCTGGACAACCTGGTCAGAAACTGGAGAAAAGTACAGCTCAG
ATCTCTCAGGCTGTGACCACAACCCAGCCTAGCCTGACCCAGAACACCCTGATGGA
AACCGTGACCACCGTGACAACCCCGAACAGATCCTGGTAAACATGCCAGGAAG
AGCTGCCACCTCCACCTCCCCAGAAGAAGAGAACCCCTGGAGCGGCTGCAGGAGCTG
CAGGAAGCCACTGACGAACCTGGACCTGAAGCTGAGGCAGGCCGAAGTGATTAAGGG
GTCTTGGCAGCCTGTGGCGATCTGCTGATTGATTCCCTGCAGGACCACCTGGAAAAA
GGTGAAGGCTCTGAGAGGCAGAAATTGCTCCACTGAAGGAGAACGTGAGTCATGTGA
ACGATCTGGCTAGACAGCTGACAACACTGGCATCCAGCTGAGCCCATAATCTG
AGCACACTGGAGGACCTGAATACCAGGTGGAAGCTGCTGCAGGTGGCTGTGGAAGA
CCGGGTGCGGCAGCTGCATGAGGCCATCGCGACTCGGACCAGCCAGCCAGCACT
TTCTGAGCACATCCGTGCAGGGCCCTGGAGAGGGCCATTCTCCAACAAGGTG
CCCTACTATATTAATCACGAGACCCAGACCACTTGTGGACCATCCAAAGATGACA
GAACGTACCACTCCCTGGCGATCTGAACAAACGTGAGGTTAGCGTTACAGAAC
GCTATGAAGCTGAGACGGCTGCAGAACGGCCCTGTGCCTGGATCTGCTGTCC
GCCGCCTGCGATGCCCTGGATCAGCATAATCTGAAGCAGAACGATCAGCCAATGGA
TATCCTGCAGATCATCAACTGCCTGACCACTATCTACGACAGGCTGGAGCAGGAGC
ACAACAACCTGGTGAACGTGCCTCTGTGCGTGGATATGTGCCTGAACCTGGCTGCTGA
ACGTGTATGACACTGGCGACCCGGCGATCAGAGTGTGAGTTAAAACGG
ATTATCTCCCTGTGTAAGGCCACCTGGAGGACAAGTACAGGTACCTGTTCAAGCAG
GTGGCTAGTAGCACTGGATTTGTGACCAGCGCCCTGGACTGCTGCTGCATGAT
AGTATCCAGATTCTAGACAGCTGGAGAGG

Figure 21C

TGGCTAGTTCGGAGGATCTAACATCGAACCCAGCGTGCAGCTGTTCCAGTTG
CCAATAACAAACCTGAAATCGAGGCTGCTCTGTCCTGGATTGGATGCGCCTGGAAC
CACAGAGCATGGTGTGGCTGCCTGTGCTGCACAGAGTGGCTGCCGCCAAACTGCC
AAGCACCAGGCTAAATGCAACATCTGCAAGGAATGTCCCATTATCGGCTTCGCTAC
AGGAGTCTGAAACATTTAACTACGATATTGCCAGAGCTGCTTCTTCCGGAAGA
GTGGCAAAGGACACAAGATGCACTACCCATGGTGGAAATTGCACCCCAACTAC
ATCTGGCGAAGATGTGCGCGATTTGCCAAGGTGCTGAAGAATAAGTTCGGACTAA
GAGGTACTTCGCCAAGCACCCCCGATGGGTATCTGCCAGTGCAGACAGTGCTGG
AAGGAGACAATATGGAGACCGATAATGTGAGC

Figure 22A**pAAV.MCK.miR29C Sequence (SEQ ID NO: 12)****Main features:**MCK enhancer- 190-395 (SEQ ID NO: 10)MCK promoter- 396-753 (SEQ ID NO: 11)EF1a Intron- 1155-1315, 1609-2083miR-29c-1487-1512shRNA-miR29-c with primary seed sequence- 1316-1608SV40 PolyA- 2094-2146

CTGNNNNNNCGCGCTCGCTCACTGAGGCCGCCGGCAAAGCCCGGGCGTC
 GGGCGACCTTGGTCGCCGCCCTCAGTGAGCGAGCGCGCAGAGAGGGAGTG
 GCCAACTCCATCACTAGGGGTTCTGTAGTTAATGATTAACCCGCCATGCTAATT
 TCTACGTAGCCATGTCTAGACAGCCACTATGGGTCTAGGCTGCCATGTAAGGAGGC
AAGGCCTGGGGACACCCGAGATGCCTGGTTATAATTAAACCCAGACATGTGGCTGCTC
CCCCCCCCCAACACCTGCTGCCTGAGCCTCACCCCCCACCCCGTGCCTGGTCTTAG
GCTCTGTACACCATGGAGGGAGAAGCTCGCTCTAAAAATAACCCGTCCCTGGTGGC
TGTGGGGGACTGAGGGCAGGCTGTAACAGGCTGGGGGCCAGGGCTTACGTGCC
TGGGACTCCAAAGTATTACTGTTCCATGTTCCCGCGAAGGGCCAGCTGTCCCCCG
CCAGCTAGACTCAGCACTAGTTAGGAACCAGTGAGCAAGTCAGCCCTGGGCA
GCCCATAACAAGGCCATGGGGCTGGCAAGCTGCACGCCCTGGTCCGGTGGCAC
GGTGCCCGGGCAACGAGCTGAAAGCTACCTGCTCTCAGGGGCCCTCCCTGGGA
CAGCCCCTCCTGGCTAGTCACACCCCTGTAAGGCTCCTCTATATAACCCAGGGCACAG
GGGCTGCCCGGGTCACCACCCCTCACAGCACAGACAGACACTCAGGAGCCAG
CCAGCCAGGTAAAGTTAGTCTTTGTCTTTATTTCAGGTCCCAGTCCGGTGGTGG
TGCAAATCAAAGAACTGCTCCTCAGTGGATGTTGCCTTACTTCTAGGCCTGTACGG
AAAGTGTACTTCTGCTCTAAAGCTGCGGAATTGTACCCGCTAGAGGATCCGGTAC
TCGAGGAACTGAAAACCAGAAAGTTAAGTGGTAAGTTAGTCTTTGTCTTTAT
TTCAGGTCCCAGTCCGGTGGTGCCTAAAGAAACTGCTCCTCAGTGGATGTT
GCCTTACTTCTAGGCCTGTACGGAAAGTGTACTTCTGCTCTAAAGCTGCGGAATT
GTACCCGGGGCCGATCCACCGGTCTTTCGCAACGGGTTGCCGCCAGAACACAGG
TAAGTGCCGTGTGGTCCCGCGGGCGACGGGGCCGTGCGTCCCAGCGCAC
ATGTTCGCGAGGGCGGGCCTCGAGCGCGGCCACCGAGAAATCGGACGGGGTAGT
CTCAAGCTGGCCGGCCTGTTGAATGAGGCTCAGTACTTACAGAATCGTTGCCTG
CACATCTTGGAAACACTTGCTGGGATTACTTCTCAGGTAAACCAACAGAACAGCTC
GAGAAGGTATATTGCTGTTGACAGTGAGCGAACCGATTCAAATGGTGCTAGAGT
GAAGGCCACAGATGTCTAGCACCATTGAAATCGGTTATGCCTACTGCCTCGGAATT
AAGGGGCTACTTAGGAGCAATTATCTTGTAACTAAACTGAATACTTGTATCT
CTTGATACATTGGCCGGCCTGCTCTGGTGCCTGGCCCTCGCGCCCGTGTATGCC
CCGCCCTGGCGGCAAGGCTGGCCCGGTGGCACCCAGTTGCGTGAGCGGAAAGATG
GCGCCTCCGGCCCTGCTGCAGGGAGCTAAAATGGAGGACGCCGCGCTCGGGAG
AGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCTTCCGCTCAGCCGTC
GCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTT

Figure 22B

CTCGAGCTTTGGAGTACGTCGCTTTAGGTTGGGGGGAGGGGTTTATGCGATGGA
GTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTGGCACTGATGTA
ATTCTCCTGGAATTGCCCTTTGAGTTGGATCTGGTTCATTCTCAAGCCTCAG
ACAGTGGTCAAAGTTTTCTTCCATTCAAGGTGTCGTAAAAGCTAGTGCAGGCC
GCAATAAAAGATCTTATTTCATTAGATCTGTGTGGTTTGTGTCTAGAC
ATGGCTACGTAGATAATTAGCATGGCGGGTTAACATTAACACTACAAGGAACCCCTAG
TGATGGAGTTGCCACTCCCTCTGCAGCGCTCGCTCACTGAGGCCGGCGAC
CAAAGGTCGCCGACGCCGGCTTGCCCGGGCGCTCAGTGAGCGAGCGAGCG
CGCNNNNNCAGCTGGCGTAATAGCGAAGAGGCCGCACCGATGCCCTCCAAAC
AGTTGCAGCCTGAATGGCGAATGGAAGTTCCAGACGATTGAGCGTAAAATGTA
GGTATTCCATGAGCGTTTCTGTTGCAATGGCTGGCGTAATATTGTTCTGGATA
TTACCAGCAAGGCCGATAGTTGAGTTCTACTCAGGCAAGTGATGTTATTACTA
ATCAAAGAAGTATTGCGACAACGGTTAATTGCGTGTGGACAGACTCTTACTCG
GTGGCCTCACTGATTATAAAACACTTCTCAGGATTCTGGCGTACCGTCTGTCTA
AAATCCCTTAATCGGCCTCCTGTTAGCTCCGCTCTGATTCTAACGAGGAAAGCA
CGTTATACGTGCTCGTCAAAGCAACCATAGTACGCCCTGTAGCGCGCATTAAAGC
GCCGCAGGGTGTGGTACGCGCAGCGTACCGCTACACTGCCAGCGCCCTAGC
GCCGCCTTTCGCTTCTCCCTCCTCTGCCACGTTGCCGGCTTCCCCGTC
AAGCTCTAAATCGGGGGCTCCCTTAGGGTCCGATTAGTGTGATTACGGCACCTCG
ACCCCAAAAAACTGATTAGGGTGTGGTACGCGCAGCGTACCGCTACACTGCCAGCG
CGGTTTCCGCTTGTGGTACGTTGAGTCCACGTTTAATAGTGGACTCTGTTCCA
AACTGGAACAAACACTCAACCTATCTGGTCTATTGTTGATTATAAGGGATTG
CCGATTTCGGCCTATTGGTAAAAAAATGAGCTGATTAAACAAAAATTAAACGCGAAT
TTAACAAATATTACGTTACAATTAAATATTGCTTACAAATTCTCCTGTT
TGGGGCTTCTGATTATCAACCGGGTACATATGATTGACATGCTAGTTACGATT
ACCGTTCATCGATTCTCTGTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTT
GTAGAGACCTCTCAAAATAGCTACCCCTCTCCGGCATGAATTATCAGCTAGAACGG
TTGAATATCATATTGATGGTATTGACTGTCTCCGGCTTCTCACCCGTTGAATC
TTTACCTACACATTACTCAGGCATTGCATTAAATATGAGGGTTCTAAAAATT
TATCCTGCGTTGAAATAAAGGCTTCTCCGCAAAAGTATTACAGGGTCATAATGTT
TTGGTACAACCGATTAGCTTATGCTCTGAGGCTTATTGCTTAATTGCTAATT
CTTGCCCTGCCTGTATGATTATTGGATGTTGGAAGTTCTGATGCGGTATTCTC
CTTACGCATCTGCGGTATTACACCGCATATGGTGCACCTCAGTACAATCTGCT
CTGATGCCGCATAGTTAACCGCCCCGACACCCGCCAACACCCGCTGACCGCCCT
GACGGGCTTGTCTGCTCCGGCATCCGCTACAGACAAGCTGTGACCGTCTCCGG
GCTGCATGTGTCAGAGGTTTACCGTCATACCGAAACGCGCAGACGAAAGGGC
CTCGTGTACGCCTATTAGGTTAATGTCATGATAATAATGGTTCTAGACGT
CAGGTGGCACTTTGGGGAAATGTGCGCGAACCCCTATTGTTATTCTAAAT
ACATTCAAATATGTATCCGCTCATGAGACAATAACCGTATAATGCTCAATAATA
TTGAAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTATTCCCTTT
GCGGCATTGCGCTTGTGCTACCCAGAAACGCTGGTAAAGTAAAGAT
GCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTAACAGCGG
TAAGATCCTGAGAGTTGCCCCGAAGAACGTT

Figure 22C

TTCCAATGATGAGCACTTTAAAGTTCTGCTATGTGGCGCGTATTATCCGTATTGA
CGCCGGGCAAGAGCAACTCGGTCGCCGCATAACTATTCTCAGAATGACTTGGTTGA
GTACTCACCAGTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTAT
GCAGTGCTGCCATAACCAGTACAGTACAAACTGCAGGCCACTTACTTCTGACAACGA
TCGGAGGACCGAAGGAGCTAACCGCTTTTGACAAACATGGGGATCATGTAACCTC
GCCTTGATCGTTGGAACCGGAGCTGAATGAAGCCATACCAAAACGACGAGCGTGAC
ACCACGATGCCTGTAGCAATGGCAACAAACGTTGCGCAAACATTAACTGGCGAACT
ACTTACTCTAGCTCCCGCAACAAATTAACTAGACTGGATGGAGGCGATAAAGTTGC
AGGACCACTCTCGCTCGGCCCTCCGGCTGGCTGGTTATTGCTGATAAAATCTGG
AGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCACTGGGGCCAGATGGTAAGC
CCTCCCGTATCGTAGTTACTACACGACGGGGAGTCAGGCAACTATGGATGAACGA
AATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGTAACTGTCAGAC
CAAGTTACTCATATATACTTAGTTAGATTGATTAAAACCTCATTTAATTAAAAGGA
TCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTC
GTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTT
TTTCTGCGCGTAATCTGCTGCTGCAAACAAAAAAACACCACCGCTACCAGCGGTGGT
TTGTTGCCGGATCAAGAGCTACCAACTCTTCCGAAGGTAACTGGCTTCAGCAG
AGCGCAGATACCAAATACTGTCCTCTAGTGTAGCCGTAGTTAGGCCACCACTCAA
GAACCTGTTAGCACCACGCGTACATACCTCGCTCTGCTAACCTGTTACCAAGTGGCTGC
TGCCAGTGGCGATAAGTCGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGA
TAAGGCGCAGCGGTGGCTGAACGGGGGTTCTGACACAGCCCAGCTGGAGC
GAACGACCTACACCGAAGTACGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACG
CTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTGGAAACAG
GAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTTATAGTCCTGTC
GGGTTTGCACCTCTGACTTGAGCGTCGATTGTGATGCTCGTCAGGGGGCGG
AGCCTATGGAAAAACGCCAGCAACGCCCTTTACGGTCTGGCTTTGCTGG
CCTTTGCTCACATGTTCTTCCGTATCCCTGATTCTGTGGATAACCGTATTAC
CGGGTTGAGTGGCTGAGCTGATACCGCTGCCAGCCGAACGACCGAGCGCAGCGAGT
CACTGAGCGACCAAGCGGAAGAGC

51908_SeqListing
SEQUENCE LISTING

<110> RESEARCH INSTITUTE AT NATIONAL CHILDREN'S HOSPITAL
RODINO-KLAPAC, et al.

<120> ADENO-ASSOCIATED VIRUS VECTOR DELIVERY OF MICRODYSTROPHIN TO
TREAT MUSCULAR DYSTROPHY

<130> 28335/51908

<150> US 62/473, 253
<151> 2017-03-17

<150> US 62/232, 163
<151> 2016-04-15

<160> 12

<170> PatentIn version 3.5

<210> 1
<211> 5910
<212> DNA
<213> Adeno-associated virus

<220>
<221> promoter
<222> (120)..(526)
<223> CMV promotor

<220>
<221> Intron
<222> (927)..(1087)
<223> EF1a intron

<220>
<221> mi sc_feature
<222> (1088)..(1375)
<223> shRNA-mi R29-c

<220>
<221> mi sc_feature
<222> (1257)..(1284)
<223> mi R-29c

<220>
<221> Intron
<222> (1380)..(1854)
<223> EF1a intron

<220>
<221> mi sc_feature
<222> (1896)..(2091)
<223> polyA

<400> 1
cagcagctgc gcgctcgctc gctcaactgag gccgccccgg caaagcccg gcgtcgggctc 60
acctttggtc gcccggcctc agtgagcgag cgagcgcgca gagagggagt ggggttaaac 120
tcgttacata acttacgta aatggccgc ctggctgacc gcccaacgac ccccgcccat 180
tgacgtcaat aatgacgtat gttccatag taacgccaat agggactttc cattgacgtc 240
aatgggtgga gtatcacgg taaactgccc acttggcagt acatcaagt tatcatatgc 300
caagtacgcc ccctattgac gtcaatgacg gttaatggcc cgcctggcat tatgcccagt 360

51908_Seqlisting

acatgacctt atgggacttt cctacttggc agtacatcta cgtattagtc atcgcttatta	420
ccatggtgat gcgggtttgg cagtagatca atgggcgtgg atagcggtt gactcacggg	480
gatttccaag tctccacccc attgacgtca atgggagttt gtttggcac caaaatcaac	540
gggactttcc aaaatgtcgt aacaactccg ccccatggac gcaaattggc ggtaggcgtg	600
tacggtgga ggtctatata agcagagctc gtttagtgaa ccgtcagatc gcctggagac	660
gccatccacg ctgtttgac ctccatagaa gacaccggg ccgatccagc ctccggactc	720
tagaggatcc ggtactcgag gaactgaaaa accagaaagt taactggtaa gtttagtctt	780
tttgcctttt atttcaggc ccggatccgg tggtggtgca aatcaaagaa ctgctcctca	840
gtggatgttgc ccttacttc taggcctgta cgaaagtgtt acttctgctc taaaagctgc	900
ggaattgtac ccggggccga tccaccggc ttttcgcaa cgggttgcc gccagaacac	960
aggttaagtgc cgtgtgttgt tcccgccggc ggcgacgggg cccgtgcgtc ccagcgcaca	1020
tgttcggcga ggcggggcct gcgagcgcgg ccaccgagaa tcggacgggg gtagtctcaa	1080
gctggccggc ctgtttgaat gaggcttcag tactttacag aatcggttgc tgcacatctt	1140
ggaaacactt gctgggattt cttcttcagg ttaacccaac agaaggctcg agaaggata	1200
ttgctgttga cagtggcgc aaccgatttca aatggtgct agagtgaagc cacagatgtc	1260
tagcaccatt taaaatcggt tatgcctact gcctcgaaat tcaagggct actttaggag	1320
caattatctt gtttactaaa actgaatacc ttgctatctc tttgatacat tggccggcct	1380
gctctggtgc ctggcctcgc gcccgggtgt atcgccccgc cctggccggc aaggctggcc	1440
cggcggcac cagttgcgtg agcggaaaga tggccgttc ccggccctgc tgcagggagc	1500
tcaaaatgga ggacgcggcg ctgggagag cgggcgggtg agtcacccac acaaaggaaa	1560
agggccttc cgtcctcagc cgtcgcttca tgtgactcca cggagtaccg ggcgcgtcc	1620
aggcacctcg attagttctc gagctttgg agtacgtcgt cttaggttg gggggagggg	1680
ttttatgcga tggagttcc ccacactgag tgggtggaga ctgaagttag gccagcttgg	1740
cacttgatgt aattctcctt ggaatttgc cttttgagt ttggatctt gttcattctc	1800
aagcctcaga cagtggttca aagttttttt cttccatttc aggtgtcgtg aaaagctagc	1860
gctaccggac tcagatctcg agtcaagct gcggggatcc agacatgata agatacattg	1920
atgagttgg acaaaccaca actagaatgc agtggaaaaaa atgctttatt tgtgaaattt	1980
gtgatgctat tgctttttt gtaaccatta taagctgaa taaacaagtt aacaacaaca	2040
attgcattca ttttatgttt cagttcagg gggaggtgtg ggaggtttt tcactagtag	2100
catggctacg tagataagta gcatggccgg ttaatcatta actacaagga acccctagtg	2160
atggagttgg ccactccctc tctgcgcgtc cgctcgctca ctgaggccgg gcgaccaaag	2220
gtcgcccgac gcccggcct tgcccgccg gcctcagtga gcgagcgcgc ggcgcagctg	2280
gcgtaatagc gaagaggccc gcaccgatcg cccttccaa cagttgcgcga gcctgaatgg	2340
cgaatggaat tccagacgat tgagcgtcaa aatgttagtta tttccatgag cgttttcct	2400

51908_Seqlisting

gttgcataatgg	ctggcggtaa	tattgttctg	gatattacca	gcaaggccga	tagtttgagt	2460
tcttctactc	aggcaagtga	tgttattact	aatcaaagaa	gtattgcac	aacggtaat	2520
ttgcgtgatg	gacagactct	tttactcggt	ggcctcactg	attataaaaa	cacttctcag	2580
gattctggcg	taccgttccct	gtctaaaatc	cctttaatcg	gcctcctgtt	tagctccgc	2640
tctgattcta	acgaggaaag	cacgttatac	gtgctcgta	aagcaaccat	agtacgcgc	2700
ctgttagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	2760
tgccagcgcc	ctagcgccc	ctccttcgc	tttctccct	tccttctcg	ccacgttcgc	2820
cggctttccc	cgtcaagctc	taaatcgggg	gctccctta	gggttccgat	ttagtgcctt	2880
acggcacctc	gaccccaaaa	aacttgatta	gggtgatggt	tcacgttagt	ggccatcgcc	2940
ctgatagacg	gttttcgccc	cttgacgtt	ggagtccacg	ttctttaata	gtggactctt	3000
gttccaaact	ggaacaacac	tcaaccctat	ctcggtctat	tctttgatt	tataaggat	3060
tttgcgatt	tcggcctatt	ggtaaaaaaaa	tgagctgatt	taacaaaaat	ttaacgcgaa	3120
ttttaacaaa	atattaacgt	ttacaattta	aatatttgct	tatacaatct	tcctgttttt	3180
gggccttttc	tgattatcaa	ccggggtaca	tatgattgac	atgctagttt	tacgattacc	3240
gttcatcgat	tctcttgc	gctccagact	ctcaggaat	gacctgatag	ccttgcgt	3300
gacctctcaa	aaatagctac	cctctccggc	atgaattt	cagctagaac	ggttgaat	3360
catattgatg	gtgatttgac	tgtctccggc	ctttctcacc	cgttgaatc	tttacctaca	3420
cattactcg	gcattgcatt	taaaatata	gagggttcta	aaaattttta	tccttgcgtt	3480
gaaataaagg	cttctccgc	aaaagtatta	cagggtcata	atgttttg	tacaaccgat	3540
ttagctttat	gctctgaggc	tttattgctt	aatttgcta	attcttgcc	ttgcctgtat	3600
gatttattgg	atgttggat	tcctgatg	gtatttctc	cttacgcac	tgtgcgtat	3660
ttcacaccgc	atatggtca	ctctcag	aatctgct	gatgccgcat	agttaa	3720
gccccgacac	ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	tcccggcatc	3780
cgcttacaga	caagctgt	ccgtctccgg	gagctgcac	tgtcagaggt	tttaccgc	3840
atcaccgaaa	cgcgcgagac	gaaaggcc	cgtgatacgc	ctat	tttata	3900
catgataata	atggtttctt	agacgtcagg	tggcactt	cggggaaat	tgcgcggaa	3960
ccctattttgt	ttat	tttcttct	aaatacattc	aaatatgtat	ccgctcatg	4020
ctgataata	cttcaataat	attgaaaaag	gaagagtat	agtattcaac	atttccgt	4080
cggccttatt	ccctttttt	cgcat	tttgcgtt	tttgcgtt	cagaaacg	4140
ggtggaaagta	aaagatgt	aagatcag	gggtgacga	gtgggttaca	tcgaactgg	4200
tctcaacagc	ggtaagatcc	ttgagagttt	tcgccccaa	gaacgtttt	caatgatg	4260
cactttaaa	gttctgctat	gtggcgcgt	attatcccgt	attgacgccc	ggcaagagca	4320
actcggtcgc	cgcatacact	attctcaga	tgacttg	gagtactc	cagtac	4380
aaagcatctt	acggatggca	tgacagta	agaattatgc	agtgcgt	ccaa	4440

51908_Seqlisting

tgataaacact	gcggccaact	tacttctgac	aacgatcgga	ggaccgaagg	agctaaccgc	4500
tttttgcac	aacatggggg	atcatgtaac	tcgcctgat	cgttggaaac	cgagactgaa	4560
tgaagccata	ccaaacgacg	agcgtgacac	cacgatgcct	gtagcaatgg	caacaacgtt	4620
gcfgcaaacta	ttaactggcg	aactacttac	tctagttcc	cggcaacaat	taatagactg	4680
gatggaggcg	gataaagttg	caggaccact	tctgcgctcg	gcccttccgg	ctggctggtt	4740
tattgctgat	aatctggag	ccggtgagcg	tgggtctcgc	ggtatcattt	cagcactggg	4800
gccagatgg	aagccctccc	gtatcgtagt	tatctacacg	acggggagtc	aggcaactat	4860
ggatgaacga	aatagacaga	tcgctgagat	aggtgcctca	ctgattaagc	attggtaact	4920
gtcagaccaa	gtttactcat	atatactta	gattgatttta	aaacttcatt	tttaatttaa	4980
aaggatctag	gtgaagatcc	ttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	5040
ttcggtccac	tgagcgtcag	accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	5100
ttttctgcgc	gtaatctgct	gctgcaaac	aaaaaaacca	ccgctaccag	cggtggttt	5160
tttgccggat	caagagctac	caactctttt	tccgaaggta	actggcttca	gcagagcgca	5220
gataccaaat	actgtccttc	tagttagcc	gtagtttagc	caccacttca	agaactctgt	5280
agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	ccagtgccgca	5340
taagtcgtgt	cttaccgggt	tggactcaag	acgatagttt	ccggataagg	cgcagcggc	5400
gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	5460
gagataccca	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaaggga	gaaaggcgga	5520
caggtatccg	gtaagcggca	gggtcggaaac	aggagagcgc	acgagggagc	ttccagggggg	5580
aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	5640
tttgcgtatgc	tcgtcagggg	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	5700
acgggttcctg	gcctttgct	ggcctttgc	tcacatgttc	tttcctgcgt	tatccctgaa	5760
ttctgtggat	aaccgtattt	ccgccttga	gtgagctgat	accgctcgcc	gcagccgaac	5820
gaccgagcgc	agcgagttag	tgagcggag	agcggaaagag	cggccaatac	gcaaaccgccc	5880
tctcccccgcg	cgttggccga	ttcattaatg				5910

<210> 2
<211> 296
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> misc_feature
<222> (1)..(8)
<223> FSE-I cut site

<220>
<221> misc_feature

51908_Seqlisting

<222> (9)..(136)
 <223> mi R-30 backbone

<220>
 <221> mi sc_feature
 <222> (139)..(160)
 <223> mi R-29c target (sense) strand

<220>
 <221> mi sc_feature
 <222> (161)..(175)
 <223> mi R-29c target (sense) strand

<220>
 <221> mi sc_feature
 <222> (176)..(199)
 <223> mi R-30 stem loop

<220>
 <221> mi sc_feature
 <222> (200)..(288)
 <223> mi R-29c guide (anti sense) strand

<220>
 <221> mi sc_feature
 <222> (289)..(296)
 <223> mi R-30 backbone

<400> 2		
ggccggcctg tttgaatgag gcttcagtagc tttacagaat cgttgccctgc acatcttggaa		60
aacacttgct gggattactt cttcaggtta acccaacaga aggctcgaga aggtatattt		120
ctgttgacag tgagcgcaac cgatttcaaa tggtgctaga gtgaagccac agatgtctag		180
caccatttga aatcggttat gcctactgcc tcggaattca aggggctact ttaggagcaa		240
ttatcttggtt tactaaaact gaataccctt gatacattgg ccggcc		296

<210> 3
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide

<400> 3		
accgatttca aatggtgcta ga		22

<210> 4
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide

<400> 4		
tctagcacca tttgaaatcg gtta		24

<210> 5
 <211> 15
 <212> DNA
 <213> Artificial Sequence

51908_SeqList

<220>
 <223> Synthetic oligonucleotide
 <400> 5
 gtgaagccac agatg 15

<210> 6
 <211> 98
 <212> RNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide

<220>
 <221> misc_feature
 <222> (1)..(19)
 <223> miR-30 backbone

<220>
 <221> misc_feature
 <222> (20)..(42)
 <223> miR-29c target (sense) strand

<220>
 <221> misc_feature
 <222> (43)..(57)
 <223> miR-30 stem loop

<220>
 <221> misc_feature
 <222> (58)..(81)
 <223> miR-29c guide (anti sense) strand

<220>
 <221> misc_feature
 <222> (82)..(98)
 <223> miR-30 backbone

<400> 6
 ugcuguugac agugagcgca accgauuuca aauggugcua gagugaagcc acagaugucu 60
 agcaccauuu gaaaucgguu augccuacug ccucggaa 98

<210> 7
 <211> 3581
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)..(3579)

<400> 7
 atg ctg tgg tgg gag gag gtg gag gat tgt tat gaa agg gag gac gtg 48
 Met Leu Trp Trp Glu Glu Val Glu Asp Cys Tyr Glu Arg Glu Asp Val
 1 5 10 15

cag aag aag act ttt acc aag tgg gtg aac gct cag ttc agc aaa ttt 96
 Glu Lys Lys Thr Phe Thr Lys Trp Val Asn Ala Glu Phe Ser Lys Phe
 20 25 30

ggg aag cag cac atc gag aat ctg ttt tcc gac ctg cag gat ggg aga 144

51908_Seqlisting

Gly	Lys	Gln	His	Ile	Gl u	Asn	Leu	Phe	Ser	Asp	Leu	Gln	Asp	Gly	Arg	
35					40							45				
Arg	Leu	Leu	Asp	Leu	Leu	Gl u	Gl y	Leu	Thr	Gl y	Gl n	Lys	Leu	Pro	Lys	192
					55					60						
gag	aag	ggg	agc	act	agg	gtg	cac	gcc	ctg	aac	aac	gtg	aac	aaa	gct	
Gl u	Lys	Gl y	Ser	Thr	Arg	Val	Hi s	Al a	Leu	Asn	Asn	Val	Asn	Lys	Al a	240
					70					75						
ctg	aga	gtg	ctg	cag	aac	aac	gtg	gat	ctg	gtg	aat	att	ggc	agt		288
Leu	Arg	Val	Leu	Gl n	Asn	Asn	Asn	Val	Asp	Leu	Val	Asn	Ile	Gl y	Ser	
					85				90				95			
act	gat	atc	gtg	gac	ggg	aac	cac	aaa	ctg	aca	ctg	ggc	ctg	atc	tgg	
Thr	Asp	Ile	Val	Asp	Gl y	Asn	Hi s	Lys	Leu	Thr	Leu	Gl y	Leu	Ile	Trp	336
					100			105					110			
aac	att	att	ctg	cac	tgg	cag	gtg	aaa	aat	gtg	atg	aag	aac	atc	atg	
Asn	Ile	Ile	Leu	Hi s	Trp	Gl n	Val	Lys	Asn	Val	Met	Lys	Asn	Ile	Met	384
					115			120				125				
gcc	ggg	ctg	cag	cag	acc	aat	tcc	gag	aag	atc	ctg	ctg	tct	tgg	gtg	
Al a	Gl y	Leu	Gl n	Gl n	Thr	Asn	Ser	Gl u	Lys	Ile	Leu	Leu	Ser	Trp	Val	432
					130			135			140					
cg	cag	agc	acc	cgc	aac	tat	ccc	cag	gtg	aac	gtg	att	aac	tcc	act	
Arg	Gl n	Ser	Thr	Arg	Asn	Tyr	Pro	Gl n	Val	Asn	Val	Ile	Asn	Phe	Thr	480
					145			150			155				160	
aca	tcc	tgg	agc	gac	ggg	ctg	gcc	ctg	aat	gct	ctg	att	cac	agc	cac	
Thr	Ser	Trp	Ser	Asp	Gl y	Leu	Al a	Leu	Asn	Al a	Leu	Ile	His	Ser	Hi s	528
					165			170					175			
agg	cct	gat	ctg	ttc	gac	tgg	aat	agc	gtg	gtg	tgc	cag	cag	tct	gcc	
Arg	Pro	Asp	Leu	Phe	Asp	Trp	Asn	Ser	Val	Val	Cys	Gl n	Gl n	Ser	Al a	576
					180			185			190					
aca	cag	cgc	ctg	gaa	cat	gcc	tcc	aat	atc	gct	cgg	tac	cag	ctg	ggg	
Thr	Gl n	Arg	Leu	Gl u	Hi s	Al a	Phe	Asn	Ile	Al a	Arg	Tyr	Gl n	Leu	Gl y	624
					195			200			205					
atc	gaa	aaa	ctg	ctg	gac	cca	gag	gat	gtg	gac	act	aca	tac	cca	gat	
Ile	Gl u	Lys	Leu	Leu	Asp	Pro	Gl u	Asp	Val	Asp	Thr	Thr	Tyr	Pro	Asp	672
					210			215			220					
aaa	aag	tct	att	ctg	atg	tac	att	act	agc	ctg	tcc	cag	gtg	ctg	cca	
Lys	Lys	Ser	Ile	Leu	Met	Tyr	Ile	Thr	Ser	Leu	Phe	Gl n	Val	Leu	Pro	720
					225			230			235					
cag	cag	gtg	tct	att	gaa	gcc	att	cag	gag	gtg	gaa	atg	ctg	ccc	cgc	
Gl n	Gl n	Val	Ser	Ile	Gl u	Al a	Ile	Gl n	Gl u	Val	Gl u	Met	Leu	Pro	Arg	768
					245			250					255			
ccc	ccc	aaa	gtg	act	aaa	gag	gag	cat	ttt	cag	ctg	cat	cat	cag	atg	
Pro	Pro	Lys	Val	Thr	Lys	Gl u	Gl u	Hi s	Phe	Gl n	Leu	Hi s	Hi s	Gl n	Met	816
					260			265					270			
cat	tac	agc	cag	cag	att	acc	gtg	agc	ctg	gct	cag	gga	tat	gag	cgc	
Hi s	Tyr	Ser	Gl n	Gl n	Ile	Thr	Val	Ser	Leu	Al a	Gl n	Gl y	Tyr	Gl u	Arg	864
					275			280				285				
acc	agt	agt	cca	aaa	cca	cgg	ttc	aag	tcc	tac	gct	tat	acc	cag	gct	
Thr	Ser	Ser	Pro	Lys	Pro	Arg	Phe	Lys	Ser	Tyr	Al a	Tyr	Thr	Gl n	Al a	912
					290			295			300					
gcc	tac	gtg	aca	act	agc	gac	cct	act	aga	tcc	ccc	ttt	cca	tcc	cag	
															960	

51908_Seq listing

Ala	Tyr	Val	Thr	Thr	Ser	Asp	Pro	Thr	Arg	Ser	Pro	Phe	Pro	Ser	Gln		
305					310				315						320		
His	Leu	Gl u	Ala	Pro	Gl u	Asp	Lys	Ser	Phe	Gl y	Ser	Ser	Leu	Met	Gl u	1008	
					325				330					335			
Arg	Gag	Gtg	Aat	CTG	GAT	Cgg	Tac	CAG	Aca	Gcc	CTG	GAG	GAG	Gtg	CTG	1056	
Ser	Gl u	Val	Asn	Leu	Asp	Arg	Tyr	Gl n	Thr	Ala	Leu	Gl u	Gl u	Val	Leu		
				340				345				350					
Arg	Tgg	CTG	CTG	Agt	GCT	GAA	GAC	ACA	CTG	CAG	GCC	CAG	GGC	GAA	Att	1104	
Ser	Trp	Leu	Leu	Ser	Ala	Gl u	Asp	Thr	Leu	Gl n	Ala	Gl n	Gl y	Gl u	Ile		
				355				360				365					
Tcc	Aat	Gac	Gtg	Gaa	Gtg	Gtg	Aag	Gat	Cag	Ttc	Cac	Aca	Cac	Gag	Ggc	1152	
Ser	Asn	Asp	Val	Gl u	Val	Val	Lys	Asp	Gl n	Phe	His	Thr	His	Gl u	Gl y		
				370				375			380						
Tat	Atg	Atg	Gac	CTG	ACA	GCT	CAC	CAG	Ggg	Cgc	Gtg	Ggc	Aat	Atc	CTG	1200	
Tyr	Met	Met	Asp	Leu	Thr	Ala	His	Gl n	Gl y	Arg	Val	Gl y	Asn	Ile	Leu		
				385				390			395				400		
CAG	CTG	Ggc	TCT	AAA	CTG	ATC	Ggc	ACC	Ggg	AAA	CTG	AGT	GAG	GAC	GAG	1248	
Gl n	Leu	Gl y	Ser	Lys	Leu	Ile	Gl y	Thr	Gl y	Lys	Leu	Ser	Gl u	Asp	Gl u		
				405				410					415				
GAA	ACA	GAA	Gtg	CAG	GAG	CAG	ATG	AAC	CTG	CTG	AAC	AGC	Cgc	Tgg	GAG	1296	
Gl u	Thr	Gl u	Val	Gl n	Gl u	Gl n	Met	Asn	Leu	Leu	Asn	Ser	Arg	Trp	Gl u		
				420				425					430				
Tgt	CTG	AGA	Gtg	GCT	AGT	ATG	GAG	AAG	CAG	TCC	AAC	CTG	CAC	Cgg	Gtg	1344	
Cys	Leu	Arg	Val	Ala	Ser	Met	Gl u	Lys	Gl n	Ser	Asn	Leu	His	Arg	Val		
				435				440					445				
CTG	ATG	GAC	CTG	CAG	AAC	CAG	AAA	CTG	AAA	GAG	CTG	AAC	GAC	Tgg	CTG	1392	
Leu	Met	Asp	Leu	Gl n	Asn	Gl n	Lys	Leu	Lys	Gl u	Leu	Asn	Asp	Trp	Leu		
				450				455			460						
ACA	AAG	ACT	GAG	GAA	Cgc	ACA	AGG	AAG	ATG	GAG	GAG	GAG	CCA	CTG	GGA	1440	
Thr	Lys	Thr	Gl u	Gl u	Arg	Thr	Arg	Lys	Met	Gl u	Gl u	Gl u	Pro	Leu	Gl y		
				465				470			475				480		
CCC	GAC	CTG	GAG	GAT	CTG	AAG	AGA	CAG	Gtg	CAG	CAG	CAT	AAG	Gtg	CTG	1488	
Pro	Asp	Leu	Gl u	Asp	Leu	Lys	Arg	Gl n	Val	Gl n	Gl n	His	Lys	Val	Leu		
				485				490					495				
CAG	GAG	GAT	CTG	GAA	CAG	GAG	CAG	GTG	Cgg	GTG	AAC	TCC	CTG	ACA	CAT	1536	
Gl n	Gl u	Asp	Leu	Gl u	Gl n	Gl u	Gl n	Val	Arg	Val	Asn	Ser	Leu	Thr	His		
				500				505					510				
ATG	Gtg	Gtg	Gtg	Gtg	GAC	GAA	TCT	AGT	GGA	GAT	CAC	GCC	ACC	GCC	GCC	1584	
Met	Val	Val	Val	Val	Asp	Gl u	Ser	Ser	Gl y	Asp	His	Ala	Thr	Ala	Ala		
				515				520					525				
CTG	GAG	GAA	CAG	CTG	AAG	Gtg	CTG	GGG	GAC	Cgg	Tgg	GCC	AAC	Att	Tgc	1632	
Leu	Gl u	Gl u	Gl n	Leu	Lys	Val	Leu	Gl y	Asp	Arg	Trp	Ala	Asn	Ile	Cys		
				530				535					540				
CGG	Tgg	Acc	Gag	GAC	AGG	Tgg	Gtg	CTG	CTG	CAG	GAC	ATC	CTG	CTG	AAA	1680	
Arg	Trp	Thr	Gl u	Asp	Arg	Trp	Val	Leu	Leu	Gl n	Asp	Ile	Leu	Leu	Lys		
				545				550					555		560		
TGG	CAG	AGG	CTG	ACC	GAG	CAG	TGT	CTG	TTT	AGT	GCT	TGG	CTG	AGC		1728	
Trp	Gl n	Arg	Leu	Thr	Gl u	Gl u	Gl n	Cys	Leu	Phe	Ser	Ala	Trp	Leu	Ser		
				565				570					575				
GAG	AAA	GAG	GAC	GCC	Gtg	AAC	AAG	ATC	CAC	ACA	ACC	GGC	TTT	AAG	GAT		1776

51908_Seqlisting

Gl u	Lys	Gl u	Asp	Al a	Val	Asn	Lys	Ile	His	Thr	Thr	Gly	Phe	Lys	Asp	580	585	590	
cag	aac	gaa	atg	ctg	tct	agc	ctg	cag	aaa	ctg	gct	gtg	ctg	aag	gcc	1824			
Gl n	Asn	Gl u	Met	Leu	Ser	Ser	Leu	Gl n	Lys	Leu	Al a	Val	Leu	Lys	Al a	595	600	605	
gat	ctg	gag	aaa	aag	aag	cag	agc	atg	ggc	aaa	ctg	tat	agc	ctg	aaa	1872			
Asp	Leu	Gl u	Lys	Lys	Lys	Gl n	Ser	Met	Gl y	Lys	Leu	Tyr	Ser	Leu	Lys	610	615	620	
cag	gac	ctg	ctg	agc	acc	ctg	aag	aac	aag	agc	gtg	acc	cag	aag	aca	1920			
Gl n	Asp	Leu	Leu	Ser	Thr	Leu	Lys	Asn	Lys	Ser	Val	Thr	Gl n	Lys	Thr	625	630	635	640
gaa	gcc	tgg	ctg	gat	aac	ttt	gcc	cgc	tgc	tgg	gac	aac	ctg	gtg	cag	1968			
Gl u	Al a	Trp	Leu	Asp	Asn	Phe	Al a	Arg	Cys	Trp	Asp	Asn	Leu	Val	Gl n	645	650	655	
aaa	ctg	gag	aaa	agt	aca	gct	cag	atc	tct	cag	gct	gtg	acc	aca	acc	2016			
Lys	Leu	Gl u	Lys	Ser	Thr	Al a	Gl n	Ile	Ser	Gl n	Al a	Val	Thr	Thr	Thr	660	665	670	
cag	cct	agc	ctg	acc	cag	aca	acc	gtg	atg	gaa	acc	gtg	acc	acc	gtg	2064			
Gl n	Pro	Ser	Leu	Thr	Gl n	Thr	Val	Val	Met	Gl u	Thr	Val	Thr	Thr	Val	675	680	685	
aca	acc	cgc	gaa	cag	atc	ctg	gtg	aaa	cat	gcc	cag	gaa	gag	ctg	cca	2112			
Thr	Thr	Arg	Gl u	Gl n	Ile	Leu	Val	Lys	His	Al a	Gl n	Gl u	Gl u	Leu	Pro	690	695	700	
cct	cca	cct	ccc	cag	aag	aag	aga	acc	ctg	gag	cgg	ctg	cag	gag	ctg	2160			
Pro	Pro	Pro	Pro	Gl n	Lys	Lys	Arg	Thr	Leu	Gl u	Arg	Leu	Gl n	Gl u	Leu	705	710	715	720
cag	gaa	gcc	act	gac	gaa	ctg	gac	ctg	aag	ctg	agg	cag	gcc	gaa	gtg	2208			
Gl n	Gl u	Al a	Thr	Asp	Gl u	Leu	Asp	Leu	Lys	Leu	Arg	Gl n	Al a	Gl u	Val	725	730	735	
att	aag	ggg	tct	tgg	cag	cct	gtg	ggc	gat	ctg	ctg	att	gat	tcc	ctg	2256			
Ile	Lys	Gl y	Ser	Trp	Gl n	Pro	Val	Gl y	Asp	Leu	Leu	Ile	Asp	Ser	Leu	740	745	750	
cag	gac	cac	ctg	gaa	aag	gtg	aag	gct	ctg	aga	ggc	gaa	att	gct	cca	2304			
Gl n	Asp	His	Leu	Gl u	Lys	Val	Lys	Al a	Leu	Arg	Gly	Gl u	Ile	Al a	Pro	755	760	765	
ctg	aag	gag	aac	gtg	agt	cat	gtg	aac	gat	ctg	gct	aga	cag	ctg	aca	2352			
Leu	Lys	Gl u	Asn	Val	Ser	His	Val	Asn	Asp	Leu	Al a	Arg	Gl n	Leu	Thr	770	775	780	
aca	ctg	ggc	atc	cag	ctg	agc	cca	tac	aat	ctg	agc	aca	ctg	gag	gac	2400			
Thr	Leu	Gl y	Ile	Gl n	Leu	Ser	Pro	Tyr	Asn	Leu	Ser	Thr	Leu	Gl u	Asp	785	790	795	800
ctg	aat	acc	agg	tgg	aag	ctg	ctg	cag	gtg	gct	gtg	gaa	gac	cgg	gtg	2448			
Leu	Asn	Thr	Arg	Trp	Lys	Leu	Leu	Gl n	Val	Al a	Val	Gl u	Asp	Arg	Val	805	810	815	
cgg	cag	ctg	cat	gag	gcc	cat	cgc	gac	ttc	gga	cca	gcc	agc	cag	cac	2496			
Arg	Gl n	Leu	His	Gl u	Al a	His	Arg	Asp	Phe	Gl y	Pro	Al a	Ser	Gl n	His	820	825	830	
ttt	ctg	agc	aca	tcc	gtg	cag	ggg	ccc	tgg	gag	agg	gcc	att	tct	ccc	2544			
Phe	Leu	Ser	Thr	Ser	Val	Gl n	Gl y	Pro	Trp	Gl u	Arg	Al a	Ile	Ser	Pro	835	840	845	
aac	aag	gtg	ccc	tac	tat	att	aat	cac	gag	acc	cag	acc	act	tgt	tgg	2592			

51908_Seqlisting

Asn	Lys	Val	Pro	Tyr	Tyr	Ile	Asn	His	Gl u	Thr	Gl n	Thr	Thr	Cys	Trp	
850				855					860							
gac	cat	ccc	aag	atg	aca	gaa	ctg	tac	cag	tcc	ctg	gcc	gat	ctg	aac	2640
Asp	His	Pro	Lys	Met	Thr	Gl u	Leu	Tyr	Gl n	Ser	Leu	Al a	Asp	Leu	Asn	
865				870					875						880	
aac	gtg	agg	ttt	agc	gct	tac	aga	acc	gct	atg	aag	ctg	aga	cgg	ctg	2688
Asn	Val	Arg	Phe	Ser	Al a	Tyr	Arg	Thr	Al a	Met	Lys	Leu	Arg	Arg	Leu	
					885			890						895		
cag	aag	gcc	ctg	tgc	ctg	gat	ctg	ctg	tcc	ctg	tcc	gcc	gcc	tgc	gat	2736
Gl n	Lys	Al a	Leu	Cys	Leu	Asp	Leu	Leu	Ser	Leu	Ser	Al a	Al a	Cys	Asp	
			900				905							910		
gcc	ctg	gat	cag	cat	aat	ctg	aag	cag	aac	gat	cag	cca	atg	gat	atc	2784
Al a	Leu	Asp	Gl n	His	Asn	Leu	Lys	Gl n	Asn	Asp	Gl n	Pro	Met	Asp	Ile	
			915				920					925				
ctg	cag	atc	atc	aac	tgc	ctg	acc	act	atc	tac	gac	agg	ctg	gag	cag	2832
Leu	Gl n	Ile	Ile	Asn	Cys	Leu	Thr	Thr	Ile	Tyr	Asp	Arg	Leu	Gl u	Gl n	
			930			935				940						
gag	cac	aac	aac	ctg	gtg	aac	gtg	cct	ctg	tgc	gtg	gat	atg	tgc	ctg	2880
Gl u	His	Asn	Asn	Leu	Val	Asn	Val	Pro	Leu	Cys	Val	Asp	Met	Cys	Leu	
			945			950				955					960	
aac	tgg	ctg	ctg	aac	gtg	tat	gac	act	ggg	cgc	acc	ggc	cgg	atc	aga	2928
Asn	Trp	Leu	Leu	Asn	Val	Tyr	Asp	Thr	Gly	Arg	Thr	Gly	Arg	Ile	Arg	
					965			970					975			
gtg	ctg	agt	ttt	aaa	act	ggg	att	atc	tcc	ctg	tgt	aag	gcc	cac	ctg	2976
Val	Leu	Ser	Phe	Lys	Thr	Gly	Ile	Ile	Ser	Leu	Cys	Lys	Al a	His	Leu	
					980			985					990			
gag	gac	aag	tac	agg	tac	ctg	ttc	aag	cag	gtg	gct	agt	agc	act	gga	3024
Gl u	Asp	Lys	Tyr	Arg	Tyr	Leu	Phe	Lys	Gl n	Val	Al a	Ser	Ser	Thr	Gly	
			995				1000					1005				
ttt	tgt	gac	cag	cgc	cgc	ctg	gga	ctg	ctg	ctg	cat	gat	agt	atc		3069
Phe	Cys	Asp	Gl n	Arg	Arg	Leu	Gly	Leu	Leu	Leu	His	Asp	Ser	Ile		
			1010			1015					1020					
cag	att	cct	aga	cag	ctg	gga	gag	gtg	gct	agt	ttc	gga	gga	tct		3114
Gl n	Ile	Pro	Arg	Gl n	Leu	Gly	Gl u	Val	Al a	Ser	Phe	Gly	Gly	Ser		
			1025			1030				1035						
aac	atc	gaa	ccc	agc	gtg	cgc	agc	tgt	ttc	cag	ttt	gcc	aat	aac		3159
Asn	Ile	Gl u	Pro	Ser	Val	Arg	Ser	Cys	Phe	Gl n	Phe	Al a	Asn	Asn		
			1040			1045				1050						
aaa	cct	gaa	atc	gag	gct	gct	ctg	ttc	ctg	gat	tgg	atg	cgc	ctg		3204
Lys	Pro	Gl u	Ile	Gl u	Al a	Al a	Leu	Phe	Leu	Asp	Trp	Met	Arg	Leu		
			1055			1060				1065						
gaa	cca	cag	agc	atg	gtg	tgg	ctg	cct	gtg	ctg	cac	aga	gtg	gct		3249
Gl u	Pro	Gl n	Ser	Met	Val	Trp	Leu	Pro	Val	Leu	His	Arg	Val	Al a		
			1070			1075				1080						
gcc	gcc	gaa	act	gcc	aag	cac	cag	gct	aaa	tgc	aac	atc	tgc	aag		3294
Al a	Al a	Gl u	Thr	Al a	Lys	His	Gl n	Al a	Lys	Cys	Asn	Ile	Cys	Lys		
			1085			1090				1095						
gaa	tgt	ccc	att	atc	ggc	ttt	cgc	tac	agg	agt	ctg	aaa	cat	ttt		3339
Gl u	Cys	Pro	Ile	Ile	Gly	Phe	Arg	Tyr	Arg	Ser	Leu	Lys	His	Phe		
			1100			1105				1110						
aac	tac	gat	att	tgc	cag	agc	tgc	ttc	ttt	tcc	gga	aga	gtg	gcc		3384

51908_Seq listing

Asn	Tyr	Asp	Ile	Cys	Gln	Ser	Cys	Phe	Phe	Ser	Gly	Arg	Val	Ala	
1115					1120						1125				
aaa	gga	cac	aag	atg	cac	tac	cct	atg	gtg	gaa	tat	tgc	acc	cca	3429
Lys	Gly	His	Lys	Met	His	Tyr	Pro	Met	Val	Glu	Tyr	Cys	Thr	Pro	
1130					1135						1140				
act	aca	tct	ggc	gaa	gat	gtg	cgc	gat	ttt	gcc	aag	gtg	ctg	aag	3474
Thr	Thr	Ser	Gly	Gl u	Asp	Val	Arg	Asp	Phe	Ala	Lys	Val	Leu	Lys	
1145					1150						1155				
aat	aag	ttt	cg	act	aag	agg	tac	ttc	gcc	aag	cac	ccc	cgc	atg	3519
Asn	Lys	Phe	Arg	Thr	Lys	Arg	Tyr	Phe	Ala	Lys	Hi s	Pro	Arg	Met	
1160					1165						1170				
ggg	tat	ctg	cca	gtg	cag	aca	gtg	ctg	gaa	gga	gac	aat	atg	gag	3564
Gly	Tyr	Leu	Pro	Val	Gln	Thr	Val	Leu	Glu	Gly	Asp	Asn	Met	Gl u	
1175					1180						1185				
acc	gat	aca	atg	tga	gc										3581
Thr	Asp	Thr	Met												
1190															

<210> 8
 <211> 1192
 <212> PRT
 <213> Homo sapiens

<400> 8

Met Leu Trp Trp Gl u Gl u Val Gl u Asp Cys Tyr Gl u Arg Gl u Asp Val
 1 5 10 15

Gl n Lys Lys Thr Phe Thr Lys Trp Val Asn Ala Gl n Phe Ser Lys Phe
 20 25 30

Gly Lys Gl n His Ile Gl u Asn Leu Phe Ser Asp Leu Gl n Asp Gly Arg
 35 40 45

Arg Leu Leu Asp Leu Leu Gl u Gly Leu Thr Gl y Gl n Lys Leu Pro Lys
 50 55 60

Gl u Lys Gly Ser Thr Arg Val His Ala Leu Asn Asn Val Asn Lys Ala
 65 70 75 80

Leu Arg Val Leu Gl n Asn Asn Asn Val Asp Leu Val Asn Ile Gly Ser
 85 90 95

Thr Asp Ile Val Asp Gly Asn His Lys Leu Thr Leu Gl y Leu Ile Trp
 100 105 110

Asn Ile Ile Leu His Trp Gl n Val Lys Asn Val Met Lys Asn Ile Met
 115 120 125

Ala Gly Leu Gl n Gl n Thr Asn Ser Gl u Lys Ile Leu Leu Ser Trp Val
 130 135 140

Arg Gl n Ser Thr Arg Asn Tyr Pro Gl n Val Asn Val Ile Asn Phe Thr
 Page 11

51908_Seqlisting

145

150

155

160

Thr Ser Trp Ser Asp Gl y Leu Al a Leu Asn Al a Leu Ile His Ser His
 165 170 175

Arg Pro Asp Leu Phe Asp Trp Asn Ser Val Val Cys Gl n Gl n Ser Al a
 180 185 190

Thr Gl n Arg Leu Gl u His Al a Phe Asn Ile Al a Arg Tyr Gl n Leu Gl y
 195 200 205

Ile Gl u Lys Leu Leu Asp Pro Gl u Asp Val Asp Thr Thr Tyr Pro Asp
 210 215 220

Lys Lys Ser Ile Leu Met Tyr Ile Thr Ser Leu Phe Gl n Val Leu Pro
 225 230 235 240

Gl n Gl n Val Ser Ile Gl u Al a Ile Gl n Gl u Val Gl u Met Leu Pro Arg
 245 250 255

Pro Pro Lys Val Thr Lys Gl u Gl u His Phe Gl n Leu His His Gl n Met
 260 265 270

His Tyr Ser Gl n Gl n Ile Thr Val Ser Leu Al a Gl n Gl y Tyr Gl u Arg
 275 280 285

Thr Ser Ser Pro Lys Pro Arg Phe Lys Ser Tyr Al a Tyr Thr Gl n Al a
 290 295 300

Al a Tyr Val Thr Thr Ser Asp Pro Thr Arg Ser Pro Phe Pro Ser Gl n
 305 310 315 320

His Leu Gl u Al a Pro Gl u Asp Lys Ser Phe Gl y Ser Ser Leu Met Gl u
 325 330 335

Ser Gl u Val Asn Leu Asp Arg Tyr Gl n Thr Al a Leu Gl u Gl u Val Leu
 340 345 350

Ser Trp Leu Leu Ser Al a Gl u Asp Thr Leu Gl n Al a Gl n Gl y Gl u Ile
 355 360 365

Ser Asn Asp Val Gl u Val Val Lys Asp Gl n Phe His Thr His Gl u Gl y
 370 375 380

Tyr Met Met Asp Leu Thr Al a His Gl n Gl y Arg Val Gl y Asn Ile Leu
 385 390 395 400

Gl n Leu Gl y Ser Lys Leu Ile Gl y Thr Gl y Lys Leu Ser Gl u Asp Gl u
 405 410 415

Gl u Thr Gl u Val Gl n Gl u Gl n Met Asn Leu Leu Asn Ser Arg Trp Gl u
 Page 12

51908_Seq listing

420

425

430

Cys Leu Arg Val Ala Ser Met Glu Lys Glu Ser Asn Leu His Arg Val
 435 440 445

Leu Met Asp Leu Glu Asn Glu Lys Leu Lys Glu Leu Asn Asp Trp Leu
 450 455 460

Thr Lys Thr Glu Glu Arg Thr Arg Lys Met Glu Glu Glu Pro Leu Gly
 465 470 475 480

Pro Asp Leu Glu Asp Leu Lys Arg Glu Val Glu Glu His Lys Val Leu
 485 490 495

Glut Glu Asp Leu Glu Glu Glu Glu Val Arg Val Asn Ser Leu Thr His
 500 505 510

Met Val Val Val Val Asp Glu Ser Ser Gly Asp His Ala Thr Ala Ala
 515 520 525

Leu Glu Glu Glu Leu Lys Val Leu Gly Asp Arg Trp Ala Asn Ile Cys
 530 535 540

Arg Trp Thr Glu Asp Arg Trp Val Leu Leu Glu Asp Ile Leu Leu Lys
 545 550 555 560

Trp Glu Arg Leu Thr Glu Glu Glu Cys Leu Phe Ser Ala Trp Leu Ser
 565 570 575

Glut Lys Glu Asp Ala Val Asn Lys Ile His Thr Thr Gly Phe Lys Asp
 580 585 590

Glut Asn Glu Met Leu Ser Ser Leu Glu Lys Leu Ala Val Leu Lys Ala
 595 600 605

Asp Leu Glu Lys Lys Glu Ser Met Gly Lys Leu Tyr Ser Leu Lys
 610 615 620

Glut Asp Leu Leu Ser Thr Leu Lys Asn Lys Ser Val Thr Glu Lys Thr
 625 630 635 640

Glut Ala Trp Leu Asp Asn Phe Ala Arg Cys Trp Asp Asn Leu Val Glu
 645 650 655

Lys Leu Glu Lys Ser Thr Ala Glu Ile Ser Glu Ala Val Thr Thr Thr
 660 665 670

Glut Pro Ser Leu Thr Glu Thr Thr Val Met Glu Thr Val Thr Thr Val
 675 680 685

Thr Thr Arg Glu Glu Ile Leu Val Lys His Ala Glu Glu Glu Leu Pro
 Page 13

51908_Seq listing

690	695	700
Pro Pro Pro Pro Glu Lys Lys Arg Thr Leu Glu Arg Leu Glu Glu Leu		
705 710 715 720		
Gln Glu Ala Thr Asp Glu Leu Asp Leu Lys Leu Arg Gln Ala Glu Val		
725 730 735		
Ile Lys Gly Ser Trp Gln Pro Val Gly Asp Leu Leu Ile Asp Ser Leu		
740 745 750		
Gln Asp His Leu Glu Lys Val Lys Ala Leu Arg Gly Glu Ile Ala Pro		
755 760 765		
Leu Lys Glu Asn Val Ser His Val Asn Asp Leu Ala Arg Gln Leu Thr		
770 775 780		
Thr Leu Gly Ile Gln Leu Ser Pro Tyr Asn Leu Ser Thr Leu Glu Asp		
785 790 800		
Leu Asn Thr Arg Trp Lys Leu Leu Gln Val Ala Val Glu Asp Arg Val		
805 810 815		
Arg Gln Leu His Glu Ala His Arg Asp Phe Gly Pro Ala Ser Gln His		
820 825 830		
Phe Leu Ser Thr Ser Val Gln Gly Pro Trp Glu Arg Ala Ile Ser Pro		
835 840 845		
Asn Lys Val Pro Tyr Tyr Ile Asn His Glu Thr Gln Thr Thr Cys Trp		
850 855 860		
Asp His Pro Lys Met Thr Glu Leu Tyr Gln Ser Leu Ala Asp Leu Asn		
865 870 880		
Asn Val Arg Phe Ser Ala Tyr Arg Thr Ala Met Lys Leu Arg Arg Leu		
885 890 895		
Gln Lys Ala Leu Cys Leu Asp Leu Leu Ser Leu Ser Ala Ala Cys Asp		
900 905 910		
Ala Leu Asp Gln His Asn Leu Lys Gln Asn Asp Gln Pro Met Asp Ile		
915 920 925		
Leu Gln Ile Ile Asn Cys Leu Thr Thr Ile Tyr Asp Arg Leu Glu Gln		
930 935 940		
Glu His Asn Asn Leu Val Asn Val Pro Leu Cys Val Asp Met Cys Leu		
945 950 955 960		
Asn Trp Leu Leu Asn Val Tyr Asp Thr Gly Arg Thr Gly Arg Ile Arg		

51908_Seqlisting

965

970

975

Val Leu Ser Phe Lys Thr Gly Ile Ile Ser Leu Cys Lys Ala His Leu
 980 985 990

Gl u Asp Lys Tyr Arg Tyr Leu Phe Lys Gl n Val Ala Ser Ser Thr Gl y
 995 1000 1005

Phe Cys Asp Gl n Arg Arg Leu Gly Leu Leu Leu His Asp Ser Ile
 1010 1015 1020

Gl n Ile Pro Arg Gl n Leu Gl y Gl u Val Ala Ser Phe Gl y Gl y Ser
 1025 1030 1035

Asn Ile Gl u Pro Ser Val Arg Ser Cys Phe Gl n Phe Ala Asn Asn
 1040 1045 1050

Lys Pro Gl u Ile Gl u Ala Ala Leu Phe Leu Asp Trp Met Arg Leu
 1055 1060 1065

Gl u Pro Gl n Ser Met Val Trp Leu Pro Val Leu His Arg Val Ala
 1070 1075 1080

Al a Al a Gl u Thr Al a Lys His Gl n Ala Lys Cys Asn Ile Cys Lys
 1085 1090 1095

Gl u Cys Pro Ile Ile Gly Phe Arg Tyr Arg Ser Leu Lys His Phe
 1100 1105 1110

Asn Tyr Asp Ile Cys Gl n Ser Cys Phe Phe Ser Gl y Arg Val Ala
 1115 1120 1125

Lys Gl y His Lys Met His Tyr Pro Met Val Gl u Tyr Cys Thr Pro
 1130 1135 1140

Thr Thr Ser Gl y Gl u Asp Val Arg Asp Phe Ala Lys Val Leu Lys
 1145 1150 1155

Asn Lys Phe Arg Thr Lys Arg Tyr Phe Ala Lys His Pro Arg Met
 1160 1165 1170

Gly Tyr Leu Pro Val Gl n Thr Val Leu Gl u Gl y Asp Asn Met Gl u
 1175 1180 1185

Thr Asp Thr Met
 1190

<210> 9

<211> 8409

<212> DNA

<213> Adeno-associated virus

51908_Seqlisting

<220>
 <221> promoter
 <222> (236)..(799)
 <223> MCK promotor

<220>
 <221> Intron
 <222> (844)..(993)
 <223> Chimeric intron sequence

<220>
 <221> mi sc_feature
 <222> (1004)..(4584)
 <223> Human Dystrophin sequence

<220>
 <221> mi sc_feature
 <222> (4585)..(4640)
 <223> Poly A tail

<220>
 <221> mi sc_feature
 <222> (6606)..(7466)
 <223> Ampicillin resistance

<220>
 <221> mi sc_feature
 <222> (7621)..(8240)
 <223> pGEX plasmid backbone with pBR322 origin or replication

<400>	9					
gcccaatacg	caaaccgcct	ctcccccgcgc	gttggccgat	tcattaatgc	agctggcgcg	60
ctcgctcgct	cactgaggcc	gcccgccaa	agcccgccg	tcgggcgacc	tttggtcgcc	120
cggcctcagt	gagcgagcga	gcgcgcagag	agggagtgcc	caactccatc	actaggggtt	180
cctttagtt	aatgattaac	ccgccccatgct	aattatctac	gtagccatgt	ctagacagcc	240
actatgggtc	taggctgccc	atgtaaggag	gcaaggcctg	gggacaccccg	agatgcctgg	300
ttataattaa	cccaagacatg	tggctgctcc	cccccccaa	cacctgctgc	ctgaggcctca	360
ccccccacccc	ggtgcctggg	tcttaggctc	tgtacaccat	ggaggagaag	ctcgctctaa	420
aaataaccct	gtccctggtg	ggctgtgggg	gactgagggc	aggctgtaac	aggcttgggg	480
gccaggggctt	atacgtgcct	gggactccca	aagtattact	gttccatgtt	cccgccgaag	540
ggccagctgt	cccccgccag	ctagactcag	cacttagttt	aggaaccagt	gagcaagtca	600
gcccttgggg	cagcccatac	aaggccatgg	ggctggcaa	gctgcacgccc	tgggtccggg	660
gtgggcacgg	tgcccgccca	acgagctgaa	agctcatctg	ctctcagggg	cccctccctg	720
gggacagccc	ctccctggcta	gtcacaccct	gtaggctcct	ctatataacc	caggggcaca	780
ggggctgccc	ccgggtcacc	accacctcca	cagcacagac	agacactcag	gagccagcca	840
gccaggtaag	tttagtcttt	ttgtctttt	tttcagggtcc	cggatccggt	ggtggtgcaa	900
atcaaagaac	tgctcctcag	tggatgttgc	ctttacttct	aggcctgtac	ggaagtgtta	960
cttctgctct	aaaagctgcg	gaattgtacc	cgcggccgccc	accatgctgt	ggtgggagga	1020
ggtggaggat	tgttatgaaa	gggaggacgt	gcagaagaag	acttttacca	agtgggtgaa	1080

51908_Seq listing

cgctcagttc	agcaaatttgc	ggaagcagca	catcgagaat	ctgtttccg	acctgcagga	1140
tgggagacgg	ctgctggatc	tgctgaaagg	actgactggc	cagaagctgc	ccaaagagaa	1200
ggggagact	agggtgcacg	ccctgaacaa	cgtgaacaaa	gctctgagag	tgctgcagaa	1260
caacaacgtg	gatctggtga	atattggcag	tactgatatac	gtggacggga	accacaaact	1320
gacactgggc	ctgatctgga	acattattct	gcactggcag	gtaaaaaaatg	tgtatgaagaa	1380
catcatggcc	gggctgcagc	agaccaattc	cgagaagatc	ctgctgtctt	gggtgcggca	1440
gagcacccgc	aactatcccc	aggtgaacgt	gattaacttc	actacatcct	ggagcgcacgg	1500
gctggccctg	aatgctctga	ttcacagcca	caggcctgat	ctgttcgact	ggaatagcgt	1560
ggtgtgccag	cagtctgcca	cacagcgcct	ggaacatgcc	ttcaatatcg	ctcggtacca	1620
gctggggatc	aaaaaaactgc	tggacccaga	ggatgtggac	actacatacc	cagataaaaa	1680
gtctattctg	atgtacatta	ctagcctgtt	ccaggtgctg	ccacagcagg	tgtctattga	1740
agccattcag	gaggtggaaa	tgctgccccg	cccccccaaa	gtgactaaag	aggagcattt	1800
tcagctgcat	catcagatgc	attacagcca	gcagattacc	gtgagcctgg	ctcaggata	1860
tgagcgcacc	agtagtccaa	aaccacggtt	caagtccatc	gcttatacc	aggctgccta	1920
cgtgacaact	agcgacccta	ctagatcccc	ctttccatcc	cagcacctgg	aggccccaga	1980
ggacaagagc	tttgggtcca	gcctgatgga	aagcgaggtg	aatctggatc	ggtaccagac	2040
agccctggag	gaggtgctga	gctggctgct	gagtgctgaa	gacacactgc	aggcccagg	2100
cgaatttcc	aatgacgtgg	aagtggtaa	ggatcagttc	cacacacacg	agggttat	2160
gatggacctg	acagctcacc	agggcgcgt	gggcaatatc	ctgcagctgg	gctctaaact	2220
gatggcacc	ggaaaactga	gtgaggacga	ggaaacagaa	gtgcaggagc	agatgaacct	2280
gctgaacagc	cgctgggagt	gtctgagagt	ggcttagtatg	gagaagcagt	ccaacctgca	2340
ccgggtgctg	atggacctgc	agaaccagaa	actgaaagag	ctgaacgact	ggctgacaaa	2400
gactgaggaa	cgcacaagga	agatggagga	ggagccactg	ggacccgacc	tggaggatct	2460
gaagagacag	gtgcagcagc	ataagggtct	gcaggaggat	ctgaaacagg	agcaggtgcg	2520
ggtgaactcc	ctgacacata	tggtggttgt	ggtggacgaa	tctagtggag	atcacgccac	2580
cggccccc	gaggaacagc	tgaaggtgct	gggggaccgg	tggccaaca	tttgcgggt	2640
gaccgaggac	aggtgggtgc	tgctgcagga	catcctgctg	aaatggcaga	ggctgaccga	2700
ggagcagtgt	ctgttagtg	cttggctgag	cgagaaagag	gacgccgtga	acaagatcca	2760
cacaaccggc	tttaaggatc	agaacgaaat	gctgtctagc	ctgcagaaac	tggctgtgct	2820
gaaggccgat	ctggagaaaa	agaagcagag	catggcaaa	ctgtatagcc	tgaaacagga	2880
cctgctgagc	accctgaaga	acaagagcgt	gacccagaag	acagaagcct	ggctggataa	2940
cttgcggc	tgctgggaca	acctggtgca	gaaactggag	aaaagtacag	ctcagatctc	3000
tcaggctgtg	accacaaccc	agcctgcct	gacccagaca	accgtatgg	aaaccgtgac	3060
caccgtgaca	acccgcgaac	agatcctggt	gaaacatgcc	caggaagagc	tgccacctcc	3120

51908_Seqlisting

acctccccag aagaagagaa ccctggagcg gctgcaggag ctgcaggaag ccactgacga	3180
actggacctg aagctgagggc aggccgaagt gattaagggg tcttggcagc ctgtggcga	3240
tctgctgatt gattccctgc aggaccacct ggaaaaggtg aaggctctga gaggcgaaat	3300
tgctccactg aaggagaacg tgagtcatgt gaacgatctg gctagacacgc tgacaacact	3360
gggcatccag ctgagcccat acaatctgag cacactggag gacctaataa ccaggtggaa	3420
gctgctgcag gtggctgtgg aagaccgggt gcggcagctg catgaggccc atcgactt	3480
cggaccagcc agccagcaact ttctgagcac atccgtcag gggccctggg agaggccat	3540
ttctcccaac aaggtgcct actatattaa tcacgagacc cagaccactt gttggacca	3600
tcccaagatg acagaactgt accagtccct ggccgatctg aacaacgtga gtttagcgc	3660
ttacagaacc gctatgaagc tgagacggct gcagaaggcc ctgtgcctgg atctgctgtc	3720
cctgtccgcc gcctgcgatg ccctggatca gcataatctg aagcagaacg atcagccat	3780
ggatatcctg cagatcatca actgcctgac cactatctac gacaggctgg agcaggagca	3840
caacaacctg gtgaacgtgc ctctgtcgt ggatatgtgc ctgaactggc tgctgaacgt	3900
gtatgacact gggcgcaccc gccggatcag agtgcgtagt tttaaaactg ggattatctc	3960
cctgtgttaag gcccacctgg aggacaagta caggtacctg ttcaaggcagg tggctagtag	4020
cactggattt tgtgaccagc gccgcctggg actgctgctg catgatagta tccagattcc	4080
tagacagctg ggagaggctgg ctagttcgg aggatctaact atcgaaccca gcgtgcgcag	4140
ctgtttccag tttgccaata acaaacctga aatcgaggct gctctgttcc tggattggat	4200
gcgcctggaa ccacagagca tggtgtggct gcctgtgctg cacagagtgg ctgcccggca	4260
aactgccaag caccaggcta aatgcaacat ctgcaaggaa tgtcccatta tcggcttcg	4320
ctacaggagt ctgaaacatt ttaactacga tatttgcctg agctgcttct tttccggaag	4380
agtggccaaa ggacacaaga tgcactaccc tatggtgaa tattgcaccc caactacatc	4440
tggcgaagat gtgcgcgatt ttgccaaggt gctgaagaat aagttcgga ctaagaggta	4500
cttcgccaag caccggcga tgggttatct gccagtgcag acagtgcgtgg aaggagacaa	4560
tatggagacc gatacaatgt gagcggccgc aataaaagat ctttattttc attagatctg	4620
tgtgttggtt ttttgtgtt ctagagcatg gctacgtaga taagtagcat ggcgggttaa	4680
tcattaacta caaggaaccc ctagtgatgg agttggccac tccctctctg cgcgctcgct	4740
cgctcactga ggccggccga ccaaaggctg cccgacgccc gggcttgcc cggcggcct	4800
cagtgagcga gcgagcgcgc cagctggcgt aatagcgaag aggcccgcac cgatgcgcct	4860
tcccaacagt tgcgcagcct gaatggcgaa tggaaattcc agacgattga gcgtaaaaat	4920
gtaggtatcc ccatgaggcgt tttcctgtt gcaatggctg gcggtaatat tggatctggat	4980
attaccagca aggccgatag tttgagttct tctactcagg caagtgtatgt tattactaat	5040
caaagaagta ttgcgacaac ggttaatttg cgtgatggac agactcttt actcgggtggc	5100
ctcactgatt ataaaaacac ttctcaggat tctggcgtac cggtcctgtc taaaatccct	5160

51908_Seqlisting

ttaatcgccc	tcctgttag	ctccgcct	gattcta	aggaaagcac	gttatacgt	5220
ctcgtaa	agcaaccat	acgcgcct	tagcggcg	ttaagcgcgg	cgggtgtgg	5280
ggttacgc	agcgtgacc	ctacacttgc	cagcgccta	gcccgc	cttcgc	5340
cttcccttcc	tttctcgcca	cgttcgcgg	ctttcccg	caagctctaa	atcggggct	5400
cccttaggg	ttccgattt	gtgatttac	gcac	ccaaaaaaac	ttgatttaggg	5460
tgtggttca	cgtagtggc	catcgcc	atagacgg	tttcgc	tgacgttgg	5520
gtccacgttc	tttaatagt	gactctt	ccaaactg	acaacact	accctat	5580
ggtctattct	tttgattt	aaggattt	gccgatt	gcctatt	taaaaaatg	5640
gctgatttaa	caaaaattt	acgcaattt	taacaaaata	ttaacgtt	caatttaat	5700
attgcttat	acaatcttcc	tgttttgg	gctttctg	ttatcaacc	gggtacat	5760
gattgacatg	ctagtttac	gattacc	catcgatt	cttgc	ccagact	5820
aggcaatgac	ctgatagc	tttagagac	ctctcaaaa	tagtacc	ctccgg	5880
aatttac	ctagaacgg	tgaatatcat	attgatgg	atttgact	ctccgg	5940
tctcacc	ttgaatctt	acctacac	tactcagg	ttgcattt	aatatatg	6000
ggtctaaa	attttatcc	ttgcgtt	gaaataa	ataaaagg	ctccgc	6060
ggtcataat	ttttgg	aaccgattt	gctttat	ctgagg	tttatt	6120
tttgctaatt	cttgc	cctgtat	ttattggat	ttggaag	ttc	6180
atttctc	tacgc	atgc	tgcg	tac	atgg	6240
tctgct	tgcc	catag	ttaagcc	ccc	gccaac	6300
cctgacgg	ttgtct	ccgg	catcc	cttac	agc	6360
gctgc	atgt	tcagg	tcacc	cacc	cgc	6420
tgatacgc	ctt	ttat	gtt	ataat	gtt	6480
gcac	ttt	ttt	ttt	ttt	ttt	6540
atatgtat	cc	ttt	ttt	ttt	ttt	6600
gctcatg	gaga	caataac	ct	gataat	gt	6660
agagtat	gag	at	ttccgtgt	ttt	ttt	6720
ttccgtt	ttt	ttt	ttt	ttt	ttt	6780
ttccgtt	ttt	ttt	ttt	ttt	ttt	6840
ttccgtt	ttt	ttt	ttt	ttt	ttt	6900
ttccgtt	ttt	ttt	ttt	ttt	ttt	6960
ttccgtt	ttt	ttt	ttt	ttt	ttt	7020
ttccgtt	ttt	ttt	ttt	ttt	ttt	7080
ttccgtt	ttt	ttt	ttt	ttt	ttt	7140
ttccgtt	ttt	ttt	ttt	ttt	ttt	7200

51908_Seqlisting
tagttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 7260
tgcgctcggc cttccggct ggctggtttta ttgctgataa atctggagcc ggtgagcgtg 7320
ggtctcggc tatcattgca gcactggggc cagatggtaa gccctccgt atcgtagtt 7380
tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 7440
gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 7500
ttgatttaaa acttcatttt taatttaaaa ggatcttagt gaagatcctt tttgataatc 7560
tcatgaccaa aatcccttaa cgtgagttt cgttccactg agcgtcagac cccgtagaaa 7620
agatcaaagg atttcttga gatcctttt ttctgcgt aatctgctgc ttgcaaacaa 7680
aaaaaccacc gctaccagcg gtggttgtt tgccggatca agagctacca actcttttc 7740
cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 7800
agttaggcca ccacttcaag aactctgtag caccgcgtac atacctcgct ctgctaattcc 7860
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggtt gactcaagac 7920
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 7980
gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 8040
ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 8100
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 8160
ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cgagcctat 8220
gaaaaaacgc cagcaacgcg gccttttac gttcctggc ctttgctgg cttttgctc 8280
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gggtttgagt 8340
gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaccaag 8400
cggaagagc 8409

<210> 10
<211> 206
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> enhancer
<222> (1)..(206)
<223> MCK enhancer

<400> 10
cagccactat gggtcttaggc tgcccatgta aggaggaag gcctggggac acccgagatg 60
cctggttata attaaccag acatgtggct gctccccccc cccaacacct gctgcctgag 120
cctcacccccc accccgggtgc ctgggtctta ggctctgtac accatggagg agaagctcgc 180
tctaaaaata accctgtccc tggtgg 206

<210> 11

51908_Seqlisting

<211> 358
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> promoter
<222> (1)..(358)
<223> MCK promoter

<400> 11
gctgtgggg actgaggca ggctgtaaca ggcttgggg ccaggccta tacgtgcctg 60
ggactccaa agtattactg ttccatgttc ccggcgaagg gccagctgtc ccccgccagc 120
tagactcagc acttagttt ggaaccagtg agcaagtcag cccttggggc agccataca 180
aggccatggg gctggcaag ctgcacgcct gggtccgggg tgggcacggt gcccggcaa 240
cgagctgaaa gctcatctgc tctcaggggc ccctccctgg ggacagcccc tcctggctag 300
tcacaccctg taggctccctc tatataaccc agggcacag gggctgcccc cggtcac 358

<210> 12
<211> 5920
<212> DNA
<213> Adeno-associated virus

<220>
<221> misc_feature
<223> pAAV. MCK. mi R26C Sequence

<220>
<221> misc_feature
<222> (4)..(9)
<223> n is a, c, g, t or u

<220>
<221> enhancer
<222> (190)..(395)
<223> MCK enhancer

<220>
<221> promoter
<222> (396)..(753)
<223> MCK promoter

<220>
<221> misc_feature
<222> (1316)..(1608)
<223> shRNA-mi R29-c with primary seed sequence

<220>
<221> misc_feature
<222> (1487)..(1512)
<223> mi R-29c

<220>
<221> misc_feature
<222> (2094)..(2146)
<223> SV40 PolyA

<220>

51908_Seqlisting

<221> misc_feature
 <222> (2326)..(2331)
 <223> n is a, c, g, t or u

<400> 12
 ctgnnnnnng cgcgctcgct cgctcaactga ggccgcccgg gcaaagcccg ggcgtcggc 60
 gaccttttgtt cgcccggcct cagttagcga gcgagcgcgc agagagggag tggccaactc 120
 catcaactagg ggttccttgtt agttaatgtat taacccgcca tgcttaattat ctacgttagcc 180
 atgtctagac agccactatg ggtcttagct gcccattaa ggaggcaagg cctggggaca 240
 cccgagatgc ctggttataa ttaaccaga catgtggctg ctccccccccc ccaacacctg 300
 ctgcctgagc ctcacccca ccccggtgcc tgggtcttag gctctgtaca ccatggagga 360
 gaagctcgct ctaaaaataa ccctgtccct ggtgggtgtt gggggactga gggcaggctg 420
 taacaggctt gggggccagg gcttatacgt gcctggact cccaaagtat tactgttcca 480
 tggccggc gaagggccag ctgtcccccg ccagctagac tcagcactta gtttaggaac 540
 cagttagcaa gtcagccctt gggcagccc atacaaggcc atggggctgg gcaagctgca 600
 cgcctgggtc cgggggtggc acgggtccccg ggcaacgagc tggaaagctca tctgctctca 660
 ggggccccctc cctggggaca gcccctcctg gctagtcaca ccctgttaggc tcctcttat 720
 aaccagggg cacaggggct gccccgggtt caccaccacc tccacagcac agacagacac 780
 tcaggagcca gccagccagg taagtttagt ctttttgtct ttatattcag gtcccgatc 840
 cgggtgggtt gcaaataaaa gaactgctcc tcagtggatg ttgccttac ttcttaggcct 900
 gtacggaagt gttacttctg ctctaaaagc tgcggattt gacccgccta gaggatccgg 960
 tactcgagga actgaaaaac cagaaagtta actggtaagt ttagtcttt tgtctttat 1020
 ttcaggtccc ggatccggtg gtggtgcaaa tcaaagaact gctcctcagt ggtatgtgcc 1080
 ttacttctta ggcctgtacg gaagtgttac ttctgctcta aaagctgcgg aattgtaccc 1140
 gggggccgatc caccggcttt tttcgcaacg ggtttgccgc cagaacacag gtaagtgccg 1200
 tgtgtggttc cccggggcg cggcggggcc cgtgcgtccc agcgcacatg ttcggcgagg 1260
 cggggccctgc gagcgcggcc accgagaatc ggacgggggtt agtctcaacg tggccggcct 1320
 gtttgaatga ggcttcagta ctttacagaa tcgttgctg cacatcttgg aaacacttgc 1380
 tgggattact tcttcaggtt aacccaacag aaggctcgag aaggtatatt gctgttgaca 1440
 gtgagcgcaa ccgatttcaa atggtgctag agtgaagcca cagatgtcta gcaccatttg 1500
 aaatcggtta tgcctactgc ctggattt aaggggctac tttaggagca attatcttgc 1560
 ttactaaaac tgaataccctt gctatctt tgatacattt gccggcctgc tctggcgcct 1620
 ggcctcgccg cggcggttat cggccggccc tggcgccaa ggctggcccg gtcggcacca 1680
 gttgcgtgag cggaaagatg gccgcttccc ggccctgctg cagggagctc aaaatggagg 1740
 acgcggcgct cgggagagcg ggcgggtgag tcacccacac aaaggaaaaag ggccttccg 1800
 tcctcagccg tcgcttcatg tgactccacg gagtaccggg cggcgccag gcacccatgc 1860
 tagttctcga gctttggag tacgtcgct ttaggttggg gggaggggtt ttatgcgtat 1920

51908_Seqlisting

gagttcccc acactgagtg ggtggagact gaagtttaggc cagcttggca cttgatgtaa	1980
ttctccttgg aatttgcctt tttgagttt ggatcttggt tcattctcaa gcctcagaca	2040
gtggttcaaa gttttttct tccatttcag gtgtcgtgaa aagctagtgc ggccgcaata	2100
aaagatctt atttcatta gatctgtgtg ttggttttt gtgtgtctag acatggctac	2160
gtagataatt agcatggcgg gttaatcatt aactacaagg aaccctagt gatggagttg	2220
gccactccct ctctgcgcgc tcgctcgctc actgaggccg ggcgaccaaa ggtcgccgaa	2280
cgccgggct ttgcccggc gcctcagtg agcgagcgag cgccgnnnnn ncagctggcg	2340
taatagcgaa gaggcccgcg ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga	2400
atggaagttc cagacgattt agcgtcaaaa ttaggttatt tccatgagcg ttttctgt	2460
tgcaatggct ggcggtataa ttgttctgga tattaccagc aaggccgata gttttagttc	2520
ttctactcag gcaagtgtatg ttattactaa tcaaagaagt attgcgacaa cggttaattt	2580
gcgtgatgga cagactctt tactcggtgg cctcactgat tataaaaaca cttctcagga	2640
ttctggcgta ccgttccctgt ctaaaatccc tttaatcgcc ctccgttta gctccgcctc	2700
tgattctaac gaggaaagca cgttatacgt gctcgtcaaa gcaaccatag tacgcgcct	2760
gtagcggcgcg attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacactt	2820
ccagcgcctt agcgcccgct ctttcgctt tcttcccttc ctttctcgcc acgttcgcgc	2880
gctttcccg tcaagctcta aatgggggc tccctttagg gttccgattt agtattttac	2940
ggcacctcga ccccaaaaaa cttgatttagg gtgtatggttc acgtatgggg ccatcgccct	3000
gatagacggt ttttcgcctt ttgacgttgg agtccacgtt cttaatagt ggactcttgt	3060
tccaaactgg aacaacactc aaccctatct cggcttattt tttgattta taaggattt	3120
tgccgatttc ggcctattgg ttaaaaaatg agctgattta aaaaaattt aacgcgaatt	3180
ttaacaaaat attaacgttt acaattttaa tatttgctta tacaatcttc ctgttttgg	3240
ggctttctg attatcaacc ggggtacata tgattgacat gctatgggg cgattaccgt	3300
tcatcgattc tcttggttgc tccagactct caggcaatga cctgatagcc tttgttagaga	3360
cctctcaaaa atagctaccc tctccggcat gaatttatca gctagaacgg ttgaatatca	3420
tattgatgg tatttgactg tctccggcct ttctcaccgg ttgaatctt tacctacaca	3480
ttactcaggc attgcattta aaatatatga gggttctaaa aatttttattt cttgcgttga	3540
aataaaggct tctcccgaa aagtattaca gggtcataat gttttggta caaccgattt	3600
agctttatgc tctgaggctt tattgcttaa ttttgcataat tctttgcctt gcctgtatga	3660
tttattggat gttggaaagtt cctgatgcgg tattttctcc ttacgcattt gtgcggattt	3720
tcacaccgca tatggtgac tctcagtaca atctgctctg atgcccata gttaaagccag	3780
ccccgacacc cgccaaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc	3840
gcttacagac aagctgtgac cgtctccggg agctgcattt gtcagaggtt ttcaccgtca	3900
tcaccgaaac gcgcgagacg aaagggcctc gtgatacgcc tatttttata gtttaatgtc	3960

51908_Seqlisting

atgataataa tggtttctta gacgtcaggt ggcactttc gggaaatgt gcgcggaacc	4020
cctatttgtt tatttttcta aatacattca aatatgtatc cgctcatgag acaataaccc	4080
tgataaatgc ttcaataata ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc	4140
gcccttattc cctttttgc ggcattttgc cttcctgttt ttgctcaccc agaaacgctg	4200
gtgaaagtaa aagatgctga agatcagttg ggtgcacgag tgggttacat cgaactggat	4260
ctcaacagcg gtaagatcct tgagagttt cgccccgaag aacgtttcc aatgtatgagc	4320
acttttaaag ttctgctatg tggcgcgta ttatccgtta ttgacgcccgg gcaagagcaa	4380
ctcggcgcgc gcatacacta ttctcagaat gacttggttg agtactcacc agtcacagaa	4440
aagcatctta cggatggcat gacagtaaga gaattatgca gtgctgcccatt aaccatgagt	4500
gataacactg cggccaactt acttctgaca acgatcgag gaccgaagga gctaaccgct	4560
tttttgacaca acatggggga tcatgttaact cgcccttgatc gttgggaacc ggagctgaat	4620
gaagccatac caaacgacga gcgtgacacc acgatgcctg tagcaatggc aacaacgttg	4680
cgcaaactat taactggcga actacttact ctagctcccc ggcacaacaatt aatagactgg	4740
atggaggcgg ataaagtgc aggaccatt ctgcgctcgg cccttccggc tggctggttt	4800
attgctgata aatctggagc cggtgagcgt gggctcgcgt gtatcattgc agcactgggg	4860
ccagatggta agccctcccg tatcgttagtt atctacacga cggggagtcg ggcaactatg	4920
gatgaacgaa atagacagat cgctgagata ggtgcctcac tgattaagca ttggtaactg	4980
tcagaccaag tttactcata tatactttag attgatttaa aacttcattt ttaatttaaa	5040
aggatctagg tgaagatcct tttgataat ctcatgacca aaatccctta acgtgagttt	5100
tcgttccact gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcccttt	5160
tttctgcgcg taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggttgt	5220
ttgccggatc aagagctacc aactctttt ccgaaggtaa ctggcttcag cagagcgcag	5280
ataccaaata ctgtccttct agttagccg tagttaggcc accacttcaa gaactctgta	5340
gcaccgcgtcatacctcgc tctgctaattc ctgttaccag tggctgctgc cagtggcgt	5400
aagtctgtc ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggcgt	5460
ggctgaacgg ggggttcgtc cacacagccc agcttggagc gaacgaccta caccgaactg	5520
agatacctac agcgtgagct atgagaaagc gccacgcctc ccgaaggagaa aaggcggac	5580
aggtatccgg taagcggcag ggtcggaaaca ggagagcga cggagggagct tccaggggg	5640
aacgcctggatctttatag tcctgtcggg tttcgccacc tctgacttgc gcgtcgattt	5700
ttgtgatgct cgtcagggggg gcggagccta tggaaaaacg ccagcaacgc ggcctttta	5760
cggttcctgg cctttgctg gcctttgct cacatgttct ttccctgcgtt atcccctgat	5820
tctgtggata accgtattac cgggtttgag tgagctgata ccgctcgccg cagccgaacg	5880
accgagcgcga gcgagtcagt gagcggaccaa gcggaaagagc	5920