

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2014/179422 A1

(43) International Publication Date
6 November 2014 (06.11.2014)

WIPO | PCT

(51) International Patent Classification:

C03B 33/023 (2006.01) B65H 23/24 (2006.01)
C03B 33/09 (2006.01) B65G 49/06 (2006.01)

(21) International Application Number:

PCT/US2014/036097

(22) International Filing Date:

30 April 2014 (30.04.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

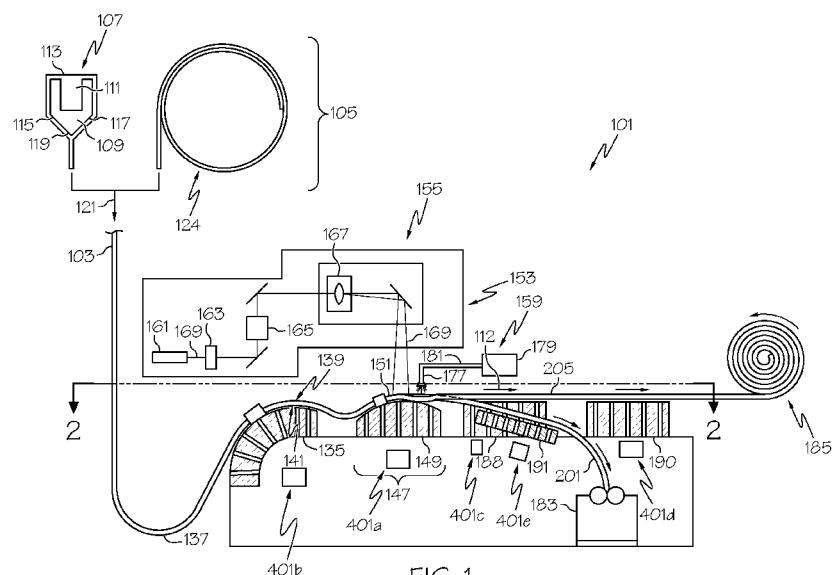
61/819,223 3 May 2013 (03.05.2013) US

(71) Applicant: CORNING INCORPORATED [US/US]; 1 Riverfront Plaza, Corning, New York 14831 (US).

(72) Inventors: SHI, Zhiqiang; 16 Katie Lane, Painted Post, New York 14870 (US). YANG, Ningli; Apt. 538s, 1800 Silas Deane Hwy, Rocky Hill, Connecticut 06067 (US). ZHANG, Rui; 14 Woods View Drive, Elmira, New York 14903 (US).

(74) Agent: SCHMIDT, Jeffrey A; Corning Incorporated, Intellectual Property Department, SP-Ti-03-01, Corning, New York 14831 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,


AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: METHODS AND APPARATUS FOR CONVEYING A GLASS RIBBON

METHODS AND APPARATUS FOR CONVEYING A GLASS RIBBON

[0001] This application claims the benefit of priority of U.S. Provisional Application Serial No. 61/819223 filed on May 3, 2013 the content of which is relied upon and incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to methods and apparatus for conveying a glass ribbon and, more particularly, to conveying apparatus for conveying a glass ribbon in a non-contact manner, and also to methods for conveying a glass ribbon in a manner so as to avoid contact between the glass ribbon and a support device.

BACKGROUND

[0003] Glass manufacturing apparatus are commonly used to form various glass products for example sheet glass for liquid crystal displays (LCDs), electrophoretic displays (EPD), organic light emitting diode displays (OLEDs), plasma display panels (PDPs), or other display applications. It is known to manufacture sheet glass by downwardly flowing molten glass over a forming wedge and using edge rollers to engage beads formed at opposite edge portions of a glass ribbon. One or more air bars are commonly used to support the glass ribbon as it traverses along a horizontal path. The air bar creates a cushion of air that facilitates support of the ribbon while avoiding physical contact with the air bar. As such, the pristine surfaces of the glass ribbon may be preserved since the air bar can ideally support the glass ribbon without contacting the glass ribbon. Even with the use of air bars, some procedures may frequently result in limited contact in an otherwise contactless support method. For instance, a coolant jet in a ribbon-severing procedure may consequently form a dimple in the glass surface that results in physical contact with the air bar. During such physical contact events, there is a desire to control the physical contact to avoid or minimize localized damage to the glass ribbon. There is also a desire to detect contact events in an effort to access consequent glass damage and/or modify the process to avoid future damage to the glass.

[0004] What is needed is and cost effective way to help detect physical contact events to enhance glass ribbon quality.

SUMMARY

[0005] In a first example aspect, a method of conveying a glass ribbon comprises a step (I) of conveying the glass ribbon over a support device with a cushion of fluid supporting the glass ribbon over the support device. The method further includes a step (II) of monitoring a physical contact event between the glass ribbon and the support device by detecting an acoustic signal associated with the physical contact event.

[0006] In one example of the first aspect, the method further comprises the step of severing the glass ribbon, wherein the physical contact event of step (II) comprises a touch down event of the glass ribbon physically contacting the support device during the step of severing the glass ribbon. For example, after step (II), the method can further comprise a step (III) of modifying the method of conveying the glass ribbon with feedback from the detected acoustic signal. For example, step (III) can modify the method of conveying the glass ribbon to provide a more consistent touch down event during a subsequent step of severing the glass ribbon. In another example, step (III) can modify the method of conveying the glass ribbon to provide a more stable touch down event during a subsequent step of severing the glass ribbon.

[0007] In another example of the first aspect, after step (II), the method can further comprise the step (III) of modifying the method of conveying the glass ribbon with feedback from the detected acoustic signal.

[0008] In still another example of the first aspect, step (II) detects the acoustic signal as an acoustic signal propagating through the glass ribbon.

[0009] In yet another example of the first aspect, step (II) detects the acoustic signal as an acoustic signal propagating through the support device.

[0010] In a further example of the first aspect, step (I) provides the support device as a fluid bar generating the cushion of fluid.

[0011] In another example of the first aspect, step (I) provides the cushion of fluid as a cushion of air.

[0012] In yet another example of the first aspect, the method further includes the step (III) of storing process features of the method of conveying the glass ribbon associated with a time of the physical contact event. In one example, the method further includes the step (IV) of

controlling the method of conveying the glass ribbon based on process features stored during step (III).

[0013] In still another example of the first aspect, the method further comprises the step of determining features of the physical contact event by analyzing the acoustic signal detected during step (II).

[0014] The first example aspect discussed above may be carried out alone or in combination with any example or any combination of examples of the first aspect discussed above.

[0015] In a second example aspect, a glass ribbon conveying apparatus comprises a support device configured to support a glass ribbon over the support device with a cushion of fluid. The apparatus further includes an acoustic sensor configured to monitor a physical contact event between the glass ribbon and the support device by detecting an acoustic signal associated with the physical contact event.

[0016] In one example of the second aspect, the apparatus further comprises a controller configured to modify operation of the glass ribbon conveying apparatus based on an acoustic signal detected by the acoustic sensor.

[0017] In another example of the second aspect, the apparatus further comprises a storage device configured to store process features of the conveying apparatus associated with a time of the physical contact event. For example, the apparatus can further comprise a controller configured to modify operation of the glass ribbon conveying apparatus based on stored process features within the storage device.

[0018] In one example of the second aspect, the acoustic sensor is mounted to the support device to detect an acoustic signal passing through the support device.

[0019] In another example of the second aspect, the acoustic sensor is configured to monitor the glass ribbon to detect an acoustic signal passing through the glass ribbon.

[0020] In still another example of the second aspect, the support device comprises a fluid bar configured to generate the cushion of fluid.

[0021] The second example aspect discussed above may be carried out alone or in combination with any example or any combination of examples of the second aspect discussed above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] These and other aspects are better understood when the following detailed description is read with reference to the accompanying drawings, in which:

[0023] **FIG. 1** illustrates a schematic view of an example apparatus for fabricating a glass ribbon;

[0024] **FIG. 2** is a sectional view of the apparatus along line 2-2 of **FIG. 1**;

[0025] **FIG. 3** is a sectional view of the apparatus along line 3-3 of **FIG. 2**, illustrating an example cutting support device with an upwardly facing convex support surface;

[0026] **FIG. 4** is a schematic illustration of the apparatus of **FIG. 3** and showing an glass ribbon conveying apparatus of the apparatus for fabricating the glass ribbon; and

[0027] **FIG. 5** is a flow chart illustrating example steps in a method of conveying a glass ribbon.

DETAILED DESCRIPTION

[0028] Examples will now be described more fully hereinafter with reference to the accompanying drawings in which example embodiments are shown. Whenever possible, the same reference numerals are used throughout the drawings to refer to the same or like parts. However, aspects may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

[0029] Methods and apparatus for conveying a glass ribbon are provided. Such methods can be provided in an apparatus for fabricating the flexible glass ribbon that may be subsequently processed into glass sheets that may be incorporated into liquid crystal displays (LCDs), electrophoretic displays (EPD), organic light emitting diode displays (OLEDs), plasma display panels (PDPs), or other applications.

[0030] **FIG. 1** illustrates an apparatus **101** for fabricating a flexible glass ribbon **103**. The glass ribbon **103** can be provided by a wide range of glass ribbon sources. **FIG. 1** illustrates two example sources **105** of glass ribbon **103** although other sources may be provided in further examples. For instance, as shown in **FIG. 1**, the source **105** of glass ribbon **103** can comprise a down draw glass forming apparatus **107**. As schematically shown, the down draw glass forming apparatus **107** can include a forming wedge **109** at the bottom of a trough **111**. In operation, molten glass **113** can overflow the trough **111** and flow down opposite

sides 115, 117 of the forming wedge 109. The two sheets of molten glass are subsequently fused together as they are drawn off the root 119 of the forming wedge 109. As such, the glass ribbon 103 may be fusion down drawn to traverse in a downward direction 121 off the root 119 of the forming wedge 109. Other down draw forming methods for the glass ribbon source 105 such a fusion, up-draw, float, press rolling, slot draw, redraw or other forming methods. Regardless of the source or method of production, the glass ribbon 103 can possibly have a thickness of ≤ 500 microns, ≤ 300 microns, ≤ 200 microns, or ≤ 100 microns. The glass ribbon 103 can possibly have a width of ≥ 20 mm, ≥ 50 mm, ≥ 100 mm, ≥ 500 mm, or ≥ 1000 mm. The glass ribbon 103 can possibly have a variety of compositions including but not limited to soda-lime, borosilicate, alumino-borosilicate, alkali-containing, alkali-free. The glass ribbon 103 can possibly have a coefficient of thermal expansion of ≤ 15 ppm/ $^{\circ}$ C, ≤ 10 ppm/ $^{\circ}$ C, or ≤ 5 ppm/ $^{\circ}$ C. The glass ribbon 103 can have various speeds as it traverses along travel direction 112.

[0031] As shown by the cross section of FIG. 2, the glass ribbon 103 can include a pair of opposed edge portions 201, 203 and a central portion 205 spanning between the opposed edge portions 201, 203. Due to the down draw fusion process, the edge portions 201, 203 of the glass ribbon may have corresponding beads 207, 209 with a thickness "T1" that is greater than a thickness "T2" defined between opposite faces 139, 141 of the central portion 205 of the glass ribbon 103. The apparatus 101 can be designed to process glass ribbons 103 with a thin central portion 205, for example glass ribbons with a thickness "T2" in a range of from about 20 microns to about 300 microns, for example from about 50 microns to about 300 microns, for example from about 85 microns to about 150 microns although glass ribbons with other thicknesses may be processed in further examples.

[0032] Turning back to FIG. 1, another example source 105 of glass ribbon 103 can comprise a coiled spool 124 of glass ribbon 103. For example, glass ribbon 103 may be wound into the coiled spool 124 after being drawn into a glass ribbon, for example, with the down draw glass forming apparatus 107. If the source 105 comprises the coiled spool 124, the glass ribbon 103 may be uncoiled from the coiled spool 124 of glass ribbon 103 to traverse the glass ribbon 103 in the downward direction 121.

[0033] The apparatus **101** can further include an optional bending support device **135** configured to support the glass ribbon **103** over the bending support device **135** with a cushion of fluid. For instance, the optional bending support device **135** can be provided in examples where the elevation of a lower portion **137** of the glass ribbon is lower than a lateral travel elevation of the glass ribbon passing through support portions leading to a cutting zone **147**. The bending support device **135**, if provided, can be designed to help inhibit, for example prevent, the supported face **141** of the glass ribbon **103** from touching the bending support device **135**.

[0034] The apparatus can further include a cutting zone **147** that may be provided with a cutting support device **149**. As shown, the cutting support device **149** can optionally be configured to bend the glass ribbon **103** in the cutting zone **147** to provide a bent target segment **151** with a bent orientation in the cutting zone **147**. Bending the target segment **151** within the cutting zone **147** can help stabilize the glass ribbon **103** during the cutting procedure. Such stabilization can help prevent buckling or disturbing the glass ribbon profile during the procedure of severing at least one of the opposed edge portions **201**, **203** from the central portion **205** of the glass ribbon **103**. In some example, the cutting zone can produce an edge quality that possibly enables the central portion **205** to be bent at a radius of $\leq 500\text{mm}$, $\leq 300\text{mm}$, $\leq 200\text{mm}$, $\leq 100\text{mm}$, or $\leq 50\text{mm}$.

[0035] A cutting support device **149**, if provided, can be designed to help inhibit, for example prevent, the supported face **141** of the glass ribbon **103** from touching the cutting support device **149**. Moreover, the cutting support device **149** can provide a bent target segment **151** in the cutting zone **147** can also increase the rigidity of the glass ribbon **103** throughout the cutting zone **147**. Increasing the rigidity of the glass ribbon **103** throughout the cutting zone **147** can help reduce changes in orientation due to natural shape variation of the incoming ribbon **103** which can produce undesirable variation in the cutting process. Increasing the rigidity of the glass ribbon **103** throughout the cutting zone **147** can also reduce the impact of mechanical perturbations and vibrations on the cutting process.

[0036] As set forth above, providing the bent target segment **151** in a bent orientation within the cutting zone **147** can help stabilize the glass ribbon **103** during the cutting procedure. Such stabilization can help prevent buckling or disturbing the glass ribbon profile during the

procedure of severing at least one of the opposed edge portions **201, 203**. Moreover, the bent orientation of the bent target segment **151** can increase the rigidity of the target segment to allow optional fine tune adjustment of the lateral orientation of the bent target segment **151**. As such, relatively thin glass ribbons **103** can be effectively stabilized and properly laterally oriented without contacting the pristine opposed faces **139, 141** of the central portion **205** of the glass ribbon **103** during the procedure of severing at least one of the opposed edge portions **201, 203** from the central portion **205** of the glass ribbon **103**.

[0037] Increased stabilization and rigidity of the bent target segment **151** of the glass ribbon **103** can be achieved by bending the target segment to include an upwardly convex surface and/or an upwardly concave surface along a direction of the axis **217** transverse to the travel direction **112**. For example, as shown in **FIG. 3**, the bent target segment **151** includes a bent orientation with an upwardly facing convex surface **313**. Examples of the disclosure can involve supporting the bent target segment **151** with an upwardly facing convex support surface **315** of the cutting support device **149**. As further shown in **FIG. 3**, providing the cutting support device **149** with an upwardly facing convex support surface **315** can likewise bend the glass ribbon **103** in the cutting zone **147** to achieve the illustrated bent orientation with the upwardly facing convex surface **313**.

[0038] The apparatus **101** can further include a wide range of cutting devices configured to sever the edge portions **201, 203** from the central portion **205** of the glass ribbon **103**. In one example, as shown in **FIG. 1**, one example glass cutting device **153** can include an optical delivery apparatus **155** for irradiating and therefore heating a portion of the upwardly facing surface of the bent target segment **151**. In one example, optical delivery apparatus **155** can comprise a radiation source for example the illustrated CO₂ laser **161** although other laser types or other radiation sources may be provided in further examples. The optical delivery apparatus **155** can further include a circular polarizer **163**, a beam expander **165**, and a beam shaping apparatus **167**. The laser **161** may be configured to initially emit the laser beam **169** with a substantially circular cross section (i.e. the cross section of the laser beam at right angles to the longitudinal axis of the laser beam). The optical delivery apparatus **155** can be operable to transform laser beam **169** such that the beam has a significantly elongated shape when incident on glass ribbon **103**. As shown in **FIG. 2**, the elongated shape can produce an

elongated radiation zone **227** that may include the illustrated elliptical footprint although other configurations may be provided in further examples. The elliptical foot print can be positioned on the upwardly facing convex surface **313** or concave surface (not shown) of the bent target segment **151**. The elongated radiation zone **227** can heat through the entire thickness of the glass ribbon **103**.

[0039] As further shown in **FIG. 1**, the example glass cutting device **153** can also include a coolant fluid delivery apparatus **159** configured to cool the heated portion of the upwardly facing surface of the bent target segment **151**. The coolant fluid delivery apparatus **159** can comprise a coolant nozzle **177**, a coolant source **179** and an associated conduit **181** that may convey coolant to the coolant nozzle **177**. As shown in **FIG. 1**, the forced fluid cooling can occur on the same face **139** of the glass ribbon **103** as the incident heating source.

[0040] With reference to **FIG. 3**, the coolant nozzle **177** can be configured to deliver a coolant jet **317** of coolant fluid to the upwardly facing surface **313** of the bent target segment **151**. The coolant nozzle **177** can have various internal diameters to form a cooling zone **319** of a desired size. As with elongated radiation zone **227**, the diameter of coolant nozzle **177**, and the subsequent diameter of coolant jet **317**, may be varied as needed for the particular process conditions. In some embodiments, the area of the glass ribbon immediately impinged upon by the coolant (cooling zone) can have a diameter shorter than the minor axis of the radiation zone **227**. However, in certain other embodiments, the diameter of the cooling zone may be larger than the minor axis of elongated radiation zone **227** based on process conditions for example speed, glass thickness, laser power, etc. Indeed, the (cross sectional) shape of the coolant jet may be other than circular, and may, for example, have a fan shape such that the cooling zone forms a line rather than a circular spot on the surface of the glass ribbon. A line-shaped cooling zone may be oriented, for example, perpendicular to the major axis of elongated radiation zone **227**. Other shapes may be beneficial.

[0041] In one example, the coolant jet **317** comprises water, but may be any suitable cooling fluid (e.g., liquid jet, fluid jet or a combination thereof) that does not stain or damage the upwardly facing surface **313** of the bent target segment **151** of the glass ribbon **103**. The coolant jet **317** can be delivered to a surface of the glass ribbon **103** to form the cooling zone

319. As shown, the cooling zone **319** can trail behind the elongated radiation zone **227** to propagate an initial defect formed by aspects of the disclosure described more fully below.

[0042] The combination of heating and cooling with the laser apparatus **155** and the cooling apparatus **159** can effectively sever the edge portions **201, 203** from the central portion **205** while minimizing or eliminating undesired residual stress, microcracks or other irregularities in the opposed edges **224, 226** of the central portion **205** that may be formed by other severing techniques. Moreover, due to the bent orientation of the bent target segment **151** within the cutting zone **147**, the glass ribbon **103** can be properly positioned and stabilized to facilitate precise severing of the opposed edges **224, 226** during the severing process. Still further, due to the convex surface topography of the upwardly facing convex support surface **315** the edge portions (e.g., see **201** in broken lines in **FIG. 3**) can immediately travel away from the central portion **205**, thereby reducing the probability that the edge portions will subsequently engage (and therefore damage) the pristine faces **139, 141** and/or the high quality opposed edges **224, 226** of the central portion **205**.

[0043] Turning back to **FIG. 1**, the apparatus **101** may include structures configured to further process the severed edge portions **201, 203** and/or the central portion **205** of the glass ribbon **103** downstream from the cutting zone **147**. For example, one or more glass ribbon choppers **183** may be provided to chop, shred, break or otherwise compact the trim segments for disposal or recycling.

[0044] The central portion **205** of the glass ribbon **103** can be further processed by cutting into glass sheets for incorporation into optical components. For example, the apparatus **101** may include another severing device (not shown) configured to sever the central portion **205** of the glass ribbon **103** along the axis **217** transverse to the travel direction **112** of the glass ribbon **103**. Alternatively, as shown in **FIG. 1**, the central portion **205** of the glass ribbon **103** can be coiled into a coiled spool **185** for later processing. As shown, removing the edge portions **201, 203** consequently removes the corresponding beads **207, 209**. Removing the beads reduces the minimum bend radius to allow the central portion **205** of the glass ribbon **103** to be more efficiently wound into a coiled spool **185**.

[0045] Still further shown in **FIG. 1**, the apparatus **101** may also include one or more optional post-cutting support devices to guide at least the central portion **205** of the glass

ribbon **103** downstream from the cutting zone **147**. Such post-cutting support device(s), if provided, can be designed to help inhibit, for example prevent, the supported face **141** of the glass ribbon **103** from touching the post-cutting support device(s). For example, as shown, the apparatus can include a first post-cutting support device **188** and a second post-cutting support device **190** to guide the central portion **205** the glass ribbon for final processing. Two support devices are illustrated although a single support device or more than two support devices may be provided in further examples. As further shown, an optional edge portion support device **191** can also be provided to allow the severed edge portion to be guided to the glass ribbon chopper. If provided, the edge portion support device can be designed to help inhibit, for example prevent, the facing surface of the edge portion from touching the edge portion support device. As such, the optional edge portion support device **191** can reduce binding and/or restricted movement as the edge portion proceeds to the glass ribbon choppers **183**.

[0046] As discussed above, the apparatus **101** can include one or more support devices that are designed to help inhibit, for example prevent, the supported face **141** of the glass ribbon **103** from touching corresponding support device. In one example, the support device can comprise a fluid bar (e.g., air bar) configured to generate a fluid cushion (e.g., air cushion) to help inhibit the support face **141** of the glass ribbon from touching the fluid bar. For example, example support devices can comprise one or more of the air bars as illustrated by the bending support device **135**, cutting support device **149**, post-cutting support device(s) **188**, **190**, edge portion support device **191** or other support devices configured to help inhibit, for example prevent, the supported face **141** of the glass ribbon **103** from touching the corresponding support device. Any of the support devices of the apparatus **101** can be incorporated as part of a glass ribbon conveying apparatus in accordance with aspects of the disclosure. Moreover, various glass ribbon conveying apparatus may be used in other processes for supporting a glass ribbon over a support device with a cushion of fluid.

[0047] By way of example, **FIGS. 3 and 4** provide a schematic illustration of a glass ribbon conveying apparatus **401a** incorporating the cutting support device **149**. In addition or alternatively, as schematically illustrated in **FIG. 1**, the apparatus **101** can also include one or more additional glass ribbon conveying apparatus **401b-e** that likewise incorporate the

bending support device **135**, the post-cutting support devices **188, 190** and the edge portion support device **191**, respectively.

[0048] Aspects of one example glass ribbon conveying apparatus **401a** will now be described with the understanding that other glass ribbon conveying apparatus (e.g., **401b-e**) may likewise contain identical or similar aspects. The support devices of aspects of the disclosure are configured to support a glass ribbon over the support device with a cushion of fluid. For example, **FIG. 3** illustrates a cutting support device **149** configured to support the glass ribbon **103** over the cutting support device **149** with a cushion of fluid. A wide range of fluids can be used for example gas, liquid or vapor. As shown, the cutting support device **149** can support the glass ribbon **103** over the support device **149** with a cushion **307** of gas, for example air or other gas. Although not shown, the gas may be filtered to help maintain the pristine surface of the glass ribbon **103**. For example, although not shown, the glass ribbon conveying apparatus **401a** may include a HEPA filter or other filtering device.

[0049] The support devices of the present disclosure can include a wide range of support surfaces for example substantially flat, concave, convex or other surface configurations. For instance, as shown in **FIG. 3**, the cutting support device **149** can optionally include the illustrated upwardly facing convex support surface **315** configured to support the bent target segment **151** over the cutting support device **149** with the cushion **307** of fluid.

[0050] The support devices of the disclosure can be designed to extend along the entire width of the glass ribbon **103** in a direction transverse to the axis **217**. Alternatively, as shown in **FIG. 2**, a plurality of cutting support devices **149** may be aligned in a row along the width of the glass ribbon **103**. Providing a plurality of support devices **149** can allow individual control of each cutting support device **149** along the width of the glass ribbon **103** to help tune in the desired transverse fluid cushion support profile to help accommodate different support requirements along the width of the glass ribbon **103**.

[0051] Referring to **FIG. 3**, the cutting support device **149** can be provided with a plurality of passages **301** configured to provide positive pressure ports **303** such that a fluid stream **305** (e.g., air stream) can be forced through the positive pressure ports **303** toward the bent target segment **151** to create the fluid cushion **307** for supporting the bent target segment **151** with a noncontact support and/or a support with a controlled physical contact event.

Optionally, the plurality of passages **301** can include negative pressure ports **309** such that a fluid stream **311** (e.g., air stream) can be drawn away from the bent target segment **151** to create a suction to partially counteract the force from the fluid cushion created by the positive pressure ports **303**. A combination of positive and negative pressure ports can help stabilize the bent target segment **151** throughout the cutting procedure. Indeed, the positive pressure ports **303** can help maintain a desired fluid cushion **307** height between the central portion **205** of the glass ribbon **103** and the cutting support device **149**. At the same time, the negative pressure ports **309** can help pull the glass ribbon toward the cutting support device **149** to prevent the glass ribbon **103** from undulating and/or prevent portions of the bent target segment **151** from floating away when traversing over the cutting support device **149** in the travel direction **112**.

[0052] The glass ribbon conveying apparatus of the present disclosure further include one or more acoustic sensors configured to monitor a physical contact event between the glass ribbon and the support device by detecting an acoustic signal associated with the physical contact event. For example, **FIG. 4** illustrates a first acoustic sensor “**S1**” that may be mounted to the cutting support device **149** to detect an acoustic signal **415** passing through the cutting support device **149**. The first acoustic sensor “**S1**” can be mounted in a wide variety of locations. In some examples, the acoustic sensor can be strategically located in an attempt to avoid or control physical contact events. For instance, the acoustic sensor can be mounted in the vicinity of a typical location of a physical contact event for example the area of the dimple **323** associated with the coolant jet **317**. In further examples, the acoustic sensor can be mounted in locations where physical contact events are important to process stability, for example locations near the glass feeding, conveyance, spooling or other locations.

[0053] As shown in the illustrated example, the first acoustic sensor “**S1**” can be mounted at a first end portion **403a** although the first acoustic sensor “**S1**” may be mounted to a second end portion **403b**, a lower portion, upper portion or any other location of the cutting support device **149**. Furthermore, the first acoustic sensor “**S1**” may be provided alone or in combination with additional sensor(s). For instance, as shown in the illustrated example, the ribbon conveying apparatus **401a** can further include an optional second acoustic sensor “**S2**”

that may be mounted to the cutting support device 149 to likewise detect an acoustic signal passing through the cutting support device 149. The first and second acoustic sensors may be mounted, for example at opposite locations from one another. For instance, as shown in **FIG. 4**, the first acoustic sensor “S1” can be mounted to the first end portion 403a while the second acoustic sensor “S2” can be mounted to the second end portion 403b located opposite the first end portion 403a. Providing a plurality of sensors can help increase the chance of detecting physical contact events having a lower intensity since one of the sensors may be located closer to the physical contact event than the other sensor. In addition or alternatively, multiple acoustic sensors may help approximate the location of the physical contact event depending on the relative strengths of the signals received by the corresponding acoustic sensors.

[0054] As still further shown in **FIGS. 3 and 4**, in addition or alternative to the acoustic sensor(s) “S1”, “S2”, the ribbon conveying apparatus 401a may still further include an acoustic sensor “S3” configured to monitor the glass ribbon 103 to detect an acoustic signal 417 passing through the glass ribbon 103. For example, the acoustic sensor “S3” can comprise an optical laser vibrometer or interferometer to detect the acoustic wave 417 disturbance directly off the glass ribbon 103 itself.

[0055] As shown in **FIG. 4**, the ribbon conveying apparatus 401a can also include a controller 405 configured to modify operation of the glass ribbon conveying apparatus based on an acoustic signal detected by the acoustic sensor. The controller 405 can be provided in communication with the one or more sensors “S1”, “S2”, “S3” by way of respective communication lines “L1”, “L2”, “L3” although wireless communication may be possible in further examples. As such, the controller 405 may receive information from the sensors (e.g., by way of the communication lines) to determine a physical contact event and/or determining features of the physical contact event by analyzing the acoustic signal. The controller can further be placed in communication with other devices of the apparatus 101 to modify operation of the glass ribbon conveying apparatus. For instance, the controller 405 may be designed to modify the feed rate of the glass ribbon 103, the pressure being applied by the coolant jet 317 or other aspects of the apparatus. As shown in **FIG. 4**, the controller 405 can be placed in communication with a fluid manifold 407 that may be designed to

control fluid flow through conduits **409a** that may be placed in fluid communication with a positive pressure source **411a** of fluid. In some examples, the fluid manifold **407** may also be designed to control fluid through optional second conduits **409b** that may be placed in fluid communication with an optional negative pressure source **411b**. As such, the fluid manifold may control the positive fluid streams **305** and/or the negative fluid streams **311** through the cutting support device **149**. In some examples, the control **405** may operate the fluid manifold **407** to individually control the fluid streams (e.g., by individually operated valves) through the pressure ports **303, 309** to provide a desired pressure profile.

[0056] Still further, the ribbon conveying apparatus **401a** can also include a storage device **413** configured to store process features of the apparatus **101**, for example features of the conveying apparatus **401a** associated with a time of the physical contact event. For example, the storage device **413** can store the air pressure within the positive pressure source **411a**, the height of the air cushion **307**, the pressure of the coolant jet **317**, the feed rate of the glass ribbon or other process features. In some examples, the controller **405** may modify operation of the ribbon conveying apparatus based on stored process features within the storage device **413**. For example, the information stored on the storage device **413** can be processed by algorithms to control the manifold **407** with the controller **405** to arrive at a desired pressure profile for the air cushion **307**.

[0057] Methods of fabricating a glass ribbon with the apparatus **101** will now be described. As shown in **FIG. 1**, the method can include the step of traversing the glass ribbon **103** in a downward direction **121** relative to the source **105**. As shown, the glass ribbon **103** can travel substantially vertically in the downward direction **121** although the downward direction may be angled in further examples wherein the glass ribbon **103** can travel at an inclined orientation in the downward direction. Although not shown, if the glass ribbon **103** is supplied on a spool for example **124**, it may also traverse from the spool to the cutting unit in a substantially horizontal direction with little or no travel in the downward direction.

[0058] Turning to **FIG. 5**, the method can begin at start point **501** with the step **503** of conveying the glass ribbon **103** over a support device with a cushion of fluid, for example a cushion of air, supporting the glass ribbon over the support device. As mentioned previously, the support device can comprise a fluid bar configured to generate the cushion of

fluid. In some examples, the fluid bar can comprise an air bar configured to generate a cushion of air. The method can convey the glass ribbon **103** over one or more support devices for example various fluid bars (e.g., air bars) that can comprise the bending support device **135**, cutting support device **149**, post-cutting support devices **188**, **190**, the edge portion support device **191** or other support devices.

[0059] The method can further include the step **505** of monitoring a physical contact event between the glass ribbon **103** and the support device by detecting an acoustic signal associated with the physical contact event. As shown in **FIG. 4**, in one example, the method can detect the acoustic signal as an acoustic signal **415** propagating through the support device. Indeed, as shown in **FIG. 4**, the contact event can generate an acoustic signal **415** that propagates through the cutting support device **149** and can be detected by the sensor(s) “**S1**” and/or “**S2**”. As the contact event is closer to the first acoustic sensor “**S1**”, the signal detected by this sensor may be stronger than the signal detected by the second acoustic sensor “**S2**”. As such, it is possible that the location of the physical contact event may be determined based on the signal ratio between the first and second sensors. This information may be useful, for example, if the specific area of the glass ribbon is desired to be located for subsequent examination.

[0060] As further shown in **FIG. 4**, in another example, the method can detect the acoustic signal as an acoustic signal **417** propagating the glass ribbon. Indeed, as shown in **FIG. 4**, the contact event can generate an acoustic signal **417** that propagates through the glass ribbon **103** that can be directly detected by the sensor “**S3**.”

[0061] Turning back to **FIG. 5**, if no physical contact event is detected, the process can loop back along path **507** to the step **505** of monitoring for a physical contact event. Otherwise, if a contact even is detected, the method can then proceed with a variety of example steps as indicated by path **509a**, **509b**, **509c**. For instance, the method can proceed along path **509a** to step **511** of determining features of the physical contact event by analyzing the acoustic signal detected during **505**. For instance, the location of the signal, intensity or profile of the signal can be analyzed. In one example, the duration of the contact, intensity of the contact, force consistency of the contact or other features may be determined based on a signal

analysis of information obtained from the sensors. As indicated by path **513**, the method can then proceed to end point **515**.

[0062] In another example, the method can proceed along path **517** from step **511** or may proceed along path **509b** directly to step **519** of storing process features of the method of conveying the glass ribbon associated with a time of the physical contact event. For instance, the process features may be added to a database **521** of process features stored on the storage device **413** for future reference to enable improvement of the process in the future based on information obtained. For example, the process features can be features of the physical contact event determined during step **511**. In another example, the process features can comprise operating conditions of the method of conveying or manufacturing the glass ribbon. For example, the process features can comprise the feed rate of the glass ribbon **103**, the pressure being applied by the coolant jet **317**, features associated with the cushion **307** for example the fluid pressure, cushion height or other features.

[0063] The method can then proceed to the end point **515** of the process or could proceed to step **523** of controlling the method of conveying the glass ribbon based on process features stored during step **519**. For example, the controller **405** can enter information from the database **521** stored on the storage device **413** into various algorithms **525** for determining commands that the controller can send to various devices of the apparatus to control the method of conveying the glass ribbon. For instance, step **523** can control the manifold **407** to modify the characteristics of the cushion **307** of fluid to modify future contact events.

[0064] Methods of the present disclosure can therefore modify the method of conveying the glass ribbon with feedback from the detected acoustic signal. In one example, the method can include the step of severing the glass ribbon. As shown in **FIG. 3**, the force of the coolant jet **317** may be sufficient to counteract the bias provided by the bending support device **135** such that localized deformation may form that may, as shown, cause a physical contact event located at a physical contact interface **321** wherein the protuberance **325** of the glass ribbon **103** physically contacts the bending support device **135** at the physical contact interface **321**. As shown, the localized deformation can result in a dimple **323** in the outwardly facing surface **139** of the glass ribbon **103** and a corresponding opposite protuberance **325** in the downwardly facing surface **141** of the glass ribbon **103**. As such, the

physical contact event of detected during step **505** comprises a touch down event of the glass ribbon physically contacting the support device during the step of severing the glass ribbon. The method can then proceed through one or more of steps **511** and **519** to step **523** of modifying the method of conveying the glass ribbon with feedback from the detected acoustic signal. In one example, the step **523** modifies the method of conveying the glass ribbon to provide a more consistent touch down event during a subsequent step of severing the glass ribbon. For instance, if the contact event is acceptable, the consistency of the force applied during the contact event can be controlled, for example, to avoid undue fluctuations in the glass contact force. Moreover, step **523** can also modify the method of conveying the glass ribbon to provide a more stable touch down event during a subsequent step of severing the glass ribbon. In one example, the step **523** can help avoid jumping of the protuberance on the cutting support device **149**. As such, impact damage may be avoided by inhibiting jumping of the protuberance to provide a more consistent and stable touch down event.

[0065] Still further, the method can be designed to obtain feedback to avoid future contact events. For instance, contact may be avoided by step **523**. Indeed, based on information obtained during the contact event, devices of the apparatus may be adjusted to avoid future contact events.

[0066] As set forth above, the present disclosure provides conveying apparatus that each includes an acoustic sensor and methods that each include detecting an acoustic signal associated with a physical contact between the glass ribbon and a support device. The acoustic sensors and methods of detecting acoustic signals can provide a low cost and effective way of detecting, locating and assessing the touchdown of glass ribbon being supported on a cushion of fluid over a support device. Such physical contact events can be monitored during glass feeding, cutting, conveying and spooling during a glass manufacturing process. The physical contact event can be attributed to multiple factors for example laser thermal deformation, dimple form air nozzle pressure, or residual stress or warp during formation. The physical contact event can be continuous or intermittent, and located and assessed to aid process tuning. For example, the location of physical contact events may be determined. In another example, the intensity of the physical contact can be determined. The process parameters may then be adjusted for feed rate and/or glass thickness

to avoid touchdown events. In addition, touchdown events can be detected and the process can be modified to avoid future touchdown events that may otherwise damage the glass ribbon. Avoiding future contact events may be particularly important to increase the feed rate, process glass ribbon with reduced thickness, avoid instability in the process when spooling or cutting the glass ribbon and the like.

[0067] The disclosed methods and apparatus based on acoustic detection offers a low-cost, compact, reliable and robust solution that can be easily expended to cover the various procedures in the overall process of fabricating the glass ribbon, e.g., from glass feeding, laser cutting, conveying and spooling. The method can detect the sliding friction of the physical contact event between the moving glass ribbon and the underlying support device. The acoustic detection techniques takes advantage of the acoustic waveguide effect in that acoustic waves can propagate long distances through the support device as well as the glass ribbon that both can act as acoustic waveguides. As a result, one acoustic sensor can cover a relatively large area for touchdown detection. Multiple compact acoustic sensors can also be easily mounted to the process devices to provide a sensing network to cover the entire or large portions of the manufacturing process and/or can act to help location, for example, by triangulation techniques the exact location of the touchdown event.

[0068] In addition, the present disclosure of acoustic monitoring can allow physical contact events to be simultaneously monitored and recorded along with manufacturing process parameters of glass thickness, sheet velocity, air bearing and air nozzle pressure, glass vibration, laser power, for example, for process diagnostics and tuning.

[0069] It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the claimed invention.

CLAIMS

What is claimed is:

1. A method of conveying a glass ribbon comprising the steps of:
 - (I) conveying the glass ribbon over a support device with a cushion of fluid supporting the glass ribbon over the support device; and
 - (II) monitoring a physical contact event between the glass ribbon and the support device by detecting an acoustic signal associated with the physical contact event.
2. The method of claim 1, wherein after step (II), further comprising the step (III) of modifying the method of conveying the glass ribbon with feedback from the detected acoustic signal.
3. The method of claim 1 or claim 2, further comprising the step of severing the glass ribbon, wherein the physical contact event of step (II) comprises a touch down event of the glass ribbon physically contacting the support device during the step of severing the glass ribbon.
4. The method of claim 3, wherein step (III) modifies the method of conveying the glass ribbon to provide a more consistent touch down event during a subsequent step of severing the glass ribbon.
5. The method of claim 3, wherein step (III) modifies the method of conveying the glass ribbon to provide a more stable touch down event during a subsequent step of severing the glass ribbon.
6. The method of any one of claims 1-5, wherein step (II) detects the acoustic signal as an acoustic signal propagating through the glass ribbon or through the support device.
7. The method of any one of claims 1-6, further comprising the step (III) of storing process features of the method of conveying the glass ribbon associated with a time of the physical contact event.
8. The method of claim 7, further comprising the step (IV) of controlling the method of conveying the glass ribbon based on process features stored during step (III).
9. The method of any one of claims 1-8, further comprising the step of determining features of the physical contact event by analyzing the acoustic signal detected during step (II).

10. A glass ribbon conveying apparatus comprising:
 - a support device configured to support a glass ribbon over the support device with a cushion of fluid; and
 - an acoustic sensor configured to monitor a physical contact event between the glass ribbon and the support device by detecting an acoustic signal associated with the physical contact event.
11. The apparatus of claim 10, further comprising a storage device configured to store process features of the conveying apparatus associated with a time of the physical contact event.
12. The apparatus of claim 10 or claim 11, further comprising a controller configured to modify operation of the glass ribbon conveying apparatus based on stored process features within the storage device or on an acoustic signal detected by the acoustic sensor.
13. The apparatus of any one of claims 10-12, wherein the acoustic sensor is mounted to the support device to detect an acoustic signal passing through the support device or through the glass ribbon.

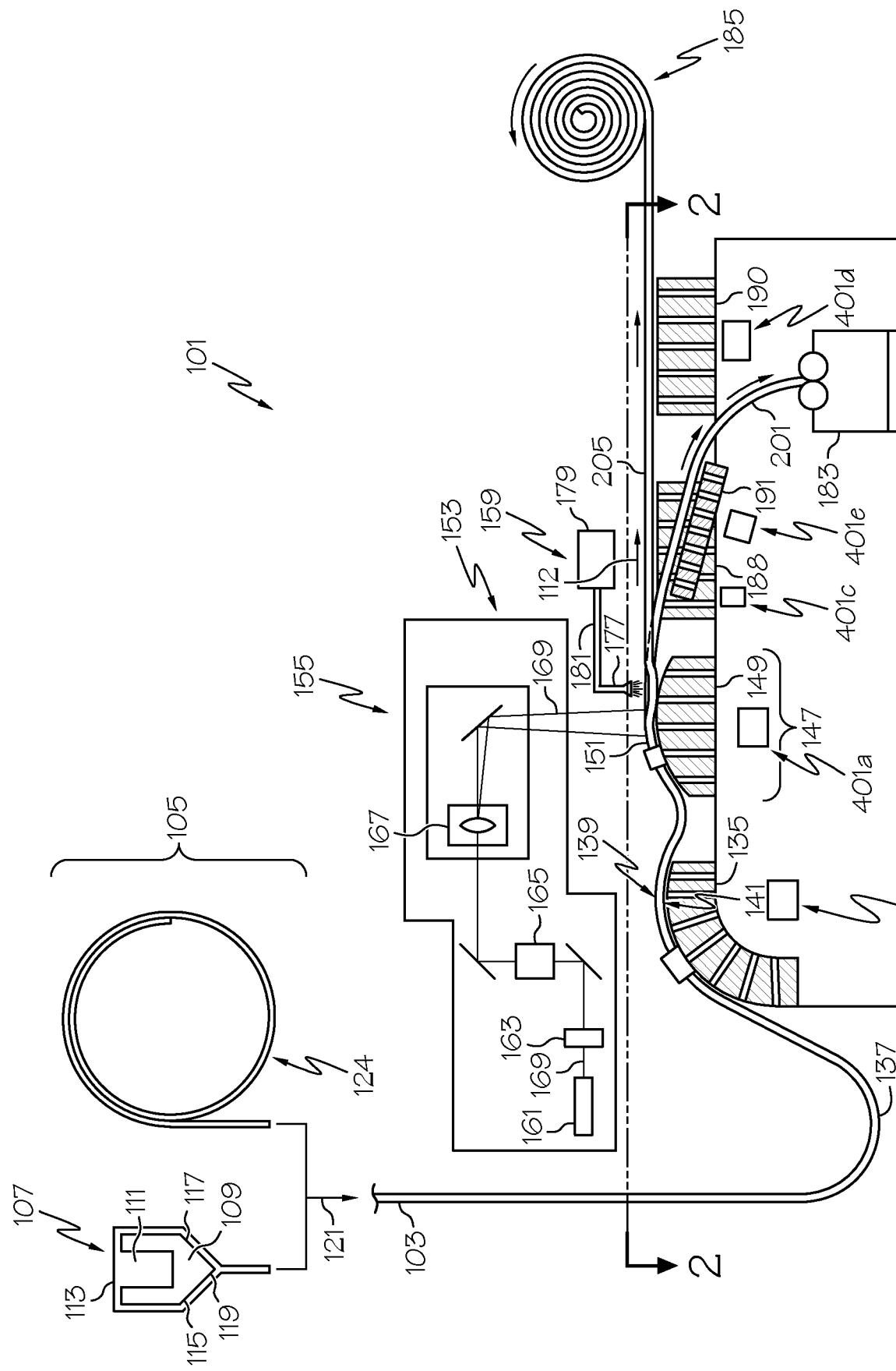


FIG. 1

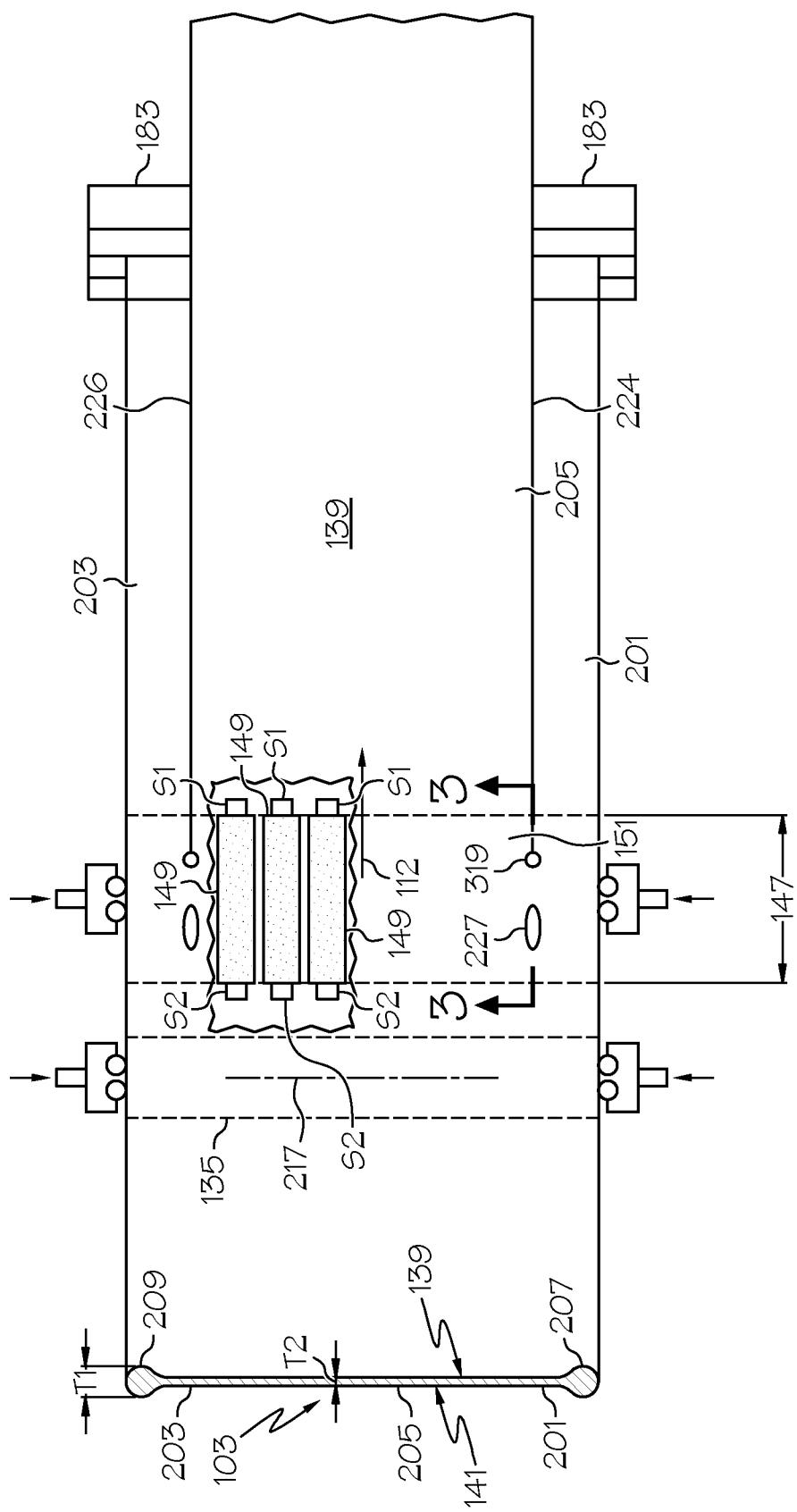


FIG. 2

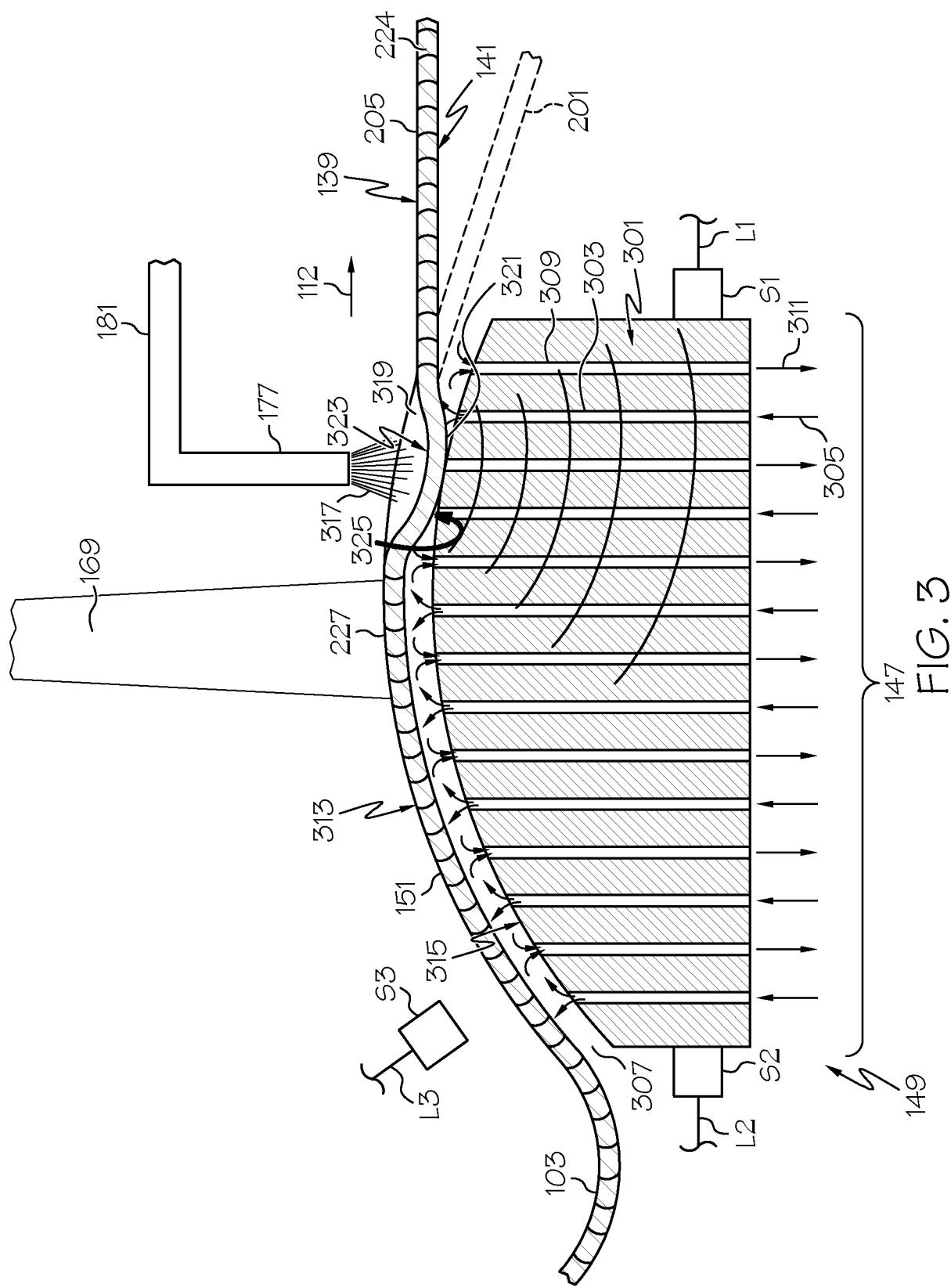


FIG. 3

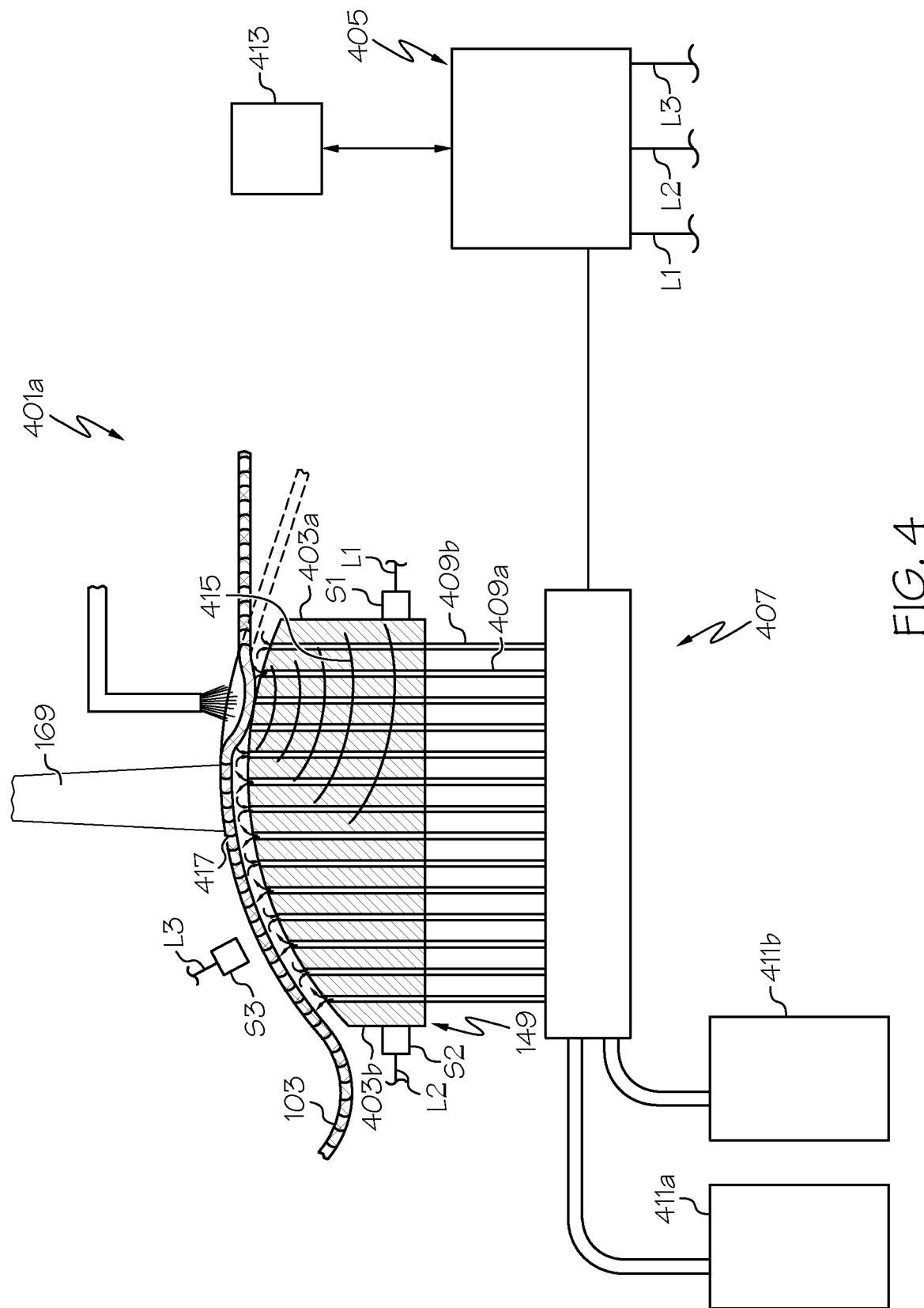


FIG. 4

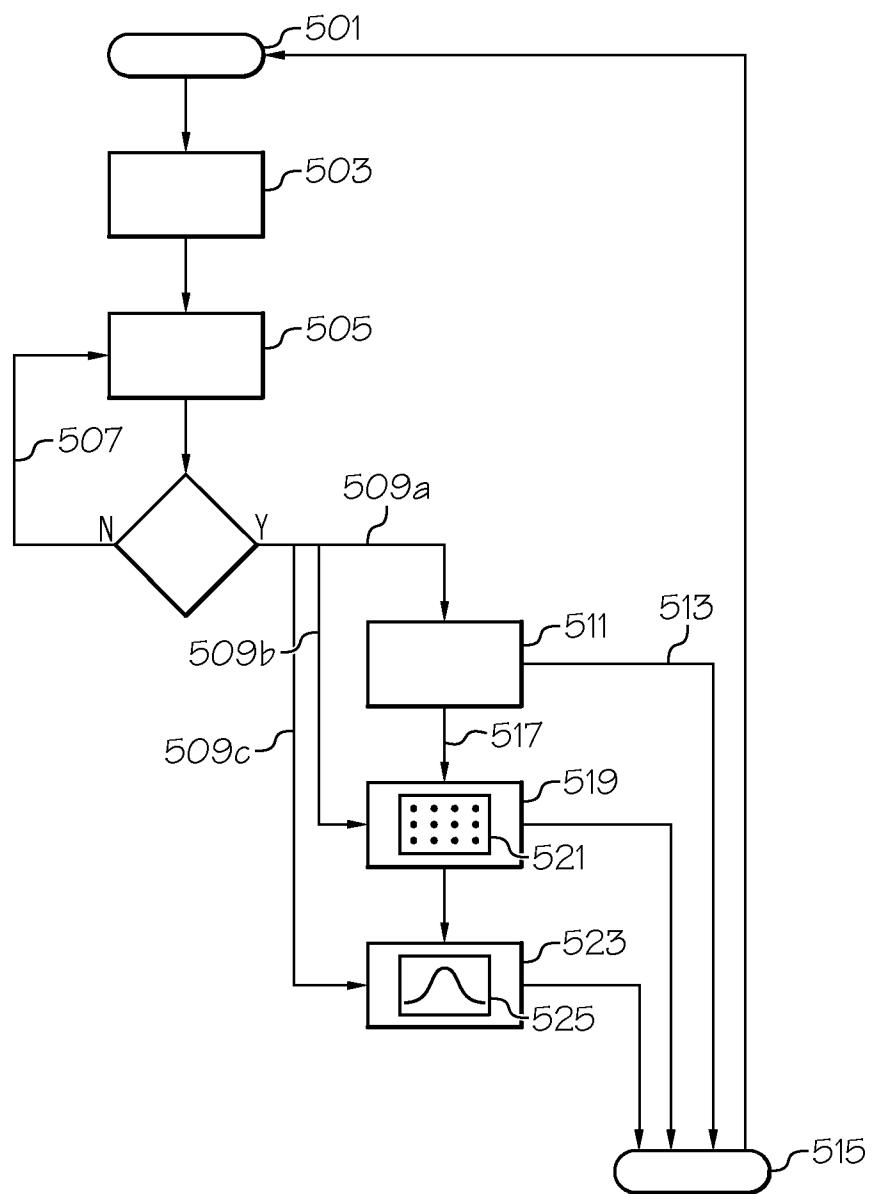


FIG. 5

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2014/036097

A. CLASSIFICATION OF SUBJECT MATTER
INV. C03B33/023 C03B33/09 B65H23/24
ADD. B65G49/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C03B B65G B65H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2011/094267 A1 (ANIOLEK KENNETH WILLIAM [US] ET AL) 28 April 2011 (2011-04-28) paragraph [0025]; figures 2,3 -----	1-13
A	US 6 119 052 A (GUENTHER OLIVER [US] ET AL) 12 September 2000 (2000-09-12) column 3, line 43 - line 58 column 5, line 1 - line 25 -----	1-13
A	US 2011/277507 A1 (LU HUNG CHENG [US] ET AL) 17 November 2011 (2011-11-17) the whole document -----	1-13

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
7 August 2014	01/09/2014
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Marrec, Patrick

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/036097

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 2011094267	A1	28-04-2011	CN	102050563 A	11-05-2011
			CN	202038969 U	16-11-2011
			JP	2011093794 A	12-05-2011
			TW	201124349 A	16-07-2011
			US	2011094267 A1	28-04-2011
US 6119052	A	12-09-2000	NONE		
US 2011277507	A1	17-11-2011	CN	102351405 A	15-02-2012
			JP	2011241140 A	01-12-2011
			KR	20110125621 A	21-11-2011
			TW	201210955 A	16-03-2012
			US	2011277507 A1	17-11-2011