wo 20187106589 A1 | 0K 0000 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

14 June 2018 (14.06.2018)

(10) International Publication Number

WO 2018/106589 A1l

WIPO I PCT

(5D

2D

22)

(25)
(26)
(30$)

an

a2

74

62y

International Patent Classification:
GO6F 8/10 (2018.01) GO6F 8/71 (2018.01)
GO6F 8/34 (2018.01) GO6F 9/448 (2018.01)

International Application Number:
PCT/US2017/064493

International Filing Date:
04 December 2017 (04.12.2017)

Filing Language: English
Publication Language: English
Priority Data:

62/431,195 07 December 2016 (07.12.2016) US
15/587,987 05 May 2017 (05.05.2017) US

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventors: ROZENBERG, Ilya; 160 Pine Street, #7,
Auburndale, Massachusetts 02466 (US). WEISS, Adam,;
15 Rawson Avenue, Lexington, Massachusetts 02420 (US).

Agent: DEVRIES, Gretchen A. ct al.; Fish & Richardson
P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO,CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(84)

Pub

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

lished:
with international search report (Art. 21(3))
before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: DIFFERENCING OF EXECUTABLE DATAFLOW GRAPHS

900 Z

Acquisition Read values

i

004 // o

FIG. 8A

(57) Abstract: A method for displaying differences between a first executable datatlow graph and a second executable dataflow graph
includes comparing a specitication of the first executable dataflow graph and a specification of the second executable dataflow graph,
including at least one of identitying a particular node or link of the first dataflow graph that does not correspond to any node or link of
the second dataflow graph; and identifying a first node or link of the first datatlow graph that corresponds to a second node or link of
the second dataflow graph, and identitying a difference between the tirst node or link and the second node or link. The method includes
formulating and displaying a graphical representation of at least some of the nodes or links of the first dataflow graph or the second
dataflow graph, the graphical representation including a graphical indicator of at least one of the identified particular node or link the
identified difference between the first node or link and the second node or link.

WO 2018/106589 PCT/US2017/064493

DIFFERENCING OF EXECUTABLE DATAFLOW GRAPHS

Claim of Priority

[001] This application claims priority to U.S. Patent Application Serial No. 62/431,195,
filed on December 7, 2016, and to U.S. Patent Application Serial No. 15/587,987, filed

on May 5, 2017, the entire contents of which are incorporated here by reference.

Background

[002] During development or execution of a computer program, changes can be made to
the computer program. Information about the changes can be useful to a developer, e.g.,
to help the developer understand the impact of a change, determine why an updated
computer program no longer functions correctly, or keep track of edits from multiple

people.

Summary

[003] In an aspect, a method is for displaying the differences between a first executable
dataflow graph and a second executable dataflow graph, each dataflow graph executable
to process data received by the dataflow graph, each dataflow graph including one or
more nodes representing data processing components and one or more links representing
flows of data between components. The method includes by a computer, comparing a
specification of the first executable dataflow graph and a specification of the second
executable dataflow graph to identify one or more differences between the first dataflow
graph and the second dataflow graph. The specification of a given executable dataflow
graph defines one or more nodes each representing a source of data to be processed by
the dataflow graph, one or more nodes each representing a data processing component
defining an operation to be performed to process the data from the source of data, and
one or more nodes each representing a destination for data processed by the dataflow
graph. The comparing of the first dataflow graph and the second dataflow graph includes
at least one of (1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow graph, and (2) identifying

a first node or link of the first dataflow graph that corresponds to a second node or link of

WO 2018/106589 PCT/US2017/064493

the second dataflow graph, and identifying a difference between the first node or link and
the second node or link. The method includes formulating a graphical representation of at
least some of the nodes or links of the first dataflow graph or the second dataflow graph,
the graphical representation including a graphical indicator of at least one of (1) the
identified particular node or link (1) the identified difference between the first node or
link and the second node or link; and displaying the graphical representation in a graph

editing interface.
[004] Embodiments can include one or more of the following features.

[005] The first dataflow graph is a first version of a particular dataflow graph and in

which the second dataflow graph is a second version of the particular dataflow graph.

[006] Identifying a difference between the first node or link and the second node or link
includes identifying a difference between a resolved parameter of the first node or link

and a resolved parameter of the second node or link.

[007] Identifying a difference between the first node or link and the second node or link
includes identifying a difference between an expression for a parameter of the first node

or link and an expression for a parameter of the second node or link.

[008] The graphical indicator is a color of the first, second, or particular node or link in

the graphical representation.

[009] The color of the graphical indicator is indicative of a type of the identified

difference between the first node or link and the second node or link.

[010] The graphical indicator is a shading or fill of the first, second, or particular node

or link in the graphical representation.

[011] The graphical indicator includes a symbol positioned near the first, second, or

particular node or link.

[012] The graphical indicator is responsive to user interaction. The method includes
enabling access to information indicative of the identified difference responsive to user

interaction with the graphical indicator.

WO 2018/106589 PCT/US2017/064493

[013] The first dataflow graph contains a first dataflow subgraph and in which the
second dataflow graph contains a second dataflow subgraph, and the method includes
comparing a specification of the first dataflow subgraph and a specification of the second
dataflow subgraph; and based on the comparing, identifying one or more differences

between the first dataflow subgraph and the second dataflow subgraph.

[014] The graphical representation includes a graphical representation of at least a
portion of the first dataflow subgraph or at least a portion of the second dataflow
subgraph, the graphical representation including a graphical indicator of at least one of
the identified differences between the first dataflow subgraph and the second dataflow

subgraph.

[015] The graphical representation includes a hierarchical representation of at least one
of the identified differences between the first dataflow graph and the second dataflow
graph and at least one of the identified differences between the first datatlow subgraph

and the second dataflow subgraph.

[016] Comparing the specification of the first dataflow graph and the specification of
the second dataflow graph includes comparing a first file referenced by the first dataflow
graph and a second file referenced by the second dataflow graph. The graphical
representation includes a graphical representation of one or more differences between the

first file and the second file.

[017] Identifying a first node or link that corresponds to a second node or link includes
identifying the first node based on one or more of (1) a name of the first node or link and

second node or link and (2) an identifier of the first node or link and second node or link.

[018] Identifying a first node or link that corresponds to a second node or link includes
identifying the first node based on information associated with data flow into or out of

the first node and second node.

[019] Identifying a first node or link that corresponds to a second node or link includes
identifying the first node or link based on nodes or links that are upstream or downstream

of the first node or link and second node or link.

WO 2018/106589 PCT/US2017/064493

[020] The method includes preparing the first dataflow graph and the second dataflow
graph for execution; and comparing the specifications of the prepared first and second

dataflow graph.

[021] In an aspect, a non-transitory computer readable medium stores instructions for
causing a computer to display the differences between a first executable dataflow graph
and a second executable dataflow graph, each dataflow graph executable to process data
received by the dataflow graph, each dataflow graph including one or more nodes
representing data processing components and one or more links representing flows of
data between components. The instructions cause the computer to compare a
specification of the first executable dataflow graph and a specification of the second
executable dataflow graph to identify one or more differences between the first dataflow
graph and the second dataflow graph. The specification of a given executable dataflow
graph defines one or more nodes each representing a source of data to be processed by
the dataflow graph, one or more nodes each representing a data processing component
defining an operation to be performed to process the data from the source of data, and
one or more nodes each representing a destination for data processed by the dataflow
graph. The comparing of the first dataflow graph and the second dataflow graph includes
at least one of (1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow graph, and (2) identifying
a first node or link of the first dataflow graph that corresponds to a second node or link of
the second dataflow graph, and identifying a difference between the first node or link and
the second node or link. The instructions cause the computer to formulate a graphical
representation of at least some of the nodes or links of the first dataflow graph or the
second dataflow graph, the graphical representation including a graphical indicator of at
least one of (1) the identified particular node or link (1) the identified difference between
the first node or link and the second node or link; and display the graphical representation

in a graph editing interface.

[022] In an aspect, a system is for displaying the differences between a first executable
dataflow graph and a second executable dataflow graph, each dataflow graph executable

to process data received by the dataflow graph, each dataflow graph including one or

WO 2018/106589 PCT/US2017/064493

more nodes representing data processing components and one or more links representing
flows of data between components. The system includes a processor and memory
configured to compare a specification of the first executable dataflow graph and a
specification of the second executable datatlow graph to identify one or more differences
between the first dataflow graph and the second dataflow graph. The specification of a
given executable dataflow graph defines one or more nodes each representing a source of
data to be processed by the dataflow graph, one or more nodes each representing a data
processing component defining an operation to be performed to process the data from the
source of data, and one or more nodes each representing a destination for data processed
by the dataflow graph. The comparing of the first dataflow graph and the second dataflow
graph includes at least one of (1) identifying a particular node or link of the first dataflow
graph that does not correspond to any node or link of the second dataflow graph, and (2)
identifying a first node or link of the first dataflow graph that corresponds to a second
node or link of the second dataflow graph, and identifying a difference between the first
node or link and the second node or link. The processor and memory are configured to
formulate a graphical representation of at least some of the nodes or links of the first
dataflow graph or the second dataflow graph, the graphical representation including a
graphical indicator of at least one of (1) the identified particular node or link (1) the
identified difference between the first node or link and the second node or link; and

display the graphical representation in a graph editing interface.

[023] In an aspect, a system is for displaying the differences between a first executable
dataflow graph and a second executable dataflow graph, each dataflow graph executable
to process data received by the dataflow graph, each dataflow graph including one or
more nodes representing data processing components and one or more links representing
flows of data between components. The system includes means for comparing a
specification of the first executable dataflow graph and a specification of the second
executable dataflow graph to identify one or more differences between the first dataflow
graph and the second dataflow graph. The specification of a given executable dataflow
graph defines one or more nodes each representing a source of data to be processed by
the dataflow graph, one or more nodes each representing a data processing component

defining an operation to be performed to process the data from the source of data, and

WO 2018/106589 PCT/US2017/064493

one or more nodes each representing a destination for data processed by the dataflow
graph. The comparing of the first dataflow graph and the second dataflow graph includes
at least one of (1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow graph, and (2) identifying
a first node or link of the first dataflow graph that corresponds to a second node or link of
the second dataflow graph, and identifying a difference between the first node or link and
the second node or link. The system includes means for formulating a graphical
representation of at least some of the nodes or links of the first dataflow graph or the
second dataflow graph, the graphical representation including a graphical indicator of at
least one of (1) the identified particular node or link (1) the identified difference between
the first node or link and the second node or link; and means for displaying the graphical

representation in a graph editing interface.

[024] In an aspect, a method is for displaying the differences between a first version of
an executable dataflow graph and a second version of the executable dataflow graph, the
dataflow graph executable to process data received by the dataflow graph, each version of
the dataflow graph including one or more nodes representing data processing components
and one or more links representing flows of data between components. The method
includes, with an integrated control system, monitoring a status of a job that includes one
or more operations that can be executed to process data, the job associated with the first
version of the executable dataflow graph. The method includes enabling output of
information indicative of the status of the job; responsive to user interaction with the
integrated control system or the outputted information, identifying the second version of
the executable dataflow graph; comparing a specification of the first version of the
dataflow graph and a specification of the second version of the dataflow graph to identify
one or more differences between the first version of the dataflow graph and the second
version of the dataflow graph. The specification of a given executable dataflow graph
defines one or more nodes each representing a source of data to be processed by the
dataflow graph, one or more nodes each representing a data processing component
defining an operation to be performed to process the data from the source of data, and
one or more nodes each representing a destination for data processed by the dataflow

graph. The comparing of the first version of the dataflow graph and the second version of

WO 2018/106589 PCT/US2017/064493

the dataflow graph includes at least one of (1) identifying a first node or link of the first
version of the dataflow graph that does not correspond to any node or link of the second
version of the dataflow graph, (2) identifying a second node or link of the second version
of the dataflow graph that does not correspond to any node or link of the first version of
the dataflow graph, and (1) identifying a third node or link of the first version of the
dataflow graph that corresponds to a fourth node or link of the second version of the
dataflow graph, and identifying a difference between the third node or link and the fourth
node or link. The method includes formulating a graphical representation of at least some
of the nodes or links of the first version of the dataflow graph or the second version of the
dataflow graph, the graphical representation including a graphical indicator of at least one
of (1) the identified first node or link, (2) the identified second node or link, and (3) the

identified difference between the third node or link and the fourth node or link.
[025] Embodiments can include one or more of the following features.

[026] A previously executed job is associated with the second version of the dataflow

graph.

[027] The graphical representation includes a hierarchical representation of one or more

of the identified differences.

[028] The method includes formulating the graphical representation for display in a user

interface of the integrated control system.

[029] Identifying a difference between the first version of the dataflow graph and the
second version of the dataflow graph includes identifying a difference between a resolved
parameter of the first version of the dataflow graph and a resolved parameter of the

second version of the dataflow graph.

[030] Identifying a difference between the first version of the dataflow graph and the
second version of the dataflow graph includes identifying a difference between an
expression for a parameter of the first version of the dataflow graph and an expression for

a parameter of the second version of the dataflow graph.

WO 2018/106589 PCT/US2017/064493

[031] Identifying a difference between the first version of the dataflow graph and the
second version of the dataflow graph includes identifying a difference between a first file
referenced by the first version of the dataflow graph and a second file referenced by the

second version of the dataflow graph.

[032] Monitoring the status of the job includes monitoring one or more of an activity of
the job, an actual start time of the job, an estimated start time of the job, a processing

duration associated with the job, and a size of the job.

[033] Monitoring the status of the job includes determining whether the job was

successfully completed.

[034] The method includes monitoring the status of an application, in which the job is

associated with the application.

[035] The method includes monitoring the status of a computing device, in which the

application is hosted by the computing device.

[036] The approaches described here enable presentation of a graphical representation
of differences between executable applications, such as computer programs (e.g.,
dataflow graphs), thus providing a high-level visual overview of the differences between
the applications. For instance, a graphical representation of differences between a first
dataflow graph (e.g., an early version of the dataflow graph) and a second dataflow graph
(e.g., a later, edited version of the dataflow graph) can depict a high-level view of
components that were added, removed, or modified during the editing process. The
graphical representation of differences between executable applications can be
interactive. For instance, a user can drill down into a component in the graphical
representation to view detailed information about that component, such as information

about modifications made to the component.

[037] The presented information about differences between dataflow graphs can provide
valuable technical support to a developer during graph creation or editing. For instance, a
developer may use the visualization to reconcile development that has happened on

different branches in a source code control system. A developer may use the visualization

to refresh her memory about recent changes she has made relative to a version under

8

WO 2018/106589 PCT/US2017/064493

source code control. A developer may use the visualization to evaluate someone else's
recent changes to a graph, e.g., to confirm that another developer made the changes that
were expected and no other changes or to ensure that certain quality standards have been
met. A developer or quality control team may want to understand why the behavior of a
graph changed between successive versions, e.g., why a newer version of a graph crashes,
runs more slowly, gives wrong answers, consumes more CPU time, or otherwise behaves
differently. A developer may want to edit a graph through a difference visualization, e.g.,

to merge multiple versions into a single version or to undo a change to the graph.

[038] Visualization of differences between graphs can be technically valuable after a
graph is in production. For instance, a new feature created in by a development team can
be unified with a minor bug fix from a production branch. A quality control team may
become aware that a particular buggy line of code was introduced somewhere in a series
of changes made to a graph, and the visualization can be used to discover which version

is the first version with that code so that affected customers can be notified.

Brief Description of Drawings

[039] Fig. 1 is a diagram of a graph.

[040] Figs. 2A and 2B are diagrams of graphical representations of differences between

graphs.
[041] Fig. 3 is a diagram of a navigation tree.
[042] Figs. 4-7 are diagrams of node-level views.

[043] Figs. 8A and 8B are diagrams of graphical representations of differences between

graphs.

[044] Fig. 9 is a diagram of a navigation tree.

[045] Fig. 10 1s a diagram of a difference viewer interface.
[046] Fig. 11 is a diagram of a graph analysis system.

[047] Fig. 12 is a diagram of a processing environment.

WO 2018/106589 PCT/US2017/064493

[048] Fig. 13 is a diagram of a control center interface.
[049] Fig. 14 is a flow chart.

[050] Fig. 15 is a diagram of a data processing system.

Detailed Description

[051] We describe here an approach to graphically representing differences between
executable applications, such as computer programs (e.g., dataflow graphs), thus
providing a high-level visual overview of the differences between the applications. For
instance, a graphical representation of differences between a first dataflow graph (e.g., an
early version of the dataflow graph) and a second dataflow graph (e.g., a later, edited
version of the dataflow graph) can depict components that were added, removed, or
modified during the editing process. The graphical representation of differences between
executable applications can be interactive. For instance, a user can drill down into a
component in the graphical representation to view detailed information about that
component, such as information about modifications made to the component. In some
cases, one or more of the differences between executable applications can be manually or
automatically migrated from one executable application to the other through user
interaction with the graphical representation of the differences between the executable

applications.

[052] A dataflow graph (which we sometimes also refer to as a graph) is a visual
representation of a computer program that can include nodes representative of data
processing components and datasets, such as data sources and data sinks. Datasets can be,
for example, files, database tables, or other types of data sources or sinks that can provide
data (e.g., data records) for processing by the graph or receive data processed by the
graph. Data processing components and datasets are sometimes collectively referred to as
nodes of the graph. A link connecting two nodes of a graph represents a flow of data
between the first node and the second node. Fig. 1 shows a simple dataflow graph 10 that
includes a data source 12 connected by a flow 14 to a filter component 16. The filter

component 16 is connected by a flow 18 to a data sink 20.

10

WO 2018/106589 PCT/US2017/064493

[053] The nodes of a graph can have input ports and/or output ports to which flows can
be connected. In the example of Fig. 1, the upstream ends of the flows 14, 18 are
connected to an output port of the data source 12 and to an output port of the filter
component 14, respectively. The downstream ends of the flows 14, 18 are connected to
an input port of the filter component 14 and to an input port of the data sink 20,

respectively.

[054] Data processing components execute operations to process data. A data
processing component is a graphical representation of an object defined by code that,
when executed, implements the operation of the data processing component. The
operation of a data processing component can be defined with respect to one or more
parameters. The parameters can be defined in a file (e.g., a .dml file) that is referenced by
the code of the data processing component. For instance, the file can include values or
expressions for parameters associated with the data processing component. When the
graph is instantiated (e.g., at runtime), expressions for the parameters are evaluated to
obtain values for the parameters, sometimes referred to as resolving the parameters.
Parameter values or expressions can be defined, for example, by a user over a user
interface (e.g., in response to a prompt), defined from a file, or defined in terms of
another parameter in the same context or in a different context. For example, a parameter
can be exported from a different context (e.g., a parameter evaluated in the context of a
different component) by designating the parameter to have a “same as” relationship to

another parameter.

[055] In some examples, a component in a graph can be implemented using a set of
other components that are themselves interconnected with flows. This set of components
through which a component in a graph is implemented is referred to as a subgraph, and is

a node of the graph.

[056] An analysis to identify differences (sometimes referred to as a differencing
analysis) between a first graph and a second graph (e.g., a first version of a graph and a
second, edited version of the graph) can identify nodes that are present in the first graph
but not in the second graph (referred to as deleted nodes or removed nodes), nodes that

are present in the second graph but not in the first graph (referred to as added nodes), or

11

WO 2018/106589 PCT/US2017/064493

nodes that have been modified. A modified node can be generally similar between the
first graph and the second graph, but with changes to parameters, attributes, or other
features associated with the node, as discussed further below. A differencing analysis can

also identify differences between flows of the first graph and flows of the second graph.

[057] A plan is a visual representation of a process that involves the execution of
multiple graphs. In a plan, the individual graphs are the nodes and are interconnected by
flows indicative of the flow of data among the graphs of the plan. The approaches
described here can be used to graphically represent differences between plans. For
instance, a differencing analysis performed on a first plan and a second plan can identify
nodes (e.g., graphs) that are present in the first plan but not in the second plan, nodes that

are present in the second plan but not in the first plan, or nodes that have been modified.

[058] In some examples, a nested differencing analysis can be performed that identifies
differences between plans, differences between corresponding graphs in the plans,
differences between corresponding subgraphs in the graphs, and/or differences between
corresponding parameter files referenced by nodes in the graphs. A graphical
representation of the results of the nested differencing analysis can indicate the

hierarchical nature of the plans, graphs, and subgraphs and the associated differences.

[059] Although we generally refer to the analysis and graphical representation of the
differences between graphs in the following discussion, the approaches can also generally
apply to the analysis and graphical representation of plans, subgraphs, parameter files,

and/or other files referenced by graphs.

[060] Visualization of differences between graphs can be valuable to a developer during
graph creation or editing. For instance, a developer may use the visualization to reconcile
development that has happened on different branches in a source code control system. A
developer may use the visualization to refresh her memory about recent changes she has
made relative to a version under source code control. A developer may use the
visualization to evaluate someone else’s recent changes to a graph, e.g., to confirm that
they made the changes that were expected and no other changes or to ensure that certain

quality standards have been met. A developer or quality control team may want to

12

WO 2018/106589 PCT/US2017/064493

understand why the behavior of a graph changed between successive versions, e.g., why a
newer version crashes, or runs more slowly, or gives wrong answers, or consumes more
CPU time. A developer may want to edit a graph through a difference visualization, e.g.,

to merge multiple versions into a single version or to undo a change to the graph.

[061] Visualization of differences between graphs can be valuable to a person in a
supervisory role, such as a project manager, who wants to view updates to a graph but

does not necessarily intend to edit the graph himself.

[062] Visualization of differences between graphs can be valuable after a graph is in
production. For instance, a new feature created in by a development team can be unified
with a minor bug fix from a production branch. A quality control team may become
aware that a particular buggy line of code was introduced somewhere in a series of
changes made to a graph, and the visualization can be used to discover which version is

the first version with that code so that affected customers can be notified.

[063] Referring to Figs. 2A and 2B, in an example, graphical representations of two
versions of a graph are shown on a canvas: a representation of a first version 200
(sometimes referred to simply as the first version 200) and a representation of a second
version 202 (sometimes referred to simply as the second version 202). For instance, the
graph can be in its development process and the first version 200 can be an earlier version
of the graph and the second version 202 can be a more recent version of the graph.
Differences between the first and second versions 200, 202 of the graph are displayed
graphically, e.g., by indicators that denote differences between the first and second
versions 200, 202 of the graph. The indicators can be, for instance, colors, shading, fill,
icons, symbols, textual annotations, or other types of indicators. In an example, deleted
nodes (nodes that are present in the first version 200 of the graph but not in the second
version 202 of the graph) are shown in red. Added nodes (nodes that are present in the
second version of the graph 202 but not in the first version of the graph 200) are shown in
green. Modified nodes (nodes that are present in both versions 200, 202 of the graph but

that are not identical) are shown in blue.

13

WO 2018/106589 PCT/US2017/064493

[064] In the example of Figs. 2A and 2B, an output file 204 is a deleted node that is
present in the first version 200 of the graph but not in the second version 202. The output
file 204 is shown on the canvas in red. A filter component 206 and a trash component 208
are added nodes that are present in the second version 202 of the graph but not in the first
version 200. The filter component 206 and the trash component 208 are shown on the
canvas 20 in green. A reformat component 210 is present in both versions 200, 202 of the
graph but with modifications. For instance, an expression or value for a parameter or
attribute of the reformat component 210 may be different between the two versions 200,

202 of the graph. The reformat component 210 is shown on the canvas in blue.

[065] In some examples, the nodes of the first and/or second versions 200, 202 of the
graph can be responsive to user interaction, such as a click, tap, hover, or other
interaction. For instance, a user can hover a pointer over the reformat component 210 to
view additional information about the modifications, such as a list of parameters or
attributes of the reformat component 210 that are different between the first and second
versions 200, 202 of the graph. In some examples, the additional information can be
displayed on the canvas, e.g., near the node or in a blank space of the canvas. In some
examples, a new window or information bubble is opened, e.g., in front of the canvas, to

display the information.

[066] Referring to Fig. 3, in some examples, a graphical representation of differences
between the first and second versions 200, 202 of a graph can take the form of a
hierarchical list in a navigation tree 220. The navigation tree 220 can list the nodes in a
tree structure similar in logical structure to the graphs 200, 202. In some examples, the
navigation tree 220 can list all of the nodes of the graphs 200, 202. In some examples, the
navigation tree 220 can list only those nodes that differ between the versions 200, 202 of

the graph, such as only added nodes, deleted nodes, and modified nodes.

[067] A navigation tree can be used to depict a hierarchical list of differences between
plans. A navigation tree for plans can include a list of nodes (e.g., graphs) in addition to

other aspects of the plans, such as a list of tasks, a list of methods, or other aspects.

14

WO 2018/106589 PCT/US2017/064493

[068] Each of the added, deleted, and modified nodes is represented by an entry in the
hierarchical list of the navigation tree 220. An icon associated with each node on the list
indicates whether the node is an added node, a deleted node, or a modified node, for
instance, by the color, shading, fill, shape, or another characteristic of the icon. In the
example of Fig. 3, the icon for a deleted node is a green square, the icon for an added

node is a green square, and the icon for a modified node is a blue square.

[069] One or more of the entries in the navigation tree 220 can include a sub-entry, for
instance, to provide additional information about the node. For instance, if the node is a
modified node, each feature of the node that is different between the first and second
versions 200, 202 of the graph can be listed in a corresponding sub-entry under the entry
for the modified node. For instance, for the reformat component 210 (a modified
component), a sub-entry can be included in the navigation tree 220 for each feature (e.g.,
parameter or attribute or other feature) that is different between the first and second
versions 200, 202. The sub-entry can include information about the feature, e.g., the type
of the feature (e.g., parameter, attribute, or another type of feature), the name of the
feature, the value of the feature in the first version 200 of the graph, the value of the

feature in the second version 202 of the graph, or other information.

[070] Referring to Fig. 4, in some examples, differences between a modified node (e.g.,
the reformat component 210) in first and second versions 200, 202 of a graph can be
displayed in a table format in a node-level view 250. The node-level view 250 includes
one or more tables that list features of the node, such as the node’s description,

parameters, attributes, layout, ports, or other features.

[071] Inthe example of Fig. 4, a parameters and attributes table lists the parameters and
attributes of a node. The parameters and attributes table can include only those
parameters and attributes having values or expressions that differ between the first
version and the second version of the graph or can include all parameters and attributes of
the node. Each row represents a parameter or attribute and includes the value or
expression for the parameter or attribute in the first version 200 of the graph (referred to
as the “old value”) and/or the value of the parameter or attribute in the second version

202 of the graph (referred to as the “new value”). Values that differ between the first and

15

WO 2018/106589 PCT/US2017/064493

second versions 200, 202 of the graph can be marked with an indicator, such as
highlighting, an icon, or another type of indicator. For instance, in the example of Fig. 4,
the old and new values for the fransform component are highlighted, indicating that these

values differ between the first and second versions 200, 202 of the graph.

[072] The name column of the table in the node-level view 250 displays the name of the
parameter or attribute. In some examples, the name column can include an indicator (e.g.,
an icon, a letter, or another indicator) of whether a name is the name of a parameter or an
attribute. For instance, a parameter name can be marked with a diamond and an attribute

name can be marked with an equal sign. In some examples, the name column can include

an indicator of whether the parameter is an input parameter or a local parameter.

[073] Referring to Fig. 5, in some examples, a parameters and attributes table 260 of a
node-level view can include additional columns, such as a type column, a required
column, an export column, or another column. A type column can display the dml type of
the parameter, if applicable. The type column does not apply to component attributes. For
plans, the type column can display the task type, such as graph, string, choice, or another
task type. A required column can include an indicator that indicates whether the
parameter is required and whether the required status of the parameter has changed
between versions. An export column can include an indicator of whether the parameter is

exported and whether the export status of the parameter has changed between versions.

[074] Referring to Fig. 6, the node-level view can include a ports table 270 that includes
a list of the ports of a node. The list of ports can include only those ports that have
changed between the first and second versions of the graph, or can include all ports. Each
row represents a port and includes the name of the port and the type of difference (e.g.,
addition, deletion, or modification). The type of difference can be depicted by an
indicator. In some examples, a user can interact with the name of a port (e.g., by clicking

or tapping on the name) to access a list or table of the parameters of the port.

[075] Referring to Fig. 7, when characterizing differences between plans, the node-level
view can include a methods table 280 that includes a list of the methods of the plan. The

list of methods can include only those methods that have changed between the first and

16

WO 2018/106589 PCT/US2017/064493

second versions of the plan, or can include all methods. Each row represents a method
and includes the name of the method and the type of difference (e.g., deletion, addition,
or modification). The type of difference can be depicted by an indicator. In some
examples, a user can interact with the name of a method (e.g., by clicking or tapping on

the name) to access a list or table of the parameters of the method.

[076] In some examples, a text differencing view (not shown) can display the code for a
node, e.g., a modified node, with an indication of the differences between the code for the
node in each of the first and second versions of the graph. The differences can be
indicated, e.g., with formatting (e.g., underlining, strikethrough, bold, italics, or other
formatting), highlighting, or other approaches. In some examples, the code for a node in
only one of the versions of the graph is presented, with an indication of the differences
between the presented code and the code for the node in the other version of the graph. In
some examples, the code for the node in both of the versions of the graph is presented,
and each version of the code can have an indication of the differences relative to the other

version of the code.

[077] Each of these various views of the differences between first and second versions
200, 202 of a graph can offer advantages to a user. The graphical display on the canvas
20 of the differences between the first version 200 and the second version 202 of a graph
enables a user to quickly grasp the differences at a high level, and without a large amount
of detail. For instance, the display of the first and second versions 200, 202 on the canvas
enables the user to quickly visualize which nodes have been added or deleted, and which
nodes have been modified. The hierarchical list of the navigation tree 220 enables the
user to focus on individual nodes outside of the context of the rest of the graph. The
node-level view 250 provides the user with access to specific information about changes
to a node, e.g., so that the user can drill down into a detailed understanding of the features

of the node in each version 200, 202 of the graph.

[078] In some examples, graphs can include subgraphs, and the graphical representation
of the differences between two graphs can provide information about differences between
subgraphs referenced by the graphs. Referring to Figs. 8A and 8B, representations of a

first version 900 and a second version 902 of a graph including a subgraph 904 are shown

17

WO 2018/106589 PCT/US2017/064493

on a canvas. Differences between the first and second versions 900, 902 are shown by
indicators. If a difference is present in the subgraph, an indicator on the subgraph can
provide a high-level indication of the difference. In some examples, additional
information, such as a list or description of the differences in the subgraph 904, can be
provided responsive to user interaction with the subgraph 904. In some examples, the
components that form the subgraph 904 can be displayed, with indicators of differences

as appropriate, responsive to user interaction with the subgraph 904.

[079] In the example of Figs. 8A and 8B, an output file 906 has been deleted and a filter
component 908 and a trash component 910 have been added. In addition, a node in the

subgraph 904 has been modified, which is depicted by an indicator on the subgraph 904.

[080] Referring to Fig. 9, a navigation tree 920 can list the added nodes, deleted nodes,
and modified nodes of the first and second versions 900, 902 of the graph. If a node of
the subgraph 904 has been added, deleted, or modified, the subgraph 904 is included in
the list and the node (e.g., a reformat component) is listed in a sub-entry under the entry
for the subgraph 904. If the listed node of the subgraph 904 is a modified node, the sub-
entry for that node (e.g., for the reformat component) can itself have a sub-entry for each
feature (e.g., parameter or attribute or other feature) that is different between the first and

second versions 900, 902 of the graph.

[081] Referring to Fig. 10, in some examples, multiple views can be integrated into a
difference viewer interface 60 (sometimes also referred to as a difference viewer). The
example difference viewer 60 of Fig. 10 includes a canvas 62 showing a graphical
representation of a first version 600 of a graph and a second version 602 of the graph. In
the difference viewer 60 of Fig. 10, the canvas 62 shows the first and second versions
600, 602 of the graph in a side-by-side orientation; in some examples, the canvas can
show the first and second versions 600, 602 in a top and bottom orientation. The canvas
62 can be scalable and slidable to allow a user to focus into a region of interest in the first
or second version 600, 602 of the graph. The difference viewer 60 also includes a
navigation tree 620 and a node-level view 650. In the difference viewer 60, the various
levels of information offered by the various views are all accessible to a user in a single,

compact user interface.

18

WO 2018/106589 PCT/US2017/064493

[082] In the example of Fig. 10, the indicators are icons positioned near the nodes, and
the shape and color of the icon together indicates the type of difference. For instance, a
red “X” indicates a deleted node, a green plus sign indicates an added node, and a yellow
asterisk indicates a modified node. Entries in the navigation tree 620 can be grouped by

the type of change, such as an addition, a deletion, or a modification.

[083] The difference viewer 60 can be interactive. For instance, a user can select a
difference to obtain information about that difference. The information about the
difference can be displayed only in the view in which the user selected the difference or
in one or more additional views, e.g., in all of the views. For instance, when a user
interacts with a node on the canvas (e.g., by clicking on a “Preprocess Old” component
604), sub-entries for that node can be displayed on the navigation tree and a table of the
features of that node can be displayed in the node-level view. The canvas, the navigation
tree, and the node-level view can all be concurrently visible in the difference viewer 600,
enabling a user to gain a thorough understanding of both the high-level differences and

details about the differences for the selected node.

[084] In some examples, the type of interaction the user has with a node controls the
information that is displayed about that node. For instance, a single click on a node can
cause the features (e.g., parameters or attributes) of that node to be displayed in the node-
level view 650. A double click on a subgraph can expand the subgraph in the canvas and
can cause the attributes and parameters of the subgraph to be displayed in the node-level
view 650 and the entry for the subgraph in the navigation tree 620 to be expanded. Other
examples of information displayed responsive to different types of user interaction can

also be provided.

[085] In some examples, the user can step through each difference consecutively to see
information about every difference between the first and second versions 600, 602. In
some examples, the user can choose to have displayed only those differences that can
affect execution of the graph, such as changes to parameter values or the addition or
deletion of a node. In some examples, the user can choose to have all differences
displayed, including both differences that can affect execution of the graph and

differences that do not affect graph execution (e.g., differences to comments and legends,

19

WO 2018/106589 PCT/US2017/064493

changes to attribute values for attributes such as author and version attributes, changes to

x and y coordinates of the placement of nodes, font changes, or other differences).

[086] Referring to Fig. 11, a graph analysis system 80 that analyzes the differences
between a first graph 800 and a second graph 802 includes a graph analyzer engine 804
that analyzes a specification of each graph 800, 802. The graph analyzer engine 804
determines which nodes (e.g., components or datasets) in the first graph 800 correspond
to nodes in the second graph 802. Corresponding nodes are not necessarily identical and
can be modified between the graphs, but are generally similar enough to be regarded as

the same node in both graphs.

[087] In some examples, the graph analyzer engine 804 identifies corresponding nodes
based on metadata associated with the nodes, such as one or more of the type of the node
(e.g., a data processing component versus a dataset, or a specific type of data processing
component or dataset), a name of the node, a unique identifier of the node, or other
metadata associated with the node. In some examples, the graph analyzer engine 804
identifies corresponding nodes based on information associated with data flow into or out
of the nodes, such as the names or number of ports, the names or sources of data flows
into the nodes, the names or destinations of data flows out of the nodes, or other
information associated with data flow into or out of the nodes. In some examples, the
graph analyzer engine 804 identifies corresponding nodes based on topological
information, such as where a particular node is positioned in the graph relative to other
nodes (e.g., which nodes are upstream or downstream of the particular node). In some
examples, the graph analyzer 804 identifies corresponding nodes based on the location
(e.g., x-y coordinates) of the nodes in a graphical representation of the graphs on a
canvas. However, in some examples, the graph analyzer 804 does not use any location
information in identifying corresponding nodes, e.g., because the location of a node on a

canvas has no effect on the functionality of the node or the graph containing the node.

[088] Any node in the first graph 800 for which there is no corresponding node in the
second graph 802 is identified by the graph analyzer engine 804 as a deleted node. Any
node in the second graph 802 for which there is no corresponding node in the first graph

800 is identified by the graph analyzer engine 804 as an added node. Nodes that

20

WO 2018/106589 PCT/US2017/064493

correspond between the first and second graphs 800, 802 are analyzed by the graph
analyzer engine 804 to determine whether the nodes have been modified. A visualization
engine 810 generates data to enable rendering of a graphical representation of the

differences between the first and second graphs 800, 802.

[089] In some examples, the graph analyzer engine 804 can analyze both features that
can affect the execution of a graph and features that do not affect the execution of a
graph. Features that affect the execution of a graph can include, for instance, parameters,
such as parameter expressions or parameter values. Features that do not affect the
execution of a graph can include, for instance, attribute values (e.g., author attributes,
name attributes, version attributes, or other attributes), comments, legends, formats (e.g.,
fonts), the location of a component on a canvas, or other features. In some examples, the
graph analyzer engine 804 can analyze only features that can affect the execution of a

graph and can disregard features that do not affect the execution of the graph.

[090] An analysis of parameters associated with each of two corresponding nodes can
identify whether any parameters were added (for instance, a parameter that is present in a
node of the second graph but not present in the corresponding node of the first graph) or
removed (for instance, a parameter that is present in a node of the first graph but not
present in the corresponding node of the second graph). An analysis of parameters can
include an analysis of expressions defining the parameters, values of the parameters, or

both.

[091] In some examples, an analysis of parameters associated with each of two
corresponding nodes can determine whether the expressions for corresponding
parameters were modified. To analyze the expressions for parameters, the parameter
analysis can be performed on the source code corresponding to each node. In some
examples, the parameter analysis can be performed after the graphs 800, 802 are
instantiated and all parameters are resolved, e.g., after each graph calls any parameter
files references by the specifications of the nodes. When parameter analysis is performed

after graph instantiation, the graph analyzer engine 804 compares parameter values.

21

WO 2018/106589 PCT/US2017/064493

[092] In some examples, the order of the parameters associated with each of two
corresponding nodes can be analyzed by the graph analyzer engine 804; in some
examples, the order of the parameters is disregarded by the graph analyzer engine. In
some examples, expressions or values for parameters that are used only for dependency
analysis can be analyzed by the graph analyzer engine 804; in some examples,

expressions or values for these parameters is disregarded by the graph analyzer engine.

[093] In some examples, the graph analyzer engine 804 can analyze external files
referenced by graphs or plans to identify any differences between the files referenced by
the graphs 800, 802. In some examples, only certain types of files are analyzed by the
graph analyzer engine 804, such as record format files (e.g., .dml files), transform files
(e.g., xfr files), or other types of files the contents of which can affect execution of the
graphs. Other files, such as files providing data for processing by the graphs or plans, are

not considered.

[094] In some examples, the graphs or plans to be analyzed can be upgraded to a
common file format prior to the analysis. For instance, the graphs or plans can be
upgraded to a current file format or to the file format of the most recent of the graphs or
plans. In some examples, graphs or plans can be analyzed in their own original file
formats. Retaining the original file format for the comparison can be useful, e.g., to

identify differences that are caused by or otherwise related to file format changes.

[095] In some examples, the scope of the analysis to be performed by the graph
analyzer engine 804 can be set by default, e.g., the graph analyzer engine 804 can be set
by default to consider only differences that affect graph execution. In some examples, a

user can specify the scope of the analysis to be performed by the graph execution engine.

[096] In some examples, graphical representation of the differences between graphs can
be integrated into a software development platform. A software development platform
can be used, e.g., by a software developer who develops or maintains software, such as
graphs. A developer can make use of graphical representation of differences between a

previous version of a graph and an updated version of a graph to, e.g., remind himself of

22

WO 2018/106589 PCT/US2017/064493

his most recent changes, review another developer’s recent changes, or identify a

potential reason why a modification to a graph was not successful, or for other purposes.

[097] In some examples, graphical representation of the differences between graphs can
be integrated into a software management platform. A software management platform
can be used, e.g., by a manager who oversees the development or maintenance of
software, such as graphs. A manager can make use of graphical representation of
differences between a previous version of a graph and an updated version of a graph to,
e.g., observe software development progress, identify portions of a graph that are in need

of additional development, assist in troubleshooting, or for other purposes.

[098] In some examples, graphical representation of the differences between graphs can
be integrated into an operational control center that facilitates the integrated management
of various components of a processing environment. A control center can monitor and
display the status of components of the processing environment, such as computing
devices, applications, or jobs, and can allow an operator to actively manage the
components of the processing environment. Description of an example control center can
be found in U.S. Application No. 14/690,114, the contents of which are incorporated here

by reference in their entirety.

[099] Referring to Fig. 12, a processing environment 900 includes hardware and
software components that can be operated by or on behalf of a user 902 to process data.
The hardware components can include hardware computing devices 904, such as servers,
which we sometimes call “hosts.” Each of the servers may include one or more data
processors and one or more storages for storing instructions executed by the one or more
data processors. The software components of the processing environment 900 can include
applications 906, jobs 908, or services 910. The software components each executes on,

or has an effect on, one or more of the hosts 904.

[0100] An application 906 is a computer program, such as a software product, that can be
used to carry out various data processing functions, including, e.g., setting up a
framework for data processing, executing a data processing framework, or analyzing

processed data. An application can be a program that is targeted at performing or helping

23

WO 2018/106589 PCT/US2017/064493

a user perform a task in a particular domain, such as word processing. One or more jobs
908 can be executed using one or more of the hosts 904, one or more of the applications
906, or both, of the processing environment 900. A job 908 is a set of one or more

operations that are executed to process data. An example of a job is a graph or planin a

graph-based processing environment.

[0101] In some examples, an application 906 or a job 908 can utilize one or more
services 910. A service 910 is a special case of an application, such as a long-running
application, e.g., an application that is expected to be running as long as a host or server
is running, that is targeted at a specific set of tasks (services) to be performed on behalf of
an application or user., Example tasks that can be performed by a service 910 include,
e.g., logging events or making events visible through a user interface. Example services
910 include, e.g., a database 912, a queue 914, a file 916, an application server 918, or

another type of service.

[0102] An integrated control center 950 monitors the real time status of the hardware and
software components of the processing environment 900. In some examples the control
center 950 can execute on one of the hosts 904; in some examples, the control center 950
executes on a distinct computing device 952. For instance, the control center 950 can
monitor the status of the hosts 904 and applications 906 to which the user 902 has access
and the jobs 908 being executed on behalf of the user 902. Real time status information
954 about the components of the processing environment 900 can be displayed on a user
interface 956. The status information 954 can be displayed in an integrated manner so as
to highlight relationships among individual components of the processing environment
900, such as hosts 904, applications 906, jobs 908, services 910, or other components.
The status information 954 can be displayed so as to display the status of one or more of
the components or relationships among the status of individual components of the
processing environment. Real time status information and historical status metrics and
data processing metrics (e.g., metrics related to numbers of records processed, processing
times, processing durations, or other metrics) can be available through the control center.
Through the user interface 956, the user 902 can take actions related to one or more of the

components of the processing environment or can define actions that are to be carried out

24

WO 2018/106589 PCT/US2017/064493

automatically in response to a predefined occurrence related to one or more of the

components of the processing environment.

[0103] Examples of real time status metrics that can be monitored and displayed for a

host 904 include, for instance:

The operational status of the host — e.g., whether the host is online, online with an
error or warning condition, or offline. In some cases, the control center 950 can
monitor details related to the operational status of the host, such as whether the
host is offline for scheduled maintenance or offline due to a fault (e.g., a disk
failure).

The total central processing unit (CPU) usage of the host.

The total available memory or used memory of the host.

The number of file systems associated with the host.

The total available disk space or used disk space of the file system.

A number of jobs running on the host.

The identity of each of the jobs running on the host.

The CPU usage, memory usage, or both by each of the jobs running on the host.
A number of applications running on the host.

The identity of each of the applications running on the host.

The CPU usage, memory usage, or both by each of the applications running on
the host.

The CPU usage, memory usage, or both for the particular user 902 relative to the
maximum amount of CPU or memory licensed by the user.

The status (e.g., expiration date) of a license key stored on the host and the
identity of the applications associated with that license key.

Parameters of the operating system

The number of CPUs

The CPU class

The CPU speed

[0104] Other real time status metrics can also be monitored. In some examples, the user

902 can define custom status metrics to be monitored by the control center 950.

25

WO 2018/106589 PCT/US2017/064493

[0105] The control center 950 can also maintain information that allows for tracking of
historical status metrics for a host 904. For instance, the control center 950 can maintain
information that allows for tracking of the historical operational status of host, such as the
percentage of time a host 904 has been offline over a given period of time, the number of
error or warning conditions a host 904 has experienced over a given period of time, or
other indicators of historical operational status. The control center 950 can maintain
information that allows for the tracking of an average or total number of jobs 908 run on
the host 904, an average or total number of applications 906 operating on the host 904,
the average or maximum CPU load of the host 904, an average or minimum available
memory of the host 904, or other indicators of historical status of the host 904. While
some of this type of information may be found in one or more log files for a host 904, the
integrated display provided by the control center 950 makes the information more readily
accessible and more easily understood, thus allowing a person with less specific technical

knowledge to access and analyze the historical status metrics for a host 904.

[0106] Examples of real time status metrics that can be monitored and displayed for a
product or service include, for instance:
e The status of the license key for the product or service — e.g., valid, valid but
approaching expiration, or expired.
e The identity of a key server on which the license key for the product or service is
published.
e The identity of the host on which the product or service is operating.
e The number of jobs utilizing the product or service.
e The identity of the jobs utilizing the product or service.
e The location of a configuration file for the product or service.
e The location of a log file for the product or service.
e The identity of any services utilized by the product or service.
o The status of each of the services utilized by the product or service (e.g., online,
online with an error or warning condition, or offline).

e The identity and status of any component related to the product or service.

26

WO 2018/106589 PCT/US2017/064493

[0107] Other real time status metrics can also be monitored. In some examples, the user

902 can define custom status metrics to be monitored by the control center 950.

[0108] Examples of real time status metrics that can be monitored and displayed for a job
908 include, for instance:
e The real time operational status of the job — e.g., whether the job is running,
stopped or paused, waiting to run, or completed.
o The start time, elapsed time (if ongoing), or end time (if completed) of the job.
o Whether the total elapsed time of the job met a target processing time (e.g., a
service level agreement (SLA)) for the job.
e The identity of the host on which the job is running.
e The CPU usage by the job.
e The identity of any products or services utilized by the job.
e The type of data output by the job.
e The location of the data output by the job.
e The number of records processed during execution of the job.
e The number of records rejected during execution of the job.

e The status of each of the services utilized by the job.

[0109] Other real time status metrics can also be monitored. In some examples, the user

902 can define custom status metrics to be monitored by the control center 950.

[0110] The control center 950 can also maintain information that allows for tracking of
historical status metrics for a job 908. For instance, the control center 950 can maintain
information that allows for tracking of the average run time, the average CPU usage, the

average number of records rejected, or other historical metrics for a given type of job.

[0111] Examples of actions that can be taken related to a job include, for instance:
e Start or stop the job.
e Schedule the job.
e Rerun ajob.
e Disable a job so that it will not run.

e Enable a disabled job so that it will run.

27

WO 2018/106589 PCT/US2017/064493

e Putajob on hold.

e Release a job from hold.

e Investigate and resolve issues on a job.

e Ignore a failed job so that jobs with dependencies on it will run anyway.
e View and navigate to any predecessor or successor jobs.

e View and navigate to any previous runs of the job.

e View and navigate to a parent job, or to any child jobs.

e View the queues being used by the job.

e View the files being used by the job.

e View the resources being used by the job.

e View the products and services being used by the job.
[0112] The control center can also enable actions other than those listed above.

[0113] The control center can monitor queues 914 used by jobs. In some
implementations, jobs depend on the data passed between data processing components,

so knowing queue status gives a user insight into the overall performance of the jobs.

[0114] The control center can monitor resources used by jobs. The resources represent
some aspect of the processing environment used by a plan. For example, a hardware
component, measure, or programmatic object can be defined as a resource. CPU time,
processor units, FTP (file transfer protocol) ports, disk capacity, file counts, input
streams, and event triggers, and JVM (Java virtual machine) pools are examples of
resources. The purpose of defining resources is to balance demand and capacity in the
processing environment. Specifically, resources can be used to impose maximum limits

and ordering to the loads placed on the system.

[0115] The user interface 956 displays some or all of the status information monitored by
the control center 950 and allows the user to take actions related to one or more
components of the processing environment 900. In general, status information is
displayed and linked on the user interface 956 in a coherent, integrated manner that
highlights relationships among the various components of the processing environment

900. Rather than displaying information about each individual component of the

28

WO 2018/106589 PCT/US2017/064493

processing environment in a vacuum, this display paradigm makes visible or accessible
insights into the overlap among the components of the processing environment. With this
display paradigm, both the potential contributing factors to a performance issue with a
particular component and the potential effects of a performance issue on other

components can be understood and addressed.

[0116] For instance, with the integrated display of information provided on the user
interface 956 of the control center 950, the user 902 can identify those jobs 908 that will
be affected if a particular host 904 is taken offline for maintenance. Conversely, the user
902 may notice that certain jobs 908 are running more slowly than expected. Through the
user interface 956, the user 902 may be able to determine that these jobs 908 are all
running on the same host 904 and that that host 904 is CPU bound or I/O (input-output)
bound. In both cases, the user 902 can take action to mitigate any potential performance
issues or to resolve actual performance issues. For instance, through the user interface
956 and in response to a notification that a host 904 will be taken offline for scheduled
maintenance, the user 902 can temporarily migrate the affected jobs 908 or the
applications 906 utilized by those jobs 908 or both onto a different host 908. In the
example of the CPU bound or I/O bound host 904, the user may alert a systems

administrator to potential capacity problems with that host 904.

[0117] In some examples, when a job associated with a graph is executed, the operational
control center records the version of the source code of the graph. If a job fails to
complete successfully, the graph associated with that job was executed can be compared
with another version of the graph (e.g., a graph associated with a previous, successfully
completed job). Graphical representation of the differences between the two versions of
the graph can help an operator to easily understand what has changed that may have

caused the job to fail.

[0118] In some examples, a comparison between two versions of a graph can be
performed responsive to user input, such as a request by the user to obtain more
information about a failed job. For instance, a user can access comparison functionality
through the user interface 956 or through an alert or communication indicative of the

failed status of the job.

29

WO 2018/106589 PCT/US2017/064493

[0119] Referring to Fig. 13, in an example of an operational control center interface 350,
a jobs window 352 provides access to details about a job, such as a completed job, a job
that is currently running, or a job that is scheduled to run in the future. From the jobs
window 352, a comparison action 354 enables the version of the graph based on which
the job was executed to be compared to another version of the graph, such as a current
version or a previous version. In the example of Fig. 12, the jobs window 352 provides
details about the most recent job that successfully ran based on a particular graph, and the
comparison action 354 compares that version of the graph to a current version of the
graph. Such a comparison can be useful, e.g., to understand why jobs running based on
the current version of the graph are no longer able to successfully complete. Such a
comparison can also be useful, e.g., to determine whether the graph has been modified

relative to the earlier version.

[0120] Referring to Fig. 14, in an example approach to graphically representing
differences, a specification of a first computer program (e.g., a first graph) and a
specification of a second computer program (e.g., a second graph) are compared (300).
Based on the comparing, one or more differences between the first computer program and
the second computer program are identified (302). The one or more differences can
include a node that is present in the first graph and not in the second graph. The one or
more differences can include a first node in the first graph that corresponds to a second
node in the second graph and that has a feature that differs from a corresponding feature
of the second node, such as a parameter value or parameter expression. A graphical
representation of the identified differences is rendered (304). The graphical

representation is responsive to user interaction.

[0121] Fig. 15 shows an example of a data processing system 1000 in which the
techniques for graphical representation of differences can be used. The system 1000
includes a data source 1002 that may include one or more sources of data such as storage
devices or connections to online data streams, each of which may store or provide data in
any of a variety of formats (e.g., database tables, spreadsheet files, flat text files, or a
native format used by a mainframe computer). The data may be logistical data, analytic

data or machine data. An execution environment 1004 includes a pre-processing module

30

WO 2018/106589 PCT/US2017/064493

1006 and an execution module 1012. The execution environment 1004 may be hosted, for
example, on one or more general-purpose computers under the control of a suitable
operating system, such as a version of the UNIX operating system. For example, the
execution environment 1004 can include a multiple-node parallel computing environment
including a configuration of computer systems using multiple central processing units
(CPUs) or processor cores, either local (e.g., multiprocessor systems such as symmetric
multi-processing (SMP) computers), or locally distributed (e.g., multiple processors
coupled as clusters or massively parallel processing (MPP) systems, or remote, or
remotely distributed (e.g., multiple processors coupled via a local area network (LAN)

and/or wide-area network (WAN)), or any combination thereof.

[0122] Storage devices providing the data source 1002 may be local to the execution
environment 1004, for example, being stored on a storage medium (e.g., hard drive 1008)
connected to a computer hosting the execution environment 1004, or may be remote to
the execution environment 1004, for example, being hosted on a remote system (e.g.,
mainframe computer 1010) in communication with a computer hosting the execution
environment 1004, over a remote connection (e.g., provided by a cloud computing

infrastructure).

[0123] The pre-processing module 1006 reads data from the data source 1002 and
prepares data processing applications for execution. For instance, the pre-processing
module 1006 can compile a data processing application, store and/or load a compiled data
processing application to and/or from a data storage system 1016 accessible to the
execution environment 1004, and perform other tasks to prepare a data processing

application for execution.

[0124] The execution module 1012 executes the data processing application prepared by
the pre-processing module 1006 to process a set of data and generate output data 1014
that results from the processing. The output data 1014 may be stored back in the data
source 1002 or in a data storage system 1016 accessible to the execution environment
1004, or otherwise used. The data storage system 1016 is also accessible to a
development environment 1018 in which a developer 1020 is able to design and edit the

data processing applications to be executed by the execution module 1012. The

31

WO 2018/106589 PCT/US2017/064493

development environment 1018 is, in some implementations, a system for developing
applications as dataflow graphs that include vertices (representing data processing
components or datasets) connected by directed links (representing flows of work
elements, i.e., data) between the vertices. For example, such an environment is described
in more detail in U.S. Patent Publication No. 2007/0011668, titled “Managing Parameters
for Graph-Based Applications,” incorporated herein by reference. A system for executing
such graph-based computations is described in U.S. Patent 5,966,072, titled
“EXECUTING COMPUTATIONS EXPRESSED AS GRAPHS,” the contents of which
are incorporated herein by reference in their entirety. Dataflow graphs made in
accordance with this system provide methods for getting information into and out of
individual processes represented by graph components, for moving information between
the processes, and for defining a running order for the processes. This system includes
algorithms that choose interprocess communication methods from any available methods
(for example, communication paths according to the links of the graph can use TCP/IP or

UNIX domain sockets, or use shared memory to pass data between the processes).

[0125] The pre-processing module 1006 can receive data from a variety of types of
systems that may embody the data source 1002, including different forms of database
systems. The data may be organized as records having values for respective fields (also
called “attributes” or “columns”), including possibly null values. When first reading data
from a data source, the pre-processing module 1006 typically starts with some initial
format information about records in that data source. In some circumstances, the record
structure of the data source may not be known initially and may instead be determined
after analysis of the data source or the data. The initial information about records can
include, for example, the number of bits that represent a distinct value, the order of fields
within a record, and the type of value (e.g., string, signed/unsigned integer) represented

by the bits.

[0126] The approach to graphical representation of differences described above can be
implemented using a computing system executing suitable software. For example, the
software may include procedures in one or more computer programs that execute on one

or more programmed or programmable computing system (which may be of various

32

WO 2018/106589 PCT/US2017/064493

architectures such as distributed, client/server, or grid) each including at least one
processor, at least one data storage system (including volatile and/or non-volatile memory
and/or storage elements), at least one user interface (for receiving input using at least one
input device or port, and for providing output using at least one output device or port).
The software may include one or more modules of a larger program, for example, that
provides services related to the design, configuration, and execution of graphs. The
modules of the program (e.g., elements of a graph) can be implemented as data structures

or other organized data conforming to a data model stored in a data repository.

[0127] The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system where it is executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose hardware, such as coprocessors
or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or downloaded
to a computer-readable storage medium (e.g., solid state memory or media, or magnetic
or optical media) of a storage device accessible by a general or special purpose
programmable computer, for configuring and operating the computer when the storage
device medium is read by the computer to perform the processing described herein. The
inventive system may also be considered to be implemented as a tangible, non-transitory
medium, configured with a computer program, where the medium so configured causes a
computer to operate in a specific and predefined manner to perform one or more of the

processing steps described herein.

[0128] A number of embodiments of the invention have been described. Nevertheless, it
is to be understood that the foregoing description is intended to illustrate and not to limit
the scope of the invention, which is defined by the scope of the following claims.

Accordingly, other embodiments are also within the scope of the following claims. For

33

WO 2018/106589 PCT/US2017/064493

example, various modifications may be made without departing from the scope of the
invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

34

WO 2018/106589 PCT/US2017/064493

What is claimed is:

1. A method for displaying the differences between a first executable dataflow graph
and a second executable dataflow graph, each dataflow graph executable to process data
received by the dataflow graph, each dataflow graph including one or more nodes
representing data processing components and one or more links representing flows of

data between components, the method including:

by a computer, comparing a specification of the first executable dataflow graph
and a specification of the second executable dataflow graph to identify one
or more differences between the first dataflow graph and the second

dataflow graph,

wherein the specification of a given executable dataflow graph defines one
or more nodes each representing a source of data to be processed
by the dataflow graph, one or more nodes each representing a data
processing component defining an operation to be performed to
process the data from the source of data, and one or more nodes
each representing a destination for data processed by the dataflow

graph;

the comparing of the first dataflow graph and the second dataflow graph including

at least one of’

(1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow

graph, and

(2) identifying a first node or link of the first dataflow graph that
corresponds to a second node or link of the second dataflow graph,
and identifying a difference between the first node or link and the

second node or link; and

35

WO 2018/106589 PCT/US2017/064493

formulating a graphical representation of at least some of the nodes or links of the
first dataflow graph or the second dataflow graph, the graphical
representation including a graphical indicator of at least one of (1) the
identified particular node or link (1) the identified difference between the

first node or link and the second node or link; and

displaying the graphical representation in a graph editing interface.

2. The method of claim 1, in which the first dataflow graph is a first version of a
particular dataflow graph and in which the second dataflow graph is a second version of

the particular dataflow graph.

3. The method of claim 1 or 2, in which identifying a difference between the first node or
link and the second node or link includes identifying a difference between a resolved

parameter of the first node or link and a resolved parameter of the second node or link.

4. The method of any of claims 1 to 3, in which identifying a difference between the first
node or link and the second node or link includes identifying a difference between an
expression for a parameter of the first node or link and an expression for a parameter of

the second node or link.

5. The method of any of claims 1 to 4, in which the graphical indicator is a color of the

first, second, or particular node or link in the graphical representation.

6. The method of claim 5, in which the color of the graphical indicator is indicative of a
type of the identified difference between the first node or link and the second node or

link.

7. The method of any of claims 1 to 6, in which the graphical indicator is a shading or fill

of the first, second, or particular node or link in the graphical representation.

36

WO 2018/106589 PCT/US2017/064493

8. The method of any of claims 1 to 7, in which the graphical indicator includes a symbol

positioned near the first, second, or particular node or link.

9. The method of any of claims 1 to 8, in which the graphical indicator is responsive to

user interaction.

10. The method of claim 9, including enabling access to information indicative of the

identified difference responsive to user interaction with the graphical indicator.

11. The method of any of claims 1 to 10, in which the first dataflow graph contains a
first dataflow subgraph and in which the second dataflow graph contains a second

dataflow subgraph, and including:

comparing a specification of the first dataflow subgraph and a specification of the

second dataflow subgraph; and

based on the comparing, identifying one or more differences between the first

dataflow subgraph and the second dataflow subgraph.

12. The method of claim 11, in which the graphical representation includes a graphical
representation of at least a portion of the first dataflow subgraph or at least a portion of
the second dataflow subgraph, the graphical representation including a graphical
indicator of at least one of the identified differences between the first dataflow subgraph

and the second dataflow subgraph.

13. The method of claim 11 or 12, in which the graphical representation includes a
hierarchical representation of at least one of the identified differences between the first
dataflow graph and the second dataflow graph and at least one of the identified

differences between the first dataflow subgraph and the second dataflow subgraph.

37

WO 2018/106589 PCT/US2017/064493

14. The method of any of claims 1 to 13, in which comparing the specification of the
first dataflow graph and the specification of the second dataflow graph includes
comparing a first file referenced by the first dataflow graph and a second file referenced

by the second dataflow graph.

15. The method of claim 14, in which the graphical representation includes a graphical

representation of one or more differences between the first file and the second file.

16. The method of any of claims 1 to 15, in which identifying a first node or link that
corresponds to a second node or link includes identifying the first node based on one or
more of (1) a name of the first node or link and second node or link and (2) an identifier

of the first node or link and second node or link.

17. The method of any of claims 1 to 16, in which identifying a first node or link that
corresponds to a second node or link includes identifying the first node based on

information associated with data flow into or out of the first node and second node.

18. The method of any of claims 1 to 17, in which identifying a first node or link that
corresponds to a second node or link includes identifying the first node or link based on
nodes or links that are upstream or downstream of the first node or link and second node

or link.

19. The method of any of claims 1 to 18, including preparing the first dataflow graph and
the second dataflow graph for execution; and comparing the specifications of the

prepared first and second dataflow graph.

38

WO 2018/106589 PCT/US2017/064493

20. A non-transitory computer readable medium storing instructions for causing a
computer to display the differences between a first executable dataflow graph and a
second executable dataflow graph, each dataflow graph executable to process data
received by the dataflow graph, each dataflow graph including one or more nodes
representing data processing components and one or more links representing flows of

data between components, the instructions causing the computer to:

compare a specification of the first executable dataflow graph and a specification
of the second executable dataflow graph to identify one or more
differences between the first dataflow graph and the second dataflow

graph,

wherein the specification of a given executable dataflow graph defines one
or more nodes each representing a source of data to be processed
by the dataflow graph, one or more nodes each representing a data
processing component defining an operation to be performed to
process the data from the source of data, and one or more nodes
each representing a destination for data processed by the dataflow

graph;

the comparing of the first dataflow graph and the second dataflow graph including

at least one of’

(1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow

graph, and

(2) identifying a first node or link of the first dataflow graph that
corresponds to a second node or link of the second dataflow graph,
and identifying a difference between the first node or link and the

second node or link; and

39

WO 2018/106589 PCT/US2017/064493

formulate a graphical representation of at least some of the nodes or links of the
first dataflow graph or the second dataflow graph, the graphical
representation including a graphical indicator of at least one of (1) the
identified particular node or link (1) the identified difference between the

first node or link and the second node or link; and

display the graphical representation in a graph editing interface.

21. A system for displaying the differences between a first executable dataflow graph
and a second executable dataflow graph, each dataflow graph executable to process data
received by the dataflow graph, each dataflow graph including one or more nodes
representing data processing components and one or more links representing flows of

data between components, the system including:
a processor and memory configured to:

compare a specification of the first executable dataflow graph and a specification
of the second executable dataflow graph to identify one or more
differences between the first dataflow graph and the second dataflow

graph,

wherein the specification of a given executable dataflow graph defines one
or more nodes each representing a source of data to be processed
by the dataflow graph, one or more nodes each representing a data
processing component defining an operation to be performed to
process the data from the source of data, and one or more nodes
each representing a destination for data processed by the dataflow

graph;

the comparing of the first dataflow graph and the second dataflow graph including

at least one of’

(1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow

graph, and

40

WO 2018/106589 PCT/US2017/064493

(2) identifying a first node or link of the first dataflow graph that
corresponds to a second node or link of the second dataflow graph,
and identifying a difference between the first node or link and the

second node or link; and

formulate a graphical representation of at least some of the nodes or links of the
first dataflow graph or the second dataflow graph, the graphical
representation including a graphical indicator of at least one of (1) the
identified particular node or link (1) the identified difference between the

first node or link and the second node or link; and

display the graphical representation in a graph editing interface.

22. A system for displaying the differences between a first executable dataflow graph
and a second executable dataflow graph, each dataflow graph executable to process data
received by the dataflow graph, each dataflow graph including one or more nodes
representing data processing components and one or more links representing flows of

data between components, the system including:

means for comparing a specification of the first executable dataflow graph and a
specification of the second executable dataflow graph to identify one or
more differences between the first dataflow graph and the second dataflow

graph,

wherein the specification of a given executable dataflow graph defines one
or more nodes each representing a source of data to be processed
by the dataflow graph, one or more nodes each representing a data
processing component defining an operation to be performed to
process the data from the source of data, and one or more nodes
each representing a destination for data processed by the dataflow

graph;

the comparing of the first dataflow graph and the second dataflow graph including

at least one of’

41

WO 2018/106589 PCT/US2017/064493

(1) identifying a particular node or link of the first dataflow graph that
does not correspond to any node or link of the second dataflow

graph, and

(2) identifying a first node or link of the first dataflow graph that
corresponds to a second node or link of the second dataflow graph,
and identifying a difference between the first node or link and the

second node or link; and

means for formulating a graphical representation of at least some of the nodes or
links of the first dataflow graph or the second dataflow graph, the
graphical representation including a graphical indicator of at least one of
(1) the identified particular node or link (1) the identified difference

between the first node or link and the second node or link; and

means for displaying the graphical representation in a graph editing interface.

23. A method for displaying the differences between a first version of an executable
dataflow graph and a second version of the executable dataflow graph, the dataflow graph
executable to process data received by the dataflow graph, each version of the dataflow
graph including one or more nodes representing data processing components and one or

more links representing flows of data between components, the method including:

with an integrated control system, monitoring a status of a job that includes one or
more operations that can be executed to process data, the job associated

with the first version of the executable dataflow graph,;
enabling output of information indicative of the status of the job;

responsive to user interaction with the integrated control system or the outputted
information, identifying the second version of the executable dataflow

graph;

42

WO 2018/106589 PCT/US2017/064493

comparing a specification of the first version of the dataflow graph and a
specification of the second version of the dataflow graph to identify one or
more differences between the first version of the dataflow graph and the

second version of the dataflow graph,

wherein the specification of a given executable dataflow graph defines one
or more nodes each representing a source of data to be processed
by the dataflow graph, one or more nodes each representing a data
processing component defining an operation to be performed to
process the data from the source of data, and one or more nodes

each representing a destination for data processed by the dataflow

graph;

the comparing of the first version of the dataflow graph and the second version of

the dataflow graph including at least one of:

(1) identifying a first node or link of the first version of the dataflow graph
that does not correspond to any node or link of the second version

of the dataflow graph,

(2) identifying a second node or link of the second version of the dataflow
graph that does not correspond to any node or link of the first

version of the dataflow graph, and

(1) identifying a third node or link of the first version of the dataflow
graph that corresponds to a fourth node or link of the second
version of the dataflow graph, and identifying a difference between

the third node or link and the fourth node or link,

43

WO 2018/106589 PCT/US2017/064493

formulating a graphical representation of at least some of the nodes or links of the
first version of the dataflow graph or the second version of the dataflow
graph, the graphical representation including a graphical indicator of at
least one of (1) the identified first node or link, (2) the identified second
node or link, and (3) the identified difference between the third node or
link and the fourth node or link.

24. The method of claim 23, in which a previously executed job is associated with the

second version of the dataflow graph.

25. The method of claim 23 or 24, in which the graphical representation includes a

hierarchical representation of one or more of the identified differences.

26. The method of any of claims 23 to 25, including formulating the graphical

representation for display in a user interface of the integrated control system.

27. The method of any of claims 23 to 26, in which identifying a difference between the
first version of the dataflow graph and the second version of the dataflow graph includes
identifying a difference between a resolved parameter of the first version of the dataflow

graph and a resolved parameter of the second version of the dataflow graph.

28. The method of any of claims 23 to 27, in which identifying a difference between the
first version of the dataflow graph and the second version of the dataflow graph includes
identifying a difference between an expression for a parameter of the first version of the
dataflow graph and an expression for a parameter of the second version of the dataflow

graph.

44

WO 2018/106589 PCT/US2017/064493

29. The method of any of claims 23 to 28, in which identifying a difference between the
first version of the dataflow graph and the second version of the dataflow graph includes
identifying a difference between a first file referenced by the first version of the dataflow

graph and a second file referenced by the second version of the dataflow graph.

30. The method of any of claims 23 to 29, in which monitoring the status of the job
includes monitoring one or more of an activity of the job, an actual start time of the job,
an estimated start time of the job, a processing duration associated with the job, and a size

of the job.

31. The method of any of claims 23 to 30, in which monitoring the status of the job

includes determining whether the job was successfully completed.

32. The method of any of claims 23 to 31, including monitoring the status of an

application, in which the job is associated with the application.

33. The method of any of claims 23 to 32, including monitoring the status of a

computing device, in which the application is hosted by the computing device.

45

WO 2018/106589 PCT/US2017/064493
1714

3

18

FIG. 1

102
12 ‘ 14— 16

PCT/US2017/064493

WO 2018/106589

214

80¢

0T¢

¥0¢

X \\A.G\w\v.mm

90¢
20g

B

00¢

WO 2018/106589

314

=

£

220 Z

PCT/US2017/064493

FIG. 3

WO 2018/106589

414

PCT/US2017/064493

FIG. 4

N

260 Z

WO 2018/106589
5/14

FIG. 5

7

270 Z

Cinrorirtats and LxvRoex

PCT/US2017/064493

FIG. 6

R
W
SRR
R 3
h Q)
N N

PaNReS

280 Z

WO 2018/106589 PCT/US2017/064493
6/14

FIG. 7

PCT/US2017/064493

WO 2018/106589

\\\\M\ \ 1 SanjeA peay

WO 2018/106589 PCT/US2017/064493
8/14

Fig. 9

)
R
RN

920 Z

PCT/US2017/064493

WO 2018/106589

9/14

DI

\).\.vu

LALEE FOAIBARENT] x

SHGTAPAYLY PUIY SF3 010 G

PG S

ATIRR D W

Mmoo

\.wﬁwwﬁ :

PCT/US2017/064493

WO 2018/106589

10/14

Ll Ol

wolsAs sisAjeue ydeis

0L8
uoneziensip

08 JozAleuy

c08

Q

"

008

Q

e

PCT/US2017/064493

WO 2018/106589

11/14

¢l 9Old

cS6

096

FEIES)
[0J1U0D

8G6

906

906

o 956
\\\ ﬂ 806 806
906
;| 806 806
906
0L6
8l6
g 016
14%5)
< G

006 uswuolIAUS BuIsSsanold

350 Z

WO 2018/106589

12/14

LI LI 00 2,

Last bog entrys

L it st
T,

PCT/US2017/064493

Grwup by i Spplinaian

Sopbn fusk. e

Exnovntabios

7

»
v R
X3
T
¥ oo¥
8 X
‘i&t
AR
S

fnticsy

Sub sl

%
3

5

Huprage duration

Asdiony;

<
LN
[

FIG. 13

PCT/US2017/064493

WO 2018/106589

13/14

vl Old

palspusal
S| SeoUBJaYIp Paliluspl 8y} Jo uolejussaidal [eoiydels)

palyiuspl ale welboud Jeyndwod puooss sy pue
welboud Jandwod 1s.1) By} Usamiaq Seoualayip 810w Jo suQ

‘pasedwod ale welboid Joyndwod puodss e
JO uonesiyioads e pue welboud Jeindwoo 1s.i e Jo uoljeolyioads

PCT/US2017/064493

WO 2018/106589

14/14

Gl 9Old

voor\\\

_ 5001 o
IINAOW <> v
31NAON ONISSID0Yd
NOILND3X3 —
-34d 8001
—
001
3107
JOVHOLIS Viva ™| INIWNOMIANI A.VW
P INIWAO13AIC '
0Z01

910l

0001

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/064493

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F8/10 GO6F8/34
ADD.

GO6F8/71

GO6F9/448

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 5 974 254 A (HSU RAY [US])
26 October 1999 (1999-10-26)
abstract

columns 5,9-11

24 August 2006 (2006-08-24)
abstract

paragraphs [0157], [0158],

[0159]

1-33

A US 2006/190105 Al (HSU RAY [US] ET AL) 1-33

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

6 April 2018

Date of mailing of the international search report

16/04/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

UhTmann, Nikolay

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/064493
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 5974254 A 26-10-1999 US 5974254 A 26-10-1999
us 6138270 A 24-10-2000
US 2006190105 Al 24-08-2006 EP 1872206 A2 02-01-2008
US 2006190105 Al 24-08-2006
US 2007283322 Al 06-12-2007
US 2010223564 Al 02-09-2010
WO 2006076638 A2 20-07-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - wo-search-report
	Page 62 - wo-search-report

