EP O 179 206 A2

Européisches Patentamt
European Patent Office
Office européen des brevets

- 9

®

@) Application number: 85109480.7

@ Date of filing: 30.07.85

@ Publicstion number:

0 179 208
A2

EUROPEAN PATENT APPLICATION

im.c1: G 06 F 3112

() Priority: 24.10.84 US 664181
@ Date of publication of application:
30.04.86 Bulietin 96/18

@ Designated Contracting States:
DE FR GB T

(@) Applicant: international Business Machines Corporation
Oid Orchard Road

Armonk, N.Y. 10504(US)

@ inventor: Heath, Allen Webster
3409 Schenandosh Drive
Cedar Park Texas{US)

@ Representative: Colas, Alsin

Compagnie 1IBM France Département de Propriété
Industrielle

shell. When a general print command subsection entry is
selected, the printer description data is used in combination
with the text data to calculate a parameter for inserting into

- the general shell thereby producing a2 print command for

placing in the printable deata stream. The printer description
table also uses a unique entry indexing scheme that
minimizes storage requirements for the table.

F-06610 La Gaude(FR)

@ Table driven print formatting.

@ A table driven print formatting system that accepts a text FlG. 2 28 -

data stream {28) including individual test commands and * &

produces a printable data stream including (29) individual TEXT DATA STREAM

print commands. The formatting system uses the text data in :

combination with printer status data to select subsection ["‘T'__L

entries from a printer description table (31). The subsection 27 : 46 [contExT

entries include specific print command subsections each | PRINTER Sy LI CONTROL

having print commands that can be placed immediately into TABLE (POT) SYSTEM BLOCK | 3o
. the printable data stream upon selection. The table aiso T 47 fcce)

includes general print command subsections which each b

have printer description data and a general print command (% UPDATE CONTEXT

[Pmnmumsmsm]

Croydon Printirc: Comnan | s

1
Desc¥iption 0179206

TABLE DRIVEN PRINT FORMATTING

" The present invention relates to computer controlled document
printing.

To date, computer-based word processing systems have been
dedicated primarily to text processing and have had limited,
if any, data processing capabilities. These word processing
systems have been marketed as complete systems typically
including a keyboard, display, processing unit, magnetic media
storage device, document printer, and software. Since these
systems were dedicated machines sold as a total package of
hardware and software, the printer access method (i.e., the
set of programs for translating a text data stream into a
printable data stream) could be relatively simple and did not
need to have the flexibility necessary to allow the processing
unit to print documents on printers other than the printer
with which the processing unit was initially sold.

The modern trend in consumer preference has been away from the
dedicated word processing systems and toward the small,
general purpose business computers capable of both text and
data processing. Since data processing places few special
requirements on a printer, many diverse printers have become
available. In addition, purchasers of these small busineés
computers often purchase the processing unit from one source -
and the printer from another source. While_mixing'product
sources may cause no problems in the field of data processing,
the source mismatch may cause problems when complex text
processing is attempted. For example, complex text processing
may require different line pitch (e.g., 5.3, 6, 8, or 24 lines
per inch with one inch corresponding to 2,54 centimeters),
different 1line spacing (e.g., .5, 1, 1.5, 2, or 3 lines),
different character pitch (e.g., 8.55, 10, 12 characters per
inch, or proportional spacing), and advanced text functions
(e.g., superscript, subscript, underscore, or boldface), and

4

AT 9 84 061

A 0179206

these functions may be required at different times during the
printing of a single text document.

To complicate the problem, there is 1little, if any,
standardization of printer commands for these complex text
functions. Even printers that c¢laim to be replacement or

equivalent printers are often different when performing the
more subtle of these complex functions. re

One known solution to this problem of processing unit/printer
mismatch has been to provide customized print formatting
routines for each printer that is to be supported. For
example, the IBM text processing program Displaywrite 2 has
support for four printers (IBM graphics printer, IBM matrix
printer, IBM 5218 printer, and NEC 3550 printer). With this
customized printer support, the text program sends the correct
print commands to the destination printer to perform the
intended function. This solution has two principal failures.
First, only a limited number of printers can be supported, and
second, even though some printers claim to be replacement or
equivalent printers, printer function of so-called equivalent
printers often varies in response to the same print command.

Another known solution is to provide a simple translation
table that is changeable by the system user. This solution
transforms a text data stream into a printable data stream by
looking in a table for individual print commands corresponding
to individual text commands in the text data stream. The
individual print command entries in the table are changeable
by the user to allow different print commands to be produced
for a given text command depending on the printer supported.
This solution has several limitations including requiring a
fixed amount of storage for the translation table regardless
of the complexity of the supported printer. With this fixed
length table, a given text command always addresses the same
entry in the table. In order for the table to support complex
function printers, the table must be large (e.g., 2k bytes of
memory). IXf a printer does not support the function indicated

AT Q QA wwAT

3
0179206

by the print command represented by the addressed entry, the
entry is set to zero but continues to occupy a position in
storage. This fixed length table is overkill for some simple
function printers, thereby wasting valuable storage space, but
for more complex printers, the fixed table may prove
inadequate. 1In addition, the simple table approach requires a
separate table entry for each anticipated printer function.
For example, in order to support five different print pitches,
the table would require five separate table entries. This
replication also represents wasted storage space.

The present invention solves the aforementioned problems and
avoids the pitfalls of the previous solutions by providing a
generalized print formatter that interprets information from a
user supplied table of printer description data. This table
contains the necessary commands to invoke a set of text
" processing functions within the particular printer. In
addition, the table <contains instructions on. how to
dynamically construct print commands needed. Individual table
entries describe a general print command shell format for a
general printer function. During printable data stream
formatting, the present invention selects a particular print
command shell and then follows rules stored in the table to
calculate necessary parameters for insertion in the shell.
For example, to support five different print pitches, the
present invention requires only one general pitch change print
command shell to be stored in the printer description table.
When the text data stream requests a specific pitch change,
the general pitch change print command shell is selected and a
parameter (or parameters) corresponding to the specific
requested pitch change is calculated and inserted into the
shell to produce a dynamically created print command for the
specific pitch change. Where a particular function is not
defined in the set of possible print commands, the print
formatter tries alternatives that emulate the desired function
by application of several print commands that are defined.

AT 9 84 061

. 0179208
In addition, the printer description table of the present
invention employs a unique entry indexing scheme whereby the
table includes headers that point to the location of
individual table entries. When a table entry is added, an
index is added to the header to facilitate locating the added
entry in the future. If a particular function is not
supported by the printer, for example, bold or underscore, the
header contains a null pointer for the memory address of the
table entry and no print command is stored for these
unsupported functions. Therefore, in direct contrast with the
background art, there need be no print commands stored in the
table if the printer supported by the table does not use those
commands. Thus, the printer description table is of variable
length depending on the complexity of the supported printer.

Using general print command shells with‘paraﬁéters that are
dynamically calculable in combination with an indexed table
greatly reduces the storage requirements of the present data
stream formatting invention while, at the same time, greatly
increasing the flexibility of printable data stream
formatting.

It is therefore a primary object of the invention to provide a
highly flexible printable data stream formatter.

Another object of the invention is to minimize the storage

space required by a printer description table in a printable
data system formatter.

Other objects, features, advantages, and extensions of the
present invention will become evident during the following

detailed description with reference to the drawing.

Fig. 1 is a block diagram of of a hardware system embodying
the present invention.

Fig. 2 is a general flow chart of the operation of a print
formatting system according to the present invention.

-y A A ~ o

L o i 0179206

Fig. 3 is an example of the configuration of the random access
memory of Fig. 1.

Fig. 4 is a control flow chart for performing automatic
underscore according to this invention.

Fig. 5 is a control flow chart for performing a horizontal
move according to this invention.

Fig. 6 is a control flow chart for printing a graphic
character according to this invention.

Fig. 7 is a control flow chart for indexing to a vertical
position according to this invention.

Fig. 8 is a control flow chart for changing vertical 1line
pitch according to this invention.

Fig. 1 is a block diagram of the hardware system in which the
subject invention is preferably embodied. The elements of the
hardware system of Fig. 1 are presented by way of illustration
and not limitation. In the system, the flow of data is
depicted by thin lines, and the flow of control is depicted by
thick lines. A specific example of such a hardware system is
the 1IBM Personal Computer manufactured by International
Business Machines Corporation.)

The hardware system is based on central processing unit 11
which may be any of several commercially available
microprocessors. The system also contains a random access
memory (RAM) 12 for storing information in the form of data as

well as programs for manipulating the data under control of
unit 11.

The programs and data may be loaded into RAM 12 from several
possible sources. For example, an operator could enter this
information via keyboard device 13 through keyboard access
method 14 under control of processing unit 11. In a 1like

V]

AT 9 84 061

® 0179206

manner, information could enter RAM 12 from communications
device 16 connected to communications link 17. Communications
device 16 is interfaced to RAM 12 by communications access
method 18 under control of central processing unit 11. 1In
addition, information in the form of data or programs or both
could be transferred from data diskette device 19 by storage
access method 21 to RAM 12 under control of processor unit 11.

Information may also be output from RAM 12 to several
different devices. For example, information can flow from RAM
12 to data diskette device 19 or to communications device 16
through access methods 21 and 18, respectively. Information
may also be displayed on display device 22 by display access
method 23 under control of processing unit 11. Display device
22 may be, for example, a cathode ray tube or similar
ephemeral image display. Finally, information can be printed
by printer 24 via printer access method 26 after being
formatted by print formatting system 27.

Print formatting system 27 is a set of program code that
accepts a text data stream and which translates the text data
stream into a printable data stream. It should be noted that
the printable data stream can be sent directly to printer 24
or it can be stored on diskette device 19, transmitted over

communications link 17, or even displayed on display device
22.

Although each access method 14, 18, 21, 23, and 26, as well as

formatting system 27, are depicted in Fig. 1 to be external -

to RAM 12, it will be understood by those skilled in the art
that one or more of the access methods or formatting system,
or any combination thereof, may actually reside within RAM 12.
Alternatively, the access methods and formatting system could
reside in non-volatile read only storage (not shown).

Referring to Figs. 2 and 3, the general flow of data through

formatting system 27 is shown. The input to system 27 takes
the form of text data stream 28 which consists of individual

AT 9 84 061

. ivar. vy — 2

s .
.
-

as

7 0179206
text commands representative of, for example, a document.
Text data stream 28, or at least the portion of stream 28 that
is presently being formatted, is typically stored in text
buffer 33 which occupies a portion of RAM 12. The output of
system 27 is a printable data stream 29 which consists of
individual print commands to be sent to a printer to effect
printing the document. Printable data stream 29 may reside in
output buffer 34 which also occupies a portion of RAM 12,

When constructing printable data stream 29 from text data
stream 28, system 27 uses information supplied by printer
description table (PDT) 31 and context control block (CCB) 32.
Both PDT 31 and CCB 32 may occupy portions of RAM 12,

An exemplary configuration for printer description table 31 is
shown in Fig. 3. Table 31 generally includes a table header
36 and several subsections of which there are two types:
specific subsections 37 and general subsections 38. Although
Fig. 3 only shows two specific subsections 37 and one general
subsection 38, it is to be understood that PDT 31 may contain
any number of both types of subsections. Table header 36
contains pointers that specify the memory 1locations of
subsection headers 39 and 41. Specific section headers 39
contain pointers that specify the locations of each one of the

specific print commands 1located within that specific
subsection 37.

In a like manner, general section headers 41 contain pointers
to the memory locations of each of the printer description

data and the corresponding general print command shell bofh-
located within that general subsection. -

The specific print command subsections include, for example,
the print commands for effecting form feed; begin/end bold
printing; begin/end gquality printing mode; begin/end under-
score and so forth. Within each specific print command
subsection 37 are a plurality of specific print commands. For
example, the specific subsection for begin/end bold printing
may contain the three print commands: begin bold, end bold,

s

AT 9 84 061

o v .
02

g 0179206
&nd move fixed horizontal distance. These specific print
commands require no modification and, when accessed by print

formatting system 27, are simply placed directly in printable
data stream 29.

In contrast, the general print command subsections inelude,
for example, print commands for effecting changes in line
pitch or character pitch. The general print commands located
within each of the general subsections are termed "shells"®
because they contain one or more unspecified parameters that
are calculated dynamically and inserted into a shell to
construct a complete print command. The parameter or
parameters to be inserted into a selected shell are calculated
by using the text data stream and the printer description data
stored in the printer description data portion of the general
subsection of PDT 31 corresponding to the selected shell.

For example, to change vertical line pitch, the IBM Personal
Computer Graphics Printer requires a hexadecimal print command
of 1B 33 XX where XX is a parameter determinative of the
number of fundamental vertical steps per index (a fundamental
vertical step being the minimum vertical movement performable
by the printer). The printer description data corresponding
to the general print command shell 1B 33 XX includes: the
length of a fundamental wvertical step (1/216 inch); the
maximum number of fundamental vertical steps possible for a
single index (255); the offset that must be added to or
subtracted from the parameter (0); the format of the parameter
(binary), and the location of the parameter within the shell
{third hexadecimal nibble). This printer description data is
then used in combination with the requested line pitch derived
from the operative text data stream to calculate the parameter
to be inserted into the general print command shell to form a
print command. Details of the coding for a specific example
are given below.

Here it should be noted that for a different general print
command shell, different printer description data may be

.-
»

‘9 0179206
required. In other words, the printer description data may
vary from one general subsection to another.)

Printer description table 31 is constructed by the system
operator when the operator is initially setting up the system.
The support documentation for the system printer will
typically describe the individual print commands required by
the printer to execute given functions. During system set up,
the operator £fills PDT 31 with specific print commands,
general print commands, and the printer description data
corresponding to each of the general print commands. As table
31 is being built, headers 36, 39, and 41 keep track of the
memory locations of the individual entries. If a printer does
not support a particular subsection or print command, the
appropriate table header will contain a null memory pointer
for that print command and no space is allocated for that
subsection or print command. For example, if a particular
subsection does not exist at all, table header 36 would
contain a null memory pointer for the non-existent subsection.
However, if a subsection exists but a particular print command
within that subsection does not exist, table header 36 would
contain a memory pointer to the subsection header (e.g., 39),
and the subsection header would contain a null memory pointer
for the non-existent print command. By this means, a
completed printer description table is of an optimum size for
the supported printer.

If a printer does not recognize a particular print command, or
if the printer may misinterpret a particular print command in
a given context, the table allows several alternatives to
force the printer to perform the desired function.

For example, if a printer does not recognize the print command
for "begin automatic underscore”, the underscore subsection of
PDT 31 would reflect an emulation of underscoring. One
possible emulation of underscore would be to print the entire
line, perform a carriage return without a line index, and then

AT 9 R4 0A1

10 0179206
reprint the line using underscore characters at the desired
positions with space characters elsewhere.

An example of a printer that may misinterpret a particular.

print command is found in printers using bi-directional logic
seeking heads having software ‘control that ignores white
spaces in an attempt to reduce print head movement and thereby
improve printing speed. An - example is the IBM Personal
Computer Graphics Printer. Many of these printers ignore
white space even if that space is to be underscored. For
these printers, the underscore subsection of PDT 31 would
contain information. to alert formatting system 27 that, if
text data stream 28 requests the printing of a space, and if
underscore is active, a modified set of print commands must be
sent to the printer to force the printer to underscore the
space. In other words, the processing of a space character
. depends on context (i.e., whether underscore is active or
inactive). It should be noted that print functions other than
space may also be context dependent.

If the system uses another printer, the operator merely
constructs a second printer description table using
information suppliéd. by the support documentation for that
printer.

After a specific printer description table is set up, and
during subsequent printable data stream formatting, print
formatting system 27 addresses PDT 31 as is shown
schematically by segment anchor 42, Segment anchor 42 locates
the appropriate table subsection by using the memory pointers
in PDT header 36. For example, if segment anchor 42 is in
search of a given general print command shell, PDT header 36
would direct segment anchor 42 to general subsection header 41
and thence to the requested printer description data 43 and
the requested general print command shell 44. The selected
information would then be transferred back to print formatting
system 27 for further processing.

AT 9 84 051

A

- whvnr

ol 0179206
When formatting a printable data stream 29 from a text data
stream 28, print formatting system 27 also uses information
supplied by context control block 32. CCB 32 contains printer
status information including, but not limited to, the present
relative position between the printhead and the print media,
the presence or absence of a sheet within the printer, and the
condition of various flags including whether underscore,
superscript, subscript, or boldface print are active or
inactive. Also, CCB 32 contains emulation flags to indicate
emulation should take place in the case of unrecognized print
commands, or CCB 32 context flags that indicate that spaces
should be conditioned differently in a specific context (e.q.,
underscore active). When determining which print command to
select from PDT 31, formatting system 27 considers the current
context stored in context control block 32 via line 46 as well
as the next text commands appearing in text data stream 28.
An example of this interaction is detailed below. During or
after the completion of a particular task, print formatting
system 27 may update the condition of context control block 32
via line 47. For example, if print formatting system 27
concatenates an “eject sheet" print command onto printable
data stream 29, system 27 would update context control block

32 to indicate that there is no sheet present within the
printer.

In order to Dbetter illustrate the operation of print
formatting system 27, Figs. 4-8 deal with specific examples.
Figs. 4 and 5 present flow diagrams demonstrating the
operation of print formatting system 27 to underscore text -
according to the present invention. 1In Fig. 4, the text data
stream contains an express command for “begin underscore”, and
in Fig. 5, the underscore subsection of the printer
description table is addressed in addition to the "horizontal

move" subsection even though the text command only requests
"horizontal move".

Referring to Fig. 4, control begins at node A where operation
block 51 decodes a text command from text data stream 28.

AT 9 84 061

" 0179206
12 ' '
Control is then transferred to decision block 55 to decide if
"begin underscore" is requested. If the answer is "no",
control is transferred to other decision blocks (not detailed)
for command interpretation. If block 55 decides that "begin
underscore” has been requested, control is transferred to
operation block 52. Block 52 addresses the appropriate
subsection for the "underscore" print command in PDT 31 and
the result is reviewed by decision block 53. If PDT 31‘
indicates that the supported printer cannot perform underscore
in response to a single print command, in other words, if the
appropriate table header returned a null, control is
transferred to decision block .54 where it is decided, by
viewing CCB 32, if it is the proper time to emulate an
underscore. If the decision of block 54 is negative, control
is transferred back to node A to process the next individual
text command. If the decision of block 54 is positive,
control is transferred to operation block 56 where CCB 32 is
updated with underscore emulation rules, and then control is
transferred to node A to process the next text command.

If decision block 53 decides that the printer can perform an
automatic underscore, control is transferred to decision block
57 which uses information from CCB 32 to decide if the time is
right to issue a "begin underscore" print command. If the
answer is "no" (e.g., if the printhead is not properly
positioned), then control is transferred back to node A to
process the next text command. If block 57 decides that it is
the proper time to issue a "begin underscore®” print command,
control is transferred to operation block 58 where the
specific print command for "begin underscore®™ (accessed
earlier by block 52) is transferred from PDT 31 to printable
data stream 29. Control is then transferred to operation
block 59 where two operations occur. First, PDT 31 is
addressed for context rules concerning specific underscore
operation (for example, underscoring spaces) and the appropri-
ate context flags are set in CCB 32. In addition, operation
block 59 updates CCB 32 to indicate that automatic underscore
is now active. When block 59 completes its operation, control

. [X 2 X s

»

13 0179206

is“transferred back to node A for processing the next text
command.

Although Fig. 4 illustrates that a printer can be commanded to
begin underscoring in response to a "begin underscore" text
command, it should be noted that, according to the present
invention, a print command for "“begin underscore” can be
issued in response to other text commands. For example, Fig.
5 demonstrates how a "begin underscore" print command can be

issued in response to a "horizontal move" text command.

Referring to Fig. 5, and again starting at node A as in Fig.
4, the next text command from text data stream 28 is decoded
by block 51, recognized as a "horizontal move"” command by
block 60, and block 52 addresses PDT 31 for the print command
*horizontal move."

Control is then transferred to operation block 61 which views
information stored in CCB 32 to compute the distance to be
moved in horizontal spaces. Control is then transferred to
decision block 62 which addresses CCB 32 to see if printer
underscore is active. If underscore is not active, control is
transferred to other context dependent decision blocks (not
shown) to sense if other printer functions are active, and
eventually to operation block 63 where PDT 31 is addressed.
Since underscore was not active according to block 62, a blank
space print command is inserted into the printable data stream
29 and control returns to node A.

If decision block 62 decides that the printer underscore is
active, control is transferred to decision block 64 where CCB
32 is addressed to decide if wunderscore is emulated. The
emulation flag in CCB 32 may have been set, for example, by
block 56 (Fig. 4). If the decision is "yes", control is
transferred to operation block 66 where the emulation rules
are activated. Control is then transferred to block 63 where
PDT 31 is addressed and, this time, the emulation rules are

AT 9 84 061

b 0179206

used to plaée the appropriate’ print commands in print data
stream 29.

If decision block 64 determines that underscore is not
emulated, control is transferred to operation block 67 where
the underscore subsection of PDT 31 is addressed to determine
the print command for underscore. In addition, CCB 32 is
addressed for context rules to assure the underscoring of
spaces. Control is then transferred to operation block 68
where the underscore command is inserted into printable data
stream 29 along with print commands for underscoring spaces
and control is then transferred to node A for processing the
next text command appearing in the text data stream.

Figs. 6-8 illustrate an example of the flow of control of
print formatting system 27 during the printing of a simple
graphic character (e.g., “Cc"), including the dynamic
calculation of parameters and insertion of parameters into
general print command shells.

Beginning at node A, the next text command in text data stream
28 is decoded by operational block 51 and block 65 determines
if a character is requested. Control is then transferred to
decision block 71.

Decision block 71 interrogates CCB 32 to determine if the
printer is in the image state indicating that the printer is
ready to print a character, or whether the printer is in the
non-image state indicating that certain mechanical functions

must be performed before the printer is able to print a
character.

If the printer is in the image state, control is transferred
to decision block 72 which again interrogates CCB 32 to
determine 1if the printhead is in the proper horizontal
position. If the answer is "yes" control is transferred to
operation block 73 where PDT 31 is addressed to select the
proper print command for printing the requested graphic

AT 9 84 061

T Fety
.

. +
L

45 0179206
character. The selected print command is then transferred to

printable data stream 29 and control is transferred back to
node A to receive the next text command.

On the other hand, if decision block 72 decides that the print
head is not at the proper horizontal position, control is
transferred to operation block 74 which addresses both CCB 32
and PDT 31 to form the proper print command or sequence of
print commands for insertion into printable data stream 29 to
cause the printer to move the printhead to the proper
horizontal position. Here it should be noted that the
operation of block 74 may require the selection of specific
print commands from PDT 31 as well as the dynamic creation of
print commands from general print command shells also selected
from PDT 31. In this regard, block 74 controlling horizontal
spacing operates similar to block 79 (detailed below), which
controls vertical index. Due to these similarities, only
block 79 is detailed with the understanding that it is within
the ability of a skilled artisan to modify the operation of
index block 79 to perform a the horizontal space function of
block 74.

Returning now to the flow of control if decision block 71
decides that the printer is not in the image state, control is
transferred to decision block 76 where CCB 32 is addressed to
determine if the printer should be at the top of a form. 1If
the decision is "yes"™, control is transferred to operation
block 77 which addresses PDT 31 and which performs top of form
processing including, for example, ejecting the present page,
and feeding a new page. Block 77 concatenates the proper

print commands onto data stream 29 to perform this top of form
processing.)

If block 76 decides that the printer is not at the top of a
form, control is transferred to decision block 78 which
addresses CCB 32 to decide if the printhead is in the proper
vertical position. If block 78 decides "yes", control is
transferred to block 72 and processing continues as detailed
above. If block 78 decides that the printhead is not in the

AT 9 84 061

16 0179206

proper vertical position, control is transferred to block 79
to perform vertical indexing.

The details of the operation of block 79 appear in Fig. 7.
Referring to Fig. 7, beginning at node B, control is
transferred to decision block 81 where CCB 32 is addressed to
decide if a "change line pitch" print command should be sent
to the printer. For example, if present line pitch is 12
lines per inch and the new line pitch is 6 lines per inch, it
may be better to simply issue two "index"™ print commands into
the printable data stream rather than to change the present
line pitch by issuing a "change line pitch" print command to
change line spacing from 12 to 6 lines per inch followed by
issuing an "index" print command. Decision block B8l may also
decide that a "change line pitch" should not be sent if the
appropriate header in PDT 31 returns a null memory pointer

indicating that a change to the requested line pitch is not
possible.

If block 81 decides that a "change line pitch" print command
should be sen%, control is transferred to operation block 82
where vertical line pitch is changed. The operation of block
82 is detailed in Fig. 8. Referring to Fig. 8, control begins
at node D and is transferred to block 83 where the vertical
line pitch subsection of PDT 31 is addressed. Control is then
transferred to decision block 84 to decide if the print
command needed to change to the requested vertical line pitch
is determined by a specific print command or by a general
print command shell. If a specific print command determines
the print command needed to change to requested vertical line
pitch, control is transferred to operation block 86 which
outputs the specific print command for the requested vertical
line pitch into printable data stream 29. Control is then
transferred to node E and out of block 82 in Fig. 7.

If decision block 84 decides that a general print command
shell is to be used to determine the print command needed to

AT 9 B4 06l

b 0179206

" change to the requested vertical 1line pitch, control is
transferred to operation block 87.

Operation block 87 prepares the selected general print command
shell to receive the parameter or parameters to be calculated.
For example, the selected shell is copied into a memory
buffer. Control is then transferred to operation block 88.
Operation block 88 calculates the value of the parameter N
using the length, in inches, of a new line (e.g., 1/6 inch for
six lines per inch) supplied by the present requested value V
as provided by a combination of text commands, multiplied by
the size of the fundamental step in inches X/Y. Fundamental
step X/Y is a printer description datum stored in PDT 31.
Control is then transferred to operation block 89.

Operation block 89 increases or decreases the calculated
parameter by any offsets required. In this regard, it is
understood that subtracting an offset is eguivalent .to adding
a negative offset and vice versa. Control is then transferred
to decision block 91 where it is determined whether parameter
N is greater than the specified maximum value for the parame~-
ter. If the answer is "yes" control is transferred to block
92 for error processing (not detailed). The offset and

maximum value are also printer description data stored in PDT
31.

If decision block 91 decides that calculated parameter N is
less than the specified maximum value, control is transferred
to block 93 where the location of the parameter within the -
generél sequence shell is computed. Parameter location is
also stored in PDT 31. ' i |

Control is then transferred to decision block 94 where PDT 31
is addressed to determine if the printer expects parameter N
to be in binary format. Heretofore, all calculations have
been performed in binary format, therefore, parameter N is
presently binary. If block 94 decides "yes"™ control is
transferred to operation block 96 which loads binary parameter

AT 9 84 061

18

¥ into the selected general print command shelloajxg g&paﬁion
block 97 outputs that shell, which is now a dynamically
created print command for changing vertical line pitch, into
printable data stream 29. If decision block 94 decides that
the printer requires a format other than binary, control is
transferred to operation block 98 where parameter N is
converted into the proper format (e.g., ascii, hexadecimal,
decimal, etc.). It should be noted that calculations can be
performed wusing another internal format (e,g., packed
decimal). If another internal format is used, the functions
of decision block 94 and operation block 98 would be changed
accordingly. After block 98 converts N to the proper format,
control is then transferred to blocks 96 and 97 for loading
the parameter in the shell and for outputting the loaded shell
into printable data stream 29. After block 97 inserts the
dynamically created print command into printable data stream
29, control is transferred to node E which places control at
the output of block 82 in Fig. 7.

Referring again to Fig. 7, after block 82 releases control,
control is transferred to decision block 98 which asks if the
difference between the requested vertical position and present
vertical position is greater than a single index step. If the
answer is "yes", control is transferred to operation block 99
which addresses PDT 31 and then issues a specific "index"
print command into printable data stream 29.

If decision block 98 decides that the requested vertical
position is less than a single vertical index step, control is
transferred to decision block 101 where it is determined if
fine adjustment of vertical position is needed or if the
appropriate printer description table header returned a null
memory pointer indicating that fine adjustment is impossible.
If fine adjustment is not needed or not possible, control is
transferred to node C which places control at the output of
block 79 in Fig. 6. Thereafter, control is transferred to

decision block 72 in Fig. 6, and control continues as detailed
earlier.

AT 9 84 06l

.
L
.

Fi7i19 0179206
If decision block 101 determines that £fine adjustment of
vertical position is required, control is transferred to
operation block 102 which again performs the change vertical
pitch function detailed earlier with respect to Fig. 8. This
may include generating a dynamically created print command to
change line pitch and placing that command in printable data
stream 29 as detailed above. Control is then transferred to
operation block 103 which issues an index print command into
data stream 29. Control is then transferred to node C of Fig.
7 which again places this at the output of block 79 in Fig. 6.

After block 79 of Fig. 6 adjusts the proper vertical position,
and after block 72 determines that the proper horizontal
position has been achieved, control is transferred to block 73
which addresses PDT 31 for the print command to print the
originally requested graphic character which is then placed in
printable data stream 29, Control is then transferred to node

A which addresses the text data stream for the next +text
command. ’

The foregoing description with regard to Figs. 6-8 illustrates
the fact that the present formatting system invention performs
many complex functions, and addresses PDT 31 and CCB 32 many
different times during the processing of a text command
requesting the printing of a simple graphic character,

AT 9 84 061

20
ﬂADB» @1792063

A printable data stream formatter for producing printable
data (29) comprising print commands from text data (28)
comprising text commands characterized én that it
includes :

means (44) for storing at least one general print command
shell;

means for calculating at least one parameter for
insertion into said at least one shell; and

means for inserting said at least one parameter into said
at least one shell to produce a print command.

A printable data stream formatter as recited in claim 1
wherein said means for —calculating calculates one
parameter N according to the equation:

N =V x X/Y
where:
V is a length supplied by said text data, and
X/Y is the length of a fundamental step performable

by a printer controllable by said printable data
stream.

A printable data stream formatter as recited in claim 2
wherein said print command controls the vertical line
pitch of a printer controllable by said printable data
stream.

A printable data stream formatter as recited in claim 2
wherein said print command controls the horizontal

AT 9 84 061

5.

21 0179206

character pitch ©f a printer controllable by said
printable data stream.

A printable data stream formatter as recited in claim 3
or 4 wherein said means for calculating adds an offset to
said parameter N.

A printable data stream formatter as recited in claim 5
wherein said means for calculating performs all
calculations in binary format.

A printable data stream formatter for producing printable
data (29) comprising print commands from text data (28)

comprising text commands characterized in that it
includes :

first means (43) for storing printer description data;

second means (44) for storing at least one general print
command shell;

third means (32) for storing printer status data;

means (27), connected to said second and third means, for
selecting one of said at least one general print command

shells in response to said text commands and said printer
status data;

means (27), connected to said first and second means, for -
calculating at least one parameter from said printer
description data and text data; and

means (27), connected to said means for calculating, for
inserting said at least one parameter into the selected
print command shell to produce a dynamically created
print command.

AT 9 84 061

revr = ¢ * v L XN Y
+ . * . . .
* . L] L3 » . L
.

.
.
-

-

B) 01 79206

8. A printable data stream formatter as recited in claim 7
further including means, connected to said means for
inserting, for placing said dynamically created print
command in said printable data stream.

9. A printable data stream formatter as recited in claim 8
further including: .

fourth means for storing at least one specifié print
command;

means, connected to said third and fourth means, for
selecting one of said at least one specific print command

in response to said text data and said printer status
data; and

means, connected to said means for selecting said
specific command, for placing said specific print command
in said printable data stream.

10. A printable data stream formatter as recited in claim 9
wherein said first, second, third, and fourth means for
storing are in random access memory.

11. 2 printable data stream formatter for producing printable

"data comprising print commands from text data comprising
text commands characterized in that it includes :

a storage table comprising:
at least one general print command subsection, and
at least one specific print command subsection;

means for storing printer status data; and

means, connected to said table and to said means for

storing, for selecting one of said print command

23 179208
subsections in r@sponse to said text data and said
printer status data.

12 . A printable data stream formatter as recited in claim 11
wherein said at 1least one general print command
subsection includes a general print command shell, and
printer description data.

13. A printable data stream formatter as recited in claim 12
further including:

means, connected to said means for selecting, for
calculating a parameter for insertion into said general
print command shell when said means for selecting selects
a general print command subsection.

14. A printable data stream formatter as recited in claim 13
wherein said means for calculating calculates said
parameter using said text data and using said printer

description data from the selected general print command
subsection.

15. A printable data stream formatter as recited in claim 14
wherein said storage table further comprises:

a subsection header, included in each said print command
subsection, having memory pointers to individual print
commands included in each print command subsection; and

a table header having memory pointers to each subsection
header.

16. A printable data stream formatter as recited in claim 15
wherein said table header includes null memory pointers

for print command subsections not included in said table,
and

AT 9 84 061

3 L] L N at LA EXY ..
s ¢ . L] . * -

*® & & A L4 * r - rae

t €
e

v

"

wherein each subsection header includes null memory
pointers for print commands not included in the corre-
sponding print command subsection.

17. A method of formatting a printable data stream comprising
print commands from a text data stream comprising text
commands, characterized in that it includes the steps of:

proving a storage table comprising at least one specific
print command subsection and at least one general print
command subsection, each specific subsection including at
least one print command and each general subsection
including printer description data and a general print

command shell;

providing printer status data;

selecting one of said print command subsections in
response to said text data and said printer status data;

if the selected subsection is a specific subsection:

selecting one of said at 1least one print commands
included in said selected subsection, and

placing the selected print command in the printable data
stream; and

if the selected subsection is a general subsection: -
calculating a parameter using said text data and using
said printer description data included in said selected
general subsection,

inserting said parameter into said general print command

shell included in said selected general subsection to
produce a dynamically created print command, and

am N~ a6a NC£C

Do $179206
25

placing said dynamically created print command in said
printable data stream.

AT 9 84 061

09792086

FlG. /.
pl 23 -
CENTRAL DISPLAY ;
PROCESSING [——1——">| Access ..
ONIT | METHOD DEVICE
AN
J 26
L, 24 N
ey | PRINT PRINTER
FORMATTING ACCESS PRINTER
RANDOM} A SYSTEM METHOD
ACCESS -
MEMORY |~ || 27
)
s ' —>{ STORAGE DAA 19
METHOD ACCESS jp=——= DISKETTE
LA] METHOD DEVICE
13
KEYBOARD
DEVICE
1 \/ ~
COMMUNICATIONS
ACCESS - 18
METHOD
16
I [
COMMUNICATIONS | 17

DEVICE

0179208

F1G. 2. /28 2}
TEXT DATA STREAM
CURRENT CONTEXT
‘ 27 14 g
PRINTER N PRINT CONTEXT
DESCRIPTION |———=s= FORMATTING CONTROL
TABLE (PDT) SYSTEM ?(l-:-ggr - 32
5 & 7

(29

UPDATE CONTEXT

PRINTABLE DATA STREAM

FIG. 3.

PRINTER DESCRIPTION
36 N TABLE 3|')

42

a2 ,
>/— PDT HEADER r—[—-
i 37
39~ SPECIFIC HEADER SPECIFIC PRINT
p— > COMMAND SUBSECTION
f -
30| SPECIFIC HEADER 37
SPECIFIC COMMAND 4l
GENERAL HEADER [
PRINTER DESCRIPTION | | GENERAL PRINT
DATA 43 {COMMAND SUBSECTION
GENERAL COMMAND 38
SHELL 44
-——_—/——_‘

——— 7T

32

ccB

/33

TEXT BUFFER

OUTPUT BUFFER

RAM 12

FlG. 4.
51
) 28
DECODE {
TEST |=— TEXT DATA STREAM
COMMAND e
55
ONDERSCORE>Nwd OTHER PROCESSING |
?
YES
POT
ADDRESS 3
52~ PROPER POT
SUBSECTION

3ﬂ01 79206

CAN
PRINTER
DO UNDER-
SCORE ? ISSUE_ UNDER-
SCORE COM-~
TIME T0 © “Nqo
EMULATE ? UPDATE CCB
WITH EMULATION -
RULES 47
56

32

PDT
3
OUTPUT |
SPECITIC | [PRINTABLE
comMmManp [_DATA
STREAM
59) 3| ¢ 29
UF&DATE PDT
CB
B}~ 35
a7

e
—
et —

- FIG. 5, (79208
o |
T | e
TEXT DATA STREAM
COMMAND

HORIZONTAL
MOVE ?

OTHER PROCESSING]—-—@

POT

3l

52 ~4 ADDRESS PROPER
PDT SUBSECTION L } HORIZONTAL MOVE
— ,
COMPUTE DESTINATION
DISTANCE
62
IS
UNDER- »
SCORE A _
' 304 Ol
OTHER [%PD:TI
CONTEXT | SCOREEMU- Tves 1
DEPENDENT {° :
TESTS : USE UNDERSCORE DETERMINE PRINT | 67
. EMULATION RULES | | COMMAND TO CAUSE
: ; SPACE" TO BE
| 66 UNDERSCORED
o
3 63__L §
OUTPUT PRINTABLE| { OUTPUT PRINTABLE
PDOT PRINT F—= DATA PRINT = DATA
COMMAND STREAM COMMAND STREAM
N\ 29

®

F16. 6.

51
“\{ DECODE TEXT

©

0179206

50%

r28

COMMAND s—— TEXT DATA STREAM|

GRAPHIC

CHARACTER 2 65

71

OTHER PROCESSING |——-®

PRINTER
IN IMAGE 3
STATE ? PDT]
| [29
TOP OF FORM | | PRINTABLE
PROCESSING DATA STREAM
/79
HEAD AT COR- °
RECT VERTICAL | &=+ ® (2°
POSITION ? 3 | INDEX PRINTABLE
(FIG.7) | | DATA STREAM
CCB ©
32
32
29
3| " L
%Pzé&T CELRRECT ol SPACE PRINTABLE
HORIZONTA * | DATA STREAM
FRANSCATION >
TR r 73 2
POT /3! £
AN A - R e
(1 |_PRINT commanD DATA STREAM

L

L

F16. 7

6//31 79206

SHOULD CHANGE VERTICAL PITCH
BE SENT TO PRINTER?

YES
3
29
"o CHANGE — 82
‘ PRINTABLE
VERTICAL PITCH ,
E@a - (FIG. 8) DATA STREAM
|
997 5
FDT 29
OUTPUT INDEX] /
PRINT | PRINTABLE
COMMAND [™1DATA STREAM
32
IS DESTINATION YES
MORE THAN ONE
INDEX AWAY ?
31
10l YES
102
FINE ADJUSTMENT TO ({
VERTICAL POSITION NO o) 29
NEEDED ? 3| (
@_— CHANGE PRINTABLE
VERI',%LB';'TCH — | DATA STREAM
OUTPUT INDEX PRINTABLE
PRINT COMMAND DATA STREAM

84
SPECIFIC PRINT
- Comianio)w)a&\

83
3

FIG. 8

ADDRESS PDT
VERTICAL PITCH
SUBSECTION

%

3l

POT

|

OUTPUT
SPECIFIC
PRINT
COMMAND

Lo

GENERAL PRINT
COMMAND SHELL

COMMAND
- 87

0179206

} VERTICAL PITCH

29, I PrerarE
SHELL FOR |
Dz%NST.,f‘%EM PARAMETERS
88\ COMPUTE PARAMETER
IN OUTPUT UNITS
N=Y x X/Y
- i pOT_/ 3!
89 OFFSET
N=N* OFFSET
ol
YES «“'N > MAX
?
93\ NO
ERROR ,
PROCESSING LOCATION OF N?
o8
! 04 ¢
N NO CONVERT
BINARY N 70
YES PROPER
%6 . FORMAT
\| LOAD N
IN SHELL SR
o7
Y owrNOU CALLY (29
AMI PRINTABLE
CREAED [LoamA STREAM
COMMAND

J

	bibliography
	description
	claims
	drawings

