
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0223453 A1

US 2010O223453A1

WALMSLEY (43) Pub. Date: Sep. 2, 2010

(54) INTEGRATED CIRCUIT FORVALIDATING Publication Classification
AND DECRYPTING SOFTWARE DATA

(51) Int. Cl.
(75) Inventor: Simon Robert WALMSLEY, G06F 2L/22 (2006.01)

Balmain (AU) G06F 9/24 (2006.01)

Correspondence Address: (52) U.S. Cl. ... 713/2; 713/190
SILVER BROOK RESEARCH PTY LTD
393 DARLING STREET

BALMAIN 2041 (AU) (57) ABSTRACT

(73) Assignee: Silverbrook Research Pty Ltd An integrated circuit is provided. The IC runs a boot program
that Verifies programs before the programs can be loaded

(21) Appl. No.: 12/778,966 onto, or run by, the IC by verifying whether the programs are
signed with a boot key, Verifies, with the boot program, a

(22) Filed: May 12, 2010 developmental boot program signed with the boot key which
O O verifies developmental programs before the developmental

Related U.S. Application Data programs can be loaded onto, or run by, the IC by Verifying
(60) Continuation of application No. 10/754,536, filed on whether the IC has a predetermined identifier, and loads the

Jan. 12, 2004, which is a division of application No. verified developmental boot program and run the loaded
10/727,251, filed on Dec. 2, 2003, now Pat. No. 7,188, developmental booth program thereby enabling loading or
282. running of the developmental programs on the IC if the IC has

the predetermined identifier. The IC is programmed with
(30) Foreign Application Priority Data program code configured to receive encrypted Software data,

decrypt the software data, and validate the software data. The
Dec. 2, 2002 (AU) 20O2953134 decrypted software is executed only when the validation is
Dec. 2, 2002 (AU) 2002953135 Successful.

SOPEC boot rom
(includes boot0key public key)

validation via bootOkey

dataset1: operating system
(includes ComCo public key)

validation via ComCo key

dataset2: operating parms
(includes OEM public key)

validation via OEM key

dataset4: OEM program code

US 2010/0223453 A1 Sep. 2, 2010 Sheet 1 of 25 Patent Application Publication

Patent Application Publication Sep. 2, 2010 Sheet 2 of 25 US 2010/0223453 A1

;DRAM sub-system
CPU sub-system

PRAM: Print Engine Pipeline
bus...: sub-system

Master

Slave

- - - - - - - - - - - - - Bus

CPU
Subsystem

S

KH DWU

Motor Control, LLU
LSS, ISI,
LED, etc.

PH

Master Bi-lithic

PEP Configuration Bus Printhead

US 2010/0223453 A1 Sep. 2, 2010 Sheet 3 of 25 Patent Application Publication

0000 0000X0 0000 TL 000X0 0000 Z000X0 000O Z000X0 0000 000f7X0 HHHH HHHHX0

Patent Application Publication

AHB Controller

AHB Interface

LEON CPU
and Caches

Sep. 2, 2010 Sheet 4 of 25

MMU

Realtime
Debug
Unit

E
4 E

FIG. 4

US 2010/0223453 A1

cpu adr21:2)
Cpu dataout 31:0
dramcpu data255:0)
Cpu diurred
diu Cpu rack
diu cpu rvalid
Cpu diu WCatavalid
diu Cpu write ray
Cpu diu wadr21:4
Cpu diu Wodata12 Eb
cpu diu wrmask15:0)
Cpu acode 1:0
Cpu Wn

EEE COr COU EEGaia :0
Cpu gpio Sel
gpio Cpurdy
gpio.cpu data(31:0)
Cpu icu sel
icu Cpurdy
iCu Cpu data 31:0 gpUSS Sel
iss Cpurdy
S.E.5 (31 :O SEES5) pcu.cpu data 31:0
SEESSES sep Cpurdy
Scb Cou data31:0
Cpu tim Sel
tim Cpurdy
tim cou data.31:0
Cpu rom Sel röm cpurdy
rom Cpu data(31:0
Cpu pSS Sel pSS Cpurdy
pSS cpu data.31:0
Cpudiu Sel
diu Cpurdy
diu Cpu data.31:0
diu Cpu berr
pss cpuberr
rom Cpuberr
tim cpu berr
SCb Cpu berr
pCU Cpu berr
|ss cpu berr
icu cpu berr gpio cpuberr
Cpr cpu berr
diu Cpu debug valid
tim cpu debug valid
scb cpu debug valid
Cu Cpu debug Valid
SS Cpu debug valid
icu Cpu debug valid
gpio cpu debug valid
Cpr Cpu debug valid
debug data out31:0
debug data valid
debug cntr32:0

prst in
pc|k
icu Cpu ilevel3:0
Cpu jack
Cpu icu level3:0

Patent Application Publication Sep. 2, 2010 Sheet 5 of 25 US 2010/0223453 A1

pClk

Cpu rWn

cpu acode 1:0%Supwr Data User Data% Supwr Data

Cpu adr21:2)

lss. Cpu berr

cpu dataout|31:0% LSS data Ž

Cpu pCu Sel

pCu Cpu berr — —

pCu Cpurdy

pcu. Cpu data(31:0% 0x0000 0000

FIG 5

US 2010/0223453 A1 Sep. 2, 2010 Sheet 6 of 25

319|duIOO ssopowy peºYI

Patent Application Publication

US 2010/0223453 A1 Sep. 2, 2010 Sheet 7 of 25 Patent Application Publication

0000T0000X0 0000T|000X0 0000 TZ000X0 000OTZOOOXO HHHHTHHHHX0

Patent Application Publication Sep. 2, 2010 Sheet 8 of 25 US 2010/0223453 A1

haddr31:0-->
hwdata.310 |
hrdata31:OKH

hSel-T-
hWrite--

htrans1:0H
hsize2:0-|->
hburst(2,0)-H
hprot3.0)-->

hmaster3:O-->
hmasterlock-i-

hready--
hresp1:0

hsplit 15:04H

debug data Out

H dram Cpu SE.58 > Cpudiu Wata
-H). Cpudurred —->cpudiu wreq
-Hcpudiu Waatavalid

diu Cpurack
diu Cpurvalid

Hity rdy HDCpudiu wadi(21:4
HCpudiu Wmask(15:0)
K -icu Cpuilevel3.0) >Cpuiack
HCpuicuilevel3:0

LEON cpurwn
AHB |->Cpu dataOut(31:0
Bridge H->Cpuadr(21:2)

H-placier :O
Cpu Cpr Sel
Cpudiu Sel
Cpugpio Sel
Cpurcu Sel
Cpuss Sel
CpUpCU Sel
Cpu Scb Sel
Cputim sel
Cpurom Sel

--> Cpu diu Sel

MMU
Control
Block CPU

Subsystem
BUS
Interface

debug datavalid
debug Cntrk

Cpr Cpu data31:0
diucpu data.310
gpio cpU data(31.
iCu Cpu data31:
SS Cpu data30
pCU (pu data31.
SCb Cpu data.310
tim Cpu data E.
rom ?pu data: pSS Cpu dataS1:0

22>>, >, >, >, >, >, > e e-le- ecca SSSassassa Eeeeeee
------ 39 CD Old C) a dos
2 ro, lococco, 33333 - ''''''''' coCCCCCses, 555 2 Ela'R''o' 29,555,55 a .5 - S.E. C. 89 i8-29 SB 2 agg's

O9 ?5 4.S. Sco

FI G. 3

US 2010/0223453 A1 Sep. 2, 2010 Sheet 9 of 25 Patent Application Publication

u?TsSeOOeTuuelp

US 2010/0223453 A1 Sep. 2, 2010 Sheet 10 of 25 Patent Application Publication

0

US 2010/0223453 A1

(OOuOO

Patent Application Publication

WOAC
peeJeues)

OOuOO Ad
peeleues)

XOOJCueMS Aq
peeleues)

Patent Application Publication Sep. 2, 2010 Sheet 12 of 25 US 2010/0223453 A1

SOPEC boot rom
(includes bootOkey public key)

validation via bootOkey

dataset1: operating system
(includes ComCo public key)

validation via ComCo key

dataSet2: Operating parms
(includes OEM public key)

validation via OEM key

dataset4: OEM program code

FIG, 12

US 2010/0223453 A1 Sep. 2, 2010 Sheet 13 of 25 Patent Application Publication

– Z – – Z –

XOOJCue/NIS AC
peleueues)

OOWO WC
peleueues)

US 2010/0223453 A1 Sep. 2, 2010 Sheet 14 of 25 Patent Application Publication

LESER-H JO?eÐ ES\/>HE OL

?OJnOS ??{E LUOpue}}

|- – – – – – – – – – – – –) |€90] [TOS || || |u?eup
L– – – – – – – – – – – – –]

US 2010/0223453 A1 Sep. 2, 2010 Sheet 16 of 25 Patent Application Publication

US 2010/0223453 A1 Sep. 2, 2010 Sheet 18 of 25 Patent Application Publication

SOWuz SOWdz ?uÐJuno

SOWU SOWd

Patent Application Publication Sep. 2, 2010 Sheet 19 of 25 US 2010/0223453 A1

-

CPUInBVte USed
CPUOutEVteWE
LOCaldWE OCald

Central 8, CPUIOData 1
Processing In ByteValid IO / pSDa

Unit OutByteValid Unit k -SCIk
In Byte
OMOde 2

MIUAvail|| ||
f na s >

5 S E || A A
s (D 2 9 cus (5 s
g || 5 || 5a r a Z s 8 s P2

a P s b P Frg, 12 CC
| O n 58 2- 132 P

O 2s

C
1/FuseBlow

Memory Interface PMInBytellsed
CO Unit PMOutByteW

Ba PVOData
PwrFailing

L to all
Sc (s blogks

O C. E. ny - 5
a & R Y () (s H O
Sas? 8 (2 3 < 2 d is 5i, 3.

13.M7 M32 M9 8
32 Analogue Unit y 's GND

O Memory
l; Components

-

US 2010/0223453 A1 Sep. 2, 2010 Sheet 20 of 25 Patent Application Publication

ºz. Í

US 2010/0223453 A1 Sep. 2, 2010 Sheet 21 of 25 Patent Application Publication

US 2010/0223453 A1 Sep. 2, 2010 Sheet 22 of 25

(HS) ??q |

Patent Application Publication

US 2010/0223453 A1 Sep. 2, 2010 Sheet 23 of 25 Patent Application Publication

8 cNN
9

?pOWISS000\/
| |

US 2010/0223453 A1 Sep. 2, 2010 Sheet 24 of 25 Patent Application Publication

SUBJ LWAÐNING

US 2010/0223453 A1 Sep. 2, 2010 Sheet 25 of 25 Patent Application Publication

US 2010/0223453 A1

INTEGRATED CIRCUIT FORVALIDATING
AND DECRYPTING SOFTWARE DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a Continuation of U.S.
application Ser. No. 10/754,536 filed Jan. 12, 2004, which is
a divisional of U.S. application Ser. No. 10/727.251 filed on
Dec. 2, 2003, now issued as U.S. Pat. No. 7,188,282, all of
which are herein incorporated by reference.

FIELD OF INVENTION

0002 The present invention relates to securing an inte
grated circuit against certain forms of security attacks.
0003. The invention has primarily been developed for use
in authentication chips used in a printer system to authenti
cate communications between, for example, a printer control
ler and other peripheral devices such as ink cartridges. How
ever, it will be appreciated that the invention can be applied to
integrated circuits in other fields in which analogous prob
lems are faced.

BACKGROUND OF INVENTION

0004. Manufacturing a printhead that has relatively high
resolution and print-speed raises a number of problems.
0005 Difficulties in manufacturing pagewidth printheads
of any substantial size arise due to the relatively small dimen
sions of standard silicon wafers that are used in printhead (or
printhead module) manufacture. For example, if it is desired
to make an 8 inch wide pagewidth printhead, only one Such
printhead can be laid out on a standard 8-inch wafer, since
Such wafers are circular in plan. Manufacturing a pagewidth
printhead from two or more Smaller modules can reduce this
limitation to some extent, but raises other problems related to
providing a joint between adjacent printhead modules that is
precise enough to avoid visible artefacts (which would typi
cally take the form of noticeable lines) when the printhead is
used. The problem is exacerbated in relatively high-resolu
tion applications because of the tight tolerances dictated by
the Small spacing between noZZles.
0006. The quality of a joint region between adjacent print
head modules relies on factors including a precision with
which the abutting ends of each module can be manufactured,
the accuracy with which they can be aligned when assembled
into a single printhead, and other more practical factors such
as management of ink channels behind the nozzles. It will be
appreciated that the difficulties include relative vertical dis
placement of the printhead modules with respect to each
other.
0007 Whilst some of these issues may be dealt with by
careful design and manufacture, the level of precision
required renders it relatively expensive to manufacture print
heads within the required tolerances.
0008. It would be desirable to provide a solution to one or
more of the problems associated with precision manufacture
and assembly of multiple printhead modules to form a print
head, and especially a pagewidth printhead.
0009. In some cases, it is desirable to produce a number of
different printhead module types or lengths on a Substrate to
maximise usage of the Substrate's Surface area. However,
different sizes and types of modules will have different num
bers and layouts of print nozzles, potentially including dif
ferent horizontal and vertical offsets. Where two or more

Sep. 2, 2010

modules are to be joined to form a single printhead, there is
also the problem of dealing with different seam shapes
between abutting ends of joined modules, which again may
incorporate vertical or horizontal offsets between the mod
ules. Printhead controllers are usually dedicated application
specific integrated circuits (ASICs) designed for specific use
with a single type of printhead module, that is used by itself
rather than with other modules. It would be desirable to
provide a way in which different lengths and types of print
head modules could be accounted for using a single printer
controller.

0010 Printer controllers face other difficulties when two
or more printhead modules are involved, especially if it is
desired to send dot data to each of the printheads directly
(rather than via a single printhead connected to the control
ler). One concern is that data delivered to different length
controllers at the same rate will cause the shorter of the
modules to be ready for printing before any longer modules.
Where there is little difference involved, the issue may not be
of importance, but for large length differences, the result is
that the bandwidth of a shared memory from which the dot
data is supplied to the modules is effectively left idle once one
of the modules is full and the remaining module or modules is
still being filled. It would be desirable to provide a way of
improving memory bandwidth usage in a system comprising
a plurality of printhead modules of uneven length.
0011. In any printing system that includes multiple
nozzles on a printhead or printhead module, there is the
possibility of one or more of the nozzles failing in the field, or
being inoperative due to manufacturing defect. Given the
relatively large size of a typical printhead module, it would be
desirable to provide some form of compensation for one or
more “dead nozzles. Where the printhead also outputs fixa
tive on a per-nozzle basis, it is also desirable that the fixative
is provided in Such a way that dead nozzles are compensated
for.

0012 A printer controller can take the form of an inte
grated circuit, comprising a processor and one or more
peripheral hardware units for implementing specific data
manipulation functions. A number of these units and the
processor may need access to a common resource Such as
memory. One way of arbitrating between multiple access
requests for a common resource is timeslot arbitration, in
which access to the resource is guaranteed to a particular
requestor during a predetermined timeslot.
0013. One difficulty with this arrangement lies in the fact
that not all access requests make the same demands on the
resource in terms of timing and latency. For example, a
memory read requires that data be fetched from memory,
which may take a number of cycles, whereas a memory write
can commence immediately. Timeslot arbitration does not
take into account these differences, which may result in
accesses being performed in a less efficient manner than
might otherwise be the case. It would be desirable to provide
a timeslot arbitration scheme that improved this efficiency as
compared with prior art timeslot arbitration schemes.
0014. Also of concern when allocating resources in a
timeslot arbitration scheme is the fact that the priority of an
access request may not be the same for all units. For example,
it would be desirable to provide a timeslot arbitration scheme
in which one requestor (typically the memory) is granted
special priority Such that its requests are dealt with earlier
than would be the case in the absence of such priority.

US 2010/0223453 A1

0015. In systems that use a memory and cache, a cache
miss (in which an attempt to load data or an instruction from
a cache fails) results in a memory access followed by a cache
update. It is often desirable when updating the cache in this
way to update data other than that which was actually missed.
A typical example would be a cache miss for a byte resulting
in an entire word or line of the cache associated with that byte
being updated. However, this can have the effect of tying up
bandwidth between the memory (or a memory manager) and
the processor where the bandwidth is such that several cycles
are required to transfer the entire word or line to the cache. It
would be desirable to provide a mechanism for updating a
cache that improved cache update speed and/or efficiency.
0016. Most integrated circuits an externally provided sig
nal as (or to generate) a clock, often provided from a dedi
cated clock generation circuit. This is often due to the diffi
culties of providing an onboard clock that can operate at a
speed that is predictable. Manufacturing tolerances of Such
on-board clock generation circuitry can result in clock rates
that vary by a factor of two, and operating temperatures can
increase this margin by an additional factor of two. In some
cases, the particular rate at which the clock operates is not of
particular concern. However, where the integrated circuit will
be writing to an internal circuit that is sensitive to the time
over which a signal is provided, it may be undesirable to have
the signal be applied for too long or short a time. For example,
flash memory is sensitive to being written too for too long a
period. It would be desirable to provide a mechanism for
adjusting a rate of an on-chip system clock to take into
account the impact of manufacturing variations on clock
speed.
0017. One form of attacking a secure chip is to induce
(usually by increasing) a clock speed that takes the logic
outside its rated operating frequency. One way of doing this is
to reduce the temperature of the integrated circuit, which can
cause the clock to race. Above a certain frequency, some logic
will start malfunctioning. In some cases, the malfunction can
be such that information on the chip that would otherwise be
secure may become available to an external connection. It
would be desirable to protect an integrated circuit from such
attacks.

0018. In an integrated circuit comprising non-volatile
memory, a power failure can result in unintentional behav
iour. For example, if an address or data becomes unreliable
due to falling voltage supplied to the circuit but there is still
Sufficient power to cause a write, incorrect data can be writ
ten. Even worse, the data (incorrector not) could be written to
the wrong memory. The problem is exacerbated with multi
word writes. It would be desirable to provide a mechanism for
reducing or preventing spurious writes when power to an
integrated circuit is failing.
0019. In an integrated circuit, it is often desirable to reduce
unauthorised access to the contents of memory. This is par
ticularly the case where the memory includes a key or some
other form of security information that allows the integrated
circuit to communicate with another entity (such as another
integrated circuit, for example) in a secure manner. It would
be particularly advantageous to prevent attacks involving
direct probing of memory addresses by physically investigat
ing the chip (as distinct from electronic or logical attacks via
manipulation of signals and power Supplied to the integrated
circuit).

Sep. 2, 2010

0020. It is also desirable to provide an environment where
the manufacturer of the integrated circuit (or Some other
authorised entity) can verify or authorize code to be run on an
integrated circuit.
0021. Another desideratum would be the ability of two or
more entities, such as integrated circuits, to communicate
with each other in a secure manner. It would also be desirable
to provide a mechanism for secure communication between a
first entity and a second entity, where the two entities, whilst
capable of some form of secure communication, are notable
to establish Such communication between themselves.
0022. In a system that uses resources (such as a printer,
which uses inks) it may be desirable to monitor and update a
record related to resource usage. Authenticating ink quality
can be a major issue, since the attributes of inks used by a
given printhead can be quite specific. Use of incorrect ink can
result in anything from misfiring or poor performance to
damage or destruction of the printhead. It would therefore be
desirable to provide a system that enables authentication of
the correct ink being used, as well as providing various Sup
port systems secure enabling refilling of ink cartridges.
0023. In a system that prevents unauthorized programs
from being loaded onto or run on an integrated circuit, it can
be laborious to allow developers of software to access the
circuits during software development. Enabling access to
integrated circuits of a particular type requires authenticating
software with a relatively high-level key. Distributing the key
for use by developers is inherently unsafe, since a single leak
of the key outside the organization could endanger security of
all chips that use a related key to authorize programs. Having
a small number of people with high-security clearance avail
able to authenticate programs for testing can be inconvenient,
particularly in the case where frequent incremental changes
in programs during development require testing. It would be
desirable to provide a mechanism for allowing access to one
or more integrated circuits without risking the security of
other integrated circuits in a series of such integrated circuits.
0024. In symmetric key security, a message, denoted by
M, is plaintext. The process of transforming Minto ciphertext
C, where the substance of M is hidden, is called encryption.
The process of transforming C back into M is called decryp
tion. Referring to the encryption function as E. and the
decryption function as D, we have the following identities:

A symmetric encryption algorithm is one where:
0025 the encryption function E relies on key K,
0026 the decryption function D relies on key K,
0027 K, can be derived from K, and
0028 K can be derived from K.
0029. In most symmetric algorithms, K equals K. How
ever, even if K does not equal K, given that one key can be
derived from the other, a single key K can suffice for the
mathematical definition. Thus:

EMFC

DCFM

0030 The security of these algorithms rests very much in
the key K. Knowledge of K allows anyone to encrypt or

US 2010/0223453 A1

decrypt. Consequently K must remain a secret for the dura
tion of the value of M. For example, M may be a wartime
message “My current position is grid position 123-456”.
Once the war is over the value of M is greatly reduced, and if
Kis made public, the knowledge of the combat unit's position
may be of no relevance whatsoever. The security of the par
ticular symmetric algorithm is a function of two things: the
strength of the algorithm and the length of the key. An asym
metric encryption algorithm is one where:
0031 the encryption function E relies on key K,
0032 the decryption function D relies on key K.
0033 K cannot be derived from K in a reasonable
amount of time, and
0034 K cannot be derived from K in a reasonable
amount of time.

Thus:

0035

0036. These algorithms are also called public-key because
one key K can be made public. Thus anyone can encrypt a
message (using K) but only the person with the correspond
ing decryption key (K2) can decrypt and thus read the mes
sage. In most cases, the following identity also holds:

EMC

0037. This identity is very important because it implies
that anyone with the public key K can see M and know that
it came from the owner of K. No-one else could have gen
erated C because to do so would imply knowledge of K. This
gives rise to a different application, unrelated to encryption—
digital signatures.
0038 A number of public key cryptographic algorithms

exist. Most are impractical to implement, and many generate
a very large C for a given M or require enormous keys. Still
others, while secure, are far too slow to be practical for several
years. Because of this, many public key systems are
hybrid—a public key mechanism is used to transmit a sym
metric session key, and then the session key is used for the
actual messages.
0039 All of the algorithms have a problem in terms of key
selection. A random number is simply not secure enough. The
two large primes p and q must be chosen carefully—there are
certain weak combinations that can be factored more easily
(some of the weak keys can be tested for). But nonetheless,
key selection is not a simple matter of randomly selecting
1024 bits for example. Consequently the key selection pro
cess must also be secure.
0040 Symmetric and asymmetric schemes both suffer
from a difficulty in allowing establishment of multiple rela
tionships between one entity and a two or more others, with
out the need to provide multiple sets of keys. For example, if
a main entity wants to establish secure communications with
two or more additional entities, it will need to maintain a
different key for each of the additional entities. For practical
reasons, it is desirable to avoid generating and storing large
numbers of keys. To reduce key numbers, two or more of the
entities may use the same key to communicate with the main
entity. However, this means that the main entity cannot be
sure which of the entities it is communicating with. Similarly,

Sep. 2, 2010

messages from the main entity to one of the entities can be
decrypted by any of the other entities with the same key. It
would be desirable ifa mechanism could be provided to allow
secure communication between a main entity and one or more
other entities that overcomes at least some of the shortcom
ings of prior art.
0041. In a system where a first entity is capable of secure
communication of some form, it may be desirable to establish
a relationship with another entity without providing the other
entity with any information related the first entity's security
features. Typically, the security features might include a key
or a cryptographic function. It would be desirable to provide
a mechanism for enabling secure communications between a
first and second entity when they do not share the requisite
secret function, key or other relationship to enable them to
establish trust.
0042. A number of other aspects, features, preferences and
embodiments are disclosed in the Detailed Description of the
Preferred Embodiment below.

SUMMARY OF THE INVENTION

0043. In accordance with a first aspect of the invention,
there is provided a printer controller comprising an integrated
circuit incorporating a processor and memory, the memory
storing a set of data representing program code and/or an
operating value for printer control, wherein each bit of the
data is stored as a bit/inverse-bit pair in corresponding pairs of
physically adjacent bit cells in the memory.
0044 Preferably, the printer controller further includes a
memory management unit configured to receive a request for
the set of data and to test, during processing of the request,
whether the respective pairs of physically adjacent bit-cells
that correspond to the set of data contain bit/inverse-bit pairs,
thereby to confirm the validity of the set of data as stored in
the memory. More preferably, the memory management unit
is configured to store sets of data as sets of bit/inverse-bit pairs
in the memory.
0045 Preferably, the printer controller is selectively oper
able in either of first and second modes, wherein in the first
mode, the memory management unit is configured to receive
and process a request for the set of data, and to test, during
processing of the request, whether the respective pairs of
physically adjacent bit-cells corresponding to the set of data
contain bit/inverse-bit pairs, thereby to confirm the validity of
the set of data as Stored in the memory, and in the second
mode, the memory management unit is configured to receive
and process a request for data stored in the memory, without
testing whether pairs of physically adjacent bit-cells contain
bit/inverse-bit pairs.
0046 More preferably in the first mode, the memory man
agement unit is configured to store a set of data associated
with a memory write request as a corresponding set of bit/
inverse-bit pairs, each of the bit/inverse-bit pairs being physi
cally adjacent each other, and in the second mode, the
memory management unit is configured to store a set of data
associated with a memory write request as the set of data
without corresponding inverse-bits.
0047 Preferably, the printer controller is configured to
boot into the first mode by default. Preferably, the printer
controller is configured to implement a defensive action in the
event the test fails. More preferably, the defensive action
includes resetting the integrated circuit.
0048. In an alternative embodiment, the defensive reac
tion includes returning second data other than that the Subject

US 2010/0223453 A1

of the test. Preferably, the second data is a string of identical
digits. Preferably, the defensive reaction is different depend
ing upon whether the set of data represents program code or
an operating value. More preferably, in the event the test fails
and the set of data is an operating value, the integrated circuit
is configured to replace the failed value with a substitute
value. More preferably, the substitute value is selected to
disrupt a program running on the integrated circuit.
0049 Preferably, the substitute causes at least some cir
cuitry on the integrated circuit to reset. In a preferred embodi
ment, in the event the test fails, the integrated circuit is per
manently prevented from running software. Preferably, in the
event the test fails, the integrated circuit is configured to
delete from the memory some or all of the bit values associ
ated with the set of data. More preferably, in the event the test
fails, the integrated circuit is configured to delete some or all
of the contents of the memory.

BRIEF DESCRIPTION OF THE DRAWINGS

0050. Preferred and other embodiments of the invention
will now be described, by way of example only, with refer
ence to the accompanying drawings, in which:
0051 FIG. 1 is an example of a single printer controller
(hereinafter “SoPEC) A4 simplex printer system
0052 FIG. 2 shows a SoPEC system top level partition
0053 FIG. 3 shows a SoPEC CPU memory map (not to
scale)
0054 FIG. 4 is a block diagram of CPU
0055 FIG. 5 shows CPU bus transactions
0056 FIG. 6 shows a state machine for a CPU subsystem
slave
0057 FIG. 7 shows a SoPEC CPU memory map (not to
scale)
0058 FIG. 8 shows an external signal view of a memory
management unit (hereinafter “MMU) sub-block partition
0059 FIG. 9 shows an internal signal view of an MMU
sub-block partition
0060 FIG. 10 shows a DRAM write buffer
0061 FIG. 11 shows relationship between datasets
0062 FIG. 12 shows a validation hierarchy
0063 FIG. 13 shows development of operating system
code
0064 FIG. 14 shows tamper detection line
0065 FIG. 15 shows an oversize nMOS transistor layout
of Tamper Detection Line
0066 FIG. 16 shows a Tamper Detection Line
0067 FIG. 17 shows how Tamper Detection Lines cover
the Noise Generator
0068 FIG. 18 shows a prior art FET Implementation of
CMOS inverter
0069 FIG. 19 shows a high level block diagram of QAIC
0070 FIG. 20 shows an analogue unit
0071 FIG. 21 shows a serial bus protocol for trimming
0072 FIG.22 shows a block diagram of a trim unit
0073 FIG. 23 shows a block diagram of a CPU of the QA
IC
0074 FIG. 24 shows block diagram of an MIU
0075 FIG. 25 shows a block diagram of memory compo
nents

DETAILED DESCRIPTION OF EMBODIMENTS

0076. The preferred of the present invention is imple
mented in a printer using microelectromechanical systems

Sep. 2, 2010

(MEMS) printheads. The printer can receive data from, for
example, a personal computer such as an IBM compatible PC
or Apple computer. In other embodiments, the printer can
receive data directly from, for example, a digital still or video
camera. The particular choice of communication link is not
important, and can be based, for example, on USB, Firewire,
Bluetooth or any other wireless or hardwired communica
tions protocol.
(0077. The printer incorporates a printercontroller (SoPEC
or Small office home office Print Engine Controller) having
an ASIC (Application Specific Integrated Circuit). The
SoPECASIC is intended to be a low cost solution for bi-lithic
printhead control, replacing the multichip Solutions in larger
more professional systems with a single chip. The increased
cost competitiveness is achieved by integrating several sys
tems such as a modified PEC 1 printing pipeline, CPU control
system, peripherals and memory Sub-system onto one SoC
ASIC, reducing component count and simplifying board
design.
0078. The following terms are used throughout this speci
fication:
0079 Bi-lithic printhead refers to printhead constructed
from 2 printhead ICs;

0080 CPU refers to CPU core, caching system and
memory management unit (MMU);

I0081 ISI-Bridge chip a device with a high speed interface
(such as USB2.0, Ethernet or IEEE1394) and one or more
ISI interfaces. The ISI-Bridge would be the ISIMaster for
each of the ISI buses it interfaces to:

I0082 ISIMaster the ISIMaster is the only device allowed
to initiate communication on the Inter Sopec Interface (ISI)
bus. The ISIMaster interfaces with the host;

I0083) ISISlave multi-SoPEC systems will contain one or
more ISISlave SoPECs connected to the ISI bus. ISISlaves
can only respond to communication initiated by the ISI
Master;

0084 LEON refers to the LEON CPU core;
I0085 LineSyncMaster the LineSyncMaster device gener

ates the line synchronisation pulse that all SoPECs in the
system must synchronise their line outputs to:

I0086 Multi-SoPEC refers to SoPEC based print system
with multiple SoPEC devices;

I0087 Netpage refers to page printed with tags (normally
in infrared ink);

I0088 PEC1 refers to Print Engine Controller version 1,
precursor to SoPEC used to control printheads constructed
from multiple angled printhead segments;

I0089. Printhead IC single MEMS IC used to construct
bi-lithic printhead;

(0090 PrintMaster the PrintMaster device is responsible
for coordinating all aspects of the print operation. There
may only be one PrintMaster in a system;

0091 QA IC/Device Quality Assurance Integrated Cir
cuit/Device;

0092 Storage SoPEC an ISISlave SoPEC used as a
DRAM store and which does not print; and

0093 Tag refers to pattern which encodes information
about its position and orientation which allow it to be
optically located and its data contents read.

(0094. The SoPEC device can be used in several printer
configurations and architectures. In the general sense every
SoPEC based printer architecture will contain:
0095 One or more SoPEC devices.
(0096. One or more bi-lithic printheads.

US 2010/0223453 A1

0097. Two or more LSS busses.
0098. Two or more QAICs.
0099 USB 1.1 connection to host or ISI connection to
Bridge Chip.
0100 ISIbus connection between SoPECs (when multiple
SoPECs are used).
0101 The SoPEC device contains several system on a chip
(SoC) components, as well as the print engine pipeline (PEP)
control application specific logic.
0102 The PEP reads compressed page store data from the
embedded memory, optionally decompresses the data and
formats it for sending to the printhead. The print engine
pipeline functionality includes expanding the page image,
dithering the contone layer, compositing the black layer over
the contone layer, rendering of Netpage tags, compensation
for dead nozzles in the printhead, and sending the resultant
image to the bi-lithic printhead.
(0103 SoPEC contains an embedded CPU for general pur
pose system configuration and management. The CPU per
forms page and band header processing, motor control and
sensor monitoring (via the GPIO) and other system control
functions. The CPU can perform buffer management or report
buffer status to the host. The CPU can optionally run vendor
application specific code for general print control Such as
paper ready monitoring and LED status update.
0104. A 2.5 Mbyte embedded memory buffer is integrated
onto the SoPEC device, of which approximately 2 Mbytes are
available for compressed page store data. A compressed page
is divided into one or more bands, with a number of bands
stored in memory. As a band of the page is consumed by the
PEP for printing a new band can be downloaded. The new
band may be for the current page or the next page.
0105. Using banding it is possible to begin printing a page
before the complete compressed page is downloaded, but care
must be taken to ensure that data is always available for
printing or a buffer underrun may occur. An Storage SoPEC
acting as a memory buffer oran ISI-Bridge chip with attached
DRAM could be used to provide guaranteed data delivery.
0106 The embedded USB 1.1 device accepts compressed
page data and control commands from the host PC, and facili
tates the data transfer to either embedded memory or to
another SoPEC device in multi-SoPEC systems.
0107 The printhead is constructed by abutting 2 printhead
ICs together. The printhead ICs can vary in size from 2 inches
to 8 inches, so to produce an A4 printhead several combina
tions are possible. For example two printhead ICs of 7 inches
and 3 inches could be used to create a A4 printhead (the
notation is 7:3). Similarly 6 and 4 combination (6:4), or 5:5
combination. For an A3 printhead it can be constructed from
8:6 or an 7:7 printhead IC combination. For photographic
printing Smaller printheads can be constructed.
0108. Each SoPEC device has 2 Low Speed Serial (LSS)
interfacde system buses for communication with QA devices
for system authentication and ink usage accounting. The
number of QA devices per bus and their position in the system
is unrestricted with the exception that PRINTER QA and
INK QA devices should be on separate LSS busses.
0109. Each SoPEC system can have several QA devices.
Normally each printing SoPEC will have an associated
PRINTER QA. Ink cartridges will contain an INK QAIC.
PRINTER QA and INK QA devices should be on separate
LSS busses. All QAICs in the system are physically identical
with flash memory contents defining PRINTER QA from
INK QAIC.

Sep. 2, 2010

0110. The Inter-SoPEC Interface (ISI) provides a commu
nication channel between SoPECs in a multi-SoPEC system.
The ISIMaster can be SoPEC device or an ISI-Bridge chip
depending on the printer configuration. Both compressed
data and control commands are transferred via the interface.
0111. A device, other than a SoPEC with a USB connec
tion, which provides print data to a number of slave SoPECs.
A bridge chip will typically have a high bandwidth connec
tion, such as USB2.0, Ethernet or IEEE1394, to a host and
may have an attached external DRAM for compressed page
storage. A bridge chip would have one or more ISI interfaces.
The use of multiple ISI buses would allow the construction of
independent print systems within the one printer. The ISI
Bridge would be the ISIMaster for each of the ISI buses it
interfaces to.
0112 The SoPEC is a page rendering engine ASIC that
takes compressed page images as input, and produces decom
pressed page images at up to 6 channels of bi-level dot data as
output. The bi-level dot data is generated for the Memjet
bi-lithic printhead. The dot generation process takes account
of printhead construction, dead nozzles, and allows for fixa
tive generation.
0113. A single SoPEC can control 2 bi-lithic printheads
and up to 6 color channels at 10,000 lines/sec. equating to 30
pages per minute (at 1600 dpi). A single SoPEC can perform
full-bleed printing of A3, A4 and Letter pages. The 6 channels
of colored ink are the expected maximum in a consumer
SOHO, or office Bi-lithic printing environment:

0114 CMY, for regular color printing.
0115 K, for black text, line graphics and gray-scale
printing.

0116 IR (infrared), for Netpage-enabled 5 applica
tions.

0.117 F (fixative), to enable printing at high speed.
Because the bi-lithic printer is capable of printing so
fast, a fixative may be required to enable the ink to dry
before the page touches the page already printed. Oth
erwise the pages may bleed on each other. In low speed
printing environments the fixative may not be required.

0118 SoPEC is color space agnostic. Although it can
accept contone data as CMYX or RGBX, where X is an
optional 4th channel, it also can accept contone data in any
print color space. Additionally, SoPEC provides a mechanism
for arbitrary mapping of input channels to output channels,
including combining dots for ink optimization, generation of
channels based on any number of other channels etc. How
ever, inputs are typically CMYK for contone input, K for the
bi-level input, and the optional Netpage tag dots are typically
rendered to an infra-red layer. A fixative channel is typically
generated for fast printing applications.
0119 SoPEC is resolution agnostic. It merely provides a
mapping between input resolutions and output resolutions by
means of scale factors. The expected output resolution is 1600
dpi, but SoPEC actually has no knowledge of the physical
resolution of the Bi-lithic printhead.
I0120 SoPEC is page-length agnostic. Successive pages
are typically split into bands and downloaded into the page
store as each band of information is consumed and becomes
free.
I0121 SoPEC provides an interface for synchronization
with other SoPECs. This allows simple multi-SoPEC solu
tions for simultaneous A3/A4/Letter duplex printing. How
ever, SoPEC is also capable of printing only a portion of a
page image. Combining synchronization functionality with

US 2010/0223453 A1

partial page rendering allows multiple SoPECs to be readily
combined for alternative printing requirements including
simultaneous duplex printing and wide format printing.
0122) The required printing rate for SoPEC is 30 sheets
per minute with an inter-sheet spacing of 4 cm. To achieve a
30 sheets per minute print rate, this requires: 300 mmx63
(dot/mm)/2 sec=105.8 seconds per line, with no inter-sheet
gap or 340 mmx63 (dot/mm)/2 sec=93.3 seconds per line,
with a 4 cm inter-sheet gap.
0123 Aprintline for an A4 page consists of 13824 nozzles
across the page. At a system clock rate of 160 MHZ 13824
dots of data can be generated in 86.4 seconds. Therefore data
can be generated fast enough to meet the printing speed
requirement. It is necessary to deliver this print data to the
print-heads.
(0.124 Printheads can be made up of 5:5, 6:4, 7:3 and 8:2
inch printhead combinations. Print data is transferred to both
print heads in a pair simultaneously. This means the longest
time to print a line is determined by the time to transfer print
data to the longest print segment. There are 9744 nozzles
across a 7 inch printhead.
0.125. The print data is transferred to the printheadata rate
of 106 MHz (2/3 of the system clock rate) per color plane. This
means that it will take 91.9 s to transfer a single line for a 7:3
printhead configuration. So we can meet the requirement of
30 sheets per minute printing with a 4 cm gap with a 7:3
printhead combination. There are 11160 across an 8 inch
printhead. To transfer the data to the printhead at 106 MHz
will take 105.3 s. So an 8:2 printhead combination printing
with an inter-sheet gap will print slower than 30 sheets per
minute.
0126. From the highest point of view the SoPEC device
consists of 3 distinct Subsystems
0127 CPU Subsystem
0128 DRAM Subsystem
0129. Print Engine Pipeline (PEP) Subsystem
See FIG. 13 for a block level diagram of SoPEC.
0130. The CPU subsystem controls and configures all
aspects of the other Subsystems. It provides general Support
for interfacing and synchronising the external printer with the
internal print engine. It also controls the low speed commu
nication to the QAICs. The CPU subsystem contains various
peripherals to aid the CPU, such as GPIO (includes motor
control), interrupt controller, LSS Master and general timers.
The Serial Communications Block (SCB) on the CPU sub

Subsystem

DRAM

CPU

Sep. 2, 2010

system provides a full speed USB 1.1 interface to the host as
well as an Inter SoPEC Interface (ISI) to other SoPEC
devices.
I0131 The DRAM subsystem accepts requests from the
CPU, Serial Communications Block (SCB) and blocks within
the PEP Subsystem. The DRAM subsystem (in particular the
DIU) arbitrates the various requests and determines which
request should win access to the DRAM. The DIU arbitrates
based on configured parameters, to allow Sufficient access to
DRAM for all requestors. The DIU also hides the implemen
tation specifics of the DRAM such as page size, number of
banks, refresh rates etc.
0.132. The PEP subsystem accepts compressed pages from
DRAM and renders them to bi-level dots for a given print line
destined for a printhead interface that communicates directly
with up to 2 segments of a bi-lithic printhead.
I0133. The first stage of the page expansion pipeline is the
CDU, LBD and TE. The CDU expands the JPEG-compressed
contone (typically CMYK) layer, the LBD expands the com
pressed bi-level layer (typically K), and the TE encodes
Netpage tags for later rendering (typically in IR or Kink). The
output from the first stage is a set of buffers: the CFU, SFU,
and TFU. The CFU and SFU buffers are implemented in
DRAM.
I0134. The second stage is the HCU, which dithers the
contone layer, and composites position tags and the bi-level
spot0 layer over the resulting bi-level dithered layer. A num
ber of options exist for the way in which compositing occurs.
Up to 6 channels of bi-level data are produced from this stage.
Note that not all 6 channels may be present on the printhead.
For example, the printhead may be CMY only, with Kpushed
into the CMY channels and IR ignored. Alternatively, the
position tags may be printed in K if IR ink is not available (or
for testing purposes).
0.135 The third stage (DNC) compensates for dead
nozzles in the printhead by color redundancy and error dif
fusing dead nozzle data into Surrounding dots.
0.136 The resultant bi-level 6 channel dot-data (typically
CMYK-IRF) is buffered andwritten out to a set of line buffers
Stored in DRAM via the DWU.
I0137 Finally, the dot-data is loaded back from DRAM,
and passed to the printhead interface via a dot FIFO. The dot
FIFO accepts data from the LLU at the system clock rate
(pclk), while the PHI removes data from the FIFO and sends
it to the printhead at a rate of 2/3 times the system clock rate.
Looking at FIG. 13, the various units are described here in
Summary form:

TABLE 1.

Units within SoPEC

Unit

Acronym UnitName Description

DIU DRAM interface Provides the interface for DRAM read and

unit write access for the various SoPEC units,
CPU and the SCB block. The DIU

provides arbitration between competing
units controls DRAM access.

DRAM Embedded DRAM 20 Mbits of embedded DRAM,
CPU Central Processing CPU for system configuration and control

Unit

MMU Memory Limits access to certain memory address
Management Unit areas in CPU user mode

US 2010/0223453 A1

Unit
Subsystem Acronym

TABLE 1-continued

Units within SoPEC

UnitName Description

RDU Real-time Debug Facilitates the observation of the contents
Unit of most of the CPU addressable registers in

SoPEC in addition to some pseudo-registers
in realtime.

TIM General Timer Contains watchdog and general system
imers

LSS Low Speed Serial Low level controller for interfacing with
interfaces he QAICs

GPIO General Purpose IOS General IO controller, with built-in Motor
control unit, LED pulse units and de-glitch
circuitry

ROM Boot ROM 6 KBytes of System Boot ROM code
CU interrupt Controller General Purpose interrupt controller with

Onit configurable priority, and masking.
CPR Clock, Power and Central Unit for controlling and generating

Reset block he system clocks and resets and
powerdown mechanisms

PSS Power Save Storage Storage retained while system is powered
down

USB Universal Serial Bus USB device controller for interfacing with
Device he host USB.

SI inter-SoPEC SI controller for data and control
interface communication with other SoPEC's in a

multi-SoPEC system
SCB Serial Contains both the USB and ISI blocks.

Communication
Block

Print Engine PCU PEP controller Provides external CPU with the means to
Pipeline read and write PEP Unit registers, and read
(PEP) and write DRAM in single 32-bit chunks.

CDU Contone decoder Expands JPEG compressed contone layer
unit and writes decompressed contone to

DRAM
CFU Contone FIFO Unit Provides line buffering between CDU and

HCU
LBD Lossless Bi-level Expands compressed bi-level layer.

Decoder
SFU Spot FIFO Unit Provides line buffering between LBD and

HCU
TE Tag encoder Encodes tag data into line of tag dots.
TFU Tag FIFO Unit Provides tag data storage between TE and

HCU
HCU Halftoner Dithers contone layer and composites the

compositor unit bi-level spot 0 and position tag dots.
DNC Dead Nozzle Compensates for dead nozzles by color

Compensator redundancy and error diffusing dead nozzle
data into Surrounding dots.

DWU Dotline Writer Unit Writes out the 6 channels of dot data for a
given printline to the line store DRAM

LLU Line Loader Unit Reads the expanded page image from line
store, formatting the data appropriately for
the bi-lithic printhead.

PHI Printhead Interface Isresponsible for sending dot data to the bi
lithic printheads and for providing line
synchronization between multiple SoPECs.
Also provides test interface to printhead
Such as temperature monitoring and Dead
Nozzle Identification.

0138 A number of hardware, software and protocol solu

Sep. 2, 2010

circuits (ie, chips) can be implemented wholly or partly in
tions to security issues with respect to SoPEC have been
developed. These range from authorization and encryption
protocols for enabling secure communication between hard
ware and software modules, to physical and electrical sys
tems that protect the integrity of integrated circuits and other
hardware.
0.139. It should be understood that in many cases, prin
ciples described with reference to hardware such as integrated

Software running on, for example, a computer. Mixed systems
in which software and hardware (and combinations) embody
various entities, modules and units can also be constructed
using may of these principles, particularly in relation to
authorization and authentication protocols. The particular
extent to which the principles described below can be trans
lated to or from hardware or software will be apparent to one
skilled in the art, and so will not always explicitly be

US 2010/0223453 A1

explained. It should also be understood that many of the
techniques disclosed below have application to many fields
other than printing.
0140. A “QAIC is a quality assurance chip can allows
certain security functions and protocols to be implemented.
Various authentication protocols include:
0141 For authenticated reads, an Untrusted QA Device
being a QA IC being read from, and a Trusted QA Device
being a QAIC that identifies whether the data read from the
Untrusted QA Device can be trusted;
0142 For replacement of keys, a QAIC is programmed
with the new key, and a Key Programmer QA Device is a
factory QAIC that generates the message to program the new
key; and
0143 For upgrades of data in memory vectors, a QAIC is
upgraded, and a Value or Parameter Upgrader QA Device is a
QAIC that signs the upgrade value.
0144. Any given physical QAIC will contain functionality
that allows it to operate as an entity in some number of these
protocols. Physical QAICs are referred to by their location.
For example, eachink cartridge may contain a QAIC referred
to as an INK QA, with all INK QAICs being on the same
physical bus. In the same way, the QAIC inside the printer is
referred to as PRINTER QA, and will be on a separate bus to
the INK QAICs.
0145 When applied to a printing environment, the func
tional security requirements for the preferred embodiment
a.

0146 Code of QAIC owner or licensee co-existing safely
with code of authorized OEMs
0147 Chip owner/licensee operating parameters authen
tication
0148 Parameters authentication for authorized OEMs
0149 Ink usage authentication
The authentication requirements imply that:

0150 OEMs and end-users must not be able to replace
or tamper with QAIC manufacturer/owner's program
code or data

0151 OEMs and end-users must not be able to perform
unauthorized activities for example by calling chip
manufacturer/owner's code

0152 End-users must not be able to replace or tamper
with OEM program code or data

0153 End-users must not be able to call unauthorized
functions within OEM program code

0154) Manufacturer/owner's development program
code must not be capable of running on all SoPECs.

0155 OEMs must be able to test products at their high
est upgradable status, yet not be able to ship them out
side the terms of their license

0156 OEMs and end-users must not be able to directly
access the print engine pipeline (PEP) hardware, the
LSS Master (for QAIC access) or any other peripheral
block with the exception of operating system permitted
GPIO pins and timers.

O157 SoPEC includes a CPU that must run both manufac
turer/owner program code and OEM program code. The
execution model envisaged for SoPEC is one where Manu
facturer/owner program code forms an operating system
(O/S), providing services Such as controlling the print engine
pipeline, interfaces to communications channels etc. The
OEM program code must run in a form of user mode, pro
tected from harming the Manufacturer/owner program code.
The OEM program code is permitted to obtain services by

Sep. 2, 2010

calling functions in the O/S, and the O/S may also call OEM
code at specific times. For example, the OEM program code
may request that the O/S call an OEM interrupt service rou
tine when a particular GPIO pin is activated.
0158. In addition, we may wish to permit the OEM code to
directly call functions in Manufacturer/owner code with the
same permissions as the OEM code. For example, the Manu
facturer/owner code may provide SHA1 as a service, and the
OEM could call the SHA1 function, but execute that function
with OEM permissions and not manufacturer/owner permis
S1O.S.

0159. A basic requirement then, for SoPEC, is a form of
protection management, whereby Manufacturer/owner and
OEM program code can co-exist without the OEM program
code damaging operations or services provided by the Manu
facturer/owner O/S. Since services rely on SoPEC peripher
als (such as USB2 Host, LSS Master, Timers etc) access to
these peripherals should also be restricted to Manufacturer/
owner program code only.
(0160 A particular OEM will be licensed to run a Print
Engine with a particular set of operating parameters (such as
print speed or quality). The OEM and/or end-user can
upgrade the operating license for a fee and thereby obtain an
upgraded set of operating parameters.
(0161 Neither the OEM nor end-user should be able to
upgrade the operating parameters without paying the appro
priate fee to upgrade the license. Similarly, neither the OEM
nor end-user should be able to bypass the authentication
mechanism via any program code on SoPEC. This implies
that OEMs and end-users must not be able to tamper with or
replace Manufacturer/owner program code or data, nor be
able to call unauthorized functions within Manufacturer/
owner program code.
0162. However, the OEM must be capable of assembly
line testing the Print Engine at the upgraded status before
selling the Print Engine to the end-user.
0163 The OEM may provide operating parameters to the
end-user independent of the Manufacturer/owner operating
parameters. For example, the OEM may want to sell a frank
ing machine.
0164. The end-user should not be able to upgrade the
operating parameters without paying the appropriate fee to
the OEM. Similarly, the end-user should not be able to bypass
the authentication mechanism via any program code on
SoPEC. This implies that end-users must not be able to
tamper with or replace OEM program code or data, as well as
not be able to tamper with the PEP blocks or service-related
peripherals.
0.165 If an end user takes the time and energy to hack the
print engine and thereby Succeeds in upgrading the single
print engine only, yet not be able to use the same keys etc on
another print engine, that is an acceptable security compro
mise. However it doesn't mean we have to make it totally
simple or cheap for the end-user to accomplish this.
0166 Software-only attacks are the most dangerous, since
they can be transmitted via the internet and have no perceived
cost. Physical modification attacks are far less problematic,
since most printer users are not likely to want their print
engine to be physically modified. This is even more true if the
cost of the physical modification is likely to exceed the price
of a legitimate upgrade.

US 2010/0223453 A1

0167 A solution to the above requirements and others can
be summarised as (which are detailed below):
(0168 Each SoPEC has a unique id
(0169 CPU with user/supervisor mode
0170 Memory Management Unit
0171 The unique id is not cached
(0172 SoPEC physical identification
(0173 Each SoPEC needs to contains a unique SoPEC id
of minimum size 64-bits. This SoPEC id is used to form a
symmetric key unique to each SoPEC: SoPEC id key. On
SoPEC we make use of an additional 112-bit ECID (elec
tronic chip ID) macro that has been programmed with a
random number on a per-chip basis. Thus SoPEC id is the
112-bit macro, and the SoPEC id key is a 160-bit result
obtained by SHA1 (SoPEC id).
0.174. The verification of operating parameters and ink
usage depends on SoPEC id being difficult to determine.
Difficult to determine means that someone should not be able
to determine the id via software, or by viewing the commu
nications between chips on the board. If the SoPEC id is
available through running a test procedure on specific test
pins on the chip, then depending on the ease by which this can
be done, it is likely to be acceptable.
0.175. It is important to note that in the proposed solution,
compromise of the SoPEC id leads only to compromise of
the operating parameters and ink usage on this particular
SoPEC. It does not compromise any other SoPEC or all inks
or operating parameters in general.
(0176). It is ideal that the SoPEC id be random, although
this is unlikely to occur on standard manufacture processes
for ASICs. If the id is within a small range however, it will be
able to be broken by brute force. This is why 32-bits is not
Sufficient protection.
(0177 SoPEC contains a CPU with direct hardware sup
port for user and Supervisor modes. At present, the intended
CPU is the LEON (a 32-bit processor with an instruction set
according to the IEEE-1754 standard. The IEEE1754 stan
dard is compatible with the SPARC V8 instruction set).
0.178 Manufacturer/owner (operating system) program
code will run in supervisor mode, and all OEM program code
will run in user mode.
(0179 SoPEC contains a Memory Management Unit
(MMU) that limits access to regions of DRAM by defining
read, write and execute access permissions for Supervisor and
user mode. Program code running in user mode is Subject to
user mode permission settings, and program code running in
Supervisor mode is subject to Supervisor mode settings.
0180 A setting of 1 for a permission bit means that type of
access (e.g. read, write, execute) is permitted. A setting of 0
for a read permission bit means that that type of access is not
permitted.
0181 At reset and whenever SoPEC wakes up, the settings
for all the permission bits are 1 for all supervisor mode
accesses, and 0 for all user mode accesses. This means that
Supervisor mode program code must explicitly set user mode
access to be permitted on a section of DRAM.
0182. Access permission to all the non-valid address space
should be trapped, regardless of user or Supervisor mode, and
regardless of the access being read, execute, or write.
0183. Access permission to all of the valid non-DRAM
address space (for example the PEP blocks) is supervisor
read/write access only (no Supervisor execute access, and
user mode has no acccess at all) with the exception that
certain GPIO and Timer registers can also be accessed by user

Sep. 2, 2010

code. These registers will require bitwise access permissions.
Each peripheral block will determine how the access is
restricted.
(0.184 With respect to the DRAM and PEP subsystems of
SoPEC, typically we would set user read/write/execute mode
permissions to be 1/1/0 only in the region of memory that is
used for OEM program data, I/O/1 for regions of OEM pro
gram code, and 0/0/0 elsewhere (including the trap table). By
contrast we would typically set supervisor mode read/write/
execute permissions for this memory to be 1/1/0 (to avoid
accidentally executing user code in Supervisor mode).
0185. The SoPEC id parameter should only be accessible
in Supervisor mode, and should only be stored and manipu
lated in a region of memory that has no user mode access.
0186. The unique SoPEC id needs to be available to
Supervisor code and not available to user code. This is taken
care of by the MMU.
0187. However the SoPEC id must also not be accessable
via the CPU's data cache or register windows. For example, if
the user were to cause an interrupt to occur at a particular
point in the program execution when the SoPEC id was being
manipulated, it must not be possible for the user program
code to turn caching off and then access the SoPEC id inside
the data cache. This would bypass any MMU security.
0188 The same must be true of register windows. It must
not be possible for user mode program code to read or modify
register settings in a Supervisor program's register windows.
(0189 This means that at the least, the SoPEC id itself
must not be cacheable. Likewise, any processed form of the
SoPEC id such as the SoPEC id key (e.g. read into registers
or calculated expected results from a QA Chip) should not be
accessable by user program code.
0190. Given that user mode program code cannot even call
functions in Supervisor code space, the question arises as how
OEM programs can access functions, or request services. The
implementation for this depends on the CPU.
(0191) On the LEON processor, the TRAP instruction
allows programs to Switch between user and Supervisor mode
in a controlled way. The TRAP switches between user and
Supervisor register sets, and calls a specific entry point in the
supervisor code space in supervisor mode. The TRAP handler
dispatches the service request, and then returns to the caller in
user mode.

0.192 Use of a command dispatcher allows the O/S to
provide services that filter access—e.g. a generalised print
function will set PEP registers appropriately and ensure QA
IC ink updates occur.
0193 The LEON also allows supervisor mode code to call
user mode code in user mode. There are a number of ways that
this functionality can be implemented. It is possible to call the
user code without a trap, but to return to Supervisor mode
requires a trap (and associated latency).
0194 The intention is to load the Manufacturer/owner and
OEM program code into SoPEC's RAM, where it can be
subsequently executed. The basic SoPEC therefore, must be
capable of downloading program code. However SoPEC
must be able to guarantee that only authorized Manufacturer/
owner boot programs can be loaded, otherwise anyone could
modify the O/S to do anything, and then load that thereby
bypassing the licensed operating parameters.
0.195 Authentication of program code and data is per
formed using asymmetric (public-key) digital signatures and
without using a QAIC.

US 2010/0223453 A1

0196. Assuming some data has been already downloaded
and a 160-bit signature into eDRAM, the bootloader needs to
perform the following tasks:

0.197 perform SHA-1 on the downloaded data to calcu
late a digest localDigest

0198 perform asymmetric decryption on the down
loaded signature (160-bits) using an asymmetric public
key to obtain authorizedDigest

(0199. If authorized Digest is the PKCSH 1 (patent free)
form of localDigest, then the down-loaded data is autho
rized (the signature must have been signed with the
asymmetric private key) and control can then be passed
to the downloaded data

0200 Asymmetric decryption is used instead of symmet
ric decryption because the decrypting key must be held in
SoPEC's ROM. If symmetric private keys are used, the ROM
can be probed and the security is compromised. The proce
dure requires the following data item:
0201 bootOkey=an n-bit asymmetric public key
The procedure also requires the following two functions:

0202 SHA-1=a function that performs SHA-1 on a
range of memory and returns a 160-bit digest

0203 decrypt a function that performs asymmetric
decryption of a message using the passed-in key.

0204 The length of the key will depend on the asymmetric
algorithm chosen. The key must provide the equivalent pro
tection of the entire QA Chip system if the Manufacturer/
owner O/S program code can be bypassed, then it is equiva
lent to the QA Chip keys being compromised. In fact it is
worse because it would compromise Manufacturer/owner
operating parameters, OEM operating parameters, and ink
authentication by software downloaded off the net (e.g. from
Some hacker).
0205. In the case of RSA, a 2048-bit key is required to
match the 160-bit symmetric-key security of the QA Chip. In
the case of ECDSA, a key length of 132 bits is likely to suffice.
There is no advantage to storing multiple keys in SoPEC and
having the external message choose which key to validate
against, because a compromise of any key allows the external
user to always select that key. There is also no particular
advantage to having the boot mechanism select the key (e.g.
one for USB-based booting and one for external ROM boot
ing) a compromise of the external ROM booting key is
enough to compromise all the SoPEC systems.
0206 However, there are advantages in having multiple
keys present in the boot ROM and having a wire-bonding
option on the pads select which of the keys is to be used.
Ideally, the pads would be connected within the package, and
the selection is not available via external means once the die
has ben packaged. This means we can have different keys for
different application areas (e.g. different uses of the chip), and
if any particular SoPEC key is compromised, the die could be
kept constant and only the bonding changed. Note that in the
worst case of all keys being compromised, it may be economi
cally feasible to change the bootOkey value in SoPEC's ROM,
since this is only a single mask change, and would be easy to
verify and characterize.
Therefore the entire security of SoPEC is based on keeping
the asymmetric private key paired to boot0key secure. The
entire security of SoPEC is also based on keeping the program
that signs (i.e. authorizes) datasets using the asymmetric pri
vate key paired to bootOkey secure.
It may therefore be reasonable to have multiple signatures
(and hence multiple signature programs) to reduce the chance

10
Sep. 2, 2010

of a single point of weakness by a rogue employee. Note that
the authentication time increases linearly with the number of
signatures, and requires a 2048-bit public key in ROM for
each signature.
0207 Given that test programs, evaluation programs, and
Manufacturer/owner O/S code needs to be written and tested,
and OEM program code etc. also needs to be tested, it is not
secure to have a single authentication of a monolithic dataset
combining Manufacturer/owner O/S, non-O/S, and OEM
program code—we certainly don't want OEMs signing
Manufacturer/owner program code, and Manufacturer/owner
shouldn’t have to be involved with the signing of OEM pro
gram code.
0208. Therefore we require differing levels of authentica
tion and therefore a number of keys, although the procedure
for authentication is identical to the first—a section of pro
gram code contains the key and procedure for authenticating
the next.
0209. This method allows for any hierarchy of authentica
tion, based on a root key of bootOkey. For example, assume
that we have the following entities:

0210 QACo, Manufacturer/owner's QA/key company.
Knows private version of bootOkey, and owner of secu
rity concerns.

0211 SoPECCo, Manufacturer/owner's SoPEC hard
ware/software company. Supplies SoPEC ASICs and
SoPEC O/S printing software to a ComCo.

0212 ComCo., a company that assembles Print Engines
from SoPECs, Memjet printheads etc, customizing the
Print Engine for a given OEM according to a license

0213 OEM, a company that uses a Print Engine to
create a printer product to sell to the end-users. The
OEM would supply the motor control logic, user inter
face, and casing.

The levels of authentication hierarchy are as follows:
0214 QACo writes the boot ROM, agenerates dataset1.
consisting of a boot loader program that loads and vali
dates dataset2 and QACo’s asymmetric public bootlkey.
QACo signs dataset0 with the asymmetric private
bootOkey.

0215 SoPECCo generates dataset1, consisting of the
print engine security kernel O/S (which incorporates the
security-based features of the print engine functionality)
and the ComCo's asymmetric public key. Upon a special
“formal release' request from SoPECCo., QACo signs
dataset0 with QACo’s asymmetric private boot0key key.
The print engine program code expects to see an oper
ating parameter block signed by the ComCo's asymmet
ric private key.

0216. The ComCo generates dataSet3, consisting of
dataset 1 plus dataset2, where dataset2 is an operating
parameter block for a given OEM’s print engine licence
(according to the print engine license arrangement)
signed with the ComCo's asymmetric private key. The
operating parameter block (dataset2) would contain
valid print speed ranges, a PrintEngineLicensed, and
the OEM’s asymmetric public key. The ComCo can
generate as many of these operating parameter blocks
for any number of Print Engine Licenses, but cannot
write or sign any Supervisor O/S program code.

0217. The OEM would generate datasetS, consisting of
dataset3 plus dataset4, where dataset4 is the OEM pro
gram code signed with the OEM’s asymmetric private
key. The OEM can produce as many versions of datasetS

US 2010/0223453 A1

as it likes (e.g. for testing purposes or for updates to
drivers etc) and need not involve Manufacturer/owner,
QACo, or ComCo in any way.

0218. The relationship is shown in FIG. 11.
0219. When the end-user uses datasetS, SoPEC itself vali
dates dataset1 via the bootOkey mechanism. Once dataset1 is
executing, it validates dataset2, and uses dataset2 data to
validate dataset4. The validation hierarchy is shown in FIG.
12.
0220. If a key is compromised, it compromises all subse
quent authorizations down the hierarchy. In the example from
above (and as illustrated in FIG.326) if the OEM’s asymmet
ric private key is compromised, then O/S program code is not
compromised since it is above OEM program code in the
authentication hierarchy. However if the ComCo’s asymmet
ric private key is compromised, then the OEM program code
is also compromised. A compromise of boot0key compro
mises everything up to SoPEC itself, and would require a
mask ROM change in SoPEC to fix.
0221) The hierarchical boot procedure gives a hierarchy of
protection in a final shipped product. It is also desirable to use
a hierarchy of protection during software development within
Manufacturer/owner.
0222 For a program to be downloaded and run on SoPEC
during development, it will need to be signed. In addition, we
don’t want to have to sign each and every Manufacturer/
owner development code with the bootOkey, as it creates the
possibility of any developmental (including buggy or rogue)
application being run on any SoPEC.
0223) Therefore QACo needs to generate/create a special
intermediatebootloader, signed with bootOkey, that performs
the exact same tasks as the normal bootloader, except that it
checks the SoPECid to see if it is a specific SoPECid (or set of
SoPECids). If the SoPEC id is in the valid set, then the
developmental bootloader validates dataset2 by means of its
length and a SHA-1 digest of the developmental code", and
not by a further digital signature. The QACo can give this boot
loader to the software development team within Manufac
turer/owner. The Software team can now write and run any
program code, and load the program code using the develop
ment bootloader. There is no requirement for the subsequent
Software program (i.e. the developmental program code) to be
signed with any key since the programs can only be run on the
particular SoPECs.
The SHA-1 digest is to allow the total program load time to simulate the
running time of the normal bootloader running on a non-developmental ver
Sion of the program.
0224. If the developmental boot loader (and/or signature
generator) were compromised, or any of the developmental
programs were compromised, the worst situation is that an
attacker could run programs on that particular set of SoPECs.
and on no others.
0225. This should greatly reduce the possibility of errone
ous programs signed with boot0key being available to an
attacker (only official releases are signed by bootOkey), and
therefore reduces the possibility of a Manufacturer/owner
employee intentionally or inadvertently creating a back door
for attackers. The relationship is shown below in FIG. 13.
0226. Theoretically the same kind of hierarchy could also
be used to allow OEMs to be assured that their program code
will only work on specific SoPECs, but this is unlikely to be
necessary, and is probably undesirable.
0227. It is possible that errors in supervisor program code
(e.g. the operating system) could allow attackers to Subvert
the program in SoPEC and gain supervisor control. To reduce

Sep. 2, 2010

the impact of this kind of attack, it is possible to allocate some
bits of the SoPEC id to form some kind of date. The granu
larity of the date could be as simple as a single bit that says the
date is obtained from the regular IBM ECID, or it could be 6
bits that give 10 years worth of 3-month units.
0228. The first step of the program loaded by bootloader
0 could check the SoPEC id date, and run or refuse to run
appropriately. The Manufacturer/owner driver or OS could
therefore be limited to run on SoPECs that are manufactured
up until a particular date.
0229. This means that the OEM would require a new ver
sion of the OS for SoPECs after a particular date, but the new
driver could be made to work on all previous versions of
SOPEC.

0230. The function simply requires a form of date, whose
granularity for working can be determined by agreement with
the OEM.
0231. For example, suppose that SoPECs are supplied
with 3-month granularity in their date components. Manufac
turer/owner could ship a version of the OS that works for any
SoPEC of the date (i.e. on any chip), or for all SoPECs
manufactured during the year etc. The driver issued the next
year could work with all SoPECs up until that years etc. In this
way the drivers for a chip will be backwards compatible, but
will be deliberately not forwards-compatible. It allows the
downloading of a new driver with no problems, but it protects
against bugs in one years's driver OS from being used against
future SoPECs.

0232. Note that the phasing in of a new OS doesn’t have to
beat the same time as the hardware. For example, the new OS
can come in 3 months before the hardware that it supports.
However once the new SoPECs are being delivered, the OEM
must not ship the older driver with the newer SoPECs, for the
old driver will not work on the newer SoPECs. Basically once
the OEM has received the new driver, they should use that
driver for all SoPEC systems from that point on (old SoPECs
will work with the new driver).
0233. This date-limiting feature would most likely be
using a field in the ComCo specified operating parameters, so
it allows the SoPEC to use date-checking in addition to addi
tional QA Chip related parameter checking (such as the
OEM’s PrintEngineLicenseld etc).
0234. A variant on this theme is a date-window, where a
start-date and end-date are specified (as relating to SoPEC
manufacture, not date of use).
0235. Operating parameters need to be considered in
terms of Manufacturer/owner operating parameters and OEM
operating parameters. Both sets of operating parameters are
stored on the PRINTER QA chip (physically located inside
the printer). This allows the printer to maintain parameters
regardless of being moved to different computers, or a loss/
replacement of host O/S drivers etc.
0236. On PRINTER QA, memory vector Mo contains the
upgradable operating parameters, and memory vectors M
contains any constant (non-upgradable) operating param
eters. Considering only Manufacturer/owner operating
parameters for the moment, there are actually two problems:
0237 a. setting and storing the Manufacturer/owner oper
ating parameters, which should be authorized only by
Manufacturer/owner

0238 b. reading the parameters into SoPEC, which is an
issue of SoPEC authenticating the data on the PRINTER
QA chip since we don't trust PRINTER QA.

US 2010/0223453 A1

The PRINTER QA chip therefore contains the following
symmetric keys:

0239 Ko-PrintEngineLicense key. This key is con
stant for all SoPECs supplied for a given print engine
license agreement between an OEM and a Manufac
turer/owner ComCo. Ko has write permissions to the
Manufacturer/owner upgradeable region of Mo on
PRINTER QA.

0240 K=SoPEC id key. This key is unique for each
SoPEC (see Section 3.1), and is known only to the
SoPEC and PRINTER QA. K. does not have write per
missions for anything.

0241 K is used to solve problem (a). It is only used to
authenticate the actual upgrades of the operating parameters.
Upgrades are performed using a standard upgrade protocol,
with PRINTER QA acting as the ChipU, and the external
upgrader acting as the ChipS.
0242 K is used by SoPEC to solve problem (b). It is used
to authenticate reads of data (i.e. the operating parameters)
from PRINTER QA. The procedure follows a standard
authenticated read protocol, with PRINTER QA acting as
ChipR, and the embedded supervisor software on SoPEC
acting as ChipT. The authenticated read protocol requires the
use of a 160-bit nonce, which is a pseudo-random number.
This creates the problem of introducing pseudo-randomness
into SoPEC that is not readily determinable by OEM pro
grams, especially given that SoPEC boots into a known state.
One possibility is to use the same random number generator
as in the QA Chip (a 160-bit maximal-lengthed linear feed
back shift register) with the seed taken from the value in the
WatchDogTimer register in SoPEC's timer unit when the first
page arrives.
0243) Note that the procedure for verifying reads of data
from PRINTER QA does not rely on Manufacturer/owner's
key Ko. This means that precisely the same mechanism can be
used to read and authenticate the OEM data also stored in
PRINTER QA. Of course this must be done by Manufac
turer/owner supervisor code so that SoPEC id key is not
revealed.
0244 If the OEM also requires upgradable parameters, we
can add an extra key to PRINTER QA, where that key is an
OEM key and has write permissions to the OEM part of Mo.
In this way, K never needs to be known by anyone except the
SoPEC and PRINTER QA.
0245 Each printing SoPEC in a multi-SoPEC system need
access to a PRINTER QA chip that contains the appropriate
SoPEC id key to validate ink useage and operating param
eters. This can be accomplished by a separate PRINTER QA
for each SoPEC, or by adding extra keys (multiple SoPEC id
keys) to a single PRINTER QA.
0246. However, if ink usage is not being validated (e.g. if
print speed were the only Manufacturer/owner upgradable
parameter) then not all SoPECs require access to a PRINT
ER QA chip that contains the appropriate SoPEC id key.
Assuming that OEM program code controls the physical
motor speed (different motors per OEM), then the PHI within
the first (or only) front-page SoPEC can be programmed to
accept (or generate) line sync pulses no faster than aparticular
rate. If line syncs arrived faster than the particular rate, the
PHI would simply print at the slower rate. If the motor speed
was hacked to be fast, the print image will appear stretched.
Manufacturer/owner operating parameters include Such
items as print speed, print quality etc. and are tied to a license
provided to an OEM. These parameters are under Manufac

12
Sep. 2, 2010

turer/owner control. The licensed Manufacturer/owner oper
ating parameters are typically stored in the PRINTER QA.
0247. However there are situations when it is desirable to
have a floating upgrade to a license, for use on a printer of the
user's choice. For example, OEMs may sell a speed-increase
license upgrade that can be plugged into the printer of the
user's choice. This form of upgrade can be considered a
floating upgrade in that it upgrades whichever printer it is
currently plugged into. This dongle is referred to as ADDI
TIONAL PRINTER QA. The software checks for the exist
ence of an ADDITIONAL PRINTER QA, and if present the
operating parameters are chosen from the values stored on
both QA chips.
0248. The basic problem of authenticating the additional
operating parameters boils downto the problem that we don't
trust ADDITIONAL PRINTER QA. Therefore we need a
system whereby a given SoPEC can performan authenticated
read of the data in ADDITIONAL PRINTER QA. The
SoPEC id key is not written to a key in the ADDITIONAL
PRINTER QA because:

0249 then it will be tied specifically to that SoPEC, and
the primary intention of the ADDITIONAL PRINT
ER QA is that it be floatable;

0250 the ink cartridge would then not work in another
printer since the other printer would not know the old
SoPEC id key (knowledge of the old key is required in
order to change the old key to a new one).

0251 updating keys is not power-safe (i.e. if at the
user's site, power is removed mid-update, the ADDI
TIONAL PRINTER QA could be rendered useless)

The proposed solution is to let ADDITIONAL PRINTER
QA have two keys:

0252 Ko FloatingPrintEngineLicense key. This key
has the same function as the PrintEngineLicense key in
the PRINTER QA in that Ko has write permissions to
the Manufacturer/owner upgradeable region of Mo on
ADDITIONAL PRINTER QA.
*This can be identical to PrintEngineLicense key in the PRINTER QA
if it is desirable (unlikely) that upgraders can function on PRINTER
QAs as well as ADDITIONAL PRINTER QAs

0253 K=UseExtParmsLicense key. This key is con
stant for all of the ADDITIONAL PRINTER QAs for a
given license agreement between an OEM and a Manu
facturer/owner ComCo (this is not the same key as Print
EngineLicense key which is stored as Ko in PRINTER
QA). K has no write permissions to anything.

0254 K is used to allow writes to the various fields con
taining operating parameters in the ADDITIONAL PRINT
ER QA. These writes/upgrades are performed using the stan
dard upgrade protocol, with ADDITIONAL PRINTER QA
acting as the ChipU, and the external upgrader acting as the
ChipS. The upgrader (ChipS) also needs to check the appro
priate licensing parameters such as OEM Id for validity.
0255 K is used to allow SoPEC to authenticate reads of
the ink remaining and any other ink data. This is accom
plished by having the same UseExtParmsLicense key within
PRINTER QA (e.g. in K), also with no write permissions.
1.C.

0256 PRINTER QA.K=UseExtParmsLicense key.
This key is constant for all of the PRINTER QAs for a
given license agreement between an OEM and a Manu
facturer/owner ComCo. K- has no write permissions to
anything.

US 2010/0223453 A1

This means there are two shared keys, with PRINTER QA
sharing both, and thereby acting as a bridge between INK
QA and SoPEC.

0257 UseExtParmsLicense key is shared between
PRINTER QA and ADDITIONAL PRINTER QA

(0258 SoPEC id key is shared between SoPEC and
PRINTER QA

0259 All SoPEC has to do is do an authenticated read
from ADDITIONAL PRINTER QA, pass the data/signa
ture to PRINTER QA, let PRINTER QA validate the data/
signature, and get PRINTER QA to produce a similar signa
ture based on the shared SoPEC idkey. It can do so using the
Translate function. SoPEC can then compare PRINTER
QA's signature with its own calculated signature (i.e. imple
ment a Test function in software on SoPEC), and if the sig
natures match, the data from ADDITIONAL PRINTER QA
must be valid, and can therefore be trusted. Once the data
from ADDITIONAL PRINTER QA is known to be trusted,
the various operating parameters such as OEM Id can be
checked for validity.
Tying a QA IC to be used only on a specific SoPEC can be
easily accomplished by writing the PRINTER QA’s chipid
(unique serial number) into an appropriate Mo field on the
ADDITIONAL PRINTER QA. The system software can
detect the match and function appropriately. If there is no
match, the software can ignore the data read from the ADDI
TIONAL PRINTER QA.
0260 Although it is also possible to store the SoPEC id
key in one of the keys within the dongle, this must be done in
an environment where power will not be removed partway
through the key update process (if power is removed during
the key update there is a possibility that the dongle QA Chip
may be rendered unusable, although this can be checked for
after the power failure).
0261 Although an OEM should only be able sell the
licensed operating parameters for a given Print Engine, they
must be able to assembly-line test or service/test the Print
Engine with a different set of operating parameters e.g. a
maximally upgraded Print Engine. Several different mecha
nisms can be employed to allow OEMs to test the upgraded
capabilities of the Print Engine. At present it is unclear
exactly what kind of assembly-line tests would be performed.
This section is referring to assembly-line testing rather than development

testing. An OEM can maximally upgrade a given Print Engine to allow devel
opmental testing of their own OEM program code & mechanics.

0262 The simplest solution is to use an ADDITIONAL
PRINTER QA (i.e. special dongle PRINTER QA as
described in Section 3.6.5.1). The ADDITIONAL PRINT
ER QA would contain the operating parameters that maxi
mally upgrade the printeras long as the dongle is connected to
the SoPEC. The exact connection may be directly electrical
(e.g. via the standard QA Chip connections) or may be over
the USB connection to the printer test host depending on the
nature of the test. The exact preferred connection is yet to be
determined.

0263. In the testing environment, the ADDITIONAL
PRINTER QA also requires a numberOfimpressions field
inside Mo, which is writeable by K. Before the SoPEC prints
a page at the higher speed, it decrements the numberOflm
pressions counter, performs an authenticated read to ensure
the count was decremented, and then prints the page. In this
way, the total number of pages that can be printed at high
speed is reduced in the event of someone stealing the ADDI

Sep. 2, 2010

TIONAL PRINTER QA device. It also means that multiple
test machines can make use of the same ADDITIONAL
PRINTER QA.
0264. Manufacturer/owner O/S program code contains the
OEM’s asymmetric public key to ensure that the subsequent
OEM program code is authentic—i.e. from the OEM. How
ever given that SoPEC only contains a single root key, it is
theoretically possible for different OEM’s applications to be
run identically physical Print Engines i.e. printer driver for
OEM run on an identically physical Print Engine from
OEM.
0265. To guard against this, the Manufacturer/owner O/S
program code contains a PrintEngineLicense idcode (e.g. 16
bits) that matches the same named value stored as a fixed
operating parameter in the PRINTER QA (i.e. in M). As
with all other operating parameters, the value of Print
EngineLicense id is stored in PRINTER QA (and any
ADDITIONAL PRINTER QA devices) at the same time as
the other various PRINTER QA customizations are being
applied, before being shipped to the OEM site. In this way, the
OEMs can be sure of differentiating themselves through soft
ware functionality.
0266 The Manufacturer/owner O/S must perform ink
authentication during prints. Ink usage authentication makes
use of counters in SoPEC that keep an accurate record of the
exact number of dots printed for each ink.
0267 The ink amount remaining in a given cartridge is
stored in that cartridge's INK QA chip. Other data stored on
the INK QA chip includes ink color, Viscosity, Memjet firing
pulse profile information, as well as licensing parameters
such as OEM Id, inkType, InkUsageLicense Id, etc. This
information is typically constant, and is therefore likely to be
stored in M within INK QA.
0268 Just as the Print Engine operating parameters are
validated by means of PRINTER QA, a given Print Engine
license may only be permitted to function with specifically
licensed ink. Therefore the software on SoPEC could contain
a valid set of ink types, colors, OEM Ids, InkUsageLicense
Ids etc. for Subsequent matching against the data in the INK
QA.
0269. SoPEC must be able to authenticate reads from the
INK QA, both in terms of ink parameters as well as ink
remaining. To authenticate ink a number of steps must be
taken:

0270 restrict access to dot counts
0271 authenticate ink usage and ink parameters via INK
QA and PRINTER QA
0272 broadcast ink dot usage to all SoPECs in a multi
SoPEC system
0273 Regarding restricting access to dot counts, since the
dot counts are accessed via the PHI in the PEP section of
SoPEC, access to these registers (and more generally all PEP
registers) must be only available from Supervisor mode, and
not by OEM code (running in user mode). Otherwise it might
be possible for OEM program code to clear dot counts before
authentication has occurred.
0274 Regarding authenticating ink usage and ink param
eters via INK QA and PRINTER QA, the basic problem of
authentication of ink remaining and other ink data boils down
to the problem that we don’t trust INK QA. Therefore how
can a SoPEC know the initial value of ink (or the ink param
eters), and how can a SoPEC know that after a write to the
INK QA, the count has been correctly decremented.

US 2010/0223453 A1

0275 Taking the first issue, which is determining the ini
tial ink count or the ink parameters, we need a system
whereby a given SoPEC can performan authenticated read of
the data in INK QA. The SoPEC id key cannot be written to
the INK QA for two reasons:
0276 updating keys is not power-safe (i.e. if power is
removed mid-update, the INK QA could be rendered use
less)
0277 the ink cartridge would then not work in another
printer since the other printer would not know the old SoPE
C id key (knowledge of the old key is required in order to
change the old key to a new one).
The proposed solution is to let INK QA have two keys:

0278 Ko Supply InkLicense key. This key is constant
for all ink cartridges for a given ink Supply agreement
between an OEM and a Manufacturer/owner ComCo
(this is not the same key as PrintEngineLicense key
which is stored as Ko in PRINTER QA). Ko has write
permissions to the ink remaining regions of Moon INK
QA.

0279 K=UseInkLicense key. This key is constant for
all ink cartridges for a given ink usage agreement
between an OEM and a Manufacturer/owner ComCo
(this is not the same key as PrintEngineLicense key
which is stored as Ko in PRINTER QA). K has no write
permissions to anything.

0280 K is used to authenticate the actual upgrades of the
amount of ink remaining (e.g. to fill and refill the amount of
ink). Upgrades are performed using the standard upgrade
protocol, with INK QA acting as the ChipU, and the external
upgrader acting as the ChipS. The fill and refill upgrader
(ChipS) also needs to check the appropriate ink licensing
parameters such as OEM Id, InkType and InkUsageLicense
Id for validity.
(0281 K is used to allow SoPEC to authenticate reads of
the ink remaining and any other ink data. This is accom
plished by having the same UsenkLicense key within
PRINTER QA (e.g. in K or K), also with no write permis
S1O.S.

0282. This means there are two shared keys, with PRINT
ER QA sharing both, and thereby acting as a bridge between
INK QA and SoPEC.
0283 UsenkLicense key is shared between INK QA
and PRINTER QA
0284. SoPEC id key is shared between SoPEC and
PRINTER QA
0285 All SoPEC has to do is do an authenticated read
from INK QA, pass the data/signature to PRINTER QA, let
PRINTER QA validate the data/signature and get PRINT
ER QA to produce a similar signature based on the shared
SoPEC id key (i.e. the Translate function). SoPEC can then
compare PRINTER QA's signature with its own calculated
signature (i.e. implement a Test function in Software on the
SoPEC), and if the signatures match, the data from INK QA
must be valid, and can therefore be trusted.
0286 Once the data from INK QA is known to be trusted,
the amount of ink remaining can be checked, and the otherink
licensing parameters such as OEM Id, InkType, InkUsageLi
cense Id can be checked for validity.
0287 Strictly speaking, a nonce (Rs.) is not needed all
the time because M. (containing the ink remaining) should be
decrementing between authentications. However we do need
one to retrieve the initial amount of ink and the other ink
parameters (at power up). This is why taking a random num
ber from the WatchldogTimer at the receipt of the first page is
acceptable.

Sep. 2, 2010

In summary, the SoPEC performs the non-authenticated write
of ink remaining to the INK QA chip, and then performs an
authenticated read of the data via the PRINTER QA as per
the pseudocode above. If the value is authenticated, and the
INK QA ink-remaining value matches the expected value,
the count was correctly decremented and the printing can
continue.
0288 Regarding broadcasting ink dot usage to all SoPECs
in a multi-SoPEC system, in a multi-SoPEC system, each
SoPEC attached to a printhead must broadcast its ink usage to
all the SoPECs. In this way, each SoPEC will have its own
version of the expected ink usage.
0289. In the case of a man-in-the-middle attack, at worst
the count in a given SoPEC is only its own count (i.e. all
broadcasts are turned into 0 ink usage by the man-in-the
middle). We would also require the broadcast amount to be
treated as an unsigned integer to prevent negative amounts
from being substituted.
0290. A single SoPEC performs the update of ink remain
ing to the INK QAIC, and then all SoPECs perform an
authenticated read of the data via the appropriate PRINTER
QA (the PRINTER QA that contains their matching SoPEC
id key—remember that multiple SoPEC id keys can be
stored in a single PRINTER QA). If the value is authenti
cated, and the INK QA value matches the expected value, the
count was correctly decremented and the printing can con
tinue.

0291. If any of the broadcasts are not received, or have
been tampered with, the updated ink counts will not match.
The only case this does not cater for is if each SoPEC is
tricked (via a USB2 inter-SoPEC-comms man-in-the-middle
attack) into a total that is the same, yet not the true total. Apart
from the fact that this is not viable for general pages, at worst
this is the maximum amount of ink printed by a single SoPEC.
We don’t care about protecting against this case.
0292 Since a typical maximum is 4 printing SoPECs, it
requires at most 4 authenticated reads. This should be com
pleted within 0.5 seconds, well within the 1-2 seconds/page
print time.
0293. There must be a mapping of logical to physical since
specific SoPECs are responsible for printing on particular
physical parts of the page, and/or have particular devices
attached to specific pins. The identification process is mostly
solved by general USB2 enumeration.
0294 Each slave SoPEC will need to verify the boot
broadcast messages received over USB2, and only execute
the code if the signatures are valid. Several levels of authori
Zation may occur. However, at Some stage, this common
program code (broadcast to all of the slave SoPECs and
signed by the appropriate asymmetric private key) can,
among other things, set the slave SoPEC's id relating to the
physical location. If there is only 1 slave, the id is easy to
determine, but if there is more than 1 slave, the id must be
determined in Some fashion. For example, physical location/
id determination may be:

0295) given by the physical USB2 port on the master
0296 related to the physical wiring up of the USB2
interconnects

0297 based on GPIO wiring. On other systems, a par
ticular physical arrangement of SoPECs may exist such
that each slave SoPEC will have a different set of con
nections on GPIOs. For example, one SoPEC maybe in
charge of motor control, while another may be driving
the LEDs etc. The unused GPIO pins (not necessarily the
same on each SoPEC) can be set as inputs and then tied
to 0 or 1. As long as the connection settings are mutually

US 2010/0223453 A1

exclusive, program code can determine which is which,
and the id appropriately set.

0298. This scheme of slave SoPEC identification does not
introduce a security breach. If an attacker rewires the pinouts
to confuse identification, at best it will simply cause Strange
printouts (e.g. Swapping of printout data) to occur, while at
worst the Print Engine will simply not function.
0299 The QAIC has its own internal memory, broken into
the following conceptual regions:

(0300 RAM variables (3 Kbits=96 entries at 32-bits
wide), used for scratch storage (e.g. HMAC-SHA1 pro
cessing).

0301 Flash memory (8 Kbytes main block--128 bytes
info block) used to hold the non-volatile authentication
variables (including program keys etc), and program
code. Only 4 KBytes--64 bytes is visible to the program
addressing space due to shadowing. Shadowing is where
half of each byte is used to validate and verify the other
half, thus protecting against certain forms of physical
and logical attacks. As a result, two bytes are read to
obtain a single byte of data (this happens transparently).

0302) The RAM region consists of 96x32-bit words
required for the general functioning of the QAIC, but only
during the operation of the chip. RAM is volatile memory:
once power is removed, the values are lost. Note that in actual
fact memory retains its value for some period of time after
power-down, but cannot be considered to be available upon
power-up. This has issues for security that are addressed in
other sections of this document.
0303 RAM is typically used for temporary storage of
variables during chip operation. Short programs can also be
stored and executed from the RAM.
0304 RAM is addressed from 0 to 5F. Since RAM is in an
unknown state upon a RESET (RStL), program code should
not assume the contents to be 0. Program code can, however,
set the RAM to be a particular known state during execution
of the reset command (guaranteed to be received before any
other commands).
0305 The flash memory region contains the non-volatile
information in the QAIC. Flash memory retains its value after
a RESET or if power is removed, and can be expected to be
unchanged when the power is next turned on.
0306 Byte 0 of main memory is the first byte of the pro
gram run for the command dispatcher. Note that the command
dispatcher is always run with shadows enabled.
0307 Bytes 0-7 of the information block flash memory is
reserved as follows:

(0308 byte 0-3=fuse. A value of 0x5555AAAA indi
cates that the fuse has been blown (think of a physical
fuse whose wire is no longer intact).

(0309 bytes 4-7 random number used to XOR all data
for RAM and flash memory accesses

0310. After power-on reset (when the fuse is blown) or
upon receipt of a global Id Active command, the 32-bit data
from bytes 4-7 in the information block of Flash memory is
loaded into an internal ChipMask register. In Active Mode
(the chip is executing program code), all data read from the
flash and RAM is XORed with the ChipMask register, and all
data written to the flash and RAM is XORed with the Chip
Mask register before being written out. This XORing happens
completely transparently to the program code. Main flash
memory byte 0 onward is the start of program code. Note that
byte 0 onward needs to be valid after being XORed with the
appropriate bytes of ChipMask.
0311 Even though CPU access is in 8-bit and 32-bit quan

tities, the data is actually stored in flash a nybble-at-a-time.

Sep. 2, 2010

Each nybble write is written as a byte containing 4 sets ofb/-b
pairs. Thus every byte write to flash is writing a nybble to real
and shadow. A write mask allows the individual targetting of
nybble-at-a-time writes.
0312 The checking of flash vs shadow flash is automati
cally carried out each read (each byte contains both flash and
shadow flash). If all 8 bits are 1, the byte is considered to be in
its erased form (TSMC's flash memory has an erased state of
all 1s), and returns 0 as the nybble. Otherwise, the value
returned for the nybble depends on the size of the overall
access and the setting of bit 0 of the 8-bit WriteMask.

0313 All 8-bit accesses (i.e. instruction and program
code fetches) are checked to ensure that each byte read
from flash is 4 sets ofb/-lb pairs. If the data is not of this
form, the chip hangs until a new command is issued over
the serial interface.

0314 With 32-bit accesses (i.e. data used by program
code), each byte read from flash is checked to ensure that
it is 4 sets of b/-b pairs. A setting of WriteMasko-0
means that if the data is not valid, then the chip will hang
until a new command is issued over the serial interface.
A setting of WriteMask=1 means that each invalid
nybble is replaced by the upper nybble of the Write
Mask. This allows recovery after a write or erasure is
interrupted by a power-down.

0315. A high-level definition of a CPU capable of imple
menting the functionality required of an QAIC is as follows.
0316. The pin connections to the QAIC are described in
Table 2.

TABLE 2

Pin connections to QAIC

pin direction description

Vdd In Nominal voltage. If the voltage deviates from this
by more than a fixed amount, the chip will RESET,

GND In
SCIk In Serial clock
SDa In Out Serial data

0317. The system operating clock SysClk is different to
SClk. SysClk is derived from an internal ring oscillator based
on the process technology. In the FPGA implementation
SysClk is obtained via a 5th pin.
0318. The QAIC uses a 0.25 m CMOS Flash process for
an area of 1 mm yielding a 10 cent manufacturing cost in
2002. A breakdown of area is listed in Table 3.

TABLE 3

Breakdown of Area for QAIC

approximate
area (mm) description

O.49 8 KByte flash memory
TSMC: SFCOOO8 08B9 HE
(8K x 8-bits, erase page size = 512 bytes)
Area = 724,688 m x 682.05 m.

O.O8 3072 bits of static RAM
O.38 General logic
O.OS Analog circuitry

1 TOTAL (approximate)

US 2010/0223453 A1

Note that there is no specific test circuitry (scan chains or
BIST) within the QAIC, so the total transistor count is as
shown in Table 3.
0319. The chip performs a RESET upon power-up. In
addition, tamper detection and prevention circuitry in the chip
will cause the chip to either RESET or erase Flash memory
(depending on the attack detected) if an attack is detected.
0320. The base operating system clock SysClk is gener
ated internally from a ring oscillator (process dependant).
Since the frequency varies with operating temperature and
Voltage, the clock is passed through a temperature-based
clock filter before use. The frequency is built into the chip
during manufacture, and cannot be changed. The frequency is
in the range 7-14 MHz.
0321 Manufacturing comments are not normally made
when normally describing the architecture of a chip. How
ever, in the case of the QAIC, the physical implementation of
the chip is very much tied to the security of the key. Conse
quently a number of specialized circuits and components are
necessary for implementation of the QAIC. They are listed
here and described below:
0322 Flash process
0323 Internal randomized clock
0324 Temperature based clock filter
0325 Noise generator
0326 Tamper Prevention and Detection circuitry
0327 Protected memory with tamper detection
0328 Boot-strap circuitry for loading program code
0329 Data connections in polysilicon layers where pos
sible

0330. OverUnderPower Detection Unit
0331. No scan-chains or BIST
0332 The QAIC is implemented with a standard Flash
manufacturing process. It is important that a Flash process be
used to ensure that good endurance is achieved (parts of the
Flash memory can be erased/written many times).
0333. To prevent clock glitching and external clock-based
attacks, the operating clock of the chip should be generated
internally. This can be conveniently accomplished by an
internal ring oscillator. The length of the ring depends on the
process used for manufacturing the chip.
0334. Due to process and temperature variations, the clock
needs to be trimmed to bring it into a range usable for timing
of Flash memory writes and erases.
0335 The internal clock should also contain a small
amount of randomization to prevent attacks where light emis
sions from Switching events are captured, as described below.
Finally, the generated clock must be passed through a tem
perature-based clock filter before being used by the rest of the
chip.
0336. The normal situation for FET implementation for
the case of a CMOS inverter (which involves a pMOS tran
sistor combined with an nMOS transistor) as shown in FIG.
18.

0337. During the transition, there is a small period of time
where both the nMOS transistor and the pMOS transistor
have an intermediate resistance. The resultant power-ground
short circuit causes a temporary increase in the current, and in
fact accounts for around 20% of current consumed by a
CMOS device. A small amount of infrared light is emitted
during the short circuit, and can be viewed through the silicon
Substrate (silicon is transparent to infrared light). A Small

Sep. 2, 2010

amount of light is also emitted during the charging and dis
charging of the transistor gate capacitance and transmission
line capacitance.
0338 For circuitry that manipulates secret key informa
tion, Such information must be kept hidden.
0339 Fortunately, IBM's PICA system and LVP (laser
voltage probe) both have a requirement for repeatability due
to the fact that the photo emissions are extremely weak (one
photon requires more than 10 switching events). PICA
requires around 10 passes to build a picture of the optical
waveform. Similarly the LVP requires multiple passes to
ensure an adequate SNR.
0340 Randomizing the clock stops repeatability (from the
point of view of collecting information about the same posi
tion in time), and therefore reduces the possibility of this
attack.
0341 The QAIC circuitry is designed to operate within a
specific clock speed range. Although the clock is generated by
an internal ring oscillator, the speed varies with temperature
and power. Since the user Supplies the temperature and power,
it is possible for an attacker to attempt to introduce race
conditions in the circuitry at specific times during processing.
An example of this is where a low temperature causes a clock
speed higher than the circuitry is designed for, and this may
prevent an XOR from working properly, and of the two
inputs, the first may always be returned. The lesson to be
learned from this is that the input power and operating tem
perature cannot be trusted.
(0342. Since the chip contains a specific power filter, we
must also filter the clock. This can be achieved with a tem
perature sensor that allows the clock pulses through only
when the temperature range is such that the chip can function
correctly.
0343. The filtered clock signal would be further divided
internally as required.
0344. Each QAIC should contain a noise generator that
generates continuous circuit noise. The noise will interfere
with other electromagnetic emissions from the chip's regular
activities and add noise to the I signal. Placement of the
noise generator is not an issue on an QAIC due to the length
of the emission wavelengths.
0345 The noise generator is used to generate electronic
noise, multiple state changes each clock cycle, and as a source
of pseudo-random bits for the Tamper Prevention and Detec
tion circuitry.
0346 A simple implementation of a noise generator is a
64-bit maximal period LFSR seeded with a non-zero number.
0347 A set of circuits is required to test for and prevent
physical attacks on the QAIC. However what is actually
detected as an attack may not be an intentional physical
attack. It is therefore important to distinguish between these
two types of attacks in an QAIC:
0348 where you can be certain that a physical attack has
occurred.
0349 where you cannot be certain that a physical attack
has occurred.
0350. The two types of detection differ in what is per
formed as a result of the detection. In the first case, where the
circuitry can be certain that a true physical attack has
occurred, erasure of flash memory key information is a sen
sible action. In the second case, where the circuitry cannot be
Sure if an attack has occurred, there is still certainly some
thing wrong. Action must be taken, but the action should not
be the erasure of secret key information. A suitable action to

US 2010/0223453 A1

take in the second case is a chip RESET. If what was detected
was an attack that has permanently damaged the chip, the
same conditions will occur next time and the chip will RESET
again. If on the other hand, what was detected was part of the
normal operating environment of the chip, a RESET will not
harm the key.
0351. A good example of an event that circuitry cannot
have knowledge about, is a power glitch. The glitch may bean
intentional attack, attempting to reveal information about the
key. It may, however, be the result of a faulty connection, or
simply the start of a power-down sequence. It is therefore best
to only RESET the chip, and not erase the key. If the chip was
powering down, nothing is lost. If the System is faulty,
repeated RESETs will cause the consumer to get the System
repaired. In both cases the consumable is still intact.
0352. A good example of an event that circuitry can have
knowledge about, is the cutting of a data line within the chip.
If this attack is somehow detected, it could only be a result of
a faulty chip (manufacturing defect) or an attack. In either
case, the erasure of the secret information is a sensible step to
take.

0353 Consequently each QAIC should have 2 Tamper
Detection Lines—one for definite attacks, and one for pos
sible attacks. Connected to these Tamper Detection Lines
would be a number of Tamper Detection test units, each
testing for different forms of tampering. In addition, we want
to ensure that the Tamper Detection Lines and Circuits them
selves cannot also be tampered with.
0354 At one end of the Tamper Detection Line is a source
of pseudo-random bits (clocking at high speed compared to
the general operating circuitry). The Noise Generator circuit
described above is an adequate source. The generated bits
pass through two different paths—one carries the original
data, and the other carries the inverse of the data. The wires
carrying these bits are in the layer above the general chip
circuitry (for example, the memory, the key manipulation
circuitry etc.). The wires must also cover the random bit
generator. The bits are recombined at a number of places via
an XOR gate. If the bits are different (they should be), a 1 is
output, and used by the particular unit (for example, each
output bit from a memory read should be ANDed with this bit
value). The lines finally come together at the Flash memory
Erase circuit, where a complete erasure is triggered by a 0
from the XOR. Attached to the line is a number of triggers,
each detecting a physical attack on the chip. Each trigger has
an oversize nMOS transistor attached to GND. The Tamper
Detection Line physically goes through this nMOS transistor.
If the test fails, the trigger causes the Tamper Detect Line to
become O. The XOR test will therefore fail on either this clock
cycle or the next one (on average), thus RESETing or erasing
the chip.
0355 FIG. 14 illustrates the basic principle of a Tamper
Detection Line in terms of tests and the XOR connected to
either the Erase or RESET circuitry.
0356. The Tamper Detection Line must go through the
drain of an output transistor for each test, as illustrated by
FIG. 15.

0357. It is not possible to break the Tamper Detect Line
since this would stop the flow of 1s and Os from the random
source. The XOR tests would therefore fail. As the Tamper
Detect Line physically passes through each test, it is not
possible to eliminate any particular test withoutbreaking the
Tamper Detect Line.

Sep. 2, 2010

0358 It is important that the XORs take values from a
variety of places along the Tamper Detect Lines in order to
reduce the chances of an attack. FIG. 16 illustrates the taking
of multiple XORs from the Tamper Detect Line to be used in
the different parts of the chip. Each of these XORs can be
considered to be generating a ChipOK bit that can be used
within each unit or sub-unit.
0359 A typical usage would be to have an OK bit in each
unit that is ANDed with a given ChipOK bit each cycle. The
OK bit is loaded with 1 on a RESET. If OK is 0, that unit will
fail until the next RESET. If the Tamper Detect Line is func
tioning correctly, the chip will either RESET or erase all key
information. If the RESET or erase circuitry has been
destroyed, then this unit will not function, thus thwarting an
attacker.
0360. The destination of the RESET and Erase line and
associated circuitry is very context sensitive. It needs to be
protected in much the same way as the individual tamper
tests. There is no point generating a RESET pulse if the
attacker can simply cut the wire leading to the RESET cir
cuitry. The actual implementation will depend very much on
what is to be cleared at RESET, and how those items are
cleared.
0361 Finally, FIG. 17 shows how the Tamper Lines cover
the noise generator circuitry of the chip. The generator and
NOT gate are on one level, while the Tamper Detect Lines run
on a level above the generator.
0362. It is not enough to simply store secret information or
program code in flash memory. The Flash memory and RAM
must be protected from an attacker who would attempt to
modify (or set) a particular bit of program code or key infor
mation. The mechanism used must conform to being used in
the Tamper Detection Circuitry (described above).
0363 The first part of the solution is to ensure that the
Tamper Detection Line passes directly above each flash or
RAM bit. This ensures that an attacker cannot probe the
contents of flash or RAM. A breach of the covering wire is a
break in the Tamper Detection Line. The breach causes the
Erase signal to be set, thus deleting any contents of the
memory. The high frequency noise on the Tamper Detection
Line also obscures passive observation.
0364 The second part of the solution for flash is to always
store the data with its inverse. In each byte, 4 bits contains the
data, and 4 bits (the shadow) contains the inverse of the data.
If both are 0, this is a valid erase state, and the value is 0.
Otherwise, the memory is only valid if the 4 bits of shadow are
the inverse of the main 4 bits. The reasoning is that it is
possible to add electrons to flash via a FIB, but not take
electrons away. If it is possible to changea 0 to 1 for example,
it is not possible to do the same to its inverse, and therefore
regardless of the sense of flash, an attack can be detected.
0365. The second part of the solution for RAM is to use a
parity bit. The data part of the register can be checked against
the parity bit (which will not match after an attack).
0366. The bits coming from Flash and RAM can therefore
be validated by a number of test units (one per bit) connected
to the common Tamper Detection Line. The Tamper Detec
tion circuitry would be the first circuitry the data passes
through (thus stopping an attacker from cutting the data
lines).
0367. In addition, the data and program code should be
stored in different locations for each chip, so an attacker does
not know where to launch an attack. Finally, XORing the data
coming in and going to Flash with a random number that

US 2010/0223453 A1

varies for each chip means that the attacker cannot learn
anything about the key by setting or clearing an individual bit
that has a probability of being the key (the inverse of the key
must also be stored somewhere in flash).
0368 Finally, each time the chip is called, every flash
location is read before performing any program code. This
allows the flash tamper detection to be activated in a common
spot instead of when the data is actually used or program code
executed. This reduces the ability of an attacker to know
exactly what was written to.
0369 Program code should be kept in protected flash
instead of ROM, since ROM is subject to being altered in a
non-testable way. A boot-strap mechanism is therefore
required to load the program code into flash memory (flash
memory is in an indeterminate state after manufacture).
0370. The boot-strap circuitry must not be in a ROM a
small state-machine suffices. Otherwise the boot code could
be trivially modified in an undetectable way.
0371. The boot-strap circuitry must erase all flash
memory, check to ensure the erasure worked, and then load
the program code.
0372. The program code should only be executed once the
flash program memory has been validated via Program Mode.
0373) Once the final program has been loaded, a fuse can
be blown to prevent further programming of the chip.
0374. Wherever possible, the connections along which the
key or secret data flows, should be made in the polysilicon
layers. Where necessary, they can be in metal 1, but must
never be in the top metal layer (containing the Tamper Detec
tion Lines).
0375 Each QAIC requires an Overt Jnder Power Detec
tion Unit (PDU) to prevent Power Supply Attacks. A PDU
detects power glitches and tests the power level against a
Voltage Reference to ensure it is within a certain tolerance.
The Unit contains a single Voltage Reference and two com
parators. The PDU would be connected into the RESET
Tamper Detection Line, thus causing a RESET when trig
gered.
0376. A side effect of the PDU is that as the voltage drops
during a power-down, a RESET is triggered, thus erasing any
work registers.
0377 Test hardware on an QAIC could very easily intro
duce Vulnerabilities. In addition, due to the small size of the
QAIC logic, test hardware such as scan paths and BIST units
could in fact take a sizeable chunk of the final chip, lowering
yield and causing a situation where an error in the test hard
ware causes the chip to be unusable. As a result, the QAIC
should not contain any BIST or scan paths. Instead, the pro
gram memory must first be validated via the Program Mode
mechanism, and then a series of program tests run to Verify
the remaining parts of the chip.
0378 FIG. 19 shows a high level block diagram of the QA
IC. Note that the tamper prevention and detection circuitry is
not shown.

0379 FIG. 20 shows a block diagram of the Analogue
Unit. Blocks shown in yellow provide additional protection
against physical and electrical attack and, depending on the
level of security required, may optionally be implemented.
0380. The operating clock of the chip (SysClk) is gener
ated by an internal ring oscillator whose frequency can be
trimmed to reduce the variation from 4:1 (due to process and
temperature) down to 2:1 (temperature variations only) in
order to satisfy the timing requirements of the Flash memory.

Sep. 2, 2010

0381. The length of the ring depends on the process used
for manufacturing the chip. A nominal operating frequency
range of 10 MHz is sufficient. This clock should contain a
Small amount of randomization to prevent attacks where light
emissions from Switching events are captured.
(0382. Note that this is different to the input SClk which is
the serial clock for external communication.
0383. The ring oscillator is covered by both Tamper
Detection and Prevention lines so that if an attacker attempts
to tamper with the unit, the chip will either RESET or erase all
secret information.
0384 The voltage reference block maintains an output
which is substantially independant of process, Supply Voltage
and temperature. It provides a reference Voltage which is used
by the PDU and a reference current to stabilise the ring
oscillator. It may also be used as part of the temperature based
clock filter.
0385. The Under Voltage Detection Unit provides the sig
nal PwrFailing which, if asserted, indicates that the power
Supply may be turning off. This signal is used to rapidly
terminate any Flash write that may be in progress to avoid
accidentally writing to an indeterminate memory location.
Note that the PDU triggers the RESET Tamper Detection
Line only. It does not trigger the Erase Tamper Detection
Line.
(0386 The PDU can be implemented with regular CMOS,
since the key does not pass through this unit. It does not have
to be implemented with non-flashing CMOS.
(0387. The PDU is covered by both Tamper Detection and
Prevention lines so that if an attacker attempts to tamper with
the unit, the chip will either RESET or erase all secret infor
mation.
(0388. The Power-on Reset unit (POR) detects a power-on
condition and generates the PORStL signal that is fed to all the
validation units, including the two inside the Tamper Detect
Unit (TDU).
0389 All other logic is connected to RstL, which is the
PORStL gated by the VAL unit attached to the Reset tamper
detection lines within the TDU. Therefore, if the Resettamper
line is asserted, the validation will drive RStL low, and can
only be cleared by a power-down. If the tamper line is not
asserted, then RstL=PORStL.
0390 The TDU contains a second VAL unit attached to the
Erase tamper detection lines within the TDU. It produces a
TamperEraseCK signal that is output to the MIU (1=the
tamper lines are all OK, 0-force an erasure of Flash).
0391 The Noise Generator (NG) is based on a 64-bit
maximal period LFSR loaded with a set non-zero bit pattern
On RESET.
0392 The NG must be protected by both Tamper Detec
tion and Prevention lines so that if an attacker attempts to
tamper with the unit, the chip will either RESET or erase all
secret information.
0393. In addition, the bits in the LFSR must be validated to
ensure they have not been tampered with (i.e. a parity check).
If the parity check fails, the Erase Tamper Detection Line is
triggered.
0394 Finally, all 64 bits of the NG are ORed into a single

bit. If this bit is 0, the Erase Tamper Detection Line is trig
gered. This is because 0 is an invalid state for an LFSR.
0395. The 8-bit Trim register within the Trim Unit has a
reset value of 0x00 (to enable the flash reads to succeed even
in the fastest process corners), and is written to either by the
PMU during Trim Mode or by the CPU in Active Mode. Note

US 2010/0223453 A1

that the CPU is only able to write once to the Trim register
between power-on-reset due to the Trimlone flag which pro
vides overloading of LocalIdWE.
0396 The reset value of Trim (0) means that the chip has
a nominal frequency of 2.7 MHz-10 MHz. The upper of the
range is when we cannot trim it lower than this (or we could
allow some spread on the acceptable trimmed frequency but
this will reduce our tolerance to ageing, Voltage and tempera
ture which is the range 7 MHz to 14 MHz). The 2.7 MHz
value is determined by a chip whose oscillator runs at 10 MHz
when the trim register is set to its maximum value, so then it
must run at 2.7 MHz when trim=0. This is based on the
non-linear frequency-current characteristic of the oscillator.
Chips found outside of these limits will be rejected.
0397. The frequency of the ring oscillator is measured by
counting cycles, in the PMU, over the byte period of the serial
interface. Note that the PMU counts using 12-bits, saturates at
0xFFF, and returns the cycle count divided by 2 as an 8-bit
value. This means that multiple measure-read-trim cycles
may be necessary to resolve any ambiguity. In any case,
multiple cycles are necessary to test the correctness of the
trim circuitry during manufacture test.
0398. The frequency of the serial clock, SClk, and there
fore the byte period will be accurately controlled during the
measurement. The cycle count (Fmeas) at the end of the
period is read over the serial bus and the Trim register updated
(Trimval) from its power on default (POD) value. The steps
are shown in FIG. 21. Multiple measure read trim cycles
are possible to improve the accuracy of the trim procedure.
0399. A single byte for both Fmeas and Trimval provide
Sufficient accuracy for measurement and trimming of the
frequency. If the bus operates at 400 kHz, a byte (8bits) can
be sent in 20 s. By dividing the maximum oscillator fre
quency, expected to be 20 MHz, by 2 results in a cycle count
of 200 and 50 for the minimum frequency of 5 MHz resulting
in a worst case accuracy of 2%. FIG. 22 shows a block
diagram of the Trim Unit.
0400. The 8-bit Trim value is used in the analog Trim
Block to adjust the frequency of the ring oscillator by con
trolling its bias current. The two lsbs are used as a Voltage
trim, and the 6 msbs are used as a frequency trim. The analog
Trim Clock circuit also contains a Temperature filter.
04.01 The QAIC acts as a slave device, accepting serial
data from an external master via the IO Unit (IOU). Although
the IOU actually transmits data over a 1-bit line, the data is
always transmitted and received in 1-byte chunks.
0402. The IOU receives commands from the master to
place it in a specific operating mode, which is one of

(0403. Idle Mode: is the startup mode for the IOU if the
fuse has not yet been blown. Idle Mode is the mode
where the QAIC is waiting for the next command from
the master. Input signals from the CPU are ignored.

0404 Program Mode: is where the QAIC erases all
currently stored data in the Flash memory (program and
secret key information) and then allows new data to be
written to the Flash. The IOU stays in Program Mode
until told to enter another mode.

04.05 Active Mode: is the startup mode for the IOU if
the fuse has been blown (the program is safe to run).
Active Mode is where the QAIC allows the program
code to be executed to process the master's specific
command. The IOU returns to Idle Mode automatically
when the command has been processed, or if the time
taken between consuming input bytes (while the master

Sep. 2, 2010

is writing the data) or generating output bytes (while the
master is reading the results) is too great.

0406 Trim Mode: is where the QAIC allows the gen
eration and setting of a trim value to be used on the
internal ring oscillator clock value. This must be done
for safety reasons before a program can be stored in the
Flash memory.

(0407. The Central Processing Unit (CPU) block provides
the majority of the circuitry of the 4-bit microprocessor. FIG.
23 shows a high level view of the block.
(0408. The Memory Interface Unit (MIU) provides the
interface to flash and RAM. The MIU contains a Program
Mode Unit that allows flash memory to be loaded via the IOU,
a Memory Request Unit that maps 8-bit and 32-bit requests
into multiple byte based requests, and a Memory Access Unit
that generates read/write strobes for individual accesses to the
memory. FIG. 24 shows a high level view of the MIU block.
04.09. The Memory Components block isolates the
memory implementation from the rest of the QAIC.
0410 The entire contents of the Memory Components
block must be protected from tampering. Therefore the logic
must be covered by both Tamper Detection Lines. This is to
ensure that program code, keys, and intermediate data values
cannot be changed by an attacker. The 8-bit wide RAM also
needs to be parity-checked.
0411 FIG. 25 shows a high level view of the Memory
Components block. It consists of 8 KBytes of flash memory
and 3072 bits of parity checked RAM.
0412. The RAM block is shown here as a simple 96x32-bit
RAM (plus parity included for verification). The parity bit is
generated during the write.
0413. The RAM is in an unknown state after RESET, so
program code cannot rely on RAM being 0 at startup.
0414. The initial version of the ASIC has the RAM imple
mented by Artisan component RA1 SH (96x32-bit RAM
without parity). Note that the RAMOutEn port is active low
i.e. when 0, the RAM is enabled, and when 1, the RAM is
disabled.
0415. A single Flash memory block is used to hold all
non-volatile data. This includes program code and variables.
The Flash memory block is implemented by TSMC compo
nent SFC0008 08B9 HE 4), which has the following char
acteristics:
0416 8Kx8-bit main memory, plus 128x8-bit information
memory
0417. 512 byte page erase
0418 Endurance of 20,000 cycles (min)
0419 Greater than 100 years data retention at room tem
perature
0420 Access time: 20 ns (max)
0421 Byte write time: 20s (min)
0422 Page erase time: 20 ms (min)
0423 Device erase time: 200 ms (min)
0424 Area of 0.494 mm (724.66 mx.682.05 m)
0425 The FlashCtrl line are the various inputs on the
SFC0008 08B9 HE required to read and write bytes, erase
pages and erase the device. A total of 9 bits are required.
0426 Flash values are unchanged by a RESET. After
manufacture, the Flash contents must be considered to be
garbage. After an erasure, the Flash contents in the
SFCO008 08B9 HE is all 1s.
0427. The two VAL units are validation units connected to
the Tamper Prevention and Detection circuitry, each with an
OK bit. The OK bit is set to 1 on PORStL, and ORed with the

US 2010/0223453 A1

ChipOK values from both Tamper Detection Lines each
cycle. The OK bit is ANDed with each data bit that passes
through the unit.
0428. In the case of VAL, the effective byte output from
the flash will always be 0 if the chip has been tampered with.
This will cause shadow tests to fail, program code will not
execute, and the chip will hang.
0429. In the case of VAL, the effective byte from RAM
will always be 0 if the chip has been tampered with, thus
resulting in no temporary storage for use by an attacker.
0430. It would be appreciated by a person skilled in the art
that numerous variations and/or modifications may be made
to the present invention as shown in the specific embodiment
without departing from the spirit or scope of the invention as
broadly described. The present embodiments are, therefore,
to be considered in all respects to be illustrative and not
restrictive.

1. An integrated circuit configured to:
run a boot program that verifies programs before said pro

grams can be loaded onto, or run by, the integrated
circuit by Verifying whether said programs are signed
with a boot key:

Verify, with the boot program, a developmental boot pro
gram signed with the boot key which verifies develop
mental programs before said developmental programs
can be loaded onto, or run by, the integrated circuit by
Verifying whether the integrated circuit has a predeter
mined integrated circuit identifier, and

load the verified developmental boot program and run the
loaded developmental booth program thereby enabling

20
Sep. 2, 2010

loading or running of said developmental programs on
the integrated circuit if the integrated circuit has the
predetermined integrated circuit identifier, and

programmed with program code configured to:
receive encrypted Software data,
decrypt the Software data; and
validate the software data,
wherein the decrypted software is executed only when the

validation is successful.
2. An integrated circuit according to claim 1, wherein the

encryption function is RSA.
3. An integrated circuit according to claim 1, wherein the

boot program contains a plurality of keys, and one of the keys
is selected for use in decrypting the Software data, the key
being selected in accordance with a selection criterion.

4. An integrated circuit according to claim 3, wherein the
selection criterion is time-based, a particular one of the keys
being selected depending on the time the selection is made.

5. An integrated circuit according to claim 3, wherein the
selection criteria relates to a physical arrangement or configu
ration of the integrated circuit.

6. An integrated circuit according to claim 5, wherein the
physical arrangement or configuration includes one or more
of the following:

one or more pads wired to a reference Voltage or to ground;
one or more fuses, one or more of which has beenblown; or
the contents of non-volatile memory.

c c c c c

