发明名称
具有多功能参数设定的集成电路及多功能参数设定方法

摘要
本发明提供一种具有多功能参数设定的集成电路及多功能参数设定方法。此多功能参数设定方法包括以下步骤：提供集成电路，而集成电路包括多功能接脚以及开关单元，其中多功能接脚接接外部设定单元；通过开关单元的一操作来传感外部设定单元的可编程参考电压，并根据可编程参考电压执行第一功能设定；以及通过开关单元的另一操作来传感外部设定单元的可编程参考电流，并根据可编程参考电流执行第二功能设定。
1. 一种具有多功能参数设定的集成电路，耦接一外部设定单元，其特征在于，所述集成电路包括：
 - 多功能接脚，耦接所述外部设定单元；
 - 第一功能调整电路；
 - 第二功能调整电路；以及
 - 一开关单元，耦接所述多功能接脚、所述第一功能调整电路及所述第二功能调整电路，
 其中所述第一功能调整电路通过所述开关单元的一操作来传感所述外部设定单元的
 一可编程参考电压，所述第二功能调整电路通过所述开关单元的另一操作来传感所述外部
 设定单元的一可编程参考电流。

2. 根据权利要求 1 所述的集成电路，其特征在于，所述开关单元包括：
 - 第一开关，其第一端耦接所述多功能接脚，其第二端耦接所述第一功能调整电路，其
 控制端受控于一第一控制信号；以及
 - 第二开关，其第一端耦接所述多功能接脚，其第二端耦接所述第二功能调整电路，其
 控制端受控于一第二控制信号，其中第一开关与第二开关不在同一时间期间导通。

3. 根据权利要求 1 所述的集成电路，其特征在于，所述外部设定单元包括一电阻网络，
 所述电阻网络接收一参考电压并且提供所述可编程参考电压至所述多功能接脚。

4. 根据权利要求 1 所述的集成电路，其特征在于，所述外部设定单元还包括一外部设
 定线路，其连接所述开关单元的控制端。

5. 根据权利要求 2 所述的集成电路，其特征在于，还包括：
 - 一逻辑电路，用以产生所述第一控制信号与所述第二控制信号。

6. 根据权利要求 2 所述的集成电路，其特征在于，所述参数设定电路更包括还包括一
 外部设定接脚，所述外部设定接脚耦接所述第一开关与所述第二开关的受控端，所述外部
 设定接脚接收一外部控制信号，而所述外部控制信号包括所述第一控制信号与所述第二控
 制信号。

7. 根据权利要求 1 所述的集成电路，其特征在于，所述第一功能调整电路包括：
 - 一电源；
 - 一电压传感电路，耦接所述电源电路与所述开关单元之间，所述电压传感电路用于传
 感所述可编程参考电压以产生一第一参数信号；以及
 - 一第一功能设定电路，用以接收所述第一参数信号且反应于所述第一参数信号来执行
 一第一功能设定。

8. 根据权利要求 1 所述的集成电路，其特征在于，所述第二功能调整电路包括：
 - 一第一电阻，其一端耦接所述开关单元；
 - 一电流传感电路，耦接所述第一电阻的第二端，且用于传感所述第一电阻上的所述可
 编程参考电流以产生一第二参数信号；以及
 - 一第二功能设定电路，用以接收所述第二参数信号且反应于所述第二参数信号来执行
 一第二功能设定。

9. 根据权利要求 8 所述的集成电路，其特征在于，所述第二功能调整电路更包括还包括：
 - 一第一电流源，其第一端耦接一第一工作电压；
一 N 型金氧半场效晶体管，其漏极耦接所述第一电流镜的第二端，其源极耦接所述第一电阻的第二端；
一第一比较器，其第一输入端接收一第一门限电压，其第二输入端耦接所述 N 型金氧半场效晶体管的源极与所述第一电阻的第二端，其输出端耦接所述 N 型金氧半场效晶体管的栅极；
一第二电流镜，其第二端耦接一第二工作电压；
一 P 型金氧半场效晶体管，其漏极耦接所述第二电流镜的第一端，其源极耦接所述第一电阻的第二端；以及
一第二比较器，其第一输入端接收一第二门限电压，其第二输入端耦接所述 P 型金氧半场效晶体管的源极与所述第一电阻的第二端，其输出端耦接所述 P 型金氧半场效晶体管的栅极。
10. 根据权利要求 1 所述的集成电路，其特征在于，所述第二功能调整电路通过一电压缓冲器耦接所述开关单元。
11. 根据权利要求 10 所述的集成电路，其特征在于，所述第二功能调整电路包括：
一第一电阻，其第一端耦接所述电压缓冲器的输出端；
一电流传感电路，耦接所述第一电阻的第二端，且用于传感所述第一电阻上的所述可编程参考电流以产生一第二参数信号；以及
一第二功能设定电路，用于接收所述第二参数信号且反应于所述第二参数信号来执行所述第二功能设定。
12. 一种多功能参数设定方法，其特征在于，包括：
提供一集成电路，所述集成电路包括一多功能接脚以及一开关单元，其中所述多功能接脚耦接一外部设定单元；
通过所述开关单元的一操作来传感所述外部设定单元的一可编程参考电压，并根据所述可编程参考电压执行一第一功能设定；以及
通过所述开关单元的另一操作来传感所述外部设定单元的一可编程参考电流，并根据所述可编程参考电流执行一第二功能设定。
具有多功能参数设定的集成电路及多功能参数设定方法

技术领域
[0001] 本发明是有关于一种电源管理集成电路，尤指一种具有多功能参数设定的集成电路及多功能参数设定方法。

背景技术
[0002] 在一般的电脑系统，中央处理 (CPU) 所产生的电压识别码 (voltage identification definition, VID) 会随其工作状态而改变，以动态地调整其工作电压（或核心电压）来节省功率消耗。当电脑系统无需大量运算上的功率消耗时，中央处理器会根据其工作状态而产生电压识别码至电压调节器 (voltage regulator)，接着，电压调节器依据电压识别码来降低中央处理器的工作电压。
[0003] 现有用于电压调节的集成电路 (integrated circuit, IC)，通常有额外的功能，例如衰减功能 (droop function)，用以传输是否有衰减电流。若 IC 搭配额外的功能进行电压调整时，通常还需要其他的接脚，并且还需要搭配额外相当多的设定元件才能调整 CPU 的工作电压。但是，这会造成本体的 IC 面积变大，且增加制造成本。
[0004] 由此可见，随着电子技术的进步，IC 的功能也越来越多。由于 IC 的接脚数量有限，因此一些 IC 无法通过有缘接脚来增加其他的功能设定。

发明内容
[0005] 有鉴于此，本发明提出一种具有多功能参数设定的集成电路及多功能参数设定方法，藉以解决先前技术所述及的问题。
[0006] 本发明提出一种具有多功能参数设定的集成电路。集成电路耦接外部设定单元。集成电路包括多功能接脚、第一功能调整电路、第二功能调整电路以及开关单元。多功能接脚耦接外部设定单元。开关单元耦接多功能接脚、第一功能调整电路及第二功能调整电路。第一功能调整电路通过开关单元的一操作来传感外部设定单元的可编程参考电压，第二功能调整电路通过开关单元的另一操作来传感外部设定单元的可编程参考电流。
[0007] 在本发明的一示范性实施例中，开关单元包括第一开关及第二开关。第一开关的第一端耦接多功能接脚，其第二端耦接第一功能调整电路，其控制端受控于第一控制信号。第二开关的第一端耦接多功能接脚，其第二端耦接第二功能调整电路，其控制端受控于第二控制信号。其中，第一开关与第二开关不在同一时间期间导通。
[0008] 在本发明的一示范性实施例中，外部设定单元包括电阻网络，电阻网络接收参考电压并且提供可编程参考电压至多功能接脚。
[0009] 在本发明的一示范性实施例中，外部设定单元还包括外部设定线路，其连接开关单元的控制端。
[0010] 在本发明的一示范性实施例中，集成电路还包括逻辑电路，用以产生第一控制信号与第二控制信号。
[0011] 在本发明的一示范性实施例中，参数设定电路还包括外部设定接脚，而外部设定
接脚耦接第一开关与第二开关的控制端。外部设定接脚接收外部控制信号，而外部控制信号包括第一控制信号与第二控制信号。

[0012] 在本发明的一示例性实施例中，第一功能调整电路包括电流源、电压传感电路以及第一功能设定电路。电压传感电路耦接于电流源与开关单元之间，电压传感电路用于传感可编程参考电压以产生第一参数信号。第一功能设定电路用以接收第一参数信号且反应于第一参数信号来执行第一功能设定。

[0013] 在本发明的一示例性实施例中，第二功能调整电路包括第一电阻、电流传感电路以及第二功能设定电路。第一电阻的第一端耦接开关单元。电流传感电路耦接第一电阻的第二端，且用于传感第一电阻上的可编程参考电流以产生第二参数信号。第二功能设定电路用以接收第二参数信号且反应于第二参数信号来执行第二功能设定。

[0014] 在本发明的一示例性实施例中，第二功能调整电路还包括第一电流源、N型金氧半场效晶体管、第一比较器、第二电流源、P型金氧半场效晶体管以及第二比较器。第一电流源的第一端耦接第一工作电压。N型金氧半场效晶体管的漏极耦接第一电流源的第二端，其源极耦接第一电阻的第二端。第一比较器的第一输入端接收第一门限电压，其第二输入端耦接N型金氧半场效晶体管的源极与第一电阻的第二端，其输出端耦接N型金氧半场效晶体管的栅极。第二电流源的第二端耦接第二工作电压。P型金氧半场效晶体管的漏极耦接第二电流源的第二端，其源极耦接第一电阻的第二端。第二比较器的第一输入端接收第二门限电压，其第二输入端耦接P型金氧半场效晶体管的源极与第一电阻的第二端，其输出端耦接P型金氧半场效晶体管的栅极。

[0015] 在本发明的一示例性实施例中，第二功能调整电路通过电压缓冲器耦接开关单元。

[0016] 在本发明的一示例性实施例中，第二功能调整电路包括第一电阻、电流传感电路以及第二功能设定电路。第一电阻的第一端耦接电压缓冲器的输出端。电流传感电路耦接第一电阻的第二端，且用于传感第一电阻上的可编程参考电流以产生第二参数信号。第二功能设定电路用以接收第二参数信号且反应于第二参数信号来执行第二功能设定。

[0017] 本发明再提出一种多功能参数设定方法，其包括以下步骤：提供集成电路，而集成电路包括一多功能接脚以及开关单元，其中多功能接脚耦接外部设定单元；通过开关单元的一操作来传感外部设定单元的可编程参考电压，并根据可编程参考电压执行第一功能设定；以及通过开关单元的另一操作来传感外部设定单元的可编程参考电流，并根据可编程参考电流执行第二功能设定。

[0018] 基于上述，本发明的集成电路以及多功能参数设定方法可以在同一个多功能接脚实现多种功能设定，并且有效地避免集成电路面积变大的问题。另一方面，相较于传统方式，本发明的集成电路所使用的电路面积会比较小，因此还可以降低制造成本。

[0019] 下面的附图是本发明的说明书的一部分，示出了本发明的示例实施例，附图与说明书的描述一起说明本发明的原理。

附图说明

[0020] 图1是本发明一实施例的多功能参数设定的集成电路的示意图；

[0021] 图2和图3为图1的第一开关与第二开关的操作时序图；
图 4 是本发明另一实施例的多功能参数设定的集成电路的示意图；
图 5 是本发明另一实施例的多功能参数设定的集成电路的示意图；
图 6 展示为本发明一实施例的参数设定方法的流程图。
附图标记说明：
10,10A: 集成电路；
20: 外部设定单元；
110: 第一功能调整电路；
112: 电压传感电路；
114: 第一功能设定电路；
120,120A: 第二功能调整电路；
122: 电流传感电路；
124: 第二功能设定电路；
126: 电压缓冲器；
130: 开关单元；
132: 第一电流镜；
134: 第二电流镜；
136: 第一比较器；
138: 第二比较器；
140: 逻辑电路；
210: 电阻网络；
220: 外部设定线路；
CS1: 第一控制信号；
CS2: 第二控制信号；
GND: 第二工作电压；
Iocs: 电流源；
Iref: 可编程参考电流；
I1,12: 电流；
Nb: 节点；
OCS/CB: 多功能接脚；
Q1 :N 型金氧半场效晶体管；
Q2 :P 型金氧半场效晶体管；
R, R1, R2: 电阻；
S_PARA1: 第一参数信号；
S_PARA2: 第二参数信号；
SPin: 外部设定接脚；
S1: 第一开关；
S2: 第二开关；
S601 ~ S605: 本发明一实施例的多功能参数设定方法的各步骤；
T1, T2, T3, T4, T5, T6, T7: 时间；
[0061] V_r: 可编程参考电压；
[0062] VCC: 第一工作电压；
[0063] $VREF$: 第一参考电压；
[0064] VSS: 第二参考电压；
[0065] $VSS1$: 第一限电流；
[0066] $VSS2$: 第二限电流。

具体实施方式
[0067] 现将详细参考本发明的实施例，并在附图中说明所述实施例之实例。另外，在图式及实施方式中使用相同标号的元件/构件代表相同或类似部分。
[0068] 图 1 是本发明一实施例的多功能参数设定的集成电路 (integrated circuit, IC) 的示意图。请参阅图 1。集成电路 10 包括多功能接脚 OCS/CB、第一功能调整电路 110、第二功能调整电路 120 以及开关单元 130。
[0069] 多功能接脚 OCS/CB 搭接外部设定单元 20。开关单元 130 搭接多功能接脚 OCS/CB、第一功能调整电路 110 及第二功能调整电路 120。第一功能调整电路 110 通过开关单元 130 的一操作来传感外部设定单元 20 的可编程参考电压 V_r，第二功能调整电路 120 通过开关单元 130 的另一操作来传感外部设定单元 20 的可编程参考电流 I_r。
[0070] 在本示范性实施例中，开关单元 130 包括第一开关 S1 与第二开关 S2。第一开关 S1的第一端搭接多功能接脚 OCS/CB。第一开关 S1 的第二端搭接第一功能调整电路 110。第一开关 S1 的控制端受控于第一控制信号 CS1。第二开关 S2 的第一端搭接多功能接脚 OCS/CB。第二开关 S2 的第二端搭接第二功能调整电路 120。第二开关 S2 的控制端受控于第二控制信号 CS2。上述第一开关 S1 与第二开关 S2 不在同一时间周期导通。
[0071] 集成电路 10 的外部存在外部设定单元 20。外部设定单元 20 包括电阻网络 210，其搭接参考电压 $VREF$ 与 VSS。电阻网络 210 具有节点 Nb，藉以提供可编程参考电压 V_r 至多功能接脚 OCS/CB。在本实施例中，虽然电阻网络 210 为电阻 R1 串联电阻 R2，但电阻网络 210 也可串联或并联电容等元件，以达到一阻抗值，本实施例的电阻网络 210 不局限于上述形式而可以做其他的变换。
[0072] 图 2 和图 3 为图 1 的第一开关与第二开关的操作时序图，其中 T_1 至 T_7 分别表示不同的时间。在同一时间周期中，第一开关 S1 与第二开关 S2 没有同时导通，因此可以使第一功能调整电路 110 与第二功能调整电路 120 中的其中之一来执行功能设定。此外，在同一时间周期中，第一开关 S1 与第二开关 S2 可以不同期导通。换句话说，不同时间周期只允许第一功能调整电路 110 或是第二功能调整电路 120 在运作。
[0073] 举例而言，在时间期间 T_1 至 T_2，只第二开关 S2 导通。集成电路 10 执行电流平。 (current balance, CB) 功能设定；在时间期间 T_4 至 T_5，第一开关 S1 与第二开关 S2 同时不导通，集成电路 10 不执行功能设定；在时间期间 T_5 至 T_6，只有第一开关 S1 导通，集成电路 10 执行过电流 (over current setting, OCS) 功能设定。根据上述的说明，本领域的技术人员对于其他时间的功能设定可以由图式加以类推而得知，故而在此不再赘述。
[0074] 接下来对于图 1 所示的第一功能调整电路 110 与第二功能调整电路 120 的内部电路进行如下说明。请参阅图 1。集成电路 10 可以具有两种调整机制。
第一功能调整电路 110（例如，电压调整机制）包括电流源 Iocs、电压传感电路 112 以及第一功能设定电路 114。电压传感电路 112 辗接于电流源 Iocs 与第一开关 S1 之间。电压传感电路 112 用于传感器参考电压 Vr 以产生第一参数信号 S_PARA1。第一功能设定电路 114 接收第一参数信号 S_PARA1 且反应于第一参数信号 S_PARA1 来执行第一功能设定。

第二功能调整电路 120（例如，电流调整机制）包括电阻 R、电流传感电路 122 以及第二功能设定电路 124。电阻 R 的第一端接第二开关 S2。电流传感电路 122 辗接电阻 R 的第二端，且用于传感电阻 R 上的可编程参考电流 Ir 以产生第二参数信号 S_PARA2。第二功能设定电路 124 接收第二参数信号 S_PARA2 且反应于第二参数信号 S_PARA2 来执行第二功能设定。

值得一提的是，在不同时间期间，第一参数信号 S_PARA1 与第二参数信号 S_PARA2 可分别被传送至第一功能设定电路 114 与第二功能设定电路 124。第一/第二功能设定电路的形成可以是用于作为类比/数位转换器，电流平衡、输出电压偏移或衰减功能。因此，集成电路 10 可以在多个功能间接 OCS/CB 实现多种功能设定。

此外，集成电路 10 还可包括逻辑电路 140。逻辑电路 140 用于产生第一控制信号 CS1 与第二控制信号 CS2，籍以分别控制第一开关 S1 与第二开关 S2 的导通情形。本发明对于逻辑电路 140 的细部构造不加以限制。第二功能调整电路 120 还可包括电压缓冲器 126，因此电阻 R 可通过电压缓冲器 126 辗接至第二开关 S2。配置电压缓冲器 126 的好处是，可以避免可编程参考电流 Ir 所引起的负载效应而影响到可编程参考电压 Vr。另外在设计上也较为简单。

图 4 是本发明另一实施例的多功能参数设定的集成电路的示意图。请参阅图 4。图 4 是基于图 1 的架构所衍生的另一实施例。图 4 与图 1 的不同之处在于第二功能调整电路 120A。此第二功能调整电路 120A 还包括第一电流镜 132、N 型金氧半场效晶体管 Q1、第一比较器 136、第二电流镜 134、P 型金氧半场效晶体管 Q2 以及第二比较器 138。

第一电流镜 132 中的第一端耦接第一工作电压 VCC。N 型金氧半场效晶体管 Q1 的漏极耦接第一电流镜 132 的第二端，其源极接电阻 R 的第一端。第一比较器 136 的非反相输入端（第一输入端）接收一固定限电压 VS1，其反相输入端（第二输入端）耦接 N 型金氧半场效晶体管的源极与电阻 R 的第二端，其输出端耦接 N 型金氧半场效晶体管 Q1 的栅极。

第二电流镜 134 中的第二端耦接第二工作电压 GND。P 型金氧半场效晶体管 Q2 的漏极耦接第二电流镜 134 的第一端，其源极耦接电阻 R 的第二端。第二比较器 138 的非反相输入端（第一输入端）接收一固定限电压 VS2，其反相输入端（第二输入端）耦接 P 型金氧半场效晶体管 Q2 的源极与电阻 R 的第二端，其输出端耦接 P 型金氧半场效晶体管 Q2 的栅极。

假设第二参考电压 VSS 与第二工作电压 GND 为接地电压。当第一开关 S1 导通时，第二开关 S2 不导通时，位在多功能接脚 OCS/CB 上的可编程参考电压 Vr 可以根据叠原理而表示成如下的式 1。

\[V_{OCS/CB(S1_ON)} = I_{ocs} \times (R1 \parallel R2) + V_{REF} \times \frac{R2}{R1 + R2} \] (式 1)

由式 1 可知，可通过调整电阻网络 210 的电阻 R1 或 R2 的数值来决定第一功能设
定电路 114 的功能设定。[0085] 电压缓冲器 126 可以阻隔可编程参考电流 Ir 从多功能接脚 OCS/CB 汲取电流。当第一开关 S1 不导通而第二开关 S2 导通时，位在多功能接脚 OCS/CB 上的可编程参考电压 Vr 可以表示成如下的式 2。

$$V_r = V_{OCS/CB(S2_ON)} = V_{REF} \times \frac{R_2}{R_1 + R_2};$$

[0087] 假如 $V_{OCS/CB(S2_ON)} < V_{S1}$, S_PARA2 = 11;
[0088] 假如 $V_{OCS/CB(S2_ON)} > V_{S2}$, S_PARA2 = 12;
[0089] 假如 $V_{S1} < V_{OCS/CB(S2_ON)} < V_{S2}$, S_PARA2 = 0 (式 2)。
[0090] 假如电压缓冲器 126 不存在。当第一开关 S1 不导通而第二开关 S2 导通时，位在多功能接脚 OCS/CB 上的可编程参考电压 Vr 可以被修改而表示成如下的式 3。

$$V_r = V_{OCS/CB(S2_ON)}$$

$$= V_{REF} \times \frac{R_2}{R_1 + R_2} + [I1 (or I2) \times (R1/R2) + R];$$

[0093] 假如 $V_{OCS/CB(S2_ON)} < V_{S1}$, S_PARA2 = 11;
[0094] 假如 $V_{OCS/CB(S2_ON)} > V_{S2}$, S_PARA2 = 12;
[0095] 假如 $V_{S1} < V_{OCS/CB(S2_ON)} < V_{S2}$, S_PARA2 = 0 (式 3)。
[0096] 由图 4、式 2、式 3 的内容可知，可通过调整电阻网络 210 的电阻 R1 或 R2 的数值来决定可编程参考电压 Vr。关于第二功能设定电路 124 的功能设定，与可编程参考电流 Ir、可编程参考电压 Vr、第一门限电压 VS1 和第二门限电压 VS2 有关。

[0097] 图 5 是本发明另一实施例的多功能参数设定的集成电路的示意图。请参阅图 5。图 5 是基于图 1 的架构所衍生的另一实施例。图 5 与图 1 的不同之处在于，图 5 的集成电路 10A 还包括外设设定接脚 SPin，但未包括如图 1 的逻辑电路 140。外部设定接脚 SPin 接至第一开关 S1 与第二开关 S2 的控制端。外部设定接脚 SPin 可接收外部控制信号，而外部控制信号包括第一控制信号 CS1 与第二控制信号 CS2。

[0098] 外部设定单元 20A 可包括电阻网络 210 及外设设定线 220。外设设定线 220 与接开关单元 130 的控制端。使用者可由外设设定线 220 来决定第一开关 S1 与第二开关 S2 的导通情形。其中在不同时区间间，第一开关 S1 与第二开关 S2 不同时导通，但可以同时不导通。因此，在不同时区间间，使用者可致能第一功能设定电路 110 与第二功能设定电路 120 的之中一者来执行功能设定。

[0099] 基于上述实施例所示的内容，可以整理出一种通用的多功能参数设定方法。更清楚来说，图 6 示出为本发明一实施例的多功能参数设定方法的流程图。请合并参阅图 1 和图 6，本实施例的多功能参数设定方法可以包括以下步骤。

[0100] 如步骤 S601 所示，提供集成电路 10，而集成电路 10 包括多功能接脚 OCS/CB 以及开关单元 130，其中多功能接脚 OCS/CB 接接外设设定单元 20。

[0101] 接着如步骤 S603 所示，通过开关单元 130 的一操作来传感外设设定单元 20 的可编程参考电压 Vr，并根据可编程参考电压 Vr 执行第一功能设定。

[0102] 然后如步骤 S605 所示，通过开关单元 130 的另一操作来传感外设设定单元 20 的可编程参考电流 Ir，并根据可编程参考电流 Ir 执行第二功能设定。
综上所述，本发明实施例的集成电路 10 以及多功能参数设定方法可以在同一个多功能接脚 OCS/CB 实现多种功能设定，并且有效地避免集成电路面积变大的问题。另一方面，相较于传统方式，集成电路 10 所使用的电路面积会比较小，因此还可以降低制造成本。

最后应说明的是：以上各实施例仅用以说明本发明的技术方案，而非对其限制；尽管参照前述各实施例对本发明进行了详细的说明，本领域的普通技术人员应当理解，其依然可以对前述各实施例所记载的技术方案进行修改，或者对其中部分或者全部技术特征进行等同替换；而这些修改或者替换，并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
图 1

S1, S2

图 2
提供集成电路，而集成电路包括多功能接脚以及开关单元，其中多功能接脚耦接外部设定单元。

通过开关单元的一操作来传感外部设定单元的可编程参考电压，并根据可编程参考电压执行第二功能设定。

通过开关单元的另一操作来传感外部设定单元的可编程参考电流，并根据可编程参考电流执行第二功能设定。