
(19) United States
US 2007O150822A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0150822 A1
MansOur et al. (43) Pub. Date: Jun. 28, 2007

(54)

(76)

(21)

(22)

(63)

PLATFORM-INDEPENDENT DISTRIBUTED
USER INTERFACE SERVER
ARCHITECTURE

Inventors: Peter M. Mansour, Kirkland, WA
(US); Chad Arthur Schwitters,
Redmond, WA (US)

Correspondence Address:
DORSEY & WHITNEY LLP
INTELLECTUAL PROPERTY DEPARTMENT
SUTE 15OO
SO SOUTH SIXTH STREET
MINNEAPOLIS, MN 55402-1498 (US)

Appl. No.: 11/637,636

Filed: Dec. 12, 2006

Related U.S. Application Data

Continuation of application No. 09/782,845, filed on
Feb. 14, 2001, now Pat. No. 7,155,681.

SOURCE/SERVER

Publication Classification

(51) Int. Cl.
G06F 7/00 (2006.01)
G06F 3/00 (2006.01)
G06F 9/00 (2006.01)

(52) U.S. Cl. .. 71.5/762

(57) ABSTRACT

A distributed user interface (UI) system includes a client
device configured to render a UI for a server-based appli
cation. The client device communicates with a UI server
over a network such as the Internet. The UI server performs
formatting for the UI, which preferably utilizes a number of
native UI controls that are available locally at the client
device. In this manner, the client device need only be
responsible for the actual rendering of the UI. The source
data items are downloaded from the UI server to the client
device when necessary, and the client device populates the
UI with the downloaded source data items. The client device
employs a cache to store the source data items locally for
easy retrieval.

Patent Application Publication Jun. 28, 2007 Sheet 1 of 21 US 2007/O150822 A1

20A APPLICATION
LAYER

DSTRIBUTED
USER INTERFACE

SERVER

2O6

VIRTUAL
APPLICATION

CLENT

208

FIG. 2

US 2007/0150822 A1

”NOISSñOSICI 803 SO|e?|O 1 HLIM CENÝdE}{d EWOO ESVEIT.d. ”Å\/CJOL NOÏSSES NEdO NW 10nCINOO TTINA BAW

OLC --

908

K ND. KNND

Patent Application Publication Jun. 28, 2007 Sheet 2 of 21

Patent Application Publication Jun. 28, 2007 Sheet 3 of 21 US 2007/0150822 A1

400 402

N
PFROM SUBJECT RECEIVED A
2 PETER MANSOUR MEMOS 1/18/01

6 CHAD SCHWITTERS MEMOS 1/18/O1
O JOHN DOS MEETING AGENDA 1/13/01

MARK TAKAHASH OEADLINES 1/10/01
ANE DOE CREDIT CARDS 1/3/O1
JANE DOE WRELESS APPS 1/3/O1
CUSOMER SERVICE NFORMATION 12/30/OO
AUTO REPLY MEMOS 12/24/OO
JOHN DOS COMPANY LOGO? 11/13/00

SI-4D
FIG. 4

FROM
SUBJECT:

THE QUICK BROWN FOX I

<ND

Patent Application Publication Jun. 28, 2007 Sheet 4 of 21 US 2007/0150822 A1

< ND X
A.

V

N

Patent Application Publication Jun. 28, 2007 Sheet 7 of 21

906
NITALIZATION

61st RIBUTEDYN 900
U

CLIENT/SERVER
CONNECTION

90A

902

CONNECTIO

910 SELECT
APPLICATION

EXECUTE
APPLICATION

GENERATE AND
DISPLAY UI

USER ACTION

CENT DEVICE
REACTION

SEND COMMANDS OR
DATA TO CLIENT

UPDATE
CENT UI

SWITCH
APPLICATIONS

SYNCHRONIZATION

US 2007/0150822 A1

908

Patent Application Publication Jun. 28, 2007 Sheet 8 of 21

INITIALIZATIONY

CLENT SENDS ID
INFORMATION TO

SERVER

906

1002

CLIENT SENDS ITS
CAPABILITIES TO

SERVER

CENT REQUESTS
APPLICATIONS LST

SERVER SENDS
APPLICATIONS LST

TO CLIENT

1004

1008

CLENT DISPLAYS
APPLICATIONS LST

TO USER
1010

FIG. O

SYNCHRONIZATION

CLIENT SENDS ID
INFORMATION TO SERVER

FOR WERFCATION

SERVER RETREVES
SAVED APPLICATION

STATE

CLIENT SENDS LST OF
ITEMS REMOVED FROM
CACHE WHILE OFFLINE

SERVER SENDS
OFFLINE CACHE

CHANGES

UPDATE SHADOW CACHE
AND/OR CLENT CACHE

CLENT SENDS COMMANDS
AND DATA GENERATED

WHILE OFFLINE

SERVER LOADS A
SELECTED APPLICATION

SERVER DISPATCHES
OFFLINE COMMANDS TO
HE LOADED APPLICATION

FOR EXECUTION

FIG 11

US 2007/0150822 A1

908

1102

10A

1106

1108

1110

1112

1114,

1116

Patent Application Publication Jun. 28, 2007 Sheet 9 of 21 US 2007/0150822 A1

APPLICATION AND 1200
FORM SELECTION

SELECT APPLICATION 1202

CIENT SENDS SELECTION
INFORMATION TO 1204.

SERVER

- SERVER LOADS THE
SELECTED APPLICATION 12O6

SERVER INSTRUCTS
CLIENT TO GENERATE 1208

A UI FORM

1210 FORM
DEFINITION IN
CLIENT CACHE

N

CLIENT REQUESTS 1212
FORM DEFINITION

SERVER SENDS FORM 1214
DEFINITION TO CLIENT

CLIENT SAVES FORM 6
DEFINITION IN CACHE 121

CLIENT CREATES UI
FORM BASED ON THE 1218

FORM DEFINITION

CIENT RENDERS UI
FORM AND POPULATES h 1220

WITH DATA TEMS

F.G. 12

Patent Application Publication Jun. 28, 2007 Sheet 10 of 21 US 2007/0150822 A1

CLIENT CACHE 1300
MAINTENANCE

OBTAIN NEW DATA ITEMSh-302

DELETE LEAST RECENTLY
USED ITEM IN 130 A.

HIGHEST CACHE LEVEL

SAVE DATA TEM 1306
IN FREE CACHE SPACE

1308
MORE

DATA TEMS

DELETE NEXT TEM
N LEAST RECENTLY

USED ORDER

1312

ITEMS DELETED
FROM CURRENT

DELETELEAST RECENTLY USED ITEM IN THE 1
NEXT CACHE LEVEL

CREATE ENTRY IN
CLIENT SEND OUEUE
LISTING DELETED
CACHE TEMS

UPDATE SERVER 1318
SHADOW CACHE

EXIT

1316

FIG. 13

Patent Application Publication Jun. 28, 2007 Sheet 11 of 21 US 2007/O150822 A1

SERVER 1400
ACTIVATION

RECEIVE ACTIVATION
REQUEST AO2

1,06
e 1404.

REGISTER Y STORE THE
NEW APPLICATION APPLICATION NAME

AND DLL

1A.08 1410

STORE THE FORM
NAME AND FORM

DEFINITION

N

1A12 1414

Y VERIFY THE
CENT

1424 N 16
ALREAD N

PLACE 1422 <3Ed REQUEST IN Y CONNECTED
SERVER

N DISCONNECT OTHER
CLENT DEVICE

REGISTER
NEW FORM

CONNECTION
REQUEST

SEND QUEUE

EXIT
1A26

SERVERN Y MESSAGE SYNCHRONIZE
RECEIVED FROM

RECEIVE 1A2O CLENT
1428 EXIT

N

EXIT PROCESS ACTIVATION 1430
REQUEST

F.G. 14

Patent Application Publication Jun. 28, 2007 Sheet 12 of 21 US 2007/0150822 A1

SERVER
1500 SEND

1502 RETRIEVE NEXT ENTRY
IN SERVER SEND QUEUE

1504.
1506

Y SEND DATA
TO CLIENT

RESEND
REQUEST

N

SAVE DATA N MOVE REQUEST
1508 SHADOW CACHE TO SERVER

SENT OUEUE

PROCESS DATA FOR
5101 TRANSMISSION TO CLIENT EXIT

1512 SEND DATA TO CLIENT

151A, MOVE CURRENT COMMAND
TO SERVER SENT OUEUE

1516 CLENT N 1520
ACK MOVE COMMAND TO

RECEIVED SERVER SEND QUEUE

Y CEXIT)
iss-REMOVE COMMAND FROM SERVER SENT GUEUE

CEXIT

FIG. 15

Patent Application Publication Jun. 28, 2007 Sheet 13 of 21 US 2007/0150822 A1

SERVER
RECEIVE 1428

16O2 RECEIVE MESSAGE
FROM CLENT

1604

1606

APPLICATION
LIST REQUEST

Y RETRIEVE CURRENT
LIST AND PLACE INTO
SERVER SEND QUEUE

EXIT 1617
1608

APEON N PROCESS
OTIFICATIO CLIENT MESSAGE

Y 1618

1610 NOIFY THE CURRENT DISPATCH MESSAGE
APPLICATION ABOUT

THE SWITCH TO APPLICATIONS
DISPATCH ENTRY POINT

1612 LOAD NEW APPLICATION EXIT

1614 NOTIFY THE NEW
APPLICATION

1616 UNLOAD OLD APPLICATION

CEXIT)
FIG. 16

Patent Application Publication Jun. 28, 2007 Sheet 14 of 21 US 2007/0150822 A1

1700 DATA MODIFICATION

ADD, MODIFY, OR
DELETE DATA

1702
1706

1704.

GENERATE PUSH Y PUSH N

NOTIFICATION - DATA - N

UPDATE SHADOW CACHE

PLACE ITEM (AND PUSH
NOTIFICATION) INTO

SERVER SEND QUEUE

1710

1712

TRANSMIT TO CLIENT

PLACE RECEIVED ITEM
INTO CLIENT CACHE

1714.

1716

ALERT UI ELEMENT 1718
OF RECEIVED ITEM

EXECUTE (OPTIONAL) 1720
PUSH NOTIFICATION

NSTRUCTIONS

1724,
FIG. 17

Patent Application Publication Jun. 28, 2007 Sheet 15 of 21

BUFFER NCOMING DATA
UNT A FULL COMMAND 1802

S RECEIVED

DECRYPT/DECOMPRESS 1804
THE BUFFER CONTENTS

DETERMINE THE 1806
COMMAND TYPE

1810

Y SEND COMMAND TO
U ELEMENT

EXIT 1814

Y SAVE DATA IN
CLIENT CACHE

1816

NOTIFY THE Ul
ELEMENT OF THE

NEW DATA

REMOVE
CORRESPONDING
ENTRY FROM

CLIENT SENT QUEUE

1820

1818
Y

N
18221N PROCESS COMMAND EXIT

EXIT

F.G. 18

US 2007/O150822 A1

Patent Application Publication Jun. 28, 2007 Sheet 16 of 21 US 2007/0150822 A1

U ELEMENT 19 OO

1902

NEW DATA
RECEIVED

1914. 190A
DATA

Y1 COMMAND N DISPLAYED ON
RECEIVED 1906 CURRENT

FORM
SAVE

1916 N DATA IN Y
E

EXECUTE CACH 1908

THE CExt.) INCREMENT CACHE COMMAND EXIT ITEM LOCKS

EXIT 1910
1918 MOVE CACHEO
N DATA TEM

1912

1920 Y 1922 DISPLAY NEW DATA
ITEM IN THE

HANDLE USER PERFORM OTHER APPROPRIATE
ACTIONS FUNCTION CONTROL

EXIT EXIT

FIG. 19

Patent Application Publication Jun. 28, 2007 Sheet 17 of 21 US 2007/0150822 A1

CLIENT SEND OOO

RETRIEVE NEXT ENTRY 2002
IN CLIENT SEND QUEUE

Y SEND DATA fosy 2006
2004

RESEND
REQUEST

N
EXIT

TRANSFER DATA FROM 2008 CEXIT)
CLIENT CACHE TO BUFFER

DECREMENT CACHE
ITEM LOCKS 2010

PROCESS DATA FOR 2012
TRANSMISSION TO

SERVER

SEND DATA To
SERVER 2014,

MOVE COMMAND TO 2016
CIENT SENT GUEUE

2022

N MOVE COMMAND TO
CLIENT SEND QUEUE

EXIT

REMOVE COMMAND FROM 2020
CLENT SENT GUEUE

FIG. 20

Patent Application Publication Jun. 28, 2007 Sheet 18 of 21 US 2007/0150822 A1

2100 DATA DISPLAY CONTROL
MANIPULATION .

UPDATE U N RESPONSE
2102 TO MANIPULATION OF

DATA DISPLAY CONTROL

2104 REQUEST DATA FOR
CURRENT FORM

2108

2106 EXCEEDED DATA
DATA REQUEST INCLIENT Y
THRESHOLD CACHE

2110

DISPLAY "DATA REQUEST" 2112 DISPLAY DATA
INDICATION RETRIEVED

FROM CLENT
PLACE DOWNLOAD CACHE

2114 REQUEST IN CLIENT
SEND OUEUE

CEXIT)

2116

SERVER FORWARDS
2118 DOWNLOAD REQUEST TO

THE APPROPRIATE APPLICATION

2120 APPLICATION PLACES
REQUESTED DATA TEMS INTO
THE SERVER SEND QUEUE

d FG. 21

Patent Application Publication Jun. 28, 2007 Sheet 19 of 21 US 2007/0150822 A1

TRANSMT REQUESTED
2122 DATA TEMS TO CLENT

PLACE RECEIVED DATA
2124 ITEMS INTO THE

CLIENT CACHE

2126 NOTIFY UI ELEMENT
OF NEW DATA TEMS

2128 U
WAITING FOR
NEW DATA

N
2132 2130

MANTAN DATA DISPLAY DATA
ITEMS IN CLIENT ITEMS IN UI

CACHE CONTROL

EXIT EXIT

FG. 22

Patent Application Publication Jun. 28, 2007 Sheet 20 of 21 US 2007/0150822 A1

ACTION CONTROL
MANIPULATION 2300

IDENTIFY ACTIVATION 23O2
SCRIPT FOR THE CONTROL 30

OBTAIN NEXT ENTRY
2304 N THE SCRIPT GB)

2308

2306
SEND Y PLACE DATA INTO

2312 N

2310 (A)
DECREMENT LoCKS FOR

CACHED ITEMS ON
THE CURRENT FORM

SWITCH TO NEW FORM

GA) 231A.

N 2318

APPLY THE SPECIFIED
Y PROPERTIES TO THE

NAMED CONTROL
CONTROL
COMMAND

2322 2320 Ga)
REMOVE SELECTED Y DELET
ITEM FROM THE TEM
NAMED CONTROL COMMAND

PROCES
COMMAND 2326

MORE
SCRIPT
ENTRIES

PLACE DELETED ITEM
NTO THE CLIENT
SEND OUEUE

2324.

US 2007/0150822 A1 Patent Application Publication Jun. 28, 2007 Sheet 21 of 21

US 2007/O 150822 A1

PLATFORM-INDEPENDENT DISTRIBUTED USER
INTERFACE SERVER ARCHITECTURE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to U.S. patent applica
tion Ser. No. , titled “Platform-Independent Distrib
uted User Interface System Architecture.” filed , and
to U.S. patent application Ser. No. , titled “Platform
Independent Distributed User Interface Client Architecture.”
filed

FIELD OF THE INVENTION

0002 The present invention relates generally to a client
server data communication system. More particularly, the
present invention relates to a system that utilizes native
client user interface features to display data received from a
SeVe.

BACKGROUND OF THE INVENTION

0003. The number of users receiving data services via the
Internet and wireless data networks continues to grow at a
rapid pace. For example, millions of people have traditional
access to the Internet and many people use web-capable
wireless telephones. In addition, a growing number of
people own handheld computers or personal digital assis
tants (PDAs), many of which are capable of establishing a
traditional and/or a wireless connection to the Internet.

0004 At the heart of this technological explosion are the
data-capable Internet appliances. These devices encompass
a wide range of form factors: web-enabled telephones, Smart
telephones, PDAs, handheld gaming machines, and other
devices. By nature these devices are small, portable, afford
able, and offer instant access to valuable data Such as
personal information manager (PIM) data and email, as well
as entertainment Such as gaming, music, and streaming
Video. The combination of a handheld computing device
(HCD) and a wireless network connection is extremely
intriguing to the end user, offering a Substantially higher
value proposition than the HCD has ever held before. With
this change, longtime benefits such as portability, instant
power-up, and long battery life become much more valu
able. The appeal of constant connectivity without the incon
venience of carrying and waiting for a laptop computer to
start is evident.

0005. In the context of a wirelessly connected HCD, the
following advantageous uses come to mind: access to
e-mail, access to the Internet, access to calendars and
schedules, and collaboration with co-workers. Unfortu
nately, most HCDS were originally designed to function as
personal computer companions or standalone data banks. By
shifting the scenario to focus on direct network connectivity,
these devices lose the level of processing functionality they
originally had when the personal computer provided their
interface to the network. Historically there have been to be
two approaches to solving the problem of remote data
access: (1) client side processing where the user device (a
“fat client) functions as a small computer; and (2) thin
clients that operate in conjunction with server side process
1ng.

0006. In order to provide enough functionality to main
tain the perceived value of wirelessly connected devices,

Jun. 28, 2007

Some solution providers have taken the classic approach of
providing the device with more functionality, thus creating
a fat client device. For example, some providers add soft
ware and features to their platforms and applications to
allow end users to connect directly to their email servers,
browse web pages, and download and play streaming media
files. The result is an effort to create a product that maps to
the broadest segment of the market. However, due to prac
tical technology requirements, vendors are often forced to
add more and more resources to the client devices. Faster
processors and additional memory not only add cost to the
devices, but the additional power requirements call for larger
batteries which compromise both the size and weight of the
device.

0007 Three variables that determine practicality to the
end user are portability, affordability, and value. Fat client
devices, while benefiting from additional functionality, usu
ally suffer a decrease in portability, affordability, product
practicality, and mainstream adoption. In addition, a closer
look at the functionality actually being delivered by such fat
client devices reveals further limitations. For example,
although such devices can usually access simple POP3 and
IMAP4 email accounts, they may not be sophisticated
enough to negotiate corporate firewalls or communicate with
proprietary servers (e.g., Microsoft Exchange and Lotus
Domino) to access email or PIM data. As a result, corporate
end users must maintain separate email accounts for their
wireless HCDs and will have no access to corporate server
based PIM data.

0008. Thin client architectures can be segmented into
three typical categories: web interfaces, virtual machines,
and thin clients. Of the three, the stateless web interface
category seems to be garnering the most attention with the
rising popularity of the wireless application protocol (WAP)
among wireless carriers and phone manufacturers. However,
whether the format is WAP, hypertext markup language
(HTML), or any other extensible markup language (XML)
derivative, the basic concept remains the same: employ a
stateless browser-based user interface to interact with a
server-based application that will handle 100% of the appli
cation functionality and Some of the formatting work. The
result (at least for WAP browser implementations) is a client
that is Small and simple enough to fit on a wide range of
inexpensive, low-end devices. By moving in this direction,
portability and affordability are addressed, while value is
derived from powerful server-based applications. However,
although this type of architecture offers some practicality to
the end user, WAP phones and other WAP-enabled devices
are often limited from a user interface standpoint.
0009. With the wide-ranging proliferation of the Internet,
so-called “web-based applications” have become highly
prevalent. Popular sites (some examples may be Hotmail,
Yahoo! Mail, Yahoo! Calendar, and Microsoft Investor)
provide users with a web interface to the kinds of applica
tions that were previously only available as client side
software. At one level, the term “application' seems accu
rate, but the usage model of a classic client-side application
and a web-based application differ considerably. In contrast
to the client-side model, web-based applications are stateless
and non-interactive. For example, every click of the end
user's mouse, selection on a menu, or update requires a
reconnection to the server and a refresh of the web page.
Even over the fastest Internet connections the user experi

US 2007/O 150822 A1

ence on a web-based application is arduous when compared
to the persistent, interactive nature of client-side applica
tions. Another drawback of this approach is that web-based
email applications require their users to manage yet another
email address. These approaches cannot function in the true
sense of a desktop application, i.e., as a tool to reach
individual source data instead of a service.

0010 Some existing solution providers offer a web-based
system that allows users to access their corporate data via the
Internet. However, these providers require that the corpora
tion set up a virtual private network (VPN) between the
corporation's data center and the provider's service center.
This may seem like a plausible enterprise solution, but the
individual end user is still left without a viable alternative to
traveling with a laptop computer. Furthermore, many enter
prise information systems (IS) professionals are slow to
adopt new technology before the functionality and demand
has been generated by the people they support. End user
demand will not be generated unless the specific scenario
has been addressed, thus resulting in a self-perpetuating
cycle.

0011. As the Internet started gaining momentum and the
static and stateless nature of web pages became apparent,
new technologies such as Java, ActiveX, and dynamic
hypertext markup language (DHTML) were developed. The
growing popularity of wireless HCDs and the inadequacies
of the static web view will again prompt competition related
to the next development platform in the wireless market.
0012. The key element to the Java architecture is the
virtual machine. While this concept is sound and in many
cases quite effective, there are several limitations that may
be a hindrance when considering wireless HCDs. A virtual
machine establishes a layer between the operating system
(OS) and the application. Each virtual machine is compiled
for the various target operating systems, thus eliminating the
need to compile the individual applications. The applica
tions simply write to the virtual machine layer, which then
translates for the OS layer. The virtual machine functions as
an OS within an OS—hence the term “virtual machine.

0013 The level of separation from the OS comes at a
significant performance overhead. Rather than running the
application directly, the virtual machine must first run the
application and then map its commands into calls that the
underlying OS can understand. In order for the virtual
machine to be a viable cross-platform solution it must also
cater to the least common denominator of devices, thereby
limiting its functionality for higher-end platforms. Addition
ally, most virtual machine implementations download the
entire application onto the device every time the user
accesses the application, which results in long delays over a
slow or inconsistent wireless connection.

0014) An initial response to Java was ActiveX, and while
that solution is very effective in certain scenarios, the lack of
platform independence may prove to be its downfall. A
recent response to Java is DHTML, which incorporates
client-side scripting in conjunction with HTML to provide a
user experience that is far more interactive than plain HTML
while retaining platform independence. However, at one
level, DHTML is very similar in concept to a virtual
machine. Rather than having an actual virtual machine,
DHTML uses scripts and snippets of code in much the same
way a Java virtual machine does. In this regard, the browser

Jun. 28, 2007

functions as a layer between the application and the OS, and
therefore suffers from many of the same limitations as a
virtual machine.

0.015 Unlike most of the so-called “thin client” technolo
gies discussed herein, ActiveX leverages the OS and plat
form directly, making it a powerful solution for “web
accessed” (as opposed to “web-based') applications.
However, because of this, ActiveX is OS-dependent and
processor-dependent, making it a poor Solution for the HCD
space where multiple OS and processor configurations
abound. Furthermore, ActiveX is in some ways a return to
the fat client concept of installing client-side software for
local processing.

0016. With the increase in network bandwidth, one of the
oldest client-server architectures is making a resurgence.
Solutions such as Citrix, X-Windows, Windows Terminal
Server, and PC Anywhere are growing in popularity as
corporate IS professionals scramble to lower total cost of
ownership. All of these solutions employ a thin client that
can be ported to multiple platforms, and provide the user
with a full graphical representation of their applications
running on a remote server.
0017. By using this type of arrangement, corporations
may employ a system where all of their users access
applications from a single Windows 2000 server through
simple clients (such as Windows CE based terminals)
located on their desktops. The advantage to the corporation
is that this system allows multiple users to share resources
with a single point of administration, making the entire
system easier to Support. The downside is that it also
presents a centralized point of failure.
0018. Unfortunately, this model is heavy and inefficient
over the communication link. Every keystroke and user
action must be transmitted to the server and returned to the
client before the user can see it registered on the screen.
Furthermore, in order present this “window' to the server,
large bitmaps are transmitted between the server and the
client, which requires significant bandwidth.
0019 For the most part, these types of systems are
deployed within a high speed local area network (LAN)
environment, so these issues do not affect the user; however,
when considered in a wireless HCD scenario, inconsistent
lower-bandwidth connections would make a terminal server
deployment virtually unusable. Furthermore, because these
terminals simply offer a view to applications running on a
server, the user interface usually does not fit the small screen
sizes of HCDs.

0020. Therefore, although the value of a terminal server
architecture is evident in a desktop LAN environment, it
does not scale well to Smaller, wirelessly connected devices.

BRIEF SUMMARY OF THE INVENTION

0021 A preferred embodiment of the present invention
provides a data communication architecture that exhibits the
following attributes: a relatively thin client for reduced
client-side resource demands; an interactive end user expe
rience with persistent state; client platform independence;
leveraging the strengths of the particular client platform; and
ability to function well over an inconsistent, lower-band
width connection. A distributed user interface (UI) architec
ture according to the present invention can specifically

US 2007/O 150822 A1

address the wireless HCD scenario. The architecture pro
vides a persistent, interactive interface that leverages the
client’s resident OS user interface to create a look and feel
that is consistent with the rest of the device, regardless of
which platform is being used to access the server-side
application. The result is a semi-dumb client that is actually
smaller in size than most “dumb' thin clients.

0022. The distributed UI architecture maintains or emu
lates a persistent state connection with the server that
functions as a terminal session. The main difference between
the distributed architecture and terminal server applications
is that the distributed architecture only transmits data and a
brief description of how to display it (as determined by the
server, based on the client’s capabilities) between the server
and client. The client side software, using the native GUI
controls, produces the UI elements on the client, thereby
leveraging the advantages that those controls may offer. This
greatly reduces the total amount of information that must be
transmitted, while making the display of the application data
much more appropriate for the client device.
0023 The result is that there is no need to “round-trip'
every keystroke, since Such inputs can be produced using
client-side controls. Data can then be transmitted in bundles
that make more efficient use of each transmitted data packet.
Furthermore, on some complex platforms such as Windows/
Windows CE, a number of controls are relatively rich in
features. For example, the list view controls on these oper
ating systems allow users to change column width and scroll
through the list using the scroll bars. In the preferred
embodiment, the distributed UI architecture separates the UI
from the data, thus allowing the client to take advantage of
these features without needing assistance from the server.
0024. The above and other aspects of the present inven
tion may be carried out in one form by a data processing
method carried out in the context of a client-server archi
tecture. The method involves a client device describing its
UI capabilities to a UI server, which determines how to
configure the UI elements based on the received UI capa
bilities. The UI server provides a UI form definition to the
client device, which renders the UI according to the form
definition and populates the UI with data items received
from the UI server.

BRIEF DESCRIPTION OF THE DRAWINGS

0025. A more complete understanding of the present
invention may be derived by referring to the detailed
description and claims when considered in conjunction with
the following Figures, wherein like reference numbers refer
to similar elements throughout the Figures.
0026 FIG. 1 is a schematic representation of a network
deployment of a distributed user interface (UI) system;
0027 FIG. 2 is a high-level schematic representation of
a typical implementation of a distributed UI system;

0028 FIG. 3 is an illustration of a user interface associ
ated with an email application supported by a distributed UI
system;

0029 FIG. 4 is an illustration of a list view control
associated with the UI shown in FIG. 3;
0030 FIG. 5 is an illustration of a text edit control
associated with the UI shown in FIG. 3;

Jun. 28, 2007

0031 FIG. 6 is an illustration of an incomplete UI
associated with an email application;
0032 FIG. 7 is a schematic representation of the server
and client components of a distributed UI system;
0033 FIG. 8 is a schematic representation of a client
cache structure;

0034 FIG. 9 is a flow chart of a distributed UI process:
0035 FIG. 10 is a flow chart of an initialization process
that may be performed by a distributed UI architecture;
0036 FIG. 11 is a flow chart of a client-server synchro
nization process that may be performed by a distributed UI
architecture;

0037 FIG. 12 is a flow chart of an application and form
selection process that may be performed by a distributed UI
architecture;

0038 FIG. 13 is a flow chart of a client cache mainte
nance process;

0.039 FIG. 14 is a flow chart of a server activation
process;

0040 FIG. 15 is a flow chart of a server process for
sending data;
0041 FIG. 16 is a flow chart of a server process for
handling received messages;
0042 FIG. 17 is a flow chart of a process for handling
data modifications;

0.043 FIG. 18 is a flow chart of a client process for
handling received data;
0044 FIG. 19 is a flow chart of a UI element process;
004.5 FIG. 20 is a flow chart of a client process for
sending data;

0046 FIG. 21 is a flow chart of a client process for
handling a data display control manipulation;

0047 FIG. 22 is a continuation of the flow chart shown
in FIG. 21;

0.048 FIG. 23 is a flow chart of a client process for
handling an action control manipulation; and
0049 FIG. 24 is a schematic representation of a distrib
uted UI system.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

0050. The present invention may be described herein in
terms of functional block components and various process
ing steps. It should be appreciated that Such functional
blocks may be realized by any number of hardware com
ponents configured to perform the specified functions. For
example, the present invention may employ various inte
grated circuit components, e.g., memory elements, digital
signal processing elements, logic elements, look-up tables,
and the like, which may carry out a variety of functions
under the control of one or more microprocessors or other
control devices. In addition, those skilled in the art will
appreciate that the present invention may be practiced in
conjunction with any number of data transmission protocols,

US 2007/O 150822 A1

server-based end user applications, and client devices, and
that the system described herein is merely one exemplary
application for the invention.
0051. It should be appreciated that the particular imple
mentations shown and described herein are illustrative of the
invention and its best mode and are not intended to other
wise limit the scope of the invention in any way. Indeed, for
the sake of brevity, conventional techniques for data pro
cessing, data transmission, signaling, network control, and
other functional aspects of the systems (and the individual
operating components of the systems) may not be described
in detail herein. Furthermore, the connecting lines shown in
the various figures contained herein are intended to represent
exemplary functional relationships and/or physical cou
plings between the various elements. It should be noted that
many alternative or additional functional relationships or
physical connections may be present in a practical embodi
ment.

0.052 System Overview
0053. The techniques of the present invention are pref
erably carried out in the context of a network data commu
nication system. Accordingly, FIG. 1 is a schematic repre
sentation of a distributed user interface (UI) system 100 in
which the techniques of the present invention may be
implemented. System 100 is suitably configured to deliver
information, data, control commands, and the like, from at
least one server device (or system) to any number of remote
end user client devices. System 100 is depicted in a gener
alized manner to reflect its flexible nature and ability to
cooperate with any number of different communication
systems, service providers, and end user devices. Although
this description focuses on the processing and presentation
of email data, PIM data, and “office management data such
as calendars, notes, tasks, and contact lists, the techniques of
the present invention are not so limited. Indeed, the concepts
described herein may be equivalently applied to the pro
cessing, delivery, and/or presentation of any suitable data
format, including, but not limited to, still images, plain text,
styled typography, word processor documents, spreadsheets,
digital media, or any other type of information that can be
transmitted via a data communication network.

0054 System 100 may include any number of client
presentation devices 102,104,106 that communicate with at
least one UI server 108. In a typical deployment, UI server
108 is implemented in a desktop or other personal computer
system. In such a deployment, an individual end user
maintains the UI server 108 and each of the client devices
102, 104, 106. Alternatively, UI server 108 can be imple
mented as any number of Scalable components in a larger
enterprise network environment. In this respect, a scalable
enterprise Solution may be configured to execute a number
of network-based end user applications while concurrently
Supporting any number of different end users and any
number of different client device platforms. In yet another
deployment, a single end user with a single client device
may communicate with a plurality of different UI servers
representing different services, applications, or the like. For
example, one client device may be Supported by a desktop
UI server, a UI server maintained by a service provider, a UI
server maintained by an entertainment service, and the like.
For the sake of simplicity and brevity, only a desktop UI
server 108 is described in detail below. However, because

Jun. 28, 2007

the features and concepts of a desktop server can be equiva
lently applied in the context of a scalable or network-based
server, the actual number of server hardware devices utilized
in the system 100 may vary depending upon the particular
requirements and/or specifications of the system.

0055 As used herein, a "client device' or a “presentation
device' is any device or combination of devices capable of
providing information to an end user of distributed UI
system 100. For example, a client device 102, 104,106 may
be a personal computer, a television monitor, an Internet
ready console, a wireless telephone, a personal digital assis
tant (PDA), a home appliance, a component in an automo
bile, a video game console, or the like. The client devices
may be configured in accordance with any number of
conventional platforms, while using various known operat
ing systems (OSs). For example, the client device could be
a Handspring Visor running the Palm OS, a Pocket PC
running the Windows CEOS, a laptop computer running the
Windows 2000 OS, a smartphone running a custom OEM
supplied OS, or a specialized data device built with a
commercially available RTOS such as Wind River's pSos. In
practice, system 100 is particularly suited for use with
wireless client devices, since it can handle the bandwidth
limitations and inconsistent connections inherent in current
wide-area wireless networks much better than existing alter
natives. FIG. 1 depicts client device 104 as a wireless device
or system.

0056. In accordance with the preferred embodiment, the
client devices communicate with UI server 108 via a net
work 110, e.g., a local area network (LAN) a wide area
network (WAN), the Internet, or the like. Although not
shown in FIG. 1, network 110 may include any number of
cooperating wireless and/or wired network elements, e.g.,
Switches, routers, hubs, wireless base stations, gateways,
and the like. It should be appreciated that the present
invention need not utilize network 110, e.g., any number of
client devices can be connected (directly or wirelessly) to UI
server 108. In the preferred embodiment, network 110 is the
Internet and each of the individual client devices is config
ured to establish connectivity with the Internet using con
ventional application programs and conventional data com
munication protocols. For example, each client device may
be configured to connect to the Internet via an internet
service provider (ISP) (not shown in FIG. 1).

0057. In a practical embodiment, client devices 102,104,
106 and UI server 108 are connected to network 110 through
various communication links 112, 114. As used herein, a
“communication link' may refer to the medium or channel
of communication, in addition to the protocol used to carry
out communication over the link. In general, a communica
tion link may include, but is not limited to, a telephone line,
a modem connection, an Internet connection, an Integrated
Services Digital Network (ISDN) connection, an Asynchro
nous Transfer Mode (ATM) connection, a frame relay con
nection, an Ethernet connection, a Gigabit Ethernet connec
tion, a Fibre Channel connection, a coaxial connection, a
fiber optic connection, satellite connections (e.g., Digital
Satellite Services), wireless connections, radio frequency
(RF) connections, electromagnetic links, two-way paging
connections, and combinations thereof.

0058 Communication links 112, 114 may be suitably
configured in accordance with the particular communication

US 2007/O 150822 A1

technologies and/or data transmission protocols associated
with the given client device. For example, although a
communication link 112, 114 preferably utilizes broadband
data transmission techniques and/or the TCP/IP suite of
protocols, the link could employ NetBIOS, NetBEUI, data
link control (DLC), AppleTalk, or a combination thereof.
Communication links 112, 114 may be established for con
tinuous communication and data updating or for intermittent
communication, depending upon the infrastructure.
0059) The UI server 108 preferably includes and/or com
municates with one or more data sources or data servers 116.
which may be configured in accordance with conventional
techniques. As used herein, the data server 116 manages
source data items that can be delivered to the user of the
client devices. In a practical distributed UI system 100, data
server 116 may manage the delivery of email, documents,
PIM data, and/or any other type of data to and from the client
devices. For example, the data server 116 may be realized as
local, personal storage such as a Microsoft Outlook "...pst'
file on the same computer as UI server 108, or as a Microsoft
Exchange Server, a Lotus Domino Server, a POP3 server, an
IMAP server, or the like. A given data server 116 may be
integral to UI server 108, it may be a distinct component
maintained at the service site associated with UI server 108,
or it may be maintained by a third party unrelated to the
entity responsible for maintaining UI server 108. Accord
ingly, data server 116 may be configured to communicate
with UI server 108 over a direct communication link 118
and/or via network 110 using an indirect communication
link 120.

0060 A “server' is often defined as a computing device
or system configured to perform any number of functions
and operations associated with the management, processing,
retrieval, and/or delivery of data, particularly in a network
environment. Alternatively, a “server” may refer to software
that performs such processes, methods, and/or techniques.
As used herein, “UI server generally refers to a computing
architecture that processes data and defines display formats
for the client-side UI, while executing a number of server
based applications accessed by the client devices. As in most
commercially available general purpose servers, a practical
UI server may be configured to run on any Suitable operating
system such as UNIX, LINUX, the APPLE MACINTOSH
OS, or any variant of MICROSOFT WINDOWS, and it may
employ any number of microprocessor devices, e.g., the
PENTIUM family of processors by INTEL or the processor
devices commercially available from ADVANCED MICRO
DEVICES, IBM, SUN MICROSYSTEMS, or
MOTOROLA.

0061 The server processors communicate with system
memory (e.g., a Suitable amount of random access memory),
and an appropriate amount of storage or “permanent'
memory. The permanent memory may include one or more
hard disks, floppy disks, CD-ROM, DVD-ROM, magnetic
tape, removable media, Solid state memory devices, or
combinations thereof. In accordance with known tech
niques, the operating system programs and the server appli
cation programs reside in the permanent memory and por
tions thereof may be loaded into the system memory during
operation. In accordance with the practices of persons
skilled in the art of computer programming, the present
invention is described below with reference to symbolic
representations of operations that may be performed by the

Jun. 28, 2007

UI server 108 or the client device. Such operations are
sometimes referred to as being computer-executed. It will be
appreciated that operations that are symbolically represented
include the manipulation by the various microprocessor
devices of electrical signals representing data bits at memory
locations in the system memory, as well as other processing
of signals. The memory locations where data bits are main
tained are physical locations that have particular electrical,
magnetic, optical, or organic properties corresponding to the
data bits.

0062) When implemented in software, various elements
of the present invention (which may reside at the client
devices or at the UI server 108) are essentially the code
segments that perform the various tasks. The program or
code segments can be stored in a processor-readable
medium or transmitted by a computer data signal embodied
in a carrier wave over a transmission medium or commu
nication path. The “processor-readable medium' or
“machine-readable medium' may include any medium that
can store or transfer information. Examples of the processor
readable medium include an electronic circuit, a semicon
ductor memory device, a ROM, a flash memory, an erasable
ROM (EROM), a floppy diskette, a CD-ROM, an optical
disk, a hard disk, a fiber optic medium, a radio frequency
(RF) link, or the like. The computer data signal may include
any signal that can propagate over a transmission medium
Such as electronic network channels, optical fibers, air,
electromagnetic paths, or RF links. The code segments may
be downloaded via computer networks such as the Internet,
an intranet, a LAN, or the like.
0063 FIG. 2 is a high-level schematic representation of
a typical implementation of a distributed UI system 200
according to the present invention. As shown in FIG. 2, a
suitable data server 202 (as described above in connection
with data server 116) transfers source data items to an
application layer 204 associated with one or more server
based applications. In a practical implementation, the char
acteristics of the source data items may be dictated by the
particular application. For example, a source data item may
represent a text message, an email address, a contact list, a
to-do item, an appointment, a digital media clip, a file of any
format such as a bitmap, a word processor document, a
spreadsheet document, or any other type of data that is
commonly displayed by a personal computer.
0064. The application layer 204 handles the source data
items and communicates with a UI server 206, which may
be located on the same or a different computer. As described
above, UI server 206 cooperates with the server-based
applications such that the bulk of the UI rendering is
performed by the client devices, while leaving UI layout,
raw data processing, and communication of the data to the
UI server 206. In this respect, UI server 206 communicates
with a client device 208, thus resulting in a “virtual appli
cation client” device 208. As described in more detail below,
the client devices utilize cached information to create an
application facade. The client platform interprets and
handles this application facade in the same manner as any
other application. The result is an end user experience
similar to that of a fat client, with much of the value and
computing power associated with terminal server Solutions.
0065 Example Email Application
0066 For the sake of illustration, the techniques of the
present invention are explained herein in the context of an

US 2007/O 150822 A1

existing desktop email application. Of course, the distributed
UI System may (and preferably does) Support any number of
alternate and/or additional applications. FIG. 3 is an illus
tration of an example UI 300 associated with a desktop email
application. Although not a requirement of the present
invention, the UI 300 may utilize UI components, controls,
icons, and features that are utilized by standard or commer
cially available applications. For example, UI 300 may be an
example of Microsoft's Outlook, Microsoft's Outlook
Express, Novell's GroupWise, or the like.
0067. The overall appearance of UI 300 is preferably
comprised of a number of individual UI control elements. As
used herein, a “UI control” or a "control element” refers to
a unit object of the UI that is provided by the client device
OS (i.e., a native UI control) or some other application
resident at the client device. A distributed UI system may
also employ “custom’ UI controls that are specific to certain
server-based applications and/or specific to certain client
platforms. Applications can avoid excessive coding and
processing by leveraging these provided controls. A control
allows the client end user to display, enter, modify, manipu
late, and/or view data, and to initiate commands and actions
for execution by the application. In a practical system, each
client platform can have its own list of native UI controls,
e.g., buttons, Scrollbars, editing features, menus, list boxes,
list views, single-line edit areas, multi-line edit areas, labels,
and image tools. For example, UI 300 includes a row of
menu controls 302, a row of button controls 304, a tree view
control 306, a list view control 308, and a text edit control
31 O.

0068 The distributed UI system employs UI forms that
represent the different types of application UIs handled by
the system. As used herein, a “UI form' is a description of
the layout of the client device display at any given moment.
A UI form definition specifies a list of controls, the respec
tive locations of the controls as rendered on the client device
display screen, event Scripts, data sources, and possibly
other characteristics. A UI form preferably does not include
the user's data that is to be displayed by the UI controls, but
it may specify where a given control can retrieve source data
items (e.g., a pointer to a memory location at the client
device), and/or which event Scripts are executed in response
to the activation of certain controls. In a practical system, the
UI server maintains a list of different UI form definitions
corresponding to the particular client device platform and
particular screen shots of the server-based applications
accessed by the client devices. In addition, the client device
may save cached copies of these UI form definitions (the UI
server preferably sends the UI form definitions to the client
device as needed).
0069 FIG. 4 is an illustration of a list view control 400
associated with the UI 300 shown in FIG. 3. The list view
control 400 can list a number of listed entries, e.g., email
messages, associated with the email application. The list
view control has several advanced features that can be
leveraged for client-side data manipulation, rather than
relying completely on the UI server, as is the case with
known terminal server implementations. These features
include the ability to resize the columns and Scroll using a
scrollbar 402. In a traditional desktop or LAN environment,
an end user can simply manipulate a scrollbar to view the
listings. In contrast, the distributed UI system is suitably
configured to maintain a limited number of listings at the

Jun. 28, 2007

client device. As the end user Scrolls up or down past a
certain threshold, the client device will request additional
listings from the UI server, thus preserving bandwidth and
client memory space. This “virtual data scheme can also
apply to more than just listview data. For example, this
feature may be utilized to manipulate any type of data, e.g.,
text, bitmaps, etc.

0070 FIG. 5 is an illustration of a text edit control 500
associated with UI 300 shown in FIG. 3. (FIG. 5 also
contains various label controls (From, To, and Subject) and
“invisible' text edit controls associated with the labeled
fields; these controls are located in the "header' area above
the text edit control 500). The text edit control 500 may be
generated and/or manipulated while the end user composes
a new email or views a received email. The text edit control
500 may utilize multi-line edit (MLE) features to accom
modate text wrapping. In practice, the text edit control may
only display a portion of a text message while other portions
may reside in the client cache memory or at the UI server.
If end user manipulation requires the display of additional
text, additional portions of the text message may be retrieved
from the client cache or requested from the UI server. Upon
completion of a new email message, the contents of the text
edit control 500 are saved and processed for subsequent
transmission to the UI server (described below).

0071. As mentioned above, the individual button con
trols, menu controls, and tree view control also contribute to
the overall appearance of UI 300, which is rendered by the
respective client device. Of course, depending upon the size
and device capabilities of the client device, the particular UI
may be simpler and easier to render on Small displayS.
Briefly, the first time a connection is made from a given
client device to the UI server, the display information (which
may be only a few bytes) is transmitted to the client device
and cached as a form definition. From then on, the UI is
generated based upon the form definition. Importantly,
although the controls are arranged in the layout, the form
definition need not include labels or icons. For example,
FIG. 6 is an illustration of an incomplete or “skeletal' UI
600 associated with an email application. Although the user
will not experience the skeletal UI 600 during normal
operation, the client device preferably distinguishes different
UI components by keeping them in separate memory loca
tions. This allows individual elements to be updated sepa
rately, minimizing data transfer in the event of changes at the
server side. Once the various controls have been positioned
to form the UI 600, the icons, labels, and menu items can be
integrated from a separate cache, resulting in an intermediate
UI that only lacks the actual source data items (e.g., the
message list contents and the text edit fields).

0072. As described above, an email UI generated by a
client device can be considered to be an application facade,
and although the controls can be used for simple data
manipulation, the UI is not actually an email client. The
actual email application is server-based and is executed by
the UI server, and preferably only the source data items are
transmitted to the UI form (and in most cases only enough
to fill the current view supported by the client UI). This
allows the distributed UI system to offer a fully interactive,
constant state experience, yet provide rich functionality Such
as direct connectivity to a data server using MAPI over a
virtual private network such as PPTP or IPsec.

US 2007/O 150822 A1

0073. Furthermore, opening large messages or attach
ments is much simpler because the attachment is actually
being opened on the UI server, and only a single page view
(and possibly some additional cached data) need be trans
mitted to the client at any one time. In contrast, conventional
wireless PDAs (e.g., Palm devices or Blackberry devices)
cannot open attachments, and a wireless Windows CE
device must download the entire attachment before opening
(and the user runs the risk of format loss due to document
conversion, assuming the document type is Supported at all).
The view presented by the client device may be editable or
read-only, depending upon the attachment type and/or the
device capabilities.
0074. In the preferred embodiment, the client device
utilizes event scripts corresponding to different controls. For
example, if the user chooses the “Compose New Message'
from an Inbox view, the event script associated with that
button will be executed by the client device and a “New
Message' form may be displayed. Likewise, when the user
manipulates the "Send' button, the application may auto
matically return to the Inbox view and send the composed
data to the UI server for parsing and processing. The primary
benefit of event scripts is that they allow some operations to
be performed quickly without client/server communication
delay, which can be pronounced if, for example, the client
device is out of wireless range. Thus, the event Scripts can
expedite online operation while enabling some offline func
tionality.

0075. The above example illustrates some of the advan
tages of the distributed UI System, particularly in compari
son to conventional terminal server architectures. Notably,
the data can be reduced to its purest component, only the
essential parts of the data need to be sent, the UI is
appropriate for the client device platform, and clients need
not be specially configured to support each application. For
example, in a typical fat client environment, opening an
email with an attached word processor document requires a
client side email application that communicates with an
email server, along with a client side application that can
open and display the word processor document. However,
by using the distributed UI system, data is converted on the
UI server for rendering by the client device in its native UI
(unlike a terminal server, which uses the server's UI). The
client device will then merge the data with the UI compo
nents to provide an interactive interface with a persistent
state. Consequently, additional functionality can be added to
the UI server (e.g., the ability to open a different file type)
without having to install additional software on the client
device.

0.076 Furthermore, in the initial scenario, the entire word
processor document file would have to be downloaded and
converted on the client device. Over an often inconsistent
and/or low-bandwidth wireless connection, downloading a
long file will likely result in failure. As mentioned above,
even after the document is downloaded, client device con
versions often lead to formatting errors. With the distributed
UI System, the client device only displays and stores a
relatively small amount of data, and more data is down
loaded from the UI server as the user scrolls down to view
it. The result is that the same attachment can be opened
quickly, without the initial failure-prone download, without
huge local storage requirements, and without conversion
losses.

Jun. 28, 2007

0077. In accordance with one aspect of the present inven
tion, the client device can be suitably configured to edit data
in "chunks' or Small quantities without having an entire file.
Thus, a portion of a document can be downloaded to a client
device for editing while the remainder of the document is
kept at the UI server and/or while other portions of the
document are being downloaded. From the end user's per
spective, it will appear as though the entire document or data
item resides at the client device. This feature may also allow
an edited portion or chunk of data to be sent back to the UI
server for updating in conjunction with the appropriate
server-based application.
0078 Ultimately, the distributed UI system offers the
flexibility of a fat client experience without the resource
demands of Such a system. Client devices can be smaller,
have less processing power, less memory, and longer battery
life while having more functionality than current fat client
devices.

0079 General System Architecture
0080 FIG. 7 is a schematic representation of the server
and client components of an example distributed UI System.
As described above, the elements shown in FIG. 7 may
represent Software programs, Software program modules,
functional components, processing tasks or threads, memory
elements, application program code segments, or the like. In
a practical system, the server-side elements shown in FIG. 7
are included in a UI server processing architecture 702
resident at the UI server, while the client-side elements
shown in FIG. 7 are included in a client processing archi
tecture 704 resident at the respective client device. Each of
these processing architectures may be realized with one or
more processor devices and any number of memory devices
(not shown in FIG. 7). FIG. 24 is an alternate schematic view
of a distributed UI system: FIGS. 7 and 24 may apply to the
same practical system.

0081 Briefly, the UI server processing architecture 702
includes a UI server application 708 that communicates with
a number of server-based applications 710 and with a first
communication interface element 712. The UI server appli
cation 708 includes or is otherwise associated with a server
send element 714, a server receive element 716, a UI forms
database element 717, a shadow cache element 718, and a
device capabilities storage element 720. The server-based
applications 710 may communicate with one or more data
source modules 722 (which in turn communicate with any
number of data servers). The UI server processing architec
ture 702 may also support a desktop application launcher
(which can be realized as another instance of applications
710), which communicates with one or more desktop appli
cations 726 available to the end user.

0082 The client processing architecture 704 includes a
client application 728 that communicates with a second
communication interface element 730. The first and second
communication interface elements 712, 730 are suitably
configured to communicate with each other and to facilitate
the transmission and reception of Source data items, control
commands, action requests, and other commands that may
be sent between the client device and the UI server (it should
be appreciated that the UI server and the client device may
utilize any number of known techniques to carry out the
actual transmission, reception, and exchanging of informa
tion; the communication interface elements 712, 730 are

US 2007/O 150822 A1

used in the practical embodiment shown in FIG. 7). The
client application 728 includes or is otherwise associated
with a client send element 736, a client receive element 738,
a client UI module 740, and one or more client data caches
742. Client application 728 also functions in cooperation
with OS-dependent code 732 and a number of OS applica
tion program interfaces (APIs) 734. These OS-related ele
ments may represent memory allocation APIs, thread cre
ation APIs, interprocess communication APIs, mechanisms
to retrieve messages from UI controls, or the like. By
separating the client application modules from the OS
dependent code 732 and the OS APIs 734, the client archi
tecture can be ported easily to different existing client device
platforms.

0083 FIG. 7 depicts the UI server and the client device
in a connected mode that Supports two-way communication
over a network. Although Such a connected mode is utilized
during each communication session, the UI server and the
client device can operate independently and individually in
an offline manner. In other words, a permanent or continuous
session need not be maintained between the UI server and
the client device. For purposes of this example, the UI server
and client device are Suitably connected in a manner that
avoids a firewall 706. For example, in the preferred embodi
ment, the UI server communicates with the client device via
Port 80 (the web browser port). In a preferred wireless
embodiment, the two communication interface elements
utilize a suitable protocol other than HTTP, which can be
cumbersome and not particularly efficient for purposes of
the distributed UI system. For example, the communication
interface elements may employ a private protocol having the
following characteristics: less descriptive overhead than
HTML; ability to transmit only the requested source data
items rather than all of the data associated with a web page;
and ability to support an extensive list of commands that
facilitate additional interactivity. Of course, certain deploy
ments, e.g., a desktop network arrangement, may utilize
HTTP

0084. In practice, the communication interfaces 712,730
will be provided by suitable executable program modules
(such as Dynamic Link Libraries (DLLs)) resident at the
client device and the UI server. The communication DLLs
include, but are not limited to, various functions that manage
communications between the client device and the UI server.
For example, the communication DLLs may carry out data
compression, encryption, port selection, making any point
ers self-relative, word size and byte order management (the
UI server may take care of these for the client), and socket
management. The server-side communication DLL selects a
port, for example standard HTTP Port 80, to establish the
communication session, and determines how to contact (or
listen for) the client. The server-side communication DLL
reports dropped connections to the respective server-based
applications 710, but the DLL remains responsible for
reconnecting to the client device. In other configurations, the
client device can connect to the UI server.

0085 UI Server Architecture
0.086 As mentioned briefly above, the UI server employs
a UI server processing architecture 702. Processing archi
tecture 702 may include any number of server-based appli
cations 710, which are preferably driven by UI server
application 708 (in a practical implementation, UI server

Jun. 28, 2007

application 708 is realized as a single executable, i.e., a
single "...exe that serves as a driver application). The UI
server application 708 can function as a “caller that com
municates information to and from the communication inter
face element 712. Briefly, the UI server application 708
performs those server-side tasks and processes that are not
otherwise handled by the server communication interface
element 712 or the server-based applications 710. For
example, the UI server application 708 can perform any of
the following tasks: call the communication interface ele
ment 712 to establish a connection; manage connects, recon
nects, and multiple clients; monitor which server-based
applications are installed and available; switch between the
server-based applications; load the server-based applications
and dispatch messages to them; and provide a number of
common functional features, e.g., creating form definitions,
calculating font widths, and the like. Notably, the UI server
application 708 may also include other functions that are
common to more than one application. For example, it may
include device capability information and application reg
istration features.

0087. The main loop of the UI server application 708
obtains input from the client device via the server receive
element 716, and dispatches commands to the appropriate
handling routine associated with the current server-based
application (in a practical embodiment, the server-based
applications 710 will register a DLL with some standard
dispatch entry points). The current application 710 can then
call an API associated with the communication interface
element 712 to send data to the device. The sending of data
is performed by the server send element 714 (thus, UI server
application 708 on threaded systems preferably has global
data for a 'send' queue, a way to wake up the server send
element 714, and a flag to interrupt the server send element
714). During operation, UI server application 708 maintains
a 'send' queue that contains a list of data items, commands,
and other information to be sent to the client device.

0088 Although not a requirement for the system to
function, the preferred practical embodiment utilizes at least
two threads in the UI server application 708, e.g., a server
send thread and a server receive thread. Separating the
sending and receiving threads is desirable to ensure that
individual operations can be easily canceled, particularly in
view of the manner in which the UI server processes and
sends information in "chunks' to the client device. Thus, the
server send thread can handle cancellations and state
changes obtained from the server receive thread, which
collects commands, input, and information from the client in
an independent manner. It is possible, however, to imple
ment this code in non-threaded modules; Such an implemen
tation may be preferable in a scalable server environment.
0089. The server-based applications 710 can represent
any number of different applications, features, or functions,
e.g., an email application, a calendar application, an address
book or contact list, a chat application, a task reminder list,
an alarm feature, a messaging service, or any other appli
cation that could run on a desktop (or other) computer. These
applications reside primarily at the UI server, which handles
most, if not all, of the application processing on behalf of the
client devices. Other than telling the client device what UI
changes to make based on the current UI state and actions
selected by the user, the job of the UI server is basically to
be a remote data source. The primary difference between this

US 2007/O 150822 A1

type of data source and typical ones is simply that the client
need not know the names, types, or source of the data; the
UI server is responsible for obtaining and formatting the
data for the client based on a data ID that the UI server
associates with the control descriptions in the form defini
tion. Notably, the UI server can be configured to commu
nicate with and Support multiple data sources for any given
server-based application 710. For example, PIM applica
tions may utilize a number of different data Sources, e.g.,
Microsoft Exchange, Starfish Organizer, Novell Communi
cator, and the like. Accordingly, each of the server-based
applications 710 preferably contains an interface to a per
application data source module 722, which can be replaced
depending on which data source is being used.
0090. In accordance with one possible example imple
mentation, the UI server application 708 may be imple
mented as a state machine having a number of application
sized DLLs. Thus, although actually realized as a
combination of application modules, each of the server
based applications 710 will appear as separate applications
to the user of the client device. Each of these DLLs can have
separate routines to handle the state of a given form. The UI
server preferably maintains the current state of each server
based application 710 even when communication problems
are reported by the server communication interface element
712. This feature allows the distributed UI system to main
tain the various applications persistently regardless of the
connection status of the client device. In addition, the UI
server application 708 preferably includes an API configured
to register the server-based applications 710, and each
individual application 710 can call another API to obtain a
list of the server-based applications 710. In this manner, a
listing of all available or supported applications 710 can be
placed in a menu or control element (e.g., a 'GO’ menu)
generated by each individual application 710.
0091. In another possible implementation, the UI server
application 708 need not be realized as a state machine. In
addition, although not a requirement of the present inven
tion, any of the server-based applications 710 can be realized
individually as a state machine. In this implementation, the
individual applications 710 are not provided with the appli
cation list. Rather, UI server application 708 can send the
application list to the client device, which in turn makes it
accessible from within any of the server-based applications
710. Alternatively, the client device may include a separate
application that is devoted to the display of the application
list.

0092. The server-based applications 710 may communi
cate with any number of data source modules 722, which in
turn obtain source data items from one or more data servers
(see FIG. 1). The data source modules 722 may utilize any
Suitable communication protocol or model, e.g., the
Microsoft Outlook Object Model (OOM), to communicate
with the data servers. For example, multiple data source
modules 722 may be suitably configured (in accordance with
known techniques) to each communicate with one of the
following server types: Microsoft Exchange, Lotus Notes,
IMAP POP3, and SMTP. Alternatively, a single data source
module 722 could use a multi-source API, such as OOM, to
communicate with any one of those data sources. Once
obtaining the source data items, the data source modules 722
can function as an interface or an intermediary for the
server-based applications 710 that process the source data

Jun. 28, 2007

items. In this respect, the server-based applications are
configured to manipulate Source data items for presentment
and/or editing at the client device.
0093. As mentioned briefly above, the UI server process
ing architecture 702 preferably includes or communicates
with the UI forms database element 717. UI forms database
element 717 preferably stores information related to the
forms, controls, layouts, parameters, and/or characteristics
associated with the application UIs. In a practical embodi
ment, the UI forms database element 717 stores form
definitions that are utilized by the client devices during UI
processing and rendering. In the preferred embodiment, the
UI controls, UI forms, and UI definitions are based (at least
in part) upon a number of device capabilities for the respec
tive client device. This functional relationship is depicted in
FIG. 7, which shows the UI forms database element 717
operatively coupled to the device capabilities storage ele
ment 720.

0094) Any given control on a UI form can have a list of
commands (or a script) to execute when the control is
activated, manipulated, or selected by the end user (via, e.g.,
a button press, double-clicking on a listview item, making a
listbox selection, or the like). These “scripting commands
may be a simple subset of the commands that the UI server
can send to the client device. These commands allow the
client device to perform common actions locally without
relying on the UI server. Notably, the command Scripts can
be specified by the UI server and communicated to the client
device at an appropriate time (e.g., during an initialization
session), or the command Scripts can be pre-loaded into a
suitable client device software application that is compatible
with the corresponding UI server application. Thus,
although the command Scripts are executed by the client
device, they may originate at the UI server.

0095 The UI forms can be dynamically or statically
defined as text files or in accordance with any suitable file
format. The server-based applications 710 may also include
a default dynamic layout generator to Support new client
device configurations or platforms. In addition, the UI server
application 708 and the applications 710 can be updated as
necessary for compatibility with new client platforms. As
noted previously, the UI server architecture 702 is preferably
in charge of most, if not all, of the UI details, which
simplifies the client device processing and makes system
updating easier.

0096) Shadow cache 718, which is maintained by the UI
server, may include a list of Source data items, UI form
information, and other client-related data that has been
transmitted from the UI server to the client device. The
shadow cache 718 may also include a list of new or modified
data items, UI form information, and other client-related
data received from the client device. Thus, the shadow cache
718 may contain data representing items transmitted from
the UI server to the client device and/or items that have been
saved in the client cache. The UI server can interrogate the
shadow cache 718 to determine the data cached at the client
device, and update the shadow cache 718 in response to
modifications to cached data entered by the client device.
Shadow cache 718 allows the UI server to monitor the status
of the client cache, maintain synchronization with the client
device, recognize when it is appropriate to “push” certain
data types to the client device, Support the persistent appli

US 2007/O 150822 A1

cation states, and allows the UI server application 708 to
manage the downloading of new or modified information to
the client device without repeatedly invoking applications
710.

0097. The device capabilities storage element 720 is
preferably accessible by each of the server-based applica
tions 710. This storage element 720 stores the device capa
bilities of the respective client device. In the preferred
embodiment, the UI server obtains the device capabilities
for each client device during the initial session. As used
herein, "device capabilities' means any parameter, specifi
cation, requirement, limitation, physical or functional char
acteristic, identifying information, or status information for
the client device. The UI server utilizes one or more device
capabilities to define the UI forms for the client device. A
practical UI server may obtain, process, and store one or
more of the following device capabilities (the following list
of examples is not intended to limit or otherwise restrict the
Scope of the present invention):

0098 ability to process documents in rich text, bitmap,
HTML, WAP, and/or text format;

0099) device manufacturer;
0100
0101) device OS;

a version or release identifier;

0102 display screen dimensions (e.g., width and
height):

0.103 screen type (e.g., pixel or block) and resolution;
0.104 form area dimensions (e.g., width and height)
and location;

0105 taskbar dimensions (e.g., width and height) and
location;

0106 scrollbar dimensions (e.g., width and height) and
location;

0.107 maximum receivable packet size;
0108) desired or default font;
0109) list of available native controls;
0110 list of available native icons;
0.111 specifications or formatting for any custom
icons; and

0112 client cache size.
0113 Desktop Application Launcher
0114. The UI server processing architecture may also
include desktop application launcher 724, which is suitably
configured to allow the user to launch applications or
programs that are normally accessible via the desktop. In a
practical implementation, the application launcher 724 is
realized as one of the server-based applications 710. Appli
cation launcher 724 preferably communicates with the vari
ous desktop applications 726, which may be maintained by
(or accessible to) the UI server. The application launcher 724
will try to shrink the desktop application down to a small
window and monitor the output of the desktop application.
The application launcher 724 converts display data from the
desktop application into a format compatible with the dis
tributed UI system. Thus, the UI server can dynamically

Jun. 28, 2007

transmit the converted data to the client device for rendering.
The application launcher 724 will tell the client device what
UI elements to draw, and will send textual or graphical
output to the appropriate controls on the client device.
Buttons (and other user entries) pressed on the device will be
converted into the same or equivalent entries in the desktop
application 726.

0115 Effectively, the application launcher 724 functions
as an intermediary that sends output from the given desktop
application to the client device, and input from the client
device to the desktop application. In practice, the application
launcher 724 can use a Suitable messaging format compat
ible with the server OS, e.g., Windows messages. In this
respect, the distributed UI system can also function like a
terminal server, but with greatly reduced bandwidth require
mentS.

0.116) The UI server processing architecture 702 may also
include a software developer kit (SDK) that allows third
party developers to write more server-based applications
710. The SDK also makes it easier to port an existing
desktop application for use with the UI server.

0117 Client Device Architecture
0118. In the preferred embodiment, the client application
728 (along with the communication interface element 730
and the OS-dependent code 732) is embedded in read-only
memory in the client device. In a practical deployment, a
given client device need not be upgradeable. Thus, the client
application 728 is preferably designed to be compatible with
any number of UI server versions. Although the client
application 728 may reside on a client device that is spe
cifically designed for compatibility with the UI server, the
client application 728 will likely be ported to many device
platforms (possibly released by many different manufactur
ers). Accordingly, client application 728 is preferably con
figured in a manner that isolates the platform-specific and/or
OS-dependent code 732 (e.g., code associated with creating
windows, allocating cache memory, displaying bitmaps, and
the like).
0119) Although multiple threads are not required, in the
example embodiment, the client application 728 includes
three separate processing threads or modules: the client send
(or response) thread 736, the client receive (or command)
thread 738, and the client UI thread 740. The client receive
thread 738 is dedicated to processing commands, source
data items, and other information that come from the UI
server. The client receive thread 738 may communicate with
the UI thread 740 and the client data caches 742. The receive
thread 738 will basically sit in a loop while receiving
commands from the UI server. In response to the commands,
the receive thread 738 may place data into data caches 742
or notify the UI thread 740 when it has work to do. Client
receive thread 738 is capable of interrupting the other client
elements if the command so requires (for example, if the
command instructs the client device to switch to a new UI
form).
0.120. To receive and process a command from the UI
server, the client receive element 738 calls a routine that
waits for a full command to arrive at the socket (in a
practical implementation, each command is preceded by a
simple 16-bit length). If part of a command arrives and the
rest does not arrive in a timely fashion, then the client

US 2007/O 150822 A1

receive element 738 may initiate a resend request. The client
receive element 738 may also be responsible for decrypting
and decompressing the received data, adjusting self-relative
pointers, and placing the data into a suitable structure.
Thereafter, the receive element 738 enters a switch state
ment based on the command type. For example, most
commands will be to either set or modify data in the cache
(and let the UI module 740 know of the change), or to tell
the UI module 740 to make a change (e.g., move a control,
load a new form, or the like). Consequently, the receive
element preferably understands the format of all commands
used by the UI server and understands the details of the
client caches 742.

0121 The separate UI module 740 is preferably dedi
cated to UI tasks, such as drawing UI forms, displaying the
data that arrived in the client receive element 738, and acting
on commands given by the user. The UI module 740 waits
for commands from the client receive element 738 and
commands generated by end user manipulation of the client
device. The UI module 740 also understands the client data
caches 742, so that it can update the UI display when ordered
to do so by the receive element 738. For example, if the UI
module 740 needs some data items that are not in the data
caches 742, it will request such data via the client send
element 736 (but not display it until told to do so by the
receive element 738). In response to a user action, the UI
module 740 may poll a cached table of “script commands
to determine what action the client device should take. The
data may include a token or other suitable identifier to
specify which form was active when the client device
requested more information (the user could have switched to
a different form while waiting for additional data). These
tokens can be provided by the UI server along with the data;
the client device may handle the tokens like opaque identi
fiers.

0122) The client send element 736 is dedicated to sending
data to the UI server. In the preferred embodiment, the client
send element 736 is separate from the UI module 740 so that
the client device can easily resend lost data packets. The
send element 736 will largely send information to the UI
server as requested by the UI module 740. The send element
736 may also collude with the receive element 738 to ensure
that transmitted requests are acknowledged in a reasonable
amount of time; if not, the request can be resent. In the
preferred embodiment, a server acknowledgement is moni
tored for all information sent to the UI server. This allows
the client device to keep track of data the server hasn’t
received. Similarly, when the UI server sends multi-part
replies in response to a client request, the UI server prefer
ably sends the response acknowledgement with the last part.
0123 The send element 736 may also be configured to
obtain data from the UI module 740 and call a routine to turn
it into socket data (or into any Suitable data format compat
ible with the current data communication scheme). The send
element 736 can also prepend command length and com
mand identification (which gets acknowledged by the UI
server, so that the client device can tell that the communi
cation was successful), make pointers self-relative, com
press the data, encrypt it, and send it to the UI server.
0.124 Client Caches
0125 The client device maintains a number of caches for
various types of data. For example, the client device pref

Jun. 28, 2007

erably stores a list of UI forms or UI form definitions, which
can be named so that the various server-based applications
can share them. Each UI form may have cached controls,
and each control may include cached data. The data specifies
which form, which instance of the form (for example a
“Read Message' form can be used to view many messages),
and which control. In addition, Some controls, e.g., list
views, may include an array of data. Although the present
invention is not limited to the processing of any particular
data types, typical data items will represent text, icons, or
bitmaps. Due to practical storage space limitations, the client
device may run out of cache memory after a period of use.
As a result, the client device is preferably configured to clear
items from the data caches 742 to accommodate incoming
data as it arrives from the UI server.

0.126 FIG. 8 is a schematic representation of a client icon
and control data cachestructure 800 that may be used by the
distributed UI system. In addition to the UI controls being
separated from the application, the icons, menu items, and
labels that map to the controls in a form definition are also
kept in another cachestructure. This is done for two reasons.
First, the application service provider (ASP) or wireless
carrier may choose to change the look and feel of an
application, or change a single item without changing the UI
layout of the application. Separating the individual charac
teristics of a UI gives the ASP more flexibility. The second
reason is that certain icons (e.g., formatting icons or menu
items) are repeated across various applications. Referencing
them from a separate cache reduces the need for redundancy
and maintains lower resource requirement.

0127. Due to practical memory storage limitations, the
size of a client cache may vary from platform to platform.
Accordingly, the client device application is preferably
configured to maintain the client cache in a hierarchical
manner Such that Some information types are protected
while less preferred information types are more readily
deleted to accommodate newly downloaded data. For
example, cache structure 800 may include any number of
logical levels or divisions. In practice, each stored data item
may include an identifier that represents such a level. In the
illustrated example, the first level 802 is associated with
ordinary source data items that have the lowest preference,
i.e., these items are discarded before other items contained
in the lower levels. The fifth level 810 is associated with
form data or form definitions. The fifth level 810 contains
information types having the highest relative preference, i.e.,
these items are the last to be discarded when the client
device needs additional cache space.

0128. In the example embodiment, the first time the UI
server connects to the client device, the details of how the
controls are to be arranged are cached and an application
identification is associated with them. From that point on,
unless otherwise stipulated by the server, that application
facade will be built from the cached UI form data. The UI
server need not be consulted with regard to the stored UI
layouts. In addition, individual UI elements need not be
actually downloaded. Instead, the UI server can simply send
directions to the client device, instructing the client device
to use native OS GUI elements, which are already on the
client as part of the client platform OS. Leveraging native
controls improves performance and provides a more inter

US 2007/O 150822 A1

active, fat client feel to the remote application. In addition,
such leveraging lowers the overall network bandwidth
requirements.

0129. The remaining levels correspond to increasing
importance or higher preference: the second level 804 is
associated with UI icons; the third level 806 is associated
with important data; and the fourth level 808 is associated
with important UI icons. The “importance' of the items may
be dictated by the UI server; important data or icons are
those that the user is likely to use soon or those that the client
device may utilize more often than others. For example, the
text of an email message need not be labeled as important
because once opened, the user is less likely to open it again
in the near future. On the other hand, a list of messages is
important because the user is likely to switch often between
the list and specific messages in the list.

0130. Within any given cache level, data is removed
according to when it was last used by the client device. Thus,
the least recently used (the “older data) is discarded first,
while the most recently used (the “newer data) is preserved
as long as possible. Accordingly, assuming that all of the
existing items in the client cache structure 800 will be
replaced, the least recently used data of an ordinary nature
will be deleted first, while the most recently used form data
will be deleted last. The arrow in FIG. 8 represents the order
in which the cache items will be discarded.

0131. In addition to cachestructure 800, the client device
may maintain a control object mapping cache, an event
cache, and/or other logically separated cache structures. The
control object mapping cache facilitates the client platform
independence of the distributed UI system. The first time an
application is launched (or any time the UI server informs
the client that there has been a change) the UI server sends
the client device a number of form definitions, which serve
to describe the application facade. However, because every
platform can have different controls, the control object
mapping cache servers as a “virtual machine' to determine
which controls map to each UI server command. Under
standing that each platform has different limitations, the UI
server can vary the UI description based on the client device,
however, the basic controls can still be assumed. This
information is preferably stored in a separate cache So that
controls can be added at a later date to expand the platform
functionality, and to thereby change the mapping. By simply
updating the control object mapping cache, the new controls
can easily be added to the platform.

0132) The event cache (which may be considered to be a
part of the UI form data cache) is used to map specific UI
elements to an event or an action. For example, in an email
application, the “Compose New Mail button can be
mapped to the matching form definition such that the UI is
immediately displayed when the user chooses the option,
without ever referencing the server. Again, this allows
multiple applications to share common events, thereby low
ering redundancy and allowing events to be updated or
added, on an as-needed basis, by the UI server.
0133) Virtual Controls
0134. As described above, the client device may include
any number of “virtual controls. For example, any item that
contains a large amount of data, e.g., a dropdown list, a
listView, a multi-line edit control, a picture, or the like, can

Jun. 28, 2007

be sent from the UI server in small chunks or increments.
The client will cache each segment and request additional
segments as necessary when the user navigates the data. In
practice, the UI server can initially transmit a complete
length identifier or a number of listview items. Then, the
client device can assume data management responsibilities
and request items when necessary to fill the client cache. The
client cache preferably contains enough data to allow the
user to navigate the UI display without waiting for an
unreasonable period of time.

0.135) In one practical embodiment, the client device can
maintain a virtual Scrollbar (or some Such control) to allow
the user to navigate the data while it appears as if all of the
data is present on the client device. Thus, although the
scrollbar can be rendered in conjunction with another con
trol element (e.g., a listView), it can be realized as a distinct
control that is configured to modify the contents, character
istics, or representation of the “linked' control element. In
this respect, a virtual UI control rendered by the client
device can be suitably configured to impact a remote data
source. The client UI module 740 need not wait for
requested data; the user may scroll down a bitmap for a
while, then switch to another form while lookahead data is
being sent by the UI server. The data items can be modified
by the UI server; for example, listview items may be inserted
and deleted when new email comes in or when the user
deletes a message.

0.136 Send/Receive/Reconnect Processing. In accordance
with one example implementation, the procedure for send
ing and receiving data and commands is essentially the same
for the UI server and the client device. Each side maintains
two queues of data packets: one is a list of unsent packets
and the other is a list of packets that were sent but have not
been acknowledged by the other side. Once a connection is
established, the send element looks at any data in the “send’
queue and proceeds to send the data packets (in order) across
the connection. After a successful send operation, the packet
gets moved to the back of the “sent queue (assuming that
no exceptions exist).

0.137 Meanwhile, the receive element sits and waits for
data to arrive from the other side. When a complete packet
or command arrives, the receive element analyzes the packet
header to determine whether the current packet is an unso
licited packet or a packet meant as a receipt acknowledge
ment. For instance, the client device can make this deter
mination by checking whether the current command is in the
range of client commands or in the range of server com
mands. A client command implies that the current packet is
simply an acknowledgement from the server and that the
associated packet sent earlier by the client has been received.
If the current packet is indeed an acknowledgement packet,
then the receive element looks at the front of the “sent
queue and removes the corresponding packet. That packet
has now been Successfully received and need not be moni
tored any longer.

0.138 If the received packet is an unsolicited command,
then the recipient should immediately acknowledge the
packet. An acknowledgement packet is created and placed
into the “send' queue. The send element will see this packet
as it processes the 'send' queue and send it to the other side.
However, it will not move the acknowledgement packet into
the “sent queue after sending.

US 2007/O 150822 A1

0139 For recovery after a session has been interrupted
and is reconnected, each side is responsible for ensuring that
possibly lost data is resent in the correct order. To this end,
each side places its entire “sent queue to the front of the
“send' queue or into a “resend' queue. This reprioritization
ensures that any data that has not been verifiably received by
the other side will be sent in the proper order. This scheme
creates a problem in that it is possible for a packet that was
indeed received by the other side to be resent if an acknowl
edgement has not yet been sent or received. This problem
can be addressed by handling acknowledgements for unso
licited commands in a slightly different manner. For
example, each side can remember a placeholder for the last
acknowledge packet it sends. When it receives a new
unsolicited packet with a placeholder less than the last
acknowledged placeholder, it recognizes the new unsolicited
packet as a resend of Something that it has already pro
cessed. Thus, it can send another acknowledge and discard
the new packet.
0140) Process Flow Examples
0141. The UI server and the client device are each
configured to perform a number of procedures, processes,
and tasks to support the operation of the distributed UI
system. A number of example process flow situations are
described in detail below. For the sake of consistency, these
process flow situations may refer to the distributed UI
system elements and features described above. Notably, a
practical implementation of the distributed UI system can
implement the following procedures in a number of equiva
lent ways and the specific process tasks described herein
(and order of execution of Such tasks) may be varied,
eliminated, or Supplemented to Suit the needs of the particu
lar deployment.
0142 General Client-Server Operation
0143 FIG. 9 is a flow chart of a distributed UI process
900 that may be performed by a distributed UI system as
described herein. Process 900 begins when a client device
establishes a connection with a UI server (task 902). The
respective client and server communication interface ele
ments may function to establish this connection (in the
preferred embodiment, the connection is established over a
network Such as the Internet). Once the connection is made,
process 900 determines whether the session corresponds to
the first connection between the particular client device and
the UI server (query task 904). The UI server may make this
determination by, e.g., comparing a received client device
identifier to a table of known or previously-connected client
devices. If the current session represents the initial connec
tion between the client device and the UI server, then an
initialization process 906 (described in more detail below) is
prompted. On the other hand, if the current session is a
reconnection following an offline period, then a synchroni
zation process 908 (described in more detail below) is
prompted.

0144. After the client device and the UI server are ini
tialized or synchronized, the user can select a server-based
application from a list of available applications maintained
by the UI server (task 910). In response to the user selection,
the UI server executes the selected application (task 912),
which may be configured to manipulate Source data items
for presentment at the client device. Meanwhile, the client
device generates and displays a UI form (which may include

Jun. 28, 2007

any number of UI controls) suitable for use with the selected
application (task 914). In this respect, the UI presents the
received source data items to the end user in a manner
consistent with the operation of the selected application.
0145 While traversing the displayed UI, the user may
manipulate the UI form or a UI control, or otherwise
perform an action at the client device (task 916). For
example, in connection with an email application, the user
may initiate a “Compose New Message” request, double
click on a listview entry to read a message, manipulate a
scrollbar to view additional entries or additional text, delete
a message or an entry, Switch to another application, or reply
to a message. In response to the user action, the client device
may react in an appropriate manner (task 918). For example,
the client device may execute one or more command Scripts
associated with the action or generate and transmit a corre
sponding action request or command. The Scripts and action
requests may be associated with the sending of information
to the UI server and/or the requesting of information or
source data items from the UI server.

0146 The UI server can receive and process the client
action requests and commands in a suitable manner to
determine how best to respond. For example, in response to
the client command(s) and/or request(s), or in response to
the presence of new data at the UI server, the UI server may
send any number of commands and/or source data items
back to the client device (task 920). After receiving the new
information from the UI server, the client device updates the
UI form or a number of UI controls (task 922). The specific
updating characteristics will depend upon the information
received from the UI server.

0147 The distributed UI process 900 may proceed in a
loop until the end user or the UI server decides to switch
applications (query task 924) or disconnect from the UI
server (query task 926). In response to the switching of
applications, task 910 may be re-entered to handle a new
selection. In addition, the synchronization procedure 908 (or
portions thereof) may be repeated for any newly selected
application. In other words (although not apparent from the
illustrated ordering of the process flow), the initial synchro
nization procedure may be configured to synchronize all
server-based applications upon connection, only the selected
application, or one or more default applications. Thus, while
connected, the user can interact with the selected server
based application in an ongoing manner.
0148 Client/Server Initialization
0.149 FIG. 10 is a flow chart of an example initialization
process 906 that may be performed in conjunction with
distributed UI process 900. In response to the first connec
tion between a particular client device and the UI server, the
client may send identifying or registration information to the
UI server (task 1002). Such information serves to uniquely
identify the client device so that the UI server can maintain
its server-based applications in a persistent state for each
client device. The identifying information may include,
without limitation, any of the following items: user name
and password; device ID; device serial number; or device
type. In addition, the client device sends its device capa
bilities to the UI server, using any suitable format (task
1004), and the UI server saves the device capabilities for
future reference.

0150. The client device or the end user may eventually
request an applications list from the UI server (task 1006).

US 2007/O 150822 A1

The applications list request may be automatically generated
during initialization or it may require end user interaction.
The applications list specifies the server-based applications
to which the client device has access. In response to the
request, the UI server responds by sending a suitable appli
cations list to the client device (task 1008). Of course, the UI
server may respond with a “No Applications Available'
message, thus prompting further action by the end user.
Assuming that one or more applications are available, the
client device can display the applications list to the end user
(task 1010). For example, a practical client device imple
mentation may provide a “Start” or a “Go' button on the
client UI such that the end user can display the list from any
application and launch any of the available applications in a
convenient manner.

0151 Client/Server Synchronization
0152 FIG. 11 is a flow chart of an example client/server
synchronization process 908 that may be performed in
connection with the distributed UI process 900. As described
above, client devices can perform actions and operations
while offline, i.e., while disconnected from the UI server or
during periods of poor connectivity. Such offline actions can
modify or delete one or more source data items at the client
device. In addition, the UI server can modify, delete, or add
to existing Source data items while the client device is
disconnected. Synchronization process 900, or a suitable
equivalent, can be performed to ensure that the client device
and the UI server are each updated to reflect any offline
changes.
0153 Synchronization process 900 is preferably
executed after the client device re-establishes a session with
the UI server. Once reconnected with the UI server, the client
device sends a suitable identifier for verification with the UI
server (task 1102). If the UI server validates the client
device, then it may retrieve the saved application state for
the client device (task 1104). In practice, the UI server saves
the current state of an application whenever the client device
is disconnected. In this respect, the UI server may retrieve
the state for any individual server-based application or it
may retrieve a global state representing all of the applica
tions for the client device.

0154) The client device may send a list of items that were
removed from the client cache (to obtain free storage space)
while offline (task 1106). The items can be removed from the
client cache and a Suitable notification may be generated and
placed in the client "send' queue. The list of removed items
may be a combination of individual notifications or a single
notification that identifies all of the removed items. In
contrast to this “batch' transmission procedure that follows
an offline period, while connected to the UI server data items
removed from the client cache are regularly sent to the UI
server for reconciliation.

0155 The UI server may then send any offline cache
changes to the client device (task 1108). Such offline cache
changes may represent incoming data associated with a
cached list, e.g., new email arriving where the client device
has a cached message list. In the preferred embodiment, the
shadow cache maintained by the UI server (see FIG. 7) is
updated to remove any data items deleted by the client, to
reflect any client modifications of Source data items, and/or
to reflect any additions, deletions, or modifications made by
the UI server in conjunction with the execution of any offline

Jun. 28, 2007

commands (task 1110). In addition, the client caches are
updated to the extent necessary to reflect the currently
synchronized status.
0156 The client device may also transmit a number of
commands indicative of one or more offline actions and/or
data generated by the client device while offline (task 1112).
For example, while offline the end user may generate action
requests that would otherwise be immediately executed by
the UI server. Such action requests are placed on “hold' until
the client device is reconnected to the UI server. As another
example, the end user may create new messages or modify
existing data while the client device is in a disconnected
mode. The new data items, modified data items, and asso
ciated commands are sent during task 1112.
0157 Eventually, the client device will select an avail
able application and the UI server will load the selected
application (task 1114). At this time, the UI server may
dispatch the appropriate offline commands and requests to
the currently loaded application for execution by that appli
cation (task 1116). The offline commands are preferably
executed in the order in which they were sent from the client
device. Upon completion of task 1116, the current state of
the client device should be synchronized with the UI server.
0158. Application and Form Selection
0159 FIG. 12 is a flow chart of an application and form
selection process 1200 that may be performed by a distrib
uted UI architecture. Process 1200 selects an appropriate UI
form for display at the client device in response to the
selection of a particular server-based application. Accord
ingly, process 1200 begins when the client device selects an
available server-based application (task 1202). In response
to the selection, the client device sends the selection infor
mation, which identifies the particular application, to the UI
server (task 1204). In response to the selection, the UI server
loads and executes the application (task 1206). Thereafter,
the application commands the client device to generate a
particular UI form (task 1208). In a practical embodiment,
the UI server may send a UI form definition or a corre
sponding identifier to the client device; the UI form defini
tion may be particularly suited to the client device platform
and/or to the selected application (as described above, the UI
form definition is preferably based upon a number of device
capabilities for the client device). In this respect, although
the client device actually renders the UI, the UI server
dictates which UI forms to display. The specific UI form
may be a default view associated with the selected applica
tion or it may be based upon an end user action. For
example, an email application may automatically request an
“Inbox” UI form having a list of email messages.
0.160 In response to the UI form command, the client
device may interrogate its cache to determine whether the
requested UI form definition is available (query task 1210).
If not, then the client device requests that UI form definition
from the UI server (task 1212). In response to this request,
the UI server retrieves (or generates) the UI form definition
and sends it back to the client device in a suitable format
(task 1214). After receiving the UI form definition, the client
device saves the definition in its cache (task 1216). In the
preferred embodiment, the client device saves all form
definitions in the lowest cache level such that the form
definitions are the last data types to be deleted from the
client cache (see FIG. 8 and corresponding description of the

US 2007/O 150822 A1

client cache). Once the UI form is stored locally in the client
cache, the client device can retrieve the UI form definition
without having to contact the UI server.
0161. Once the given UI form definition is placed in the
client cache, the client device may create the corresponding
UI form based on that definition (task 1218). In the preferred
practical embodiment, the client device generates the UI
form using native UI controls that are associated with the
client platform OS. Thereafter, the client device can render
the UI form and populate the UI with the respective source
data items (task 1220).
0162) If a UI form definition is modified by the UI server,
then portions of process 1200 may be executed to ensure that
the client device always utilizes the most current version of
each UI form. In this regard, the form definitions may
include date and/or version stamps that enable the UI server
to determine whether the client cached versions of the form
definitions are the most current.

0163 Client Cache Maintenance
0164 FIG. 13 is a flow chart of a client cache mainte
nance process 1300 that may be performed when the client
device receives data from the UI server. For purposes of this
example, the client cache is assumed to be full Such that
older data must be deleted or removed before new data can
be saved. Otherwise, if the client cache has a sufficient
amount of capacity, then the data items will be saved as
usual without requiring the deletion of cached items. Process
1300 is set forth herein for consistency with the example
client cache structure shown in FIG. 8.

0165 Client cache maintenance process 1300 begins
when the client device obtains new or additional data items
from the UI server or when the client device itself generates
new or additional data items for placement into the client
cache (task 1302). The client device may be configured to
process the incoming data items in the order in which they
were received or in accordance with any prioritization
scheme. For purposes of this example, data items are
handled one at a time. Of course, process 1300 may save the
new data items in chunks after the required amount of
storage space is available.
0166 To free up space, process 1300 initially deletes
cached data items from the highest cache level, starting with
the least recently used data (task 1304) and progressing to
the most recently used data associated with that level, as
described in connection with FIG. 8. If a cached data item
is locked, then the client device will not attempt to remove
it from the cache. Data items may be locked by the client
device if they are included in a displayed UI form or if they
are currently being modified by the client device. Once the
requisite amount of space is available, the new data item is
saved in the free cache space (task 1306). (If the new data
item requires more memory than the last-deleted cache item,
then additional cache items may need to be deleted in an
iterative manner as described below). Thus, the existing data
Source items are deleted to accommodate the incoming data
items.

0167 If more of the new data items remain (query task
1308), then process 1300 continues. Otherwise, process
1300 may lead to a task 1316 (described below). If the client
cache contains more items at the current cache level (query
task 1310), then the next item in that level is deleted (task

Jun. 28, 2007

1312). As mentioned above, the cache items associated with
any given level are preferably deleted in order from the least
recently used to the most recently used. As shown in FIG.
13, the cache items are deleted and replaced with the new
data items until all of the new items are saved or until all of
the items associated with the current cache level have been
deleted.

0168 If all of the old items have been deleted from the
current cache level (query task 1310), then the client device
deletes the least recently used item in the next cache level
(task 1314). The process flow is repeated until all of the new
data items have been saved in the client cache. In this
respect, the existing cache items are deleted selectively
according to a hierarchical preference scheme. The prefer
ence scheme utilized by the embodiment described herein
favors UI form data the most and assigns the lowest pref
erence to old source data. This preference scheme selec
tively deletes cached items according to the data type, e.g.,
Source data, icon data, form data, or the like.
0169. In response to the updating of the cache, the client
device preferably creates a suitable entry in the client “send’
queue (task 1316); this entry or command informs the UI
server by providing a list of the removed cache items.
Thereafter, the UI server can update its shadow cache by
deleting the same items (task 1318). In this manner, the
shadow cache remains consistent with the client cache and
the UI server maintains an accurate inventory of the client
data items.

0170 UI Server Processing
0171 FIG. 14 is a flow chart of a server activation
process 1400 that may be performed by a UI server. Process
1400 generally contemplates a number of situations where
the UI server is activated, prompted, or otherwise expected
to respond. In this regard, process 1400 may begin when the
UI server receives a suitable activation request (task 1402).
This activation request may be generated internally by the
UI server, it may be received from the client device, or it
may be received from a system administrator or other “third
party” entity.
0.172. If the activation request represents a request to
register a new server-based application with the UI server
(query task 1404), then the UI server may store the name and
the executable portion of the application (e.g., a Suitable
application DLL) in an appropriate memory location (task
1406). Thereafter, the UI server can make this new appli
cation available to one or more client devices.

0.173) If the activation request represents a request to
register a new UI form with the UI server (query task 1408),
then the UI server may store the form definition and possibly
the form name or identifier in an appropriate memory
location (task 1410). New forms may be defined to support
new applications or to Support newer versions of previously
Supported applications.

0.174 If the activation request represents a connection
request from a client device (query task 1412), then the UI
server will attempt to verify the identity of the client device
(task 1414). Assuming that the client device is authenticated,
the UI server determines whether it is currently connected to
another client device operated by the same end user (query
task 1416). This situation may arise when a single end user
operates more than one client device and connects to the UI

US 2007/O 150822 A1

server using the different devices. A practical system may
limit the number of simultaneous connections to avoid
synchronization issues. Thus, if the UI server is already
connected to another related client device, it will save the
current operating state of the other device before discon
necting it (task 1418). Thereafter, the requesting client
device can be connected and synchronized with the UI
server (task 1420).
0175 If the activation request represents a request to send
a message from a server-based application (query task
1422), then the UI server may format a suitable request or
command and place it into the server 'send' queue (task
1424). The sending of data from the UI server is described
in more detail below in connection with FIG. 15.

0176). If the activation request represents a message,
command, data item, or request received from a client
device (query task 1426), then the UI server may perform an
appropriate server receive procedure 1428. A suitable pro
cedure 1428 is described in more detail below in connection
with FIG. 16.

0177. Of course, the UI server may obtain any number of
activation request types and those set forth above are not
intended to limit the scope of the present invention. In this
regard, server activation process 1400 may be configured to
process any activation request in an appropriate manner
(task 1430).
0178 FIG. 15 is a flow chart of a server send process
1500 that may be performed by the UI server when sending
data to the client device. In practice, process 1500 can be
carried out by various elements of the server processing
architecture. Such as the server send element and the server
communication interface element. When ready to send data
to the client device, the UI server retrieves the next entry in
the server “send' queue for processing (task 1502). If the
current entry represents a resend request (query task 1504),
then the UI server can immediately send the corresponding
data to the client device (task 1506). Thereafter, the resend
request can be moved to the server “sent queue (task 1507).
The UI server can resend the data quickly because the server
shadow cache already contains the data item (and the data is
already properly formatted).

0179 If the current entry does not represent a resend
request, then the corresponding data (or Some record of or
pointer to it) is saved in the server shadow cache (task 1508),
which functions as a copy of the client cache. Thus, the UI
server regularly maintains the shadow cache, which may
include a list of source data items saved locally at the client
device and/or a list of data items that have been transmitted
from the UI server to the client device. Eventually, the UI
server will process the data for transmission to the client
device (task 1510). A practical UI server may construct a
Suitable command for the data by adding meta-information
data which could include (but is not limited to) command
length, an identifier, and a transmission cookie or token; and
performing a number of common data transformations
including (but not limited to) data encryption, compression,
and adjustments for String types or byte order depending on
the client’s reported capabilities.

0180. The command including the data is sent to the
client via the server communication interface element and
the communication network (task 1512). Once sent, the UI

Jun. 28, 2007

server moves the command, or an appropriate identifier for
the command, to the server “sent queue (task 1514). The
command preferably remains in the server “sent queue until
its receipt is acknowledged by the client device. Accord
ingly, the server send process 1500 may monitor a timer to
determine whether an acknowledgement is received within
a specified time period (query task 1516). If so, then the
command may be removed or deleted from the server “sent
queue (task 1518). If the UI server does not receive an
acknowledgement within the allotted time limit, then it may
move the command back into the server “send' queue (task
1520) so that it can be resent to the client device in due
COUS.

0181 FIG. 16 is a flow chart of a server receive process
1428 that may be performed by the UI server to handle
incoming messages. Process 1428 may be performed in
connection with server activation process 1400 (see FIG.
14). Accordingly, process 1428 may begin when the UI
server receives a message, a command, or request from the
client device (task 1602). If the message represents an
application list request, then the UI server will retrieve the
current list of server-based applications available to the
client device, create an appropriate command for the list,
and place the command into the server “send' queue for
transmission to the client device (task 1606).
0182 The received message may represent an application
switch notification, which is generated by the client device
when the end user decides to change from one server-based
application to another. If the received message represents an
application switch notification (query task 1608), then the
UI server may notify the current application that it will be
switched out (task 1610). This notification allows the current
application to preserve its state and to otherwise prepare for
the switch. The UI server will eventually load the new
application for execution (task 1612); in a practical embodi
ment, task 1612 causes the UI server to load the appropriate
application DLL. The UI server may then notify the recently
loaded application of its current operational status as the
current application (task 1614). In addition, the old appli
cation is unloaded or otherwise placed in an idle state (task
1616).
0183 If the received message is neither an application list
request nor an application Switch notification, then the UI
server may process the client message in an appropriate
manner (task 1617). In this respect, the UI server may obtain
any number of client messages and those set forth above are
not intended to limit the scope of the present invention. For
example, a client message can be a command generated by
the client device following the script attached to a control,
a notice that a button control was activated, a request for
more data to allow the user to scroll down in a listview, or
data associated with the activation of a “save' button. The
UI server may then dispatch the message to the dispatch
entry point of the current application (task 1618). In this
manner, the current application can handle the message in a
Suitable manner.

0.184 FIG. 17 is a flow chart of a process for handling
data modifications, where such modifications originate at the
data source. The data modification process 1700 may begin
if an external source adds, modifies, or deletes data associ
ated with one or more of the applications (task 1702). For
convenience, the term “modified data refers to new data,

US 2007/O 150822 A1

modified data, or deleted data, i.e., “modified data” may
represent any change in the status of the Source data items
for any given application. If the modified data is “push data,
i.e., data, Such as new email, that is important enough to alert
the user to changes made by others, even if the user is not
currently examining that type of data (query task 1704), then
the UI server may generate push notification instructions for
transmission to the client device (task 1706). If the modified
data is not “push’ data, then the UI server may test whether
the modified data is associated with a data item that is
already cached at the client (query task 1708). For example,
the modified data may be an updated version of a cached
data item. In this regard, the UI server may poll its shadow
cache to determine the current status of the client cache. If
the modified data item is not cached at the client, then data
modification process 1700 exits (this modified data item will
be maintained by the UI server until the client device calls
the respective application or until the data item is modified
again).

0185. If the modified data item is associated with a
cached data item, or if the modified data item is a “push'
data type, then the UI server updates its shadow cache to
reflect the modification (task 1710). If new data is involved,
then it is added to the shadow cache; if altered data is
involved, then the old version is replaced with the new
version. Thereafter, the modified data item (and the push
notification instructions, if applicable) is formatted and
placed into the server “send' queue (task 1712). Eventually,
the UI server will transmit it to the client device (task 1714).
Notably, there may be a variable time delay before the
modified data is transmitted to the client device. Indeed, the
client device may be disconnected from the UI server during
this time.

0186. After receiving the modified data item from the UI
server, the client receive element places the data item into
the client cache (task 1716). The preferred embodiment
employs a cache management algorithm, Such as the process
described above in connection with FIG. 13, when saving
data to the client cache. The client receive element may also
alert or notify the client UI module to enable the client
device to handle the modified data in an appropriate manner
(task 1718). When applicable, the client UI module executes
the optional push notification instructions (task 1720), which
may serve to inform the user that “push data has arrived.
For example, the UI module may generate and display a
pop-up window or play an audio tone at the client device.
0187. If the received data item (or an associated list to
which the data item belongs) is currently being displayed at
the client device (query task 1722), then the client device
proceeds to update the UI form and display to accommodate
the modified data item (task 1724). Otherwise, the modified
data item may be preserved in the client cache until it is
requested, deleted, or further modified (task 1726).
0188 Client Device Processing
0189 FIG. 18 is a flow chart of a client receive process
1800 that may be performed by a client device when
handling received data. Process 1800 may begin when the
client device receives a message, a request, or a command
from the UI server. In the preferred practical embodiment,
the client device places the incoming data into a temporary
buffer until a full command has been received (task 1802).
Thereafter, the client device may performany necessary data

Jun. 28, 2007

decryption or decompression on the buffer contents (task
1804). Different command types may be handled differently
by the client device. Consequently, the client device may
initially analyze the command to determine the command
type (task 1806).
0190. If the command represents a client action command
(query task 1808), then the command may be sent to the
client UI module for further processing (task 1810). In this
context, a client action command can be related to the
current server-based application. The UI server can generate
a client action command when necessary to have the client
device perform a particular action, e.g., to display a given UI
form, move or modify the attributes of a UI control, or clear
the contents of a control. The client device (via, e.g., the UI
module) executes the client action command and updates the
UI if necessary to reflect any changes that result from the
execution of the client action command.

0191) If the command represents a data cache command
(query task 1812), e.g., a command that includes a source
data item or other data object, then the data is stored in the
client cache as specified by the command (task 1814). For
example, the command may specify an identifier that refers
to the data contents, provide a data type, and specify the
cache level in which the data should be stored. Once saved
in the client cache, the UI module is notified of the arrival
of the data (task 1816) so that the UI module can handle the
data in the proper manner.
0.192 If the command represents an acknowledgement of
data that was originally sent from the client device (query
task 1818), then the client device responds by removing the
corresponding entry from the client “sent queue (task
1820). Thus, the client device need not be concerned about
resending the original data item.
0193 If the command represents something other than a
client action, a data item, or an acknowledgement, then the
client device can process the command if it recognizes its
command type (task 1822). In other words, the distributed
UI system need not be limited to the processing of the
specific commands set forth above. Of course, if the client
device does not recognize a received command, message, or
request, then it may generate an error message or simply
disregard it.

0194 FIG. 19 is a flow chart of a UI element process
1900 that may be performed by the UI module of the client
device. As described above in connection with FIG. 18, the
client device may direct commands, data, requests, or mes
sages to the UI module for processing in the context of the
current UI. The UI module becomes active whenever alerted
by the receive element or when the user performs certain
actions on the UI. For example, if the UI module receives a
data item (cquery task 1902), then the UI module may
initially check whether the received data item (or a different
version of it) is already displayed on the current UI form
(query task 1904). If not, then the received data item is saved
in the client cache (task 1906), where it will reside until
called by the client device, deleted, or modified.
0.195. If query task 1904 determines that the received data
item (or a different version of it) is displayed on the current
UI form, then the UI module increments or activates a lock
on the new data item to prevent it from being deleted while
it is being used (task 1908). If the received data item is

US 2007/O 150822 A1

intended to replace an old item, the lock on the old item can
be decremented to allow the old item to be removed from the
cache. The newly cached data item is moved (or suitably
marked) to the end of its respective cache level (see FIG. 8
and corresponding description) to make it less Susceptible to
deletion (task 1910). Eventually, the received data item is
displayed in the respective UI control on the current UI form
(task 1912).
0196. If the UI module receives a command (query task
1914), e.g., a client action command, a server command, or
the like, then the UI module executes the command (task
1916). These UI commands may represent a request to
switch UI forms, a request to move UI controls, and other
requests related to UI display functions or UI operations.
0197) If the UI module receives a command, request, or
message in response to end user manipulation or interaction
with the current UI form (query task 1918), then the UI
module may handle such user actions (task 1920) as
described in more detail below in connection with FIGS.
21-23. Of course, UI element process 1900 may be suitably
modified such that the UI module can handle other func
tions, commands, requests, or messages (task 1922).
0198 FIG.20 is a flow chart of a client send process 2000
that may be performed by the client device when sending
information to the UI server. The client send element, the
client communication interface, and other client device
elements may cooperate to perform process 2000. When
ready to send data to the UI server, the client device retrieves
the next entry in the client "send' queue for processing (task
2002). If the current entry represents a resend request (query
task 2004), then the client device can immediately send the
corresponding data to the UI server (task 2006) without
having to perform any additional cache maintenance proce
dures.

0199 If the current entry does not represent a resend
request, then the corresponding data is transferred from the
client cache to a temporary buffer (task 2008). This allows
the client device to move sent data out of the cache and to
have it formatted in one place. (Alternatively, the sent data
can be locked in the cache so that the client device does not
discard it until it receives an acknowledgement from the UI
server. In addition, the cache item locks are decremented or
deactivated to allow the items to be deleted by the client
device (task 2010). Eventually, the client device processes
the data for transmission to the UI server (task 2012). As
described above in connection with the server send process
1500, the processing performed during task 2012 may relate
to the construction of a suitable command for the data (the
command may include the command length, an identifier,
and a transmission cookie or token), performing data
encryption, and performing data compression.

0200. The command including the data is sent to the UI
server via the client communication interface element and
the communication network (task 2014). Once sent, the
client device moves the command, or an appropriate iden
tifier for the command, to the client “sent queue (task
2016). The command preferably remains in the server “sent
queue until its receipt is acknowledged by the client device.
For example, if the client device receives an acknowledge
ment from the UI server within a specified time period
(query task 2018), then the command may be removed or
deleted from the client “sent queue (task 2020). If the client

Jun. 28, 2007

device does not receive an acknowledgement within the
allotted time limit, then it may move the command back into
the client “send' queue so that it can be resent to the UI
server in due course (task 2022).

0201 FIGS. 21 and 22 illustrate a flow chart of a client
process 2100 for handling the manipulation of a data display
control at the UI. Such manipulation may occur when the
end user interacts with the UI. Thus, a display control
manipulation represents a change or modification of UI
display features such as the movement of a scrollbar, the
placement of icons on a display, the double-clicking on a
particular message, and whenever the end user indirectly
requests source data items associated with the current
server-based application. Thus, process 2100 may begin by
updating one or more features of the UI display (e.g., a UI
form, a number of UI controls, icon appearance, or the like)
in response to the end user manipulation of a UI display
control generated by the client device (task 2102).
0202) Usually, the manipulation of a UI display control
will result in the display of additional data items. In other
words, the current UI form will likely need to be populated
with more data items. Accordingly, the client device initiates
the retrieval of data items for display in the current UI form
by making an appropriate request (task 2104). The client
device may employ a "look ahead' technique that requests
additional data from the UI server before the client device
actually needs the data. For example, process 2100 may test
whether a data request threshold has been exceeded (query
task 2106). If this threshold has not been exceeded, then the
client device may interrogate its cache to determine whether
the requested data items are saved locally in the client cache
(query task 2108). If the requested data items are present in
the client cache, then the UI module can retrieve the data
items locally from the cache and display them in the UI form
(task 2110). However, if the necessary data items are not
cached, then the client device will request them from the UI
SeVe.

0203 If the look ahead threshold has been met (or if the
requested data is not contained in the client cache), then the
client device may update the UI display to indicate that
additional data has been requested (task 2112). Such a
notification informs the end user and serves as a placeholder
while the data is being downloaded from the UI server. For
example, the client device may display text Such as "Data
Requested in an appropriate UI control field.

0204. In response to the need for additional data, the
client device places a download request in the client “send’
queue (task 2114). In this regard, the client device can
request an additional number of Source data items from the
UI server if the user's manipulation of the display control
triggers a data request command or otherwise exceeds a data
downloading threshold. Thereafter, a variable time period
may elapse, during which the client device may be discon
nected from the UI server. Eventually, whether immediately
after being placed in the client "send' queue or after the
client re-establishes a connection with the UI server, the
download request (or a suitably configured command or
message) is transmitted to the UI server (task 2116). Assum
ing that the transmission is successful, the UI server will
receive the download request and forward it to the appro
priate server-based application (task 2118). This application
handles the data request and places the requested data items

US 2007/O 150822 A1

(or a Suitably configured command or message) into the
server “send' queue for transmission back to the client
device (task 2120).
0205 The requested data items may wait in the server
“send' queue for an indefinite period of time, which may
include a disconnected period, before they are transmitted to
the client device (task 2122; flow chart continued in FIG.
22). Assuming that the download is successful, the client
receive element receives the data items and places them into
the client cache (task 2124) according to the data type and
according to the cache priority or preference scheme (as
described above). In addition, the client receive module may
notify the client UI module of the availability of the newly
downloaded data items (task 2126). If the UI module is
waiting for or displaying the data items (query task 2128),
then the UI module retrieves the data for display in the
corresponding UI control or form (task 2130). This situation
may occur if, for example, the current UI form is waiting to
be populated with the new Source data items. In contrast, if
the UI module has no immediate need for the new data
items, then those data items may be maintained in the client
cache until requested by the client device, deleted, or
subsequently modified (task 2132). Of course, as described
above, the client cache is preferably managed such that
existing Source data items in the client cache can be replaced
with new data items if necessary.
0206 FIG. 23 is a flow chart of a process 2300 for
handling the manipulation of an action control at the client
device. In this context, an action control is a UI control
manipulated by the user that results in the application
performing an action, as opposed to updating the data
displayed in the control. Typical action controls include
menus and buttons, but also include data-displaying controls
that have been “activated to perform some duty, such as a
double-click on an entry in a listview. Action controls result
in actions such as the deletion of data items, the sending of
data items, the Switching of applications, or the closing of UI
forms. In a practical deployment, action controls can be
associated with particular UI function buttons, e.g., a
“Delete' button, a “Send Message” button, or the like.
0207 Process 2300 may begin with the identification of
an activation script corresponding to the activated action
control (task 2302). As described above, the client device
may utilize any number of command Scripts to facilitate
efficient client-side processing without much UI server
involvement. Once the appropriate command Script is iden
tified, it can be executed by retrieving and processing each
entry in the script. Accordingly, process 2300 obtains the
next entry in the command script (task 2304) so that the UI
module can process the command.
0208 If the current entry represents a “send data com
mand (query task 2306), then the user-entered data from the
enumerated UI control(s) is formatted for delivery and
placed into the client "send' queue (task 2308). Thereafter,
process flow may proceed to a query task 2328 such that the
next command entry can be processed. In time, the user
entered data is sent by the client send element to the UI
server as described in more detail herein.

0209) If the current entry represents a “switch form”
command (query task 2310), then the client device proceeds
to exit from the current UI form and display a new UI form.
A client device can switch between any number of UI forms

Jun. 28, 2007

utilized by a single application. In addition, the Switching of
UI forms may correspond to a change in the current server
based application. When Switching forms, a practical
embodiment may first decrement or deactivate the locks on
the cached data items associated with the current UI form
(task 2312). As described above, when a UI form is active
or displayed, the respective data items are locked in the
cache to prevent them from being deleted. Eventually, the
client device switches from the old UI form to the new UI
form (task 2314). In connection with the switching of forms,
the client device may execute a number of additional steps,
e.g., an “exit form” script that allows state and/or data to be
saved regardless of how the user switches to another form.
The client UI module can then populate the new UI form
with the necessary data items for display to the end user.
Thereafter, process flow leads to query task 2328.
0210. If the current entry represents a “change control
command (query task 2316), then the client device can apply
the specified properties to the named UI control (task 2318).
Such a command may be generated when a control is
moved, resized, hidden, displayed, disabled, cleared, or the
like. In this respect, the client UI module may retrieve a UI
control definition associated with the named UI control,
apply the specified properties, and render the named UI
control on the display. Typical UI control properties include
the size, position, visibility, and labeling. Following task
2318, the process flow proceeds to query task 2328.
0211) If the current command represents a “delete item'
command (query task 2320), then the client device updates
the UI in an appropriate manner. The end user can originate
a “delete item’ command at different points within a UI
form, e.g., from a listview control, from a message view, or
from a folder tree view. As described in more detail above,
the client cache may be modified if the deleted item was
originally saved in the cache. In response to a “delete item'
command, the client device may remove the identified or
selected item from the respective control, e.g., a list control
(task 2322). In addition, the deleted item and/or a suitable
identifier for that item is formatted for delivery and placed
into the client "send' queue (task 2324). In time, the deleted
item (and/or its identifier) is sent to the UI server, which
preferably updates its shadow cache to accurately reflect the
current status of the client cache. Following task 2324.
process flow leads to query task 2328.
0212. The client device can be suitably configured to
handle other commands (if necessary) in an appropriate
manner (task 2326). In other words, the client device need
not be limited to the processing of the command types that
are specifically described herein. After the current command
entry has been handled, the client device determines whether
more command entries remain (query task 2328). If not, then
process 2300 exits. Otherwise, process 2300 can be re
entered at task 2304, which retrieves the next command
entry in the Script. In this manner, each command entry is
processed until the client device processes the entire Script
representing the current action control.
0213 Summary of System Functionality
0214 FIG. 24 is a schematic representation of a distrib
uted UI system 2400; FIG. 24 illustrates several of the
operating features of the system 2400. The features and
elements shown in FIG. 24 may be equivalent to certain
features and elements described above in connection with

US 2007/O 150822 A1

FIG. 7. Indeed, both FIG. 7 and FIG. 24 can represent the
same system. FIG. 24 is presented for purposes of a brief
Summary of the techniques described in detail above.
0215. A client device 2402 communicates with a UI
server 2404 via a suitable network 2406 such as the Internet.
The client device 2402 includes a display element 2408 and
a user entry element 2410 (e.g., a pointing device Such as a
mouse or a trackball, a keyboard, a keypad, a touchscreen,
or the like). In operation, the client device 2402 renders a
user interface 2412 on display element 2408. The user
interface 2412 can be manipulated by the end user via user
entry element 2410. For example, the end user can establish
a connection with the UI server 2404, enter login data,
launch and terminate server-based applications, Switch
between server-based applications, manipulate action con
trols rendered on the user interface 2412, manipulate display
controls rendered on the user interface 2412, enter and edit
data items associated with the user interface 2412, and
perform other operations via the user interface 2412.
0216) The UI server 2404 obtains the device capabilities
2414 for the client device 2402, preferably from the client
device 2402 itself, from a third party entity or process, or
internally in the form of a preloaded database. The device
capabilities 2414 represent characteristics or parameters of
the client device 2402 that can impact, restrict, or otherwise
have a bearing on the format or configuration of the user
interface 2412. The UI server 2404 performs UI formatting
2416 to format and configure different UI form definitions
2418 for use by the client device 2402. The specific form
definitions 2418 are based upon or otherwise determined by
the client device capabilities 2414 and any number of
server-based applications 2420 accessible to the client
device 2402 (the server-based applications 2420 are config
ured to process and manipulate Source data items 2422 for
presentment to the end user via user interface 2412). The UI
server 2404 may provide an applications list 2421 to the user
via user interface 2412, thus allowing the user to quickly
select a server-based application or Switch between appli
cations.

0217. The client device 2402 obtains the UI form defi
nitions 2418 from the UI server 2404 when necessary to
render a particular user interface. Any number of UI form
definitions 2418 may be stored in a suitably configured
client cache element 2426 such that they are available
locally to the client device 2402. The client device 2402
(rather than the UI server) performs various UI rendering
tasks 2424 to generate and render the user interface 2412 on
the display element 2408. In this respect, the UI rendering
tasks 2424 retrieve the appropriate UI form definition 2418
from the cache element 2426, format and arrange the various
UI elements associated with that form definition, and incor
porate any number of native UI controls, labels, or icons
2428 (such native UI features are associated with the client
device OS). The UI rendering tasks 2424 may also incor
porate any number of “custom' UI elements or features into
the current user interface 2412, particularly when suitable
native UI features are not available.

0218. Although the client device 2402 performs the UI
rendering tasks 2424, the source data items 2422 are
obtained from the UI server 2404. In this respect, the UI
server 2404 performs various data management tasks 2430
associated with the processing and handling of the Source
data items 2422 for the server-based applications 2420. For
example, the data management tasks 2430 may be associ
ated with data send and receive processes, data retrieval
processes, data placement in the UI controls, and the like.

20
Jun. 28, 2007

0219. In response to a client request for data, the data
management tasks 2430 may retrieve a number of Source
data items 2422 for downloading to the client device 2402.
The client device saves the downloaded data items in a
suitable cache element 2432 and populates the various UI
controls in user interface 2412 with one or more of the data
items. Due to practical storage space limitations, the client
device 2402 may perform various cache management tasks
2434 associated with the UI forms cache element 2426
and/or the data cache element 2432. In the preferred embodi
ment, the cache management tasks 2434 request additional
Source data items when necessary, selectively remove
cached items when free space is needed, update the caches
so that they remain synchronized with the current state of the
server-based applications, and perform other processes as
described above.

0220 At the server side, the data management tasks 2430
(and/or the applications 2420) may also be responsible for
updating a shadow cache 2436 maintained by the UI server
2404. The shadow cache 2436 preferably contains copies of
or references to data (e.g., Source data items, form defini
tions, and the like) that have been cached by the client device
2402. The shadow cache 2436 allows the UI server 2404 to
monitor the current status of the client device 2402 and to
manage the transfer of data in an efficient and effective
a.

0221) A distributed UI system can employ these preferred
features and operations to provide graphical user interfaces
for any number of server-based applications in a manner that
conserves transmission bandwidth. Furthermore, the distrib
uted UI system need not be restricted to use with client
devices having a large amount of processing power and/or a
large data storage capacity. Consequently, a relatively small
handheld wireless client device can utilize the techniques of
the present invention while accessing server-based applica
tions.

0222. The present invention has been described above
with reference to a preferred embodiment. However, those
skilled in the art having read this disclosure will recognize
that changes and modifications may be made to the preferred
embodiment without departing from the scope of the present
invention. These and other changes or modifications are
intended to be included within the scope of the present
invention, as expressed in the following claims.

1. A data processing method comprising:
executing, at a user interface (UI) server, a server-based

application configured to process source data items;

retrieving a UI form definition stored at said UI server,
said UI form definition specifying characteristics of a
UI form for said server-based application;

instructing a client device to render a UI form correspond
ing to said UI form definition; and;

transmitting, from said UI server, a number of Source data
items for population in said UI form, said number of
Source data items being related to said server based
application.

2-55. (canceled)

