07/033:260 A1 | 0O 0O O 0

(19) World Intellectual Property Organization | ‘1”1‘

) IO O O 0 5O

International Bureau

(43) International Publication Date
22 March 2007 (22.03.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2007/033260 Al

(51) International Patent Classification: Redmond, Washington 98052-6399 (US). AHS, David;
GOGF 9/44 (2006.01) GOG6F 17/00 (2006.01) One Microsoft Way, Redmond, Washington 98052-6399
(US). KEPNER, Jason, A.; One Microsoft Way, Red-
(21) International Application Number: mond, Washington 98052-6399 (US). PAMARTHI,
PCT/US2006/035691 Ramakrishna, V.; One Microsoft Way, Redmond, Wash-
. . ington 98052-6399 (US). JADE, Shashidhar, P.; One
(22) International Filing Date: Microsoft Way, Redmond, Washington 98052-6399 (US).
12 September 2006 (12.09.2006) FARRELL, Terry; One Microsoft Way, Redmond, Wash-

(25) Filing Language: English ington 98052-6399 (US).
(81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(30) Priority Data: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
60/716,295 12 September 2005 (12092005) Uus GB, GD, GE, GH, GM, HN, HR, H[J, ID, IL, IN, IS, JP,
. . LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
(71) Applicant (for all designated States except USt): MI- NA, NG, NL NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU.

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US) SC, SD, SE, G, SK, SL, SM, SV, SY, TJ, TM, 'IN, TR,
’ ’ ’ TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(72) Inventors: THOMPSON, Peter, A.; One Microsoft (84) Designated States (unless otherwise indicated, for every

Way, Redmond, Washington 98052-6399 (US). NEL-
SON, Jan, Anders; One Microsoft Way, Redmond,
Washington 98052-6399 (US). MARTI, Jordi, Mola;
One Microsoft Way, Redmond, Washington 98052-6399
(US). BRODZINSKI, Leanne, E.; One Microsoft Way,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

[Continued on next page]

(54) Title: EXTENSIBLE XML FORMAT AND OBJECT MODEL FOR LOCALIZATION DATA

204

SOURCE BINARY
FILES

LOCALIZATION
DATA FILE
SETTINGS

COMMENTS

SOURCE DATA

212

214

LOCALIZED
LANGUAGE FILE
SETTINGS
COMMENTS
SOURCE DATA
TRANSLATION
DATA

LOCALIZATION
ENGINEERING

310

312
314

LOCALIZATION
BUILD TOOL

TARGET
BINARY

I300

& (57) Abstract: Methods, apparatus, and computer readable media including computer readable components for the localization of

data included in software programs are described. The computer readable components comprise data elements defined by a software
data schema; a property repository data element for storing a plurality of data properties about the data elements; and an owned
comment data element comprising information about the localization of the data included in software programs and an owner with
permission to create, access, and manipulate the owned comment data element.

WO 2007/033260 A1 |HNINIAI] DA 000 0 0000000 0 00

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, Published:

GN, GQ, GW, ML, MR, NE, SN, TD, TG). — with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of

Declarations under Rule 4.17:
amendments

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) Fortwo-letter codes and other abbreviations, refer to the "Guid-
— asto the applicant’s entitlement to claim the priority of the ance Notes on Codes and Abbreviations” appearing at the begin-
earlier application (Rule 4.17(iii)) ning of each regular issue of the PCT Gagzette.

WO 2007/033260 PCT/US2006/035691

EXTENSIBLE XML FORMAT AND OBJECT MODEL FOR
LOCALIZATION DATA

BACKGROUND

The software market has become increasingly international in recent years.
Ubiquitous software application programs ("software applications"), such as word
processing, spread sheets, electronic mail, and the like, are now available in different
countries. Making software applications available in different countries often necessitates the
creation of software applications with corresponding user interfaces and other
human-readable text, such as error messages, presented in various local human languages (as
opposed to computer languages). The creation of such localized software applications is
necessary in order to increase the market share and the market value of such applications.
Including local language is of concern primarily in the user interface of software applications,
such as command interface, menus, messages, status information, labels, results of
computations, and the like. The need for software applications in different local languages is
driven by many factors, among which are the increasing number of countries with different
languages where computers are increasingly being used as part of daily business and life, the
increasing number of non-technical areas using software applications having user interfaces
that require natural language interactions, such as office software applications like word
processing, as opposed to technical symbol interaction, that is, interaction using accounting
or mathematical symbols, and user's demand to interact with software applications in their
own local language. The common term of art used to identify the process of creating
software applications in different local languages is "localization".

In addition to human-readable text, human-visible graphic components, such as icons,
colors, and shapes, and human-audible sounds may also have to be localized to address
cultural sensitivities and contexts. For example, in some Asian cultures, red represents good
fortune and prosperity while in most western cultures red represents danger or caution. So, if
a symbol or background of a dialog box in a graphical user interface ("GUI") is displayed in
red, it may have different and confusing connotations for users from different cultures.
Therefore, the process of localization goes beyond mere translation of text to a different
language and includes the localization of other symbols, colors, and sounds, as well.

The need for localized software applications creates several issues during the

development and maintenance of the software applications. The development and

WO 2007/033260 PCT/US2006/035691

maintenance of localized software applications require appropriate development tools and
development environments for the processing and localization of various human-readable and
human-visible software components. Additionally, localization of software applications may
be done by multiple organizations, each comprising multiple departments, and each
department performing a different part of the process of localization. One of the major
disadvantages of the currently available developmental and organiiational environments is
the limited extensibility and flexibility of data models used by the development tools and
environments. For example, some of the data used by the development tools and
environments are in binary format which, makes reading, editing, sharing, and manipulating
data difficult at best.

A data format is desired to provide consistency, extensibility, and flexibility across
different organizations and development tools. Additionally, standard furictional and data

interface methods are desirable for accessing and manipulating such data.

SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This summary is not intended to
identify key features of the claimed subject matter, nor is it intended to be used as an aid in
determining the scope of the claimed subject matter.

Methods, systems, and computer-readable media including computer-readable
components for localization of data included in software programs are described. The
computer-readable components comprise data elements defined by a software data schema; a
property repository data element for storing a plurality of data properties about the data
elements; and an owned comment data element comprising information about the localization
of the data included in software programs and an owner with permission to create, access,
and manipulate the owned comment data element.

Also described are methods, systems, and computer-readable media including a
collection of computer-readable components for localization of data included in software
programs. The collection of computer-readable components comprises data elements defined
by a software data schema; a property repository data element for storing a plurality of data
properties about the data elements; a linear list of localization data elements usable for
splitting the collection of computer-readable components into multiple sub-collections,

separately manipulating data elements in the multiple sub-collections, and merging the

WO 2007/033260 PCT/US2006/035691

multiple sub-collections back into a single collection of computer-readable components; and
an owned comment data element comprising information about the localization of the data
included in software programs and an owner with permission to create, access, and
manipulate the owned comment data element.

Further described are methods, systems, and computer-readable media including a
collection of software objects stored thereon for localization of software programs. The
collection of software objects comprising data and instructions included in each software
object; a localization item object comprising localization data and at least one of a
localization items list object including a list of other localization item objects; at least one
comment object comprising information about the localization of software programs; a string
data object for storing computer text information; and a binary data object for storing binary
information; wherein each software object corresponds to a data structure defined by a
software data schema, and wherein each software object is used to access and manipulate

data stored in the corresponding data structure defined by the software data schema.

DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will
become more readily appreciated as the same become better understood by reference to the
following detailed description, when taken in conjunction with the accompanying drawings,
wherein:

FIGURE 1 is a pictorial diagram of an exemplary localization process;

FIGURE 2 is a pictorial diagram showing an exemplary localization data flow;

FIGURE 3 is a pictorial diagram showing another exemplary localization data flow;

FIGURE 4 is a pictorial diagram showing exemplary file Split and Merge operations
on an XML data file;

FIGURE 5A is a pictorial diagram of an exemplary Property Bag;

FIGURE 5B is a pictorial diagram of an exemplary Boolean XML element;

FIGURE 5C is a pictorial diagram of an exemplary Integer XML element;

FIGURE 5D is a pictorial diagram of an exemplary String XML element;

FIGURE 5E is a pictorial diagram of an exemplary XML-string XML element;

FIGURE 6 is a pictorial diagram of an exemplary Comment data format with a source

attribute;

WO 2007/033260 PCT/US2006/035691

FIGURE 7 is a block diagram of an exemplary Localization Item data format with
comments;

FIGURE 8 is a pictorial diagram of an exemplary Owned Comments data format;

FIGURE 9A is a pictorial diagram of an exemplary Settings data format;

FIGURE 9B is a pictorial diagram of an exemplary Enumeration element;

FIGURE 9C is a pictorial diagram of an exemplary List element;

FIGURE 9D is a pictorial diagram of an exemplary Pick-List element;

FIGURE 10 is a pictorial diagram of an exemplary Localization XML data format;
- FIGURE 11A is an exemplary pictorial diagram of text data contained in a CDATA
XML element;

FIGURE 11B is an exemplary pictorial diagram of text data including a bracket
character contained in a CDATA XML element;

FIGURE 12 is a block diagram of an exemplary relationship of a Localization schema
and a corresponding object model;

FIGURE 13A is a block diagram of an exemplary parent and child objects with back
pointer; ‘

FIGURE 13B is a block diagram of exemplary parent and child objects with back
pointer and file pointer;

FIGURE 14 is a pictorial diagram of exemplary object model with external custom
culture information;

FIGURE 15 is a functional flow diagram of an exemplary method of partial loading of .
data;

FIGURE 16 is a functional flow diagram of an exemplary method of granular loading
of data with a callback function;

FIGURE 17A is functional flow diagram of an exemplary method of partial saving of
data;

FIGURE 17B is functional flow diagram of an exemplary method of merge on saving
of data;

FIGURE 18 is a functional flow diagram of an exemplary method of granular saving
of data;

FIGURE 19 is a pictorial diagram of an exemplary Jocalization object model;

FIGURE 20 is functional flow diagram of an exemplary method for creation and

provisioning of a localization data file;

WO 2007/033260 PCT/US2006/035691

FIGURE 21 is functional flow diagram of an exemplary method for addition of a
comment to a Localization Item; and

FIGURE 22 is a functional flow diagram of an exemplary method for file stripping.

DETAILED DESCRIPTION

A system and a method for defining standard and extensible localization data and an
object model for access to and manipulation of such data are described. While the system
and method are ideally suited for use in a localization process, the system and method may
ﬁﬁd use in other software environments where multiple development tools and organizations
are involved that share the same underlying data. Thus it is to be understood that the present
invention should not be construed as limited in application to the exemplary embodiments
described herein, and such exemplary embodiments should not be construed as limiting.

FIGURE 1 is a pictorial diagram of an exemplary localization process 100. The
exemplary localization process comprises an operating cycle including several distinct stages.
The stages include a development stage 102, a localization stage 104, a translation stage 106,
and a build stage 108. Those skilled in the art will appreciate that the operating cycle stages
may include fewer or more stages than described in this exemplary embodiment. For
example, some of the stages may be integrated to create fewer stages or further broken down
to create more stages. In the development stage 102, the development engineers of a
software application program ("software application") develop the software code and user
interface ("UI"). The Ul may include text, visual, and audio components. For example, the
development engineers write and compile the code for the software application. The code
may be written in any of several available programming languages, such as C, C++, C#, and
the like, and include source code files, header files, and resource files. The resource files
generally contain visual and other Ul elements, such as bitmaps. The development engineers
may also include comments in some of these files, for example, the resource files. Comments
include remarks about the code or UI elements, as well as instructions to software tools, such
as various software compilers, administration tools, and build tools used during the
development of the localized software applications. The development engineers pass the
collection of files, including compiled code and resource files, to the localization stage 104
where localization engineers continue with the localization process. Localization engineers
add more comments to the files, which apply to all target languages and cultures. Next, the

files are passed to the translation stage 106 where translation is performed on the software

WO 2007/033260 PCT/US2006/035691

application files for each specific language. Finally, the files are passed to a build stage 108
where files are built to produce executable software application files for each of multiple
languages.

FIGURE 2 is a pictorial diagram showing an exemplary localization data flow 200
from the development stage 102 to the localization stage 104. A localization parser tool 210
is used to integrate several files, including source binary files 204, comments files 206, and
settings files 208, and produce an output localization data file 212. The source binary
files 204 come from development engineers and a software build lab 202. The localization
file 212 is a file that is passed onto the localization engineering 214 in the localization
stage 104. In one exemplary embodiment, the localization data file 212 comprises the
settings from the setting files 208, the comments from the comments files 206, and the source
binary data from the source binary files 204. The source binary files 204 provided by the
software build lab 202 include the binary data resulting from the build of the software
application source files in an original language, such as English.

The comments embedded in the comments files 206, source binary files 204, and
settings files 208 are tagged to indicate an owner and a source of the comments. For
example, comments originating from development engineers may be tagged with "DEV" to
indicate the source of the comments indicated by such tag. Various software tools used in the
localization process, such as a comment extractor tool, may add comments to the software
applications files as well. For example, a comment extractor tool may tag comments owned
by the comment extractor tool with "RCCX." The comment extractor tool may not produce
an output file if there are no comments in an input file on which the comment extractor tool
operates. Comments are case-sensitive, where lower case and upper case letters define
distinct words, or comments are not case-sensitive. Comments may also be enabled or
disabled. For example, a localization administration tool may tag comments with "LCI" and
may be used to disable other DEV and RCCX comments. A software application build tool
owns one or more of certain types of comments identified by a particular tag, such as dev and
RCCX, which types the build tool processes. In one exemplary embodiment, the behavior of
the tools, such as the software build tool, is controlled by parameters set in a configuration
file.

Two different types of files contain and claim ownership of one or more of the same
types of comments, as defined by the comment tag. The claim of ownership of the same type

of comments by multiple files creates a conflict. The ownership conflict may be resolved, for

WO 2007/033260 PCT/US2006/035691

example, by assigning the ownership to the more recent file, or the conflict may be resolved
based on a pre-assigned ownership priority to the files. Thus, the file with the higher priority
will have a better claim to the comments of the type subject to ownership conflict. Other
types of conflict resolution can also be used. Thus, these examples should be construed as
exemplary and not as limiting.

When multiple files containing different types of comments are merged, warning or
error messages may be issued if ownership conflicts arise. If during a comment merge
operation intentional changes are encountered, information messages are issued indicating so.
For example, an information message may be issued when a comment is ignored because a
more recent version of a file owning the comment is available. If a comment cannot be
disabled, a warning message is generated. Similarly, if a comment that is not owned by a file
or atool is disabled, a warning message is issued. In one exemplary embodiment, ownership
of comment types are reassigned from an existing owner to a new owner. For example, the
ownership of a DEV type comment is transferred from the parser tool to the build tool. In
one exemplary embodiment, each owner has an ownership list of the types of comments that
the owner owns. If a new type of comment not on the ownership list of an owner is assigned
to the owner, the owner retains the ownership and issues a warning message. In one
exemplary embodiment, if two files claim ownership of the same comment, an error message
is issued. Such ownership conflict may be resolved at a later stage, such as the build
stage 108, of the localization process. In one exemplary embodiment, a resource that does
not contain a comment type, which the resource file owns, is considered to have an empty
and enabled comment and is treated as such during a comment merge operation.

As discussed above, during the localization process, comments are added to the
software source code and localization files to provide information and instructions for the
subsequent steps in the localization process. The comments help localizers of the software to
improve the quality and reduce the cost of localization. The benefits of providing comments
include information sharing, aiding in creating pseudo builds, and verifying translation
integrity. In one exemplary embodiment, sharing information includes providing standard
localizability instructions about string resources, which reduces bugs produced by the
incorrect localization of such string resources. String resources include text messages, such
as warnings, presented to a user of the software. Pseudo builds are temporary test builds of
software (that is, compilation of software code) used by test teams to find localizability bugs

early in the product development cycle, to plan for the testing of the real localized builds, and

WO 2007/033260 PCT/US2006/035691

to decrease the overall localized build cost. Translation integrity is verified by using the
localizability instructions and comments. Translation integrity is verified by matching the
translations provided by the localizers with a restriction set for localization. The restriction
set comprises matching information, such as words and phrases, between an original
language of the software and a target language for which the software is being localized.

In one exemplary embodiment, a comment extractor tool is used. As indicated above,
a comment extractor tool is a localization tool that is run on files that include comments to
extract and write such comments to an output file, such as a localization data file. In another
exemplary embodiment, each tool used in the localiiation process can generate comments
and tag such comments to identify the tool as the source of the comments. A tool may
generate comments with a source tag that indicates a different source. For example, a
comment extractor tool may generate a "DEV" comment. In such a case, a clash may occur
between two comments with the same tag but from different sources. In one embodiment, a
comment override model is used to disable clashing comments. A disabled comment is
ignored during processing.

FIGURE 3 is a pictorial diagram showing another exemplary localization data
flow 300 from localization stage 104 and translation stage 106 to build stage 108. In this
example, a localization builder 312 processes the data contained in the source binary file 204,
the localization data file 212, and a localized language file 310 to produce an output file
target binary 314. As discussed above with respect to FIGURE 2, the localization data
file 212 includes the settings, comments, and source data integrated from data in other files.
The localized language file 310 includes the settings, comments, source data, and translation
data added by the localization engineering 214. The localization build tool 312 uses the
source binary files 204, the localization data file 212, and the localized language file 310 as
input files and produces a target binary file 314 in a target language. Creation of the target
binary file 314 is the final localized software application product and is the main goal of the
localization process.

The tools and processes discussed above depend on a common and consistent data
format based on which the tools can integrate and process data in a standardized way. In one
exemplary embodiment, a localization extensible markup language ("XML") schema is used
for defining the consistent data formats for use by various localization tools and related files
discussed above. The localization XML schema provides an extensible XML format that

allows different groups and organizations to develop software tools to handle specific tasks.

WO 2007/033260 PCT/US2006/035691

The localization XML schema also allows the development of tools and data that are
shareable by multiple organizations, thereby enabling cross group-collaboration. For
example, the localization parser tool 210, the localization build tool 312, and a localization
administration tool can use and share the same data formats for different files throughout the
localization process. In one exemplary embodiment, the Localization XML schema may also
be extensible. The extensibility of the Localization XML schema allows other parties to
develop new tools with new features without changing the data format.

FIGURE 4 is a pictorial diagram showing exemplary file Split and Merge
operations 400 and 402 (different from a comment merge operation), respectively, on an
Localization XML data file 404 based on the extensible Localization XML schema. In this
exemplary embodiment, the Localization XML data file 404 is split into multiple partial data
files 406 using the file Split operation 400. The partial data files 406 may be used in parallel
by multiple organizations or by a parallel processing software tool processing each partial
data file 406 independently of the other partial data files 406. For example, each one of
multiple third parties developing data files for multiple software tools, respectively, may use
one partial data file that is relevant to a software tool being developed by each one of the
multiple third parties. As another example, multiple organizations translating the same
software application into multiple languages may use the appropriate partial data file 406,
created by the file Split operation 400, to create the translated version of the software
application resources. When the multiple organizétions complete the processing of the
partial data files 406, the partial data files 406 are merged into a single Localization XML
data file 408 using the file Merge operation 402.

The localization XML data file 404 includes XML elements that specify localization
information. One of the elements included in the localization XML data file 404 is a
Property Bag. FIGURES 5A-5E illustrate exemplary embodiments of a Property Bag and
corresponding XML elements. FIGURE 5A is a pictorial diagram of an exemplary Property
Bag data structure 500. A Property Bag 502 is a data container for storing any number of
properties. In one exemplary embodiment, each complex data type is associated with at least
one property bag. A complex data type is a data type that contains other data types. For
example, an XML element that contains other XML elements is a complex data type. In one
exemplary embodiment, a unique name, defined using a "Name" attribute, and a value are
assigned to the property. The value must be of a data type supported by the localization
XML schema. Each complex data type defined in the localization XML schema includes a

WO 2007/033260 PCT/US2006/035691

Property Bag element to store any amount of data required by the consumer of the
localization XML schema. The exemplary Property Bag 502 illustrated in FIGURE 5A
includes a Boolean data type 504, an integer data type 506, a string data type 508, and an
XML data type 510.

FIGURE 5B is a pictorial diagram of an exemplary Boolean XML element 522. The
Boolean XML element 522 includes an attribute list 524. Attributes of a data type in XML
are used to represent information about the data type, such as name and value of the data
type. One of the attributes included in the attribute list 524 is Name 526. In one exemplary
embodiment, the Name attribute 526 is an alpha-numeric string. Value 528 is another
attribute of the Boolean XML element 522. Value 528 represents a logical value of the
Boolean XML element 522. The logical values include two logical state values of TRUE and
FALSE, as known in the art.

FIGURE 5C is a pictorial diagram of an exemplary Integer XML element 542. The
Integer XML element 542 includes an attribute list 544. One of the attributes included in the
attribute list 544 is Name 546. In one exemplary embodiment, the Name attribute 546 is an
alpha-numeric string. Value 548 is another attribute of the Integer XML element 542.
Value 548 represents an integer value of the Integer XML element 542.

FIGURE 5D is a pictorial diagram of an exemplary String XML element 562. The
String XML element 562 includes an attribute list 564. One of the attributes included in the
attribute list 564 is Name 566. In one exemplary embodiment, the Name attribute 566 is an
alpha-numeric string. Value 568 is another attribute of the String XML element 562.

Value 568 includes a string of characters, including alpha-numeric as well as other
characters, represented by the String XML element 562.

FIGURE 5E is a pictorial diagram of an exemplary XML-string XML element 582.
An XML-String XML element 582 represents any valid XML statement. The XML
element 582 includes an attribute list 584. The attribute list 584 includes a Name
attribute 586. In one exemplary embodiment, the Name attribute 586 is an alpha-numeric
string. The attribute list 584 also includes an Any XML Statement attribute 588, comprising
any valid XML statement.

Those skilled in the art will appreciate that other variations of Property Bag element
502 are possible. For example, Property Bag element 502 may include a type of data
element, such as "Any" element (not shown in the above figures), wherein the Any element

includes a name attribute, a type attribute, and a value attribute. In such exemplary

-10-

WO 2007/033260 PCT/US2006/035691

embodiment, the type attribute specifies how the value attribute should be interpreted. For
instance, type may equal "Unsigned_Integer" and value may equal "15."

FIGURE 6 is a pictorial diagram of an exemplary Comment data format 600 with a
source attribute. In one exemplary embodiment, a Comment element 602 includes natural
language text providing information about the localization process for human operators as
well as pre-defined text strings provided as instructions to human operators and software
tools that process comment files 206 and localization XML data files 408. The comment
element 602 illustrated in FIGURE 6 includes an attribute list 604. In one exemplary
embodiment, the attribute list 604 comprises a Name attribute 606, an Enabled attribute 608,
and an SRC (for "source") attribute 610. The Name attribute 606 is used to reference the
comment by name. The Enabled attribute 608 works as an indicator to indicate whether
comment 602 is enabled or disabled. Thé SRC attribute 610 indicates the source of the
comment, that is, the SRC attribute 610 is a tag for identifying the owner and source of a
comment. As discussed above with respect to FIGURE 2, different types of comments are
owned by different owners. A comment owner may include instructions and other
information about the localization process that relate to the comment owner's area of
responsibility. For example, a software developer may provide general information and
instructions in the form of comments. The comments made by a particular owner are tagged
to identify the owner of the comment. In one exemplary embodiment, the comments made
by each owner may only be manipulated by the owner to whom the comments belong. In
another exemplary embodiment, the ownership of a comment may be transferred from one
owner to another. For example, a comment labeled "DEV" (i.e., developer, as discussed
above) may be allowed to be owned by the comment extractor tool, which normally only
owns comments tagged as "RCCX." In an exemplary embodiment, comment names and
comments may be case-insensitive. Comments may also be enabled and disabled. As
discussed above, a disabled comment is ignored during processing.

FIGURE 7 is a block diagram of an exemplary Localization Item data format 700
with comments. In one exemplary embodiment, a localization item 702 includes
attributes 704. Attributes 704 comprise itemType 706 and itemID 708. Localization
item 702 further includes a string element 710, a binary element 712, and comments 714. A
localization item 702 is any part or resource in the software being localized that may be
translated or otherwise adapted to a local culture and language. For example, a text message

or an icon is a localization item 702. ItemType 706 is an attribute that designates the type of

-11-

WO 2007/033260 PCT/US2006/035691

the localization item 702. For example, itemType 706 may indicate that a particular
localization item 702 is a text message or a color. ItemID 708 is used as an identifier for the
localization item 702. The localization item 702 may optionally include a string 710, binary
data 712, and comments 714, depending on the itemType 706. For example, if

itemType 706 indicates that the localization item 702 is a text string, the localization item 702
may include another element, such as a property element (not shown in the figure), specifying
a default font to be used in the localization. In one exemplary embodiment, several types of
the string 710 and binary data 712 are included in the localization item 702. For example,
string and binary data for a source language, a target language, and other reference languages
may be included in the localization item 702. A reférence language may be used to provide
‘additional information for the translation of localization item 702 from the source language to
the target language. In one exemplary embodiment, a parent localization item 702 includes
zero or more other child localization items 702 (not shown) collectively éonstituting a
hierarchical structure of localization items 702. The child localization items 702 are included
in the parent localization item 702 by means of pointers or equivalent software techniques.

FIGURE 8 is a pictorial diagram of an exemplary Owned Comments data format 806.
The illustrated exemplary owned comments element 802 includes a plurality of comment
elements 602, each comprising an attribute 804. The attribute 804 includes a name
attribute 806.

FIGURES 9A-9D illustrate exémplary embodiments of a Settings element 902 and
corresponding XML elements. FIGURE 9A is a pictorial diagram of an exemplary Settings
data format. Settings element 902 includes an attribute 904 comprising a name 906. Settings
element 902 further comprises a plurality of setting 908 items. Exemplary Setting 1
comprises an attribute 910. Attribute 910 includes the name 912 of Setting 1. Exemplary
Setting 1 further includes a Boolean element 914, an Integer element 916, an Enumeration
element 918, a String element 920, a list element 922, and a Pick-List element 924. Each of
the elements of the setting 908 are further discussed below. The Settings element 902
specifies the current settings of a localization data file.

FIGURE 9B is a pictorial diagram of an exemplary Enumeration element 942. The
exemplary Enumeration element 942 includes an attribute 944 comprising a name 946 and a
value 948. The name attribute 946 identifies the enumeration element 942 by name. The

value attribute 948 includes the value of the enumeration represented by the enumeration 942.

-12-

WO 2007/033260 PCT/US2006/035691

FIGURE 9C is a pictorial diagram of an exemplary List element 962. The exemplary
List element 962 includes an attribute 964 comprising a name 966 and a plurality of item
elements 968. The name attribute 966 identifies the list element 962 by name. The item
elements 968 each represents one entry of the list 962 and may include many attributes (not -
shown in this figure), such as an item identifier, a sequence number, a source file name, and
the like. Additionally, an item 968 may include other elements (not shown in this figure),
such as a string element, a binary element, a comments element, and the like.

FIGURE 9D is a pictorial diagram of an exemplary Pick-List element 982. The
exemplary Pick-List element 982 includes an attribute 984 comprising a name 986 and value
attribute 988. The exemplary Pick-list element 982 further includes a plurality of item
elements 990. The name attribute 986 identifies the Pick-List element 982 by name. The
item elements 990 each represents one entry of the Pick-List 982 and may include many
attributes (not shown in this figure), such as an item identifier, a sequence number, a source
file name, and the like. Additionally, an item 990 may include other elements (not shown in
this figure), such as a string element, a binary element, a comments element, and the like.

Those skilled in the art will appreciate that other variations of data elements are
possible. For example, a data element may include a type of data element, such as "Any"
element (not shown in the above figures), wherein the Any element includes a name attribute,
a type attribute, and a value attribute. In such exemplary embodiment, the type attribute
specifies how the value attribute should be interpreted. For instance, type may equal
"Unsigned_Integer" and value may equal "15".

FIGURE 10 is a pictorial diagram of an exemplary Localization XML data
format 1002. The localization XML data format is used to define the overall format of the
localization data used in the localization process. The exemplary localization XML data
element 1002 includes attributes 1004 and optional elements such as Settings 1016, Property
Bag 1018, Owned Comments 1020, and Localization Item 1022 discussed above. The
attributes 1004 include a name attribute 1006, and other optional attributes Parser ID 1010,
Description 1012, Source 1012, and Target 1014. As discussed above with respect to
FIGURE 7, the localization item 1022 may include zero or more other child localization
jitems 1022 (not shown) collectively constituting a hierarchical structure of localization items
702.

FIGURE 11A is an exemplary pictorial diagram of text data contained in a CDATA
XML element 1102. The CDATA XML element 1102 is used to represent free text 1104 in

-13-

WO 2007/033260 PCT/US2006/035691

localization data files, similar to a string, well-known in the art. The free text 1104 included
in the CDATA XML element 1102 is delimited using closing double brackets 1106
immediately after the end of the last free text 1104 character. That is, the closing double
brackets 1106 are inserted at the end of the free text 1104 without any white space characters,
such as blank, tab, and the like, between the last character of the free text 1104 and the
closing double brackets 1106. FIGURE 11B is an exemplary pictorial diagram of text data
including a square bracket character 1110 contained in a CDATA XML element 1102a. If
the free text 1104a includes a square bracket "]" character 1110, the extent of the free
text 1104a cannot be determined unambiguously. When a character's meaning is ambiguous,
that is, when the character can be interpreted in several ways, an escape character may be
used to restrict the interpretation of the character. An escape character may be used in
addition to other techniques to disambiguate the character. In one exemplary embodiment,
disambiguation of the square bracket "]" includes inserting a white space character 1108,
such as a space or a tab character, before the square bracket character 1110 to identify the
square bracket 1110 as part of the free text 1104a and not part of the closing double
brackets 1106a. In other exemplary embodiments other special characters may be used
similarly.

FIGURE 12 is a block diagram of an exemplary relationship 1200 of a Localization
XML schema 1202 and a corresponding object model 1208. The object model 1208
comprises a number of classes 1206, each class 1206 specifying the design of a software
object in the object model. As those skilled in the art will appreciate, classes are abstract
objects that are used to define software objects in object-oriented computer languages such as
C++ (C-plus-plus), C# (C-Sharp), and Java. Furthermore, those skilled in the art will
recognize that a software object is created in a computer memory by instantiating a class, that
is, by allocating memory to create a physical object in memory based on the format specified
by the corresponding class. The object model 1208 defines one class 1206 substantially for
cach element 1204 in the localization XML schema 1202. Using the object model 1208, the
localization XML schema is implemented in software applications and tools 1210. As
discussed above, the elements 1204 define a localization data format 1212. A data
interface 1214 for specifying data formats of the localization data as originally defined by the
elements 1204 is specified by the classes 1206 in the object model 1208. The software
applications and tools 1210 use the data interface 1214 to correctly access and manipulate

Jocalization data using the correct formats for each piece of data. The software applications

-14-

WO 2007/033260 PCT/US2006/035691

and tools 1210 also use the functional interface 1216 to access and manipulate the
localization data to configure and perform localization tasks.

FIGURE 13A is a block diagram of an exemplary parent and child objects with back
pointer. The parent object 1302 is a software object instantiated from a first class. The child
object 1304 is a software object instantiated from a second class that was derived from the
first class at the time of design of the first and second classes. Those skilled in the art will
recognize that in object-oriented computer languages, such as C++, C#, and Java, a second
class may be derived (i.e., specified from) from the first class. The second class is said to
inherit the members included in the first class. The members of a class include functions,
variables, pointers, and other classes. The second class may define additional new members
not defined in the first class. The relationship of gaining the members of the first class by the
second class is known in the art as inheritance. Inheritance is a process that generally takes
place at design time, as contrasted with run- time (i.e., during the execution of the software),
during the development of the software. Another property of object-oriented languages that
is well-known by those skilled in the art is known as containment, also known as aggregation.
When a first class is a member of a second class, the first class is said to be contained in the
second class. Containment is a relationship between objects that is different from
inheritance. Containment relationship between two objects may be created or destroyed at
run-time by reassignment of pointers. It is customary in the art to use the term "parent" to
represent the first class and the term "child" to represent the second class in both the
inheritance and containment relationships. Accordingly, the parent/child terminology will be
used in the discussions that follow. In the example illustrated in FIGURE 13A, the child
object 1304 in the object model 1208 (FIGURE 12) includes a back pointer 1306 pointing to
the corresponding parent object 1302. The back pointer 1306 increases system performance
by providing a direct link between the parent object 1302 and the child object 1304, whereby
object relationships are traversed in the object model 1208. All objects maintain a reference
to their respective parent objects using a back pointer 1306. The back pointer 1306 is set by
the parent object 1302 when a relationship is established between a parent object 1302 and a
child object 1304. When the relationship between the parent object 1302 and the child
object 1304 is discontinued, the child object 1302 is set to point to another parent object.

FIGURE 13B is a block diagram of exemplary parent and child objects with back
pointer and file pointer. As discussed above, the parent object 1322 sets a back pointer 1326

when a relationship is established between the parent object 1322 and a child object 1324.

-15-

WO 2007/033260 PCT/US2006/035691

When the relationship between the parent object 1322 and the child object 1324 is
discontinued, the child object 1322 is set to point to another parent object. When the child
object 1324 is a resource object, a file pointer 1328 is used by the child object 1324 to point
to the resource file. A resource, as is known to those skilled in the art, is generally a
graphical data object representing a graphical component, such as an icon, a menu, or a
bitmap. Resource data are contained in a resource file 1330, which is created from scripted
resource specifications using a resource compiler.

FIGURE 14 is a pictorial diagram of an exemplary object model 1402 with external
custom culture information. The object model 1402 includes well-known custom
cultures 1404 by default. For localization to languages and cultures not included in the object
model 1402 by default, the object model 1402 is augmented with the custom culture
information 1408 from an external file 1406. In one exemplary embodiment, the external
file 1406 is present on the local system. In another exemplary embodiment, the external
file 1406 is located on a remote system. In one exemplary embodiment, custom culture
information 1406 is updated manually. In another exemplary embodiment, custom culture
information 1406 may be written to the file 1406 by localization application software.

FIGURE 15 is a functional flow diagram of an exemplary method 1500 of partial
loading of data. In block 15 10, a client software application opens a localization data file.
As discussed above, the localization data file includes localization data used in the process of
localization by software application tools, also known as client software applications. In one
embodiment, the localization data file comprises XML elements. Those skilled in the art will
appreciate that other methods and formats may be used to represent data for software
applications, and, therefore, the discussions herein about the exemplary XML elements are to
be construed as exemplary, not limiting. The client software application has internal logic for
determining which XML elements to load into memory for processing. For example, a client
software application that only processes text information for localization only needs to load
text related information, such as font and size of text characters. At block 1520, the next
XML element is obtained from the localization data file for loading into memory and
processing. Next, at block 1530, the client software application determines whether the
current XML element must be loaded. If the current XML element is selected to be loaded,
then in block 1540 the current XML element is loaded and the method 1500 proceeds to
block 1550. Ifthe current XML element is not selected to be loaded, method 1500 proceeds

to block 1550, where the method 1500 determines whether more XML elements are available

-16-

WO 2007/033260 PCT/US2006/035691

in the localization data file. If more XML elements are available in the localization data file,
method 1500 proceeds back to block 1520 to get the next XML element. If more XML
elements are not available in the localization file, the method 1500 terminates. In one
exemplary embodiment, the client software application selects a general type of data to be
loaded and other general types of data not to be loaded. For example, a client that processes
text sets a flag for loading only string data and not any binary data. In such a case, the
selection of data is done at a gross level, differentiating data types for loading based on the
general types of the data being selected.

FIGURE 16 is a functional flow diagram of an exemplary method 1600 of granular
loading of data with a callback function. In one embodiment, a client software application
specifies data to be loaded at a fine granular level, including all types of data, such as string
data and binary data. Granular loading of data is performed at a fine level within all data
types, in contrast to the partial loading of data discussed above with respect to FIGURE 15,
which operates at the gross level of data types. In granular loading, the client software
application provides specific criteria according to which each data element is loaded. In one
exemplary embodiment, the client software application provides a callback function to the
functional interface of the object model 1208, whereby the objects that retrieve the
localization data from the localization data file determine whether to load each data element.
The callback function uses the criteria for selection of data as defined by the client software
application. In block 1610 the client software application opens the localization data file.
The method 1600 proceeds to block 1620, where a callback function is provided by the client
software application to the object from the object model 1208 accessing the localization data
file. Inblock 1630 an XML data element is obtained. The object uses the callback function
provided by the client software application to evaluate the XML data element for loading. In
block 1650, the method 1600 determines, based on the results from the callback function,
whether to load the current XML data element. If the current XML data element is selected
for loading, the method 1600 proceeds to block 1660, where the XML data element is loaded
into memory and the method proceeds to block 1670. If the current XML is not selected for
loading, the method 1600 proceeds to the block 1670. In block 1670, the method 1600
determines whether more XML data elements are available in the localization data file. If
more XML data elements are available, the method 1600 proceeds back to block 1630 to
obtain the next XML data element. Otherwise, the method 1600 terminates.

-17-

WO 2007/033260 PCT/US2006/035691

FIGURE 17A is a functional flow diagram of an exemplary method 1700 of partial
saving of data. Partial save method 1700 is the complement of the partial load method 1500.
A client software application that has localization data in memory ready to be saved to a data
file, may be required to save only part of the data. Partial save method 1700 allows the client
software application to specify which data should be saved to the data file. For example, a
client software application may be required to save only string.data. The client software
application can specify that only string data be saved to the data file. In block 1710, the
client software application specifies the type of data to be saved to the data file. In
block 1720, the data of the type specified by the client software application is saved to the
data file. In block 1730, the data file is closed and method 1700 is terminated.

FIGURE 17B is functional flow diagram of an exemplary method 1750 of merge on
saving of data. Whether through partial or granular loading of data, discussed above, a client
software application has only part of the data loaded in memory. If the data in the client
software application's memory is saved as s, all data not initially loaded in the memory will
be lost and not recorded in the output data file. To prevent loss of data, method 1750 merges
the data in the client software application's memory with the data from the data file that was
not initially loaded into the client software application's memory. To save the modifications
made by the client software application to the loaded data, the memory copy of the data
common to both the data file and the client software application's memory is saved. In
block 1760 the original data file from whic;h the localization data were loaded by the client
software application is opened. In block 1770, the next available XML element is obtained
from the data file. In block 1780, the method 1750 determines whether the current XML
element obtained from the data file also exists in the memory of the client software
application. Ifthe current XML element exists in memory, the memory copy of the XML
element is saved to the data file in block 1785. Next, the method 1750 proceeds to
block 1790. In block 1780, if the current XML element does not exist in the memory, the
current XML element had not initially been loaded, is unmodified, and, therefore, need not be
saved in the data file again. In this case, the method 1750 proceeds to block 1790. In
block 1790, the method 1750 determines whether more XML elements remain in the data
file. If there are more XML elements remaining, the method 1750 proceeds to block 1770 to
obtain the next XML element. Otherwise, the method 1750 is terminated.

FIGURE 18 is a functional flow diagram of an exemplary method 1800 of granular

saving of data. The granular save method 1800 is the complement of the granular load

-18-

WO 2007/033260 PCT/US2006/035691

method 1600. Similar to the granular load method 1600, the granular save method 1800
specifies whether each data element must be saved or not. In one embodiment, a client
software application specifies data to be saved at a fine granular level, including all types of
data, such as string data and binary data. Granular saving of data is performed at a fine level
within all data types, in contrast to the partial saving of data discussed above with respect to
FIGURE 17A, which operates at the gross level of data types. In granular saving, the client
software application provides specific criteria according to which each data element is saved.
In one exemplary embodiment, the client software application provides a callback function to
the functional interface of the object model 1208 whereby the objects that saves the
localization data to the localization data file determine whether to save each data element.
The callback function uses the criteria for selection of data as defined by the client software
application. The method 1800 proceeds to block 1810, where a callback function is provided
by the client software application to the object from the object model 1208 accessing the
localization data file. In block 1820, an XML data element is obtained from the client
software application's memory. In block 1830, the object uses the callback function provided
by the client software application to evaluate the XML data element for saving. In
block 1840, the method 1800 determines, based on the results from the callback function,
whether to save the current XML data element. If the current XML data element is selected
for saving, the method 1800 proceeds to block 1850, where the XML data element is saved to
the data file and the method proceeds to block 1860. If the current XML is not selected for
saving, the method 1800 proceeds to the block 1860. In block 1860, the method 1800
determines whether more XML data elements are available in the memory. If more XML
data elements are available, the method 1800 proceeds back to block 1820 to obtain the next
XML data element. Otherwise, the method 1800 terminates.

FIGURE 19 is a pictorial diagram of an exemplary localization object model 1900.
As indicated above, those skilled in the art recognize that an object model is an abstract
representation of the relationships of different object types, or classes (abstract representation
of objects), in a software system. An object model may be used to represent inheritance
relationships as well as containment relationships between objects. The object model 1900
provides the specification for the types of objects and relationships that allow basic input and
output functions with respect to data in the localization data files created based on the
localization XML schema 1202. As discussed above, those skilled in the art will appreciate

that the object model 1900 may apply to other types of data schema and the discussion of the

-19-

WO 2007/033260 PCT/US2006/035691

exemplary localization XML schema should not be construed as limiting the invention. The
object model 1900 allows the splitting and merging of localization data files. Additionally,
the object model 1900 allows the addition of information about the source and description of
comments. The object model 1900 further allows the inclusion of referenced translations to
provide help in the localization process. As discussed above with respect to FIGURE 12, the
object model 1900 closely corresponds to the localization XML schema 1202. That is, each
class in the object model 1900 corresponds to one element in the localization XML

schema 1202. Accordingly, a localization file 1902 is a class that represents a localization
data file based on the localization XML schema 1202. The localization file class 1902
includes a culture class 1904 and a localization item list class 1906. The localization item list
class 1906 is included in a localization item class 1908. In one embodiment, the localization
item list class 1906 is a linear list, as opposed to a hierarchical structure, easily allowing the
splitting of a localization data file 404 into partial data files 406 and merging the partial data
files 406 back into a localization data file 408. The localization item class 1908 is the central
class in the object model 1900 to which most other classes in the object model 1900 are
related. In one embodiment, the localization item class 1908 includes a parent resource, a
localization file, a resource ID, a localization item list (discussed below) of child localization
items, a string data class (discussed below), a binary data class (discussed below), and a
comment list of comments (discussed below).

The localization item class 1908 further includes a comments class 1910. In one
embodiment the comments class 1910 is part of a comment list class. Localization item
class 1908 also includes a string data class 1912 and a binary data class 1914. The string data
class 1912 includes a string source class 1916 and a string target class 1918. The string
source data class 1916 provides a raw string, and other string properties. The string target
class 1918 includes localization information for the string. The binary data class 1914
includes a binary source class 1920 and a binary target 1922. The binary source class 1920
exposes an array of raw binary bytes and other binary properties. The binary target
class 1922 provides binary status information. In another embodiment, the object
model 1900 may include other classes such as a display information class and a resource ID
class included in the localization item class 1908. In an exemplary embodiment, the string
data class 1912 and the binary data class 1914 include a string reference class and a binary

reference class (not shown). A reference class provides information about a reference

-20-

WO 2007/033260 PCT/US2006/035691

language, which may be used to provide additional information for the translation of string
and binary data from the source language to the target language.

FIGURE 20 is functional flow diagram of an exemplary method 2000 for creation and
provisioning of a localization data file. In block 2010 a new localization data file is created.
In block 2020 a localization item is added to the localization data file. In block 2040, the
method 2000 determines whether more localization items remain to be added to the
localization data file. If more localization items remain, the method 2000 proceeds to
block 2020 where the localization item is added to the localization data file. Otherwise, the
method 2000 proceeds to block 2060 where the localization data file is saved.

FIGURE 21 is functional flow diagram of an exemplary method 2100 for addition of
a comment to a Localization Item. The method 2100 requires input information from a client
software application to identify the localization item to which the comment is to be added.
As discussed above, instructions for localization may be embodied in comments that are
associated with localization items. In block 2110, a localization data file is opened. In
block 2120, the method 2100 verifies comment ownership rights of the client software
application that is attempting to add comments to the localization item. If the client software
application does not own the comment type added to the localization item, the method 2100
proceeds to block 2170 where the localization data file is closed. If the client software
application owns the comment type, the method 2100 proceeds to block 2130, where a new
comment is created. In block 2140, the name and value attributes of the comment are set to
the desired values. In block 2150 the comment is added to the localization item. The
method 2100 proceeds to block 2160, where the file is saved. In block 2170, the file is closed
and the method 2100 terminates.

FIGURE 22 is a functional flow diagram of an exemplary method 2200 for file
stripping. All data that must not be saved to the localization data file is removed from the
client software application's memory prior to saving the data. In one embodiment, the
method 2200 removes all localization items that contain no comments. The binary
information and strings are removed from all other localization items. In one embodiment, a
recursive method is used, which includes a child localization jtem as input. The recursive
method strips all binary and string information from the child localization item. A FALSE
return value from a call to the recursive method implies that the child localization item
provided as input to the recursive method and all the children of the child localization item

have no comments and the child localization item and all the children of the child localization

-21-

WO 2007/033260 PCT/US2006/035691

item are removed. In block 2210, a child localization item is accessed. In block 2220, the
method 2200 determines whether the child includes comments. If the child has comments,
the method 2200 proceeds to block 2230, where binary and string data of the child
localization item are discarded. If the child has no comments, then the child is removed in
block 2240. In block 2230, the method 2200 proceeds to block 2250. In block 2240, the
method 2200 proceeds to block 2250, where it is determined whether more child localization
items remain. If more child localization items remain, the method 2200 proceeds to

block 2210, where the next child localization item is accessed for evaluation. Otherwise, the
method 2200 terminates.

While the presently preferred embodiment of the invention has been illustrated and
described, it will be appreciated by those skilled in the art that various changes can be made
therein without departing from the spirit and scope of the invention. For example, while the
systems and methods described above are directed towards localization data using XML
schema, other data format specifications may be used. Thus, the invention should not be

construed as limited to the exemplary embodiments described above.

22-

WO 2007/033260 PCT/US2006/035691

CLAIMS
The embodiments of the invention in which an exclusive property or privilege is

claimed are defined as follows:

1. A computer-readable medium having computer-readable components for the
localization of data included in software programs, the computer-readable components
comprising:

data elements defined by a software déta schema;

' a property repository data element for storing a plurality of data properties about the
data elements; and

an owned comment data element comprising information about the localization of the
data included in software programs and an owner with permission to create, access, and

manipulate the owned comment data element.

2. The computer-reédable medium of Claim 1, wherein the software data schema

is an extensible markup language ("XML") schema.

3. The computer-readable medium of Claim 1, wherein at least two of the data
elements are arranged as a hierarchy with a parent data element being located higher in the

hierarchy than a child data element.

4. The computer-readable medium of Claim 3, wherein each of the parent and

child data elements include a property repository data element.

5. The computer-readable medium of Claim 1, wherein the owned comment data
element comprises instructions relating to the localization of data included in the software

programs for at least one of a software localization tool and a human operator.

6. The computer-readable medium of Claim 1, wherein the owned comment data
element includes a description of the owned comment data element and information about

ownership of the owned comment data element.

7. A computer-readable medium having a collection of computer-readable
components for localization of data included in software programs, the collection of
computer-readable components comprising:

data elements defined based on a software data schema;

23-

WO 2007/033260 PCT/US2006/035691

a property repository data element for storing a plurality of data properties about the
data elements;

a linear list of localization data elements usable for splitting the collection of
computer-readable components into multiple sub-collections, separately manipulating data
elements in the multiple sub-collections, and merging the multiple sub-collections back into a
single collection of computer-readable components; and

an owned comment data element comprising information about the localization of the
data included in software programs and an owner with permission to create, access, and

manipulate the owned comment data element.

8. The computer-readable medium of Claim 7, wherein the software data schema

is an extensible markup language ("XML") schema.

9. The computer-readable medium of Claim 7, wherein at least two of the data
elements are arranged as a hierarchy with a parent data element being located higher in the

hierarchy than a child data element.

10. The computer-readable medium of Claim 9, wherein each of the parent and

child data elements include a property repository data element.

11. The computer-readable medium of Claim 7, wherein the owned comment data
element comprises instructions relating to the localization of data included in the software

programs for at least one of a software localization tool and a human operator.

12. The computer-readable medium of Claim 7, wherein the owned comment data
element includes a description of the owned comment data element and information about

ownership of the owned comment data element.

13. The computer-readable medium of Claim 7, wherein the owned comment data
element includes information comprising at least one name and a corresponding value data

pair.

14. A computer-readable medium having a collection of software objects stored
thereon for localization of software programs, the collection of software objects comprising:
a) data and instructions included in each software object; and

b) a localization item object comprising localization data and at least one of:

24-

WO 2007/033260 PCT/US2006/035691

) a localization items list object including a list of other localization item
objects;

(ii) a comment object comprising information about the localization of
software programs;

(i) astring data object for storing computer text information; and

(iv) a binary data object for storing binary information;

wherein each software object corresponds to a data structure defined by a software

data schema, and wherein each software object is used to access and manipulate data stored

in the corresponding data structure defined by the software data schema.

15. The computer-readable medium of Claim 14, wherein each of the software

objects comprises a software class in an object-oriented computer language.

16. The computer-readable medium of Claim 14, wherein the software data

schema is an extensible markup language ("XML") schema.

17. The computer-readable medium of Claim 14, wherein at least one of the

software objects reads pre-selected data stored in the corresponding data structure.

18. The computer-readable medium of Claim 14, wherein at least one of the

software objects stores pre-selected data in the corresponding data structure.

19. The computer-readable medium of Claim 14, wherein at least two of the
software objects are related one to another as a parent and child, wherein the child object is at

least one of contained in the parent object or derived from the parent object.

20. The computer-readable medium of Claim 19, wherein the child object includes

a back pointer to the parent object.

-25-

WO 2007/033260

100

108

119

PCT/US2006/035691

BUILD

102

' r—/

DEVELOPMENT
104
__/
LOCALIZATION
TRANSLATION
~
106

Fig.1.

PCT/US2006/035691

WO 2007/033260

2/19

ONRIFINIONT
NOILYZI'TVOOT

vic

1] 74

'2'b14

V.LVd 398MN0S —
SINIWWOD
yISHVd
| SONILLFS | NOILLYZITV207 m%%%mw
374 vivd
NOILVZITV901 \
P $02
ziz
I ST
SONILLIS SINIWNOD

\

80¢

\\\\\

90¢

gvi1aing
JAVYMLH0S

4174

00z

PCT/US2006/035691

WO 2007/033260

3/19

00¢ H

AJVNIg
1394V1

\l\

1423

7001 a1ing
NOILVZITVYO0T

clE

viva
NOILVISNVYL
V.1Vva 308N0S
S.INIWNOD
SONILLIS
74 JOVNONVT
a3zrivooT

z12
AN

V.iva 328N0s
SLNIWNWOD
SONILL3S
FH4 viva
NOILVZITvIO0T

SIFT7H

AUVNId 308N0S

\

14174

ONIIFINIONT
NOILVZITvIO01T

vic

PCT/US2006/035691

WO 2007/033260

4/19

‘b°Bi14

ERME mov/ 1I'ldS
N 37 V.LVd TVILEYd
\ _
[]
[]

4 VLvd I74 v.iva
NOILYZITVOOT [« Z 374 V.LVa TVILYVd f¢————— NOILLYZITVIOT
- ‘g/V \ X
80¥ \« L 374 V1vd TVILYYd 4# 11 4

Z0v 90¥ oor

WO 2007/033260

PCT/US2006/035691

5/19

502 504
BOOLEAN }——
596
PROPERTY INTEGER 508
BAG STRING
510
XML
— ; 524
5ot Fig.5A. A
322 ATTRIBUTE,)
NAME
BOOLEAN >
540 VALUE
\) \\
544 520 . 528
Fig.5B.
/542 ATTRIBUTE
name H-_3%6
INTEGER - 560
548
VALUE H— /
562
i 562 // 566
F,g_ 5C. - ATTRIBUTELZ
NAME
STRING >
580 VALUE
\ 584 \
i L568
ATTRIBUTE
> NAME 1
XML 588
ANY XML | —/
STATEMENT

Fig.5E.

WO 2007/033260 PCT/US2006/035691

6/19
600
604
| 602 ATTRIBUTE 606
/““ﬁ-/
‘\COMMENT ‘ NAME 505
| ——— -/
NABLED
 E l/—\ 610
T T
Fig.6.
r/mo
704
ATTRIBUTE
706
itemType —
708

itemiD | L

702 .
[]

LOCALIZATION 710
ITEM STRING |—
712

BINARY }——

714

COMMENT

Fig.7.

WO 2007/033260 PCT/US2006/035691

719

806

\ /602 804

ATTRIBUTE
——— COMMENT 806

| NAME

802
804

OWNED COMMENT ATTRIBUTE 506
COMMENTS — NAWE
\ 602

Fig.8.

WO 2007/033260

8/19

ATTRIBUTE

904

PCT/US2006/035691

902 906 910
/ | NAME —
ATTRIBUTE 912
[SETTINGS [}]i 908 | _NAmE
914
! SETTING 1
BOOLEAN |—
916
INTEGER }|—
918
ENUMERATION}
920
°ee STRING —
922
LIST | —
924
944 PICK-LIST | —
942 ATTRIBUTE .
_ 946 Fig.9A.
[NAME
ENUMERATION 948
[VALUE
Fi g.9B. 964
962 966
__/ |ATTRIBUTE
LIST NAME
968
982 ATTRIBUTE | gg6 e
— [NAME
PICK-LIST 988 vee
[VALUE
‘90 Fig.9C.
ITEM |~

Fig.9D.

WO 2007/033260

PCT/US2006/035691

9/19

1004
P4
ATTRIBUTES
1006
NAME /
1002
U PARSERID |—_| 1908
DESCRIPTION 1010
LOCALIZATION N
ML DATA 1012
SOURCE || 1¢
1014
TARGET |—_| 1t
SETTINGS 1016
PROPERTY BAG 1018
OWNED COMMENTS |—_ 1920
1022
LOCALIZATION ITEM }——"
Fig.10.
1102 1104 1106
e e
< ![cdata[free text]] >
Fig.11A.
1102a 1104a 1108 1110 1106a
, / - // //
< I'[cdata[free text and bracket” ;T and

other text]] >

Fig.11B.

PCT/US2006/035691

WO 2007/033260

10/19

(474

N~

LVYIWHO-d viva
FOV4YILNI VLV

\ll\

viel

JOVAHILNI T¥YNOILONNL ---

voel
//

'ZL'b14

voci
/

VINIHOS
TWX NOILVZITVOOT

YY) ¢ ININWITT LAINIWTTI
P! A A
; y —y
oo ¢ SSV710 L SSVYTO _|
13a0oN 193rgo -

\

9icL

oici

/

S7001 ® SNOLLYOITddY

JHVML-HOS

/NQN L
/mcwh

/mQN 4

/1742

WO 2007/033260 PCT/US2006/035691

1119

1302
\ PARENT OBJECT 1306
2\ //

BACK POINTER

1304
\\» CHILD OBJECT

Fig.13A.

1322
\| PARENT

OBJECTS 1326
Z/\é/”’/
BACK

POINTER 1328

1330
1324 \ / /‘/

CHILD OBJECT > FILE

FILE POINTER

Fig.13B.

WO 2007/033260 PCT/US2006/035691

12/19

FILE 1406

1402
_ OBJECT MODEL

1404 \ WELL KNOWN

1408
CUSTOM CULTURE /

CUSTOM CULTURE INFORMATION -
= __

Fig.14. L 100

1500
PARTIAL
LOAD
1510
CLIENT OPENS |
LOCALIZATION DATA FILE

k 1520

GET NEXT XML ELEMENT —

1530

LOAD
XML ELEMENT
?

YES

1540
\ LOAD XML ELEMENT

1550

MORE

ELEMENTS YES

Fig.15.

WO 2007/033260

1600

\

13/19

GRANULAR LOAD

PCT/US2006/035691

1660

1670
CLIENT OPENS
LOCALIZA TION DATA FILE
¢ 1620
PROVIDE CALLBACK
FUNCTION WITH DATA
LOAD CRITERIA
*i 1630
GET NEXT XML ELEMENT —
¢ 1640
USE CALLBACK FUNCTION |
TO EVALUATE XML
ELEMENT

1650

LOAD
XML ELEMENT
? .

YES

LOAD XML ELEMENT

YES

MORE

XML ELEMENTS

Fig.16.

1670

WO 2007/033260 PCT/US2006/035691

14/19

1700

\ PARTIAL SAVE
1710

CLIENT SPECIFIES TYPEOF |
DATA TO BE SAVED TO FILE

SAVE TYPE OF DATA 1720
SPECIFIED BY CLIENT TO FILE | ~—

CLOSE FILE 1730

Fig.17A.
1750
N\ (IERoE N SAVES
1760

OPEN DATA FILE FROM
WHICH DATA WAS LOADED] "

1770
_| GET NEXT XML ELEVMENT
FROM DATA FILE

1780

NO

XML ELEMENT
IN MEMORY
?

YES

1785
_| SAVE WEMORY COPY OF
XML ELEMENT TO FILE

1790

MORE ELEMENTS~YES
?

Fig.17B.

WO 2007/033260

1800

\

15/19

GRANULAR SAVE

PCT/US2006/035691

CLIENT PROVIDES
CALLBACK FUNCTION
WITH DATA SAVE
CRITERIA

1810

|

1820

Y
GET NEXT XML ELEMENT

]

USE CALLBACK FUNCTION
TO EVALUATE XML
ELEMENT

1830

1840

NO

YES

1850 \

SAVE XML ELEMENT TO FILE

YES

MORE

XML ELEMENTS
2

Fig.18.

1860

WO 2007/033260 PCT/US2006/035691

16/19

1904

/

CULTURE

1900

\

1902

LOCALIZATION
FILE

1906

LOCALIZATION | —"
ITEM LIST

1908

v

LOC“)’,-.EA';‘ TION| | cOMMENTS

L

1910

1914

1912~_| sTRING | | BINARY | —/
DATA DATA

STRING | | STRING | | BINARY | [BINARY

SOURCE| | TARGET| |SOURCE| | TARGET

l

1916

&

1918

l

1920

Fig.19.

|

1922

WO 2007/033260

1719

2000
CREATE

DATA FILE

LOCALIZATION XML

CREATE NEW FILE

PCT/US2006/035691

2010

r

2020
ADD
AN LOCALIZATION
ITEM TO FILE

2040
MORE

TO ADD
?

2060
_

SAVE FILE

Fig.20.

LOCALIZATION ITEMS

YES

WO 2007/033260

2100

\

18/19

ADD
COMMENTS TO A
LOCALIZATION
ITEM

2110
\

OPEN
LOCALIZATION
FILE

2120

OWN

COMMENT

TYPE
?

YES

2130

CREATE NEW
COMMENT

Y

2140
\

SET NAME AND
VALUE FOR NEW
COMMENT

!

2150
\.

ADD NEW
COMMENT TO THE
LOCALIZATION
ITEM

2170

2160
\ SAVE FILE
\

PCT/US2006/035691

Ve

CLOSE FILE

Fig.21.

WO 2007/033260 PCT/US2006/035691

19/19

2200

\ FILE STRIPPING

2210
GET NEXT CHILD
LOCALIZATION —
ITEM

2220

HAVE COMMENTS NO

FOR THIS
CHILD
?

l 2240

YES REMOVE /J
‘ 2230 CHILD

STRIP OFF BINARY| —
& STRING DATA

2250

MORE
CHILDREN
?

YES

Fig.22.

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2006/035691

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(20006.01)i, GOGF 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean patents and applications for inventions since 1980

Utility models and applications for utility models since 1980

Japanese utility models and applications for utility models since 1980

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
eKIPASS, Google, Kisti : localization, XML, program or application

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2003/004401 A1 (Abel , T.J. etal.) 01 May 2003 1-20
See abstract, figure 3 and page 4, [36]~[38]

A US 2005/0108433 A1 (Redmond, W.W. et al.) 19 May 2005 1-20
See abstract, figure 5 and page 5-7, [48]~[67]

A EP 01333374 A1 (SAP Aktiengesellschaft) 06 Aug 2003 1-6
See Summary of the Invention, [008]~[0025]

A US 2004/0088155 A1 (Kerr, J. et al.) 06 May 2004 1-6
See figure 1 and page 1, [13]~[15]

A US 2003/0115186 A1 (Wilkinson F. M. etal.) 19 June 2003 1-6
See figure 1,3 and realted description

|:| Further documents are listed in the continuation of Box C. |E See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
06 FEBRUARY 2007 (06.02.2007) 07 FEBRUARY 2007 (07.02.2007)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, YOON, Hye Sook
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8370

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members

PCT/US2006/035691
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2003/0084401 At 01 05 2003 EP1302867 A2 16.04.2003
JP2003186733 A 04.07.2003
US 2005/0108433 At 19.05.2005 CN1609799 A 27.04.2005
EPO1530127 A2 11.05.2005
JP2005129028 A2 19.05.2005
KR2005039532 A 29.04.2005
EP 01333374 A1 06.08.2003 US20040236715 A1 25.11.2004
W02002101549 A2 19.12.2002
US 2004/008815 At 06.05.2004 EPO1435569 A2 07.07.2004
US 2003/0115186 At 19.06.2003 None

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report
	Page 48 - wo-search-report

