(54) 发明名称
一种瑞戈菲尼的制备方法

(57) 摘要
本发明涉及一种瑞戈菲尼的制备方法，本发明的创新采用 4-氯-3-三氟甲基苯胺（化合物 2）与氯甲酸苯烯酯（化合物 3）反应生成 (4-氯-3-三氟甲基苯胺)-甲酸苯烯酯（化合物 4），其在 N-甲基四氢吡咯或三烷基铝的催化下与 4-(4-氨基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺（化合物 9）发生取代反应得到瑞戈菲尼。该方法成本低廉、操作简单、反应步骤少、周期短、能耗低、收率高、纯度高、工艺安全，不使用高毒性试剂，所得产品无潜在的安全性问题，适合工业化生产。
1. 一种瑞戈菲尼的制备方法，其特征在于其包括如下步骤；

(a) 4- 氯 -3- 三氟甲基苯胺 (化合物 2) 与氯甲酸丙烯酯 (化合物 3) 在碱性条件下反应生成 (4- 氯 -3- 三氟甲基苯胺) - 甲酸丙烯酯 (化合物 4)；

(b) 4-(4- 氨基 -3- 三氟甲基) -N- 甲基吡啶 -2- 甲酰胺 (化合物 9) 与 (4- 氯 -3- 三氟甲基苯胺) - 甲酸丙烯酯 (化合物 4) 在催化剂和碱的作用下反应生成瑞戈菲尼 (化合物 1)。

2. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (a) 中，所述碱为 Na，NaNH，二异丙基乙酰，氯化铝，甲醇钠，乙醇钠或氯化钠，所述碱与 4- 氯 -3- 三氟甲基苯胺 (化合物 2) 的摩尔比为 1 : 3.5 : 1。

3. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (a) 中，所用反应溶剂为甲苯，甲醇乙酯，乙烯醇或氯甲烷。

4. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (a) 中，所述 4- 氯 -3- 三氟甲基苯胺 (化合物 2) 与氯甲酸丙烯酯 (化合物 3) 摩尔比为 1 : 1.0 ~ 3.0。

5. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (b) 中，反应溶剂为乙醇，甲醇乙酯，异丙醇，四氢呋喃，DMF，1,4- 二氧六环或二氯甲烷。

6. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (b) 中，所述催化剂为 N- 甲基四氢吡咯或三烷基铝。

7. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (b) 中，所述 (4- 氯 -3- 三氟甲基苯胺) - 甲酸丙烯酯 (化合物 4)、4-(4- 氨基 -3- 三氟甲基) -N- 甲基吡啶 -2- 甲酰胺 (化合物 9) 与催化剂 N- 甲基四氢吡咯的摩尔比为 1 : 1.0 ~ 3.0 : 0.1 ~ 1.0；所述 (4- 氯 -3- 三氟甲基苯胺) - 甲酸丙烯酯 (化合物 4)、4-(4- 氨基 -3- 三氟甲基) -N- 甲基吡啶 -2- 甲酰胺 (化合物 9) 与催化剂三烷基铝的摩尔比为 1 : 1.0 ~ 3.0 : 2.0 ~ 3.0，所述三烷基铝为三甲基铝或三乙基铝。

8. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (b) 中，反应温度为 30 ~ 120℃，反应时间为 0.5 ~ 24h。

9. 根据权利要求 1 所述的瑞戈菲尼的制备方法，其特征在于步骤 (b) 中所用 4-(4- 氨基 -3- 三氟甲基) -N- 甲基吡啶 -2- 甲酰胺 (化合物 9) 的制备方法包括如下步骤：

1) 采用 2- 吡啶甲酸 (化合物 5) 为原料，在催化剂下氯化得到 4- 氯 -2- 吡啶甲酰氯 (化合物 6)，反应溶剂为氯苯，甲苯，二氯亚砜；所述催化剂为溴化氢，溴化钠，氢溴酸，二溴亚砜，DMF；

2) 4- 氯 -2- 吡啶甲酰氯 (化合物 6) 经酰胺化得到 4- 氯 -2- 吡啶甲酰胺酸盐酸盐 (化合物 7)；

3) 4- 氯 -2- 吡啶甲酰胺酸盐酸盐 (化合物 7) 与 3- 氯 -4- 氨基苯酚 (化合物 8) 在碱性条件下反应生成 4-(4- 氨基 -3- 三氟甲基) -N- 甲基吡啶 -2- 甲酰胺 (化合物 9)；反应所用碱为叔丁醇钾，甲醇钠，乙醇钠，异丙醇钾或氢氧化钠，所述碱与 3- 氯 -4- 氨基苯酚 (化合物 8) 的摩尔比为 1.0 ~ 3.0 : 1。

10. 根据权利要求 9 所述的瑞戈菲尼的制备方法，其特征在于：步骤 (3) 中，4- 氯 -2- 吡啶甲酰胺酸盐酸盐 (化合物 7) 和 3- 氯 -4- 氨基苯酚 (化合物 8) 摩尔比为 1 : 1.0 ~ 3.0。
一种瑞戈菲尼的制备方法

技术领域
[0001] 本发明属于医药化工领域，具体涉及一种瑞戈菲尼的制备方法。

背景技术
[0002] 瑞戈非尼 (regorafenib)，化学名为4-[[4-(4-氯-3-(三氟甲基)苯基)氨基甲酰基]-氨基]-3-(氟苯氧基)-N-甲基吡啶-2-甲酰胺，具有式1所示的化学结构。是德国BayerHealthcare公司研发的新型多激酶抑制剂类抗癌药，可抑制促进癌细胞生长的IT、FGFR1等酶，进而起到抑制肿瘤血管生成和肿瘤细胞增殖的作用，是第一个用于治疗转移性结肠直肠癌的口服小分子多激酶抑制剂，主要用于治疗转移性的晚期直肠癌。其结构与已上市的另一激酶靶向抑制剂索拉非尼 (sorafenib) 类似，但其抑制活性与抑制范围都比后者要强。

[0003]

![化合物1：瑞戈非尼](image)

[0004] 瑞戈非尼基本结构是一种不对称双芳基胺，文献报道的瑞戈非尼 (1) 的合成工艺路线主要为：

[0005] 1. CN201510098300 文献中描述以2-吡啶甲酸为原料，经过氯化、酰胺化得到4-氯-2-吡啶甲酰胺盐酸盐，与4-氨基-3-氯苯酚，4-氯-3-三氟甲基苯甲酰氯酸酯一锅法制得瑞戈非尼。

[0006]

![合成路线](image)

[0007] 采用一锅法制备瑞戈非尼虽然操作简便，反应条件温和，但是该反应因为没有控制加料数量及加料顺序，容易产生4-氯-2-吡啶甲酰胺与4-氨基-3-氯苯酚的取代副产物，副产物和主产物结构相似，不易除去，给后续的处理增加难度；一锅法不能控制反应的先后，无法控制反应进程，而且4-氯-3-三氟甲基苯甲酰氯酸酯较难获得，价格昂贵，性质不稳定，导致产品纯度低，成本高。

3
[0008] 2015年苏鹏等报道的瑞戈菲尼工艺改进，是以2-哌啶甲酸为原料，经氯化、
甲醇解，酰胺化得到4-氯-2-吡啶甲酰胺，与4-氨基-3-氯苯酚核取代得到4-(4-氨基
-3-三氟甲基)-N-甲基吡啶-2-甲酰胺，再与4-氯-3-三氟三甲基苯基氯酸酯缩合得
到瑞格菲尼。该工艺改进是通过使用N,N-二甲基甲酰胺、溴化钠双催化剂、使用氢氧化钠
代替叔丁醇钠，四氢呋喃代替N,N-二甲基甲酰胺，使反应趋于平和。

[0009]

该法合成瑞戈菲尼单体收率47%，总体收率偏低。采用4-氯-3-三氟甲基苯异氰
酸酯较难购买，一般自己合成，合成需要用到光气类毒性试剂，使生产成本增加，该辅料化
学性质不稳定，后处理困难，所得产品纯度低。缩合反应过程需要惰性气体保护。

因此，尽管现有技术中公开了多种方法能够获得瑞戈菲尼，但为适于工业化生产，
仍然需要研究开发其制备方法，以能够简单安全地操作，高收率低成本获得高纯度、符合要
求的产品。

发明内容

[0012] 本发明针对现有技术中的上述缺陷，提供一种成本低廉、收率纯度高、不使用高毒
性试剂、适合工业化生产的瑞戈菲尼的制备方法。本发明人惊奇的发现，以4-氯-3-三氟甲
基苯胺（化合物2）与成本低廉的氯甲酸丙烯酯（化合物3）在碱性条件下反应生成活化酯
（4-氯-3-三氟甲基苯胺）-甲酸丙烯酯（化合物4），在N-甲基四氢吡咯或者三烷基铝的
催化下，与化合物9发生取代反应高产率的得到瑞戈菲尼。

[0013] 本发明的技术方案如下：

[0014] 一种瑞戈菲尼的制备方法，其特征在于其包括如下步骤：

[0015] (a) 4-氯-3-三氟甲基苯胺（化合物2）与氯甲酸丙烯酯（化合物3）在碱性条件
下反应生成（4-氯-3-三氟甲基苯胺）-甲酸丙烯酯（化合物4）；

[0016]
化合物2: 4-氯-3-三氟甲基苯胺

化合物4: (4-氯-3-三氟甲基苯胺)-甲酸丙烯酯

化合物9: 4-(4-氨基-4-三氟甲基)-N-甲基吡啶-2-甲酰胺

化合物1: 瑞戈菲尼

[0019] 根据本发明的方法，优选的，步骤 (a) 中，所述碱为 N, N- 二异丙基乙胺、氢氧化钾、甲醇钠、乙醇钠或氢氧化钠，所述碱与 4-氯-3-三氟甲基苯胺（化合物2）的摩尔比为 1:3.5:1。

[0020] 优选的，步骤 (a) 中，所用反应溶剂为甲苯、乙酸乙酯、乙醇、二氯甲烷。所述 4-氯-3-三氟甲基苯胺（化合物2）与氯甲酸丙烯酯（化合物3）摩尔比为 1:1.0 ~ 3.0，更优选为 1:1.5 ~ 2.5。

[0021] 根据本发明的方法，优选的，步骤 (b) 中，反应溶剂为乙醇、乙酸乙酯、异丙醇、四氢呋喃、DMSO、1,4-二氧六环或二氯甲烷，反应温度为 30 ~ 120℃，反应时间为 0.5 ~ 24h。

[0022] 根据本发明的方法，优选的，步骤 (b) 中，所述催化剂为 N- 甲基四氢吡咯或三烷基铝。

[0023] 更进一步的，所述 (4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4），4-(4-氨基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺（化合物9）与催化剂 N-甲基四氢吡咯的摩尔比为 1:1.0 ~ 3.0:0.1 ~ 1.0;所述 (4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4），4-(4-氨基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺（化合物9）与三烷基铝的摩尔比为 1:1.0 ~ 3.0:2.0 ~ 3.0，所述三烷基铝为三甲基铝或三乙基铝。

[0024] 另一方面，本发明提供了 4-(4-氨基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺（化
化合物9)的制备方法，其特征在于包括如下步骤：
[0025] 1) 采用2-吡啶甲酸(化合物5)为原料，在催化剂下氯化得到4-氯-2-吡啶甲酰氯(化合物6)，反应用溶剂为氯苯、甲苯、二氯亚砜；所述催化剂为溴化氢、溴化钠、氯溴酸、二氯亚砜、DMF；
[0026] 2) 4-氯-2-吡啶甲酰氯(化合物6)酰胺化得到4-氯-2-吡啶甲酰胺盐酸盐(化合物7)；
[0027] 3) 4-氯-2-吡啶甲酰胺盐酸盐(化合物7)与3-氯-4-氨基苯酚(化合物8)在碱性条件下反应生成4-(4-氯苯基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺(化合物9)，反应所用碱为叔丁醇钠、甲醇钠、乙醇钠、异丙醇钠或氢氧化钠，所述碱与3-氯-4-氨基苯酚(化合物8)的摩尔比为1.0～3.0:1。

![化合物5: 2-吡啶甲酸
化合物6: 4-氯-2-吡啶甲酰氯
化合物7: 4-氯-2-吡啶甲酰胺盐酸盐
化合物8: 3-氯-4-氨基苯酚
化合物9: 4-(4-氯苯基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺](image)

[0029] 更进一步的，步骤(3)中，4-氯-2-吡啶甲酰胺盐酸盐(化合物7)和3-氯-4-氨基苯酚(化合物8)摩尔比为1:1.0～3.0。

[0030] 相对于现有技术，本发明的有益效果是：
[0031] 1. 本发明的创新采用成本低廉的4-氯苯甲酸丙烯酯(化合物3)与氯甲酸丙烯酯(化合物2)与氯甲酸丙烯酯(化合物2)及氯甲酸丙烯酯(化合物3)反应生成活化酯(4-氯3-三氟甲基苯氧基)甲酸丙烯酯(化合物4)，其在N-甲基四氢吡啶或三烷基铝的催化下与中间体4-(4-氯苯基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺(化合物9)发生取代反应得到高产率的瑞戈非尼，且反应经过简单后处理后就可得到较好的纯度。该方法操作简单、反应步骤少、周期短、能耗低、收率好、纯度高、工艺安全，不使用高毒性试剂，所得产品无潜在的安全性问题，适合工业化生产。
[0032] 2. 本发明氯化反应过程中采用溴化钠代替气体溴化氢，该法操作方便，适合大生产。

具体实施方式
[0033] 以下结合实施例对本发明作进一步详述。需要说明的是，本发明中所用原料可从市场购买得到或通过现有技术和常规的方法制备得到。本领域技术人员应当理解为，本发明方法是一种非常适用于工业化的生产，也适合于瑞戈非尼衍生物的制备。
实施例 1：(4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4）的合成

将氢氧化钠水溶液（400ml，2.5M）滴加入4-氯-3-三氟甲基苯胺（化合物2）（78.2g，400mmol）的400ml乙酸乙酯溶液中，控制温度在5°C以下，并在0°C～5°C搅拌30min。滴加氯化甲酸丙烯酯（化合物3）（59.5ml，560mmol），控制滴加过程温度在5°C以下；反应混合物在室温下搅拌1-3小时，分液，水相用乙酸乙酯萃取（3×800ml），合并有机相，用水洗涤（3×1000ml），无水Na₂SO₄干燥，过滤，滤液浓缩至粗品，加入甲酸乙酯：正庚烷（1:2）重结晶，抽滤，干燥得(4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4）101.0g，收率90.3%，纯度99.3%（HPLC法）。

实施例2：(4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4）的合成

将氢氧化钠水溶液（100ml，3.5M）滴加入4-氯-3-三氟甲基苯胺（化合物2）（19.6g，100mmol）的100ml乙酸乙酯溶液中，控制温度在5°C以下，并在0°C～5°C搅拌30min。滴加氯化甲酸丙烯酯（化合物3）（32ml，300mmol），控制滴加过程温度在5°C以下；反应回合物在室温下搅拌1-3小时，分液，水相用乙酸乙酯萃取（3×200ml），合并有机相，用水洗涤（3×500ml），无水Na₂SO₄干燥，过滤，滤液浓缩至粗品，加入甲酸乙酯：正庚烷（1:2）重结晶，抽滤，干燥得(4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4）25.5g，收率91.3%，纯度99.2%（HPLC法）。

实施例3：(4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4）的合成

将乙醇钠（6.85g，100mmol）和4-氯-3-三氟甲基苯胺（化合物2）（19.6g，100mmol）加入100ml乙醇溶液中，控制温度在5°C以下，并在0°C～5°C搅拌30min。滴加氯化甲酸丙烯酯（化合物3）（11ml，100mmol），控制滴加过程温度在5°C以下；反应回合物在室温下搅拌1-3小时，浓缩，用乙酸乙酯提取（3×200ml），合并有机相，用水洗涤（3×500ml），无水Na₂SO₄干燥，过滤，滤液浓缩至粗品，加入甲酸乙酯：正庚烷（1:2）重结晶，抽滤，干燥得(4-氯-3-三氟甲基苯胺)-甲酸丙烯酯（化合物4）27.5g，收率92.0%，纯度99.4%（HPLC法）。

实施例4：4-氯-2-吡啶甲酰胺盐酸盐（化合物7）的合成

反应体系中加入溴化钠4.12g（40mmol），氯化亚砜40ml和N，N-二甲基甲酰胺8.0ml，升温40-50°C搅拌10min，控温滴加2-吡啶甲酰胺酸合物5共12.3g（100mmol）的N，N-二甲基甲酰胺溶液，滴加完毕，升温80-90°C反应，监控反应完毕后，减压蒸馏除去氯化亚砜，蒸馏后的残液加入甲苯继续减压蒸馏除去氯化亚砜，所得残液加入甲醇20ml，室温搅拌反应1小时，加入乙酸乙酯100ml析晶，0-5°C养晶2小时，过滤，洗涤的产品4-氯吡啶-2-甲酰胺盐酸盐9.18g，收率97.0%，文献收率89.70%。

将甲苯水溶液30ml加入反应瓶内，将上步所得产品加入，控温0-5°C反应0.5小时，室温反应2.5小时，加入乙酸乙酯3×50ml萃取3次，合并有机层，水3×100ml洗涤三次，无水硫酸钠干燥，过滤，滤液加入石油醚析晶得4-氯-2-吡啶甲酰胺盐酸盐（化合物7）12.80g，以2-吡啶甲酰胺计，收率75.0%，纯度99.5%（HPLC法）。

实施例5：4-(4-氨基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺（化合物9）的合成

氯气保护下将3-氟-4-(氨基苯酸）（化合物8）127.1g（1mol）加入600ml的THF溶液中，向反应液中加入叔丁基钾117.8g（1.05mol），室温搅拌3小时，加入三乙胺81.0g（800mmol），滴加入4-氯-2-吡啶甲酰胺盐酸盐（化合物7）（119.4g，700mmol）的四
氨气保护下，将实施例 1 制得的 (4-氨基-3-三氟甲基苯胺) - 甲酸丙烯酯 (化合物 4) 15.66g(56.0mmol)，和实施例 5 制得的 4-(4-氨基-3-三氟甲基)-N- 甲基吲唑 -2- 甲酰胺 (化合物 9) (14.63g, 56.0mmol) 加入 300mL 的 THF 溶液中，再加入 N- 甲基四氢吡咯 5ml (0.45g, 5.6mmol)，在 55°C 温度下搅拌反应 24 小时后，冷却，浓缩，混合液以 DCM 萃取 (3x200ml)，合并有机相分别用 0.5NHCl 和盐水洗涤，无水 Na2SO4 干燥，过滤，滤液浓缩，残余物用 DMF/ 水重结晶，真空干燥，得到瑞戈菲尼 (化合物 1) 24.48g，收率 88.0%，HPLC: 99.94%。
吗-2-甲酰胺（化合物9）（43.89g, 168mmol）加入300mL的THF溶液中，再加入三甲基铝13.42mL（12.11g, 168mmol），在100℃温度下搅拌反应5小时后，冷却，浓缩，混合液以DCM萃取（3×200mL），合并有机相分别用0.5NHCl和盐水洗涤，无水Na₂SO₄干燥，过滤，滤液浓缩，残余物用DMF/水重结晶，真空干燥，得到瑞戈菲尼（化合物4）26.15g，收率94.0％，HPLC：99.96％。

[0055] 实施例11：瑞戈菲尼（化合物1）的合成

[0056] 氮气保护下，将实施例1制得的（4-氯-3-三氟甲基苯胺）-甲酸丙烯酯（化合物4）15.66g（56.0mmol），和实施例5制得的4-(4-氨基-3-三氟甲基)-N-甲基吡啶-2-甲酰胺（化合物9）（43.89g, 168mmol）加入300mL的THF溶液中，再加入三乙基铝22.83mL（19.18g, 168mmol），在120℃温度下搅拌反应0.5小时后，冷却，浓缩，混合液以DCM萃取（3×200mL），合并有机相分别用0.5NHCl和盐水洗涤，无水Na₂SO₄干燥，过滤，滤液浓缩，残余物用DMF/水重结晶，真空干燥，得到瑞戈菲尼（化合物4，50.96mmol）25.32g，收率91.0％，HPLC：99.94％。