Title: RAPID NON-DESTRUCTIVE EVALUATION OF THE DEGREE OF SENSITIZATION IN STAINLESS STEELS AND NICKEL BASED ALLOYS

Abstract: A method for evaluation of deleterious phase content and distribution in stainless steels and nickel-based alloys based on the correlation between measured open circuit potentials \( E'_{oc} \) and volume fraction of deleterious phases is disclosed, in conjunction with a portable equipment and apparatus for carrying out the method.

Fig. 5
RAPID NON-DESTRUCTIVE EVALUATION OF THE DEGREE OF SENSITIZATION IN STAINLESS STEELS AND NICKEL BASED ALLOYS

TECHNICAL FIELD OF THE INVENTION

The present invention relates to an apparatus and a method for evaluation of the degree of sensitization in stainless steels and nickel-based alloys. More precisely, the invention provides an apparatus and a method for detecting depletion of passivating elements, in particular due to formation of sigma phase or other deleterious phases in a stainless steel and nickel-based alloys at least containing one or more of the following alloying elements: aluminium (Al), chromium (Cr), cobalt (Co), molybdenum (Mo), nitrogen (N), nickel (Ni), copper (Cu), titanium (Ti) and tungsten (W). The invention also refers to a portable equipment for in situ evaluation of sigma phase content in stainless steel.

BACKGROUND AND PRIOR ART

As used in this application, stainless steel is the common name for iron (Fe) compositions containing carbon (C) and alloying elements that increase the resistance to corrosion. The dominating alloying element in stainless steel is chromium (Cr) which forms a passivating chromium oxide layer on the surface of the steel when the chromium content amounts to at least about 11% by weight (any reference to percentage of fractions made herein refers to percentage by weight if not otherwise stated). Beside chromium, other alloying elements are usually added in order to achieve a desired property, such as resistance to acids, malleability and hardening capacity, e.g. Without excluding any potential alloying element from the general definition of stainless steel as it is used herein, some of the typical alloying elements in stainless steel, beside chromium, are molybdenum (Mo), nitrogen (N), nickel (Ni), copper (Cu) and tungsten (W), which can be added in varying amounts and combinations. The present invention can be applied to iron compositions at least containing one or more of the above mentioned alloying elements.

Further as used in this application, nickel-based alloys refer to solid-solution and precipitation hardened nickel-based alloys and nickel-based super alloys. The nickel
(Ni) content typically amounts to about 50% by weight or more in composition with other elements such as chromium (Cr), cobalt (Co), aluminium (Al), titanium (Ti), e.g. Nickel-based alloys provide high temperature strength and oxidation resistance, which makes these alloys useful in parts and components for the oil and gas industry, in pumps, valves, piping and process equipment, in vehicles, spacecraft, ships and submarines, in electric motors, nuclear plants, heat exchangers tubing.

The present invention can further be applied to steel compositions of different crystalline structure including:

- Martensitic and super martensitic stainless steel (chromium content of about 11-18 % and carbon amounting to 0.1-1.2 %)
- Ferritic and super ferritic (or highly alloyed) stainless steel (chromium content of about 11-30 % and carbon below 0.1 %)
- Austenitic and super austenitic stainless steel (chromium content of about 8-30 %, nickel 4-10%, molybdenum 1-8%, and carbon usually below 0.05 %)
- Ferritic-austenitic stainless steel, also referred to as duplex stainless steel (DSS) and super duplex stainless steel (SDSS) (chromium content 20-25%, nickel content 4-8%, N 0.10-0.30%, Mo 1-4%, W 0-3.5%, Cu 0-3%, and carbon below 0.03 %)
- Precipitation hardening stainless steels: these steels can be martensitic, austenitic, or a combination. These steels can be hardened by heat treatment.

Among the stainless steels, the DSS and SDSS steel grades are of special importance in engineering and construction given their good combination of strength and corrosion resistance. The two-phase ferritic-austenitic micro structure composition with a ferrite to austenite ratio of about 35-55 % in the DSS or SDSS steel qualities combines high strength with good workability and welding properties. Together with the ability to resist corrosion in a variety of aggressive environments these engineering qualities make the DSS and SDSS steels suitable for employment in, for example, seawater applications and in subsea engineering structures, vehicles at land and sea, air and space craft, power plants, process industry and in chemical applications.
Stainless steel, and in particular DSS and SDSS are, however, susceptible to the precipitation of deleterious phases when subjected to a critical temperature for a certain amount of time, such as the temperatures reached during welding. Precipitation of intermetallic phases that are not the matrix or the alloy as it is normally used affect both mechanical properties and corrosion resistance. A high content of chromium and molybdenum can promote the precipitation of intermetallic phases such as sigma phase, chi and chromium nitrides (Cr₂N) when subjected to temperatures in the range of 300-900° C. Among the deleterious phases, sigma phase is considered the most detrimental. Sigma phase is an intermetallic compound rich in chromium and molybdenum with a volume fraction that is larger than that of any other precipitated intermetallic phase. Precipitation of sigma phase depletes chromium and molybdenum from the surrounding ferritic-austenitic matrix, causing locally a weakening of the corrosion resistance ultimately leading to pitting or crevice corrosion.

Since the phase transformation kinetics of sigma phase is relatively fast, taking less than 1.8 minutes at 870° C for the onset of sigma phase precipitation, the content and volume fraction of sigma phase precipitates can serve as an indicator of the status of the corrosion resistance of a stainless steel structure.

However, evaluation of sigma phase content in a stainless steel sample using known and standardized methods requires that the microstructure is exposed by sectioning, polishing or etching, such as required in following the international standards ASTM A923 and ASTM E562 which include 24h corrosion tests, impact toughness measurements, and systematic manual point counting procedures for statistically estimating the volume fraction of an identifiable constituent or phase from sections through the microstructure using a microscope and a point grid.

SUMMARY

An object of the present invention is to provide a method and apparatus for non-destructive evaluation of the status of corrosion resistance in stainless steels and nickel-based alloys.
The object is met in the method and apparatus for detecting depletion of passivating elements, in particular due to the formation of sigma phase or other deleterious phases, in accordance with the accompanying claims.

The method and apparatus of the present invention can be applied to stainless steel and nickel-based alloys at least containing one or more of the following alloying elements: aluminium (Al), chromium (Cr), cobalt (Co), nickel (Ni), molybdenum (Mo), nitrogen (N), copper (Cu), titanium (Ti) and tungsten (W).

The method and apparatus of the present invention can be applied in a quality control procedure performed at any stage from the production of a steel ingot to the inspection of a structure or component before or after being put into operation.

The present invention provides an additional advantage by the fact that it can be applied in situ for detection of deleterious phases in the field.

In a first aspect of the present invention an apparatus is provided, the apparatus comprising:

- a container containing a liquid or a gelatinized electrolyte,

- a specimen interface on the container providing contact between the electrolyte and the surface of a test specimen,

- a reference electrode in the container in electrochemical contact with the test specimen via the electrolyte, and

- a voltmeter electrically connected between the reference electrode and the test specimen.

In a second aspect of the present invention a method is provided, the method comprising:

i) providing a container containing a liquid or a gelatinized electrolyte,
ii) providing a reference electrode in electrochemical contact with a test specimen via the liquid or gelatinized electrolyte,

iii) electrically connecting the reference electrode with the test specimen over a voltmeter,

iv) reading and recording open circuit potential (Eoc) values in bulk or at each testing point of the specimen,

v) comparing the Eoc values of the test specimen with the open circuit potential of a sigma phase free sample (negative control specimen) of the steel of the test specimen.

Comparative tests have shown that the method and the apparatus of the present invention will unambiguously detect the presence of deleterious phases, in particular the presence of sigma phase which causes severe depletion of passivating elements from solid solution, leading to a sensitized microstructure and low pitting potential at the matrix/particle interface. When a sensitized microstructure is subjected to an acidic and oxidizing environment localized corrosion will initiate at areas with the lowest pitting potential. The open circuit potential Eoc is, then, controlled by the pitting potential of the Cr-Mo depleted region. Below the critical pitting temperature the Eoc of a solution annealed sample free of sigma phase is typically very high - mean value approximately 0.7 V vs. the saturated calomel electrode (SCE) used as reference in the tests. However, the presence of a sigma phase content as low as 0.5 % by volume decreases Eoc dramatically - mean value approximately 0.4 V vs. the SCE reference electrode. The drop in Eoc is a function of the sigma phase content and it is virtually instantaneous. Thus, the range of open circuit potentials Eoc can be used as a fast and accurate indicator for determining the degree of sensitization in a sample of stainless steel.

The temperature of the test solution can vary between 20 to 85° C depending on the type of stainless steel in question.

The correlation between open circuit potential Eoc and, e.g., sigma phase content has been confirmed in cyclic potentiodynamic polarization tests in NaCl solutions and long
term Eoc exposure using 6 % FeCb (pH 1.10) as electrolyte. The test results are demonstrated in the accompanying diagrammatic drawings.

In the drawings, Fig. 1 illustrates the change in Eoc in effect of a growing content of sigma phase precipitates in a 25Cr super duplex stainless steel test specimen. Fig. 2 illustrates the difference in Eoc over time in a 0.5 vol. % sigma phase test specimen relative to the measured Eoc of a sigma phase free (solution annealed) control specimen. The steel used in the tests was of Figs. 1 and 2 UNS S32750 which is a ferritic-austenitic SDSS grade steel often used, among other components, in subsea pipelines, forged and hot isostatically pressed connectors, as well as small bore tubing and bolting. The test temperature of this example was 50° C.

Statistical analysis performed on the same steel shows that the sigma phase free and the 0.5 vol. % sigma phase containing samples display non-overlapping density functions that define two distinctly separated distribution areas, see Fig. 3. The distinctive distributions of Eoc provide further empirical basis for relying on the correlation between open circuit potential Eoc and sigma phase content in the method and apparatus of the present invention.

Embodiments of the apparatus comprise a number of advantageous features which can be applied separately or in different combinations. Among the features which characterize embodiments of the apparatus are, briefly stated:

An electrolyte including an acidic chloride solution, preferably ferric chloride (FeCb) or any other oxidising agent of similar polarization capacity.

A container wherein the specimen interface is arranged in a lower end.

A tubular container wherein the container diameter is dimensioned to retain the electrolyte within the tubular container through capillary action.

A tubular container being a micro-capillary tube having an inner diameter in the range of 0.05-5.0 mm, preferably in the range of 0.05-0.5 mm.
A specimen interface comprising a perforated or porous membrane in the lower end of the container.

A positioning means in the form of a circumferential sleeve extending beyond the lower end of the container, a lower end of the sleeve providing a base for standing the container on the surface of a test specimen.

A perforated or porous membrane arranged inside a surplus length portion of the sleeve of the positioning means.

A positioning means with a standing base carrying a glue or an adhesive on its lower side that permits temporary attachment to the test specimen.

A reference electrode in the form of a wire extended into the container/tube from a sealed upper end of the container/tube.

A reference electrode in the form of a silver wire coated with silver chloride (Ag/AgCl electrode) or a pure tungsten (W) wire.

A set of containers with reference electrodes individually connected to separate inputs of a multichannel voltmeter via a terminal block and a coupling interface.

A positioning means arranged as holder for the reference electrodes and preferably also for the terminal block and coupling interface.

A resistive heating element and a thermocouple may be installed in order to vary and control the temperature of the electrolyte.

In analogy herewith the present invention also relates to a portable equipment for in situ evaluation of deleterious phase content in stainless steels or nickel-based alloys comprising an apparatus according to any previous embodiment, wherein the reference electrode is associated with a positioning means for temporary locating the reference electrode in a measuring point on a test specimen.
An alternative embodiment of the portable equipment comprises a positioning means arranged for accommodation of a number of reference electrodes for the simultaneous positioning of an array of reference electrodes on the test specimen.

The portable equipment may further comprise a processing unit, a display and a printer or plotter.

Embodiments of the method comprises a number of advantageous steps which can be applied separately or in different combinations. Among the steps which characterize embodiments of the method are, briefly stated:

- the step of repeating step iv) until the whole test specimen or the area of interest is examined, and generating, based on the sum of readings, an estimate of the amount of deleterious phase content in the test specimen using a calibration curve mapping the correlation between Eoe and deleterious phase content in the material of the test specimen;

- the step of preparing, for the alloy of the test specimen, a calibration curve covering EOC vs. deleterious phase content down to a deleterious phase content of 0.5 % by volume, or less;

- the step of providing a capillary or a micro-capillary tube containing the reference electrode submerged in the electrolyte, and scanning the test specimen for mapping of deleterious phase content at a spatial resolution in the range of 0.05 to 5.0 mm, preferably in the range of 0.5-0.05 mm;

- the step of preparing an electrolyte gel containing ferric chloride (FeCl₃) at 1 to 6 % by weight;

- the alternative step of preparing an electrolyte gel containing other acidic and oxidizing chloride solution that produces a potential equal to or above that of ferric chloride (FeCl₃);
the step of providing the reference electrode in the form of an Ag/AgCl wire electrode or a pure tungsten (W) electrode or any other suitable reference electrode;

- the step of forming an array of reference electrodes, and reading and recording a matrix of Eoc values through a multichannel voltmeter;

- the step of applying the method in a quality control procedure;

- the step of applying the method \textit{in situ} for sigma phase detection in the field.

SHORT DESCRIPTION OF THE DRAWINGS

Embodiments of the method and apparatus of the present invention will be further explained in the following with reference made to the accompanying schematic drawings. In the drawings

Fig. 1 is a diagram showing the correlation between Eoc and the fractional amount of sigma phase precipitates in a test specimen,

Fig. 2 is a diagram showing the difference in Eoc over time in a 0.5 vol. \% sigma phase 25Cr super duplex stainless steel specimen relative to the measured Eoc of a sigma phase free (solution annealed) control specimen,

Fig. 3 is a diagram displaying non-overlapping distribution areas in statistical analysis of Eoc of the sigma phase-free and the 0.5 vol. \% sigma phase containing samples of Fig. 2,

Fig. 4 is a diagram showing the difference in Eoc over time in a sensitized nickel-based alloy specimen relative to the measured Eoc of a control specimen,

Fig. 5 illustrates schematically the configuration of an apparatus designed for carrying out the method of the present invention,
Fig. 5b is a partial view showing an alternative embodiment of a positioning means employed in the apparatus of the present invention,

Fig. 6 is a schematic illustration of an alternative configuration of the apparatus,

Fig. 7 is a 2-dimensional plot illustrating the area distribution of sigma phase precipitates in a test specimen, and

Fig. 8 is a 3-dimensional plot illustrating the spatial distribution of sigma phase precipitates in a test specimen.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Figs. 1-3 have been discussed hereinabove under the subtitle Summary of the invention.

In addition to what is already discussed with reference to Fig. 1 it shall be further noted that the functional correlation between Eoc values and fractions of sigma phase precipitates as confirmed and shown by the plotted diagram of Fig. 1 is used in the invention for calibration of the test equipment and method. For the UNS S32750 steel, the curve connecting the plotted Eoc values in Fig. 1 demonstrates the functional correlation between sigma phase concentration and open circuit potential Eoc down to a sigma phase concentration of 0.5 % by volume (the curve portion connecting the Eoc values of 0.5 vol. % sigma phase with the values of the sigma phase free sample is an estimate).

In a corresponding way calibration curves can be established for other stainless steel families as well as for other corrosion resistant alloys, and used for reading out sigma phase or other deleterious phase concentrations based on measured Eoc values.

In this connection, it should be emphasized that the invention can be applied for detection and evaluation of other deleterious phases than sigma phase, such as chromium nitride and carbides etc., all of which deplete Cr and Mo from solid solution and lower the pitting potential of the affected area in the microstructure. The localized Cr and Mo depletion, in turn, lowers the open circuit potential of the test specimen.
In precipitation hardening nickel-based alloys, precipitation of deleterious phases such as nanometre-sized sigma phase at grain boundaries, leads to a similar drop in open circuit potential as demonstrated above for stainless steel. Fig. 4 illustrates the development of $E_{oc}$ over time in a sensitized test specimen relative to the measured $E_{oc}$ of a control specimen free of deleterious phases. The test illustrated in Fig. 4 was performed on nickel-based alloy UNS N07725 which is a precipitation hardened material of extreme high strength, i.e. 120 Ksi yield strength, containing 50.0-59.0% wt. nickel, 19-22.5% Cr, 7.0-9.5% Mo, 2.75-4.0% Nb, and 1.0-1.7% Ti.

With reference to Fig. 5 an apparatus for exercising the method of the present invention comprises a reference electrode 1 which is inserted in a container 2 containing an electrolyte 3. The electrolyte 3 comprises a liquid or gelatinized oxidising agent by which the reference electrode 1 can be put in electrochemical contact with a test specimen 4. A voltmeter 5 is electrically connected between the test specimen and the reference electrode via conductors 6 and 7. It should be noted that for ease of reading and understanding the representation of Fig. 5 is not true to scale.

The voltmeter 5 can be an off-the-shelf instrument known as a potentiostat or galvanostat by which the potentials of the reference electrode and test specimen can be frequently monitored and varied by application of a current through the electrolyte in a polarization scanning procedure as is known per se. The voltmeter is associated with a data processing unit 8 via a data bus. The data processing unit 8 is operational for receiving, processing, storing and displaying data recorded by the voltmeter. The voltmeter 5 and processing unit 8 form parts of a network, by wire or wireless, including at least a display 9 and a printer or plotter 10 by which the results of the scanning procedure can be presented in the form of plots, tables, data maps etc., as desired. Some or all of the operational units such as the voltmeter, the processor, the display and the printer/plotter can be integrated in a portable equipment if convenient. Software and mobile applications can interface with the device as well as record and report the results.

The containerized electrolyte 3 is prepared from an acidic and oxidizing chloride solution, preferably including ferric chloride, FeCl₃, at a concentration of 1-6% by volume and a pH value of about 1.0 to 1.20. Other oxidising agents may alternatively
be used as the electrolyte in container 2, preferably any other oxidising agent which will polarize the test specimen to a potential similar to that of 1-6 wt. % FeCb.

In a preferred embodiment the reference electrode 1 is a miniaturized silver/silver chloride (Ag/AgCl) electrode or a pure tungsten wire. Other electrodes with a stable and well-known electrode potential relative to the standard hydrogen electrode may be used as reference electrode in the apparatus of the invention. The preferred reference electrode 1 is prepared from a silver wire coated with silver chloride and inserted in the electrolyte 1 in a tubular glass or plastic container 2 of capillary or micro-capillary dimensions. In this context, the expressions capillary and micro-capillary refer to a tube with an inner diameter capable of retaining the electrolyte in the tube through capillary action. Depending on the viscosity of the liquid or gelatinized electrolyte the inner diameter \( d \) of a tubular container 1 may be in the range of about 0.05-5.0 mm, preferably in the range of 0.05-0.5 mm. For electric connection with external equipment the reference electrode is extended through a cap 11 which seals a first and upper end 12 of the container.

The container 2 has an open second and lower end forming a specimen interface 13 in the mouth of the container, through which the electrolyte with oxidising agent comes to contact with the surface of the test specimen. A perforated or porous membrane 14 covers the specimen interface in said lower end. The membrane 14 may be realized as a sintered ceramic, glass or silica element, e.g.

A key feature of the present invention is the mobility of the apparatus for evaluation of sigma phase content and other deleterious phases in stainless steel and nickel-based alloys, thus mapping the status of corrosion resistance in the material. The mobility makes the apparatus equally suitable for quality control procedures on bulk material as for evaluation of deleterious phase content in material and welded structures in the field.

For the purpose of temporary positioning and optionally attaching the container 2 onto the test specimen during a polarization test the container is equipped with a positioning means 15. Similar to the container 2, the positioning means 15 can be made in glass or plastic material insensitive to the acidic electrolyte 3. In the embodiment of Fig. 5 the positioning means 15 comprises a sleeve 16 with a circumferential wall and an inner...
periphery 17 that mates with the outer periphery 18 of the container. In mounted
position on the container the sleeve extends beyond the lower end 13 of the container
for a length 1of a few mm, such as from about 5-15 mm. A radial shoulder 19 may be
formed on the inner periphery of the sleeve to define the length of insertion of the
container into the sleeve. The surplus length 1 of the sleeve may serve as a seat for
fixation of the porous membrane 14.

The sleeve 16 may be shaped as a straight cylinder, in its lower end connected to a
flange 20 that extends radially outside the sleeve as illustrated in Fig. 5. An alternative
sleeve may have a conical wall, the larger radius of which forms a bottom end face 21
of the sleeve as illustrated in Fig. 5b. In both cases the positioning means 15 forms a
standing base that provides added stability to the container when positioned on the test
specimen.

The flange 20 and the bottom end face 21 each provides a base which can be formed
planar for positioning the container on planar test surfaces as illustrated. This base can
alternatively be curved for positioning the container on pipes, rods or other non-planar
surfaces as shown in dash-dot lines in Fig. 5b.

A repositionable glue or adhesive 22 may advantageously be applied to the base of the
positioning means for detachably attaching the positioning means and container with
the reference electrode to the test specimen.

Albeit being disclosed as a separate element for mounting on the container 2, it will be
understood that the positioning means 15 may optionally be realized as a structural part
that is formed integrally with the container.

A heating element such as heat resistance wire e.g., may be wrapped about the container
or inserted in the electrolyte in order to vary the temperature of the electrolyte if
appropriate. A thermocouple may be arranged to control the temperature.

An alternative embodiment of the apparatus is schematically shown in Fig. 6. It should
be noted that for ease of reading and understanding the representation of Fig. 6 is not
ture to scale. In the embodiment of Fig. 6 the reference electrode 1 is multiplied in a set
of sensors, each sensor comprising a reference electrode in a container containing a liquid or gelatinized electrolyte. The reference electrodes are individually connected to a multichannel voltmeter with a corresponding number of input terminals (voltmeter not shown).

The containers and electrodes are supported in a positioning means arranged as a holder carrying a terminal block that collects the electrode wires and provides a coupling interface towards the voltmeter. Feet in the lower side of the holder form a standing base that provides stability to the set of sensors when supported on the surface of a specimen during testing. In order to ensure electrolytic contact between the test specimen and each reference electrode, the containers are adjustable and movable in relation to the holder in the length direction of the containers. To this purpose the holder is formed with a respective guiding slot that provides a seat for accommodation of a container. Slide bearings may be arranged in connection with the slots in order to arrest the containers in mounted position through frictional engagement.

The holder may be sized to provide an array of sensors/reference electrodes arranged in one row or in several parallel rows permitting simultaneous reading and recording of a matrix of \( \Phi_{oc} \) values. Sensor arrays of other configurations than rectangular are of course possible.

The voltmeter records the \( \Phi_{oc} \) vs time for a given time interval until a stable reading is obtained. By successively moving the apparatus over the area to be examined the degree of sensitization and distribution of sensitized areas of the test specimen can be mapped with a resolution determined by the diameter dimensions of the container and standing base of the positioning means, or by the diameter of the container and the interspace between adjacent containers in the sensor array. With regards to the sizes of microcapillary tubes available for the purpose, embodiments of the invention comprise mapping of deleterious phase content at spatial resolutions in the range of 0.05 to 5.0 mm, preferably in the range of 0.5-0.05 mm.

For visual representation of the test result, the collected data can be presented in 2- or 3-dimensional plots. Fig. 7 is one example of a 2-dimensional plot illustrating the area...
distribution and concentration of sigma phase precipitates in a test specimen based on the range of recorded $E_{oc}$ values. Fig. 8 is an example of a 3-dimensional plot illustrating the spatial distribution and concentration of sigma phase precipitates in a test specimen based on the range of $E_{oc}$ values as recorded through the method and apparatus of the present invention.

The invention as illustrated and described provides the advantage of rapid and non-destructive testing of stainless steel and nickel-based alloys for detecting the occurrence of deleterious phases and for evaluation of the status of the corrosion resistance. Although the major benefits reside in the mobile application it should be noted that in alternative use a test sample may be exposed to the electrolyte in a quality control evaluation using test specimens in a destructive way. The listing below includes a majority of the corrosion resistant alloys to which the present invention can be applied:

1) Austenitic and super (also known as highly alloyed) austenitic stainless steels
   - UNS S31600 and S31603
   - UNS S30400 and S30403
   - UNS S31700
   - UNS S34500
   - UNS S32100
   - UNS S20910
   - Type 6Mo Stainless Steel (e.g. UNS S39254, J93254, N08367, N08925)
   - Type 7Mo UNS S32654
   - N08926
   - J95370

2) Duplex and super duplex stainless steels
   - Type 22Cr duplex stainless steels (UNS S31803, S32550)
   - Type 25Cr DSS or SDSS (UNS S32750, S32760, S39274, S39277)
   - Lean DSS (UNS S32101, S32304)
3) Ferritic and super (or highly alloyed ferritic) stainless steels
   UNS S44400
   UNS S43000
   UNS S40900
   UNS S40500
   UNS S44700

4) Martensitic and super martensitic stainless steels
   UNS S41000
   UNS S41425
   UNS S41426
   UNS S41500
   UNS S42500
   UNS J91540
   SM17CRS-12

5) Precipitation hardened stainless steels
   UNS S66286
   UNS S15500
   UNS S17400
   UNS S45000
   UNS S15700

6) Solid-solution nickel based alloys
   UNS N06625
   UNS N06022
   UNS N06059
   UNS N06686
   UNS N07022
   UNS N08026
   UNS N10276
   CW12MW
7) Precipitation hardenable nickel based alloys

UNS N07718
UNS N07725

5
UNS N07716
UNS N09925
UNS N09945
UNS N06625
UNS N07626

10 Although it will be realized that in alternative use a test sample may be exposed to the electrolyte in a quality control using test specimens in a destructive way, the major benefits provided by the present invention reside in the mobile and non-destructive implementation.
CLAIMS:

1. An apparatus for detecting depletion of passivating elements, in particular due to formation of sigma phase and/or other deleterious phases, in stainless steels or nickel-based alloys at least containing one or more of the following alloying elements: aluminium (Al), chromium (Cr), cobalt (Co), nickel (Ni), molybdenum (Mo), nitrogen (N), copper (Cu), titanium (Ti) and tungsten (W), the apparatus comprising:
   - a container (2) containing a liquid or a gelatinized electrolyte (3),
   - a specimen interface (13) on the container providing contact between the electrolyte and the surface of a test specimen,
   - a reference electrode (1) in the container in electrochemical contact with the test specimen via the electrolyte,
   - a voltmeter (5) electrically connected between the reference electrode and the test specimen.

2. The apparatus of claim 1, wherein the electrolyte is an acidic chloride solution.

3. The apparatus of claim 2, wherein the electrolyte is ferric chloride (FeCb).

4. The apparatus of any previous claim, wherein the container (2) is a tube and the specimen interface (13) is arranged in a lower (second) end of the tubular container.

5. The apparatus of claim 4, wherein the container diameter (d) is dimensioned to retain the electrolyte within the container through capillary action.

6. The apparatus of claim 4 or 5, wherein the container is a micro-capillary tube having an inner diameter (d) in the range of 0.05-5.0 mm, preferably in the range of 0.05-0.5 mm.

7. The apparatus of any of claims 4-6, wherein the specimen interface (13) comprises a perforated or porous membrane (14) covering the specimen interface (13) in said lower end of the container.
8. The apparatus of any of claims 4-7, further comprising a positioning means (15) in the form of a circumferential sleeve (16) extending beyond the lower end of the container, a lower end (20; 21) of the sleeve (16) providing a base (20; 21) for standing the container (2) on the surface of the test specimen.

9. The apparatus of claims 7 and 8, wherein the perforated or porous membrane (14) is arranged inside a surplus length portion (1) of the sleeve (16).

10. The apparatus of claim 8 or 9, wherein the base (20; 21) of the positioning means carries a glue or an adhesive (22) that permits temporary attachment of the container to the test specimen.

11. The apparatus of any of claims 4-10, wherein the reference electrode (1) is a wire extended into the tube from an upper (first) end (12) of the tube.

12. The apparatus of claim 11, wherein the reference electrode (1) is a silver wire coated with silver chloride (Ag/AgCl electrode), a pure tungsten wire, or any other reference electrode capable of providing a stable reading.

13. The apparatus of any previous claim, comprising a set of reference electrodes (1) separately connectable to individual inputs of a multichannel voltmeter via a terminal block (24) and a coupling interface (26).

14. The apparatus of claim 13, wherein the set of reference electrodes (1) are accommodated in a positioning means (23) arranged as a holder for the reference electrodes (1), the terminal block (24) and the coupling interface (26).

15. A method for detecting depletion of passivating elements, in particular due to formation of sigma phase or other deleterious phases, in stainless steels or nickel-based alloys at least containing one or more of the following alloying elements: aluminium (Al), chromium (Cr), Cobalt (Co), nickel (Ni), molybdenum (Mo), nitrogen (N), copper (Cu), titanium (Ti) and tungsten (W), the method comprising:

i) providing a container containing a liquid or gelatinized electrolyte (3),
ii) providing a reference electrode (1) in electrochemical contact with a test specimen via the liquid or gelatinized electrolyte (3),

iii) electrically connecting (6, 7) the reference electrode with the test specimen over a voltmeter (5),

iv) reading and recording open circuit potential (Eoc) values at each testing point of the specimen,

v) comparing the Eoc values of the test specimen with the open circuit potential of a sigma phase free sample of the steel of the test specimen.

16. The method of claim 15, further comprising:

- repeating step iv) until the whole test specimen or the area of interest is examined, and

- generating, based on the sum of readings, an estimate of the amount of deleterious phase content in the test specimen using a calibration curve mapping the correlation between Eoc and sigma phase content in the steel of the test specimen.

17. The method of claim 16, further comprising:

- preparing, for the material of the test specimen, a calibration curve covering Eoc vs. deleterious phase content down to a deleterious phase content of 0.5 % by volume or less.

18. The method of any of claims 15-17, further comprising:

- providing a container in form of a micro-capillary tube (2) containing the reference electrode (1) submerged in the liquid or gelatinized electrolyte, and

- scanning the test specimen for mapping of deleterious phase content at a spatial resolution in the range of 0.05 to 5.0 mm, preferably in the range of 0.5-0.05 mm.

19. The method of any of claims 15-18, further comprising:
- preparing an electrolyte gel containing ferric chloride (FeCb) at 1 to 6% by weight.

20. The method of any of claims 15-18, further comprising:

- preparing an electrolyte gel containing an acidic and oxidizing chloride solution that produces a potential equal to or above that of ferric chloride (FeCb).

21. The method of any of claims 15-20, further comprising:

- providing the reference electrode (1) in the form of an Ag/AgCl wire electrode or a pure tungsten (W) wire.

22. The method of any of claims 15-21, further comprising:

- forming an array of reference electrodes (1), and

- reading and recording a matrix of Eoc values through a multichannel voltmeter.

23. The method of any of claims 15-22, comprising applying the method in a quality control procedure where test specimens can be exposed to the electrolyte in bulk.

24. The method of any of claims 15-23, comprising applying the method *in situ* for deleterious phase detection in the field.

25. A portable equipment for *in situ* evaluation of deleterious phase content in stainless steels and nickel-based alloys comprising an apparatus according to any of claims 1-14, characterized in that the reference electrode (1) is associated with a positioning means (15; 23) for temporary locating the reference electrode (1) in a measuring point on a test specimen.

26. The portable equipment of claim 25, wherein the positioning means (23) is arranged for accommodation of a number of reference electrodes for the simultaneous positioning of an array of reference electrodes on the test specimen.
27. The portable equipment of claim 25 or 26, further comprising a processing unit (8), a display (9) and a printer or plotter (10).
Fig. 1

UNS S32750
6% FeCl₃, pH 1.10

Mean $E_{OC}$ (V vs. SCE)

$\sigma$-phase (vol.%)

0 1 2 3 4 5
Fig. 2

Solution annealed

0.5 vol.% σ-phase

UNS S32750

6% FeCl₃, pH 1.10

Time (h)

Fig. 3

0.5% σ-phase

Solution annealed
Fig. 4

OCP in 6% FeCl$_3$ (pH 1.17)
60 Degrees Celsius

Unsensitized/control UNS N07725

Sensitized UNS N07725

$E (V_{SCE})$ vs. Time (h)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. G01N17/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 695 360 A (ASATIANI GEORGY N [SU] ET AL) 22 September 1987 (1987-09-22) column 4, line 54 - column 6, line 5 figure 1</td>
<td>1-14, 25-27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
24 April 2017

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Date of mailing of the international search report
03/05/2017

Authorized officer
Baranski, Jbrg

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>page 518, left-hand column, paragraph 2</td>
<td>15-24</td>
</tr>
<tr>
<td>A</td>
<td>page 518, left-hand column, paragraph 7 - paragraph 2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 4 310 389 A (HARBULAK EDWARD P)</td>
<td>1-14, 25-27</td>
</tr>
<tr>
<td>A</td>
<td>col umn 4, line 4 - line 53</td>
<td>15-24</td>
</tr>
<tr>
<td>A</td>
<td>page 46, right-hand column, paragraph 5 - paragraph 9</td>
<td>15-24</td>
</tr>
<tr>
<td>A</td>
<td>page 47, left-hand column, paragraph 1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WD 01/69198 A2 (CAPCIS LTD [GB]; ROGER CHARLES NEWMAN PROF [GB])</td>
<td>1-27</td>
</tr>
<tr>
<td>A</td>
<td>20 September 2001 (2001-09-20)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>page 1, paragraph 1 - page 2, paragraph 2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>page 4, paragraph 3 - page 5, paragraph 5</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>page 13, paragraph 2</td>
<td></td>
</tr>
</tbody>
</table>

[Retrieved on 1994-05-01]
The whole document
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>US 2008179198 A1</strong></td>
<td>31-07-2008</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 272020 A3</td>
<td>27-09-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3535519 A1</td>
<td>19-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2168161 A</td>
<td>11-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S61181952 A</td>
<td>14-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU 1404901 A1</td>
<td>23-06-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4695360 A</td>
<td>22-09-1987</td>
</tr>
<tr>
<td><strong>US 4310389 A</strong></td>
<td>12-01-1982</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td><strong>WO 0169198 A2</strong></td>
<td>20-09-2001</td>
<td>AU 4256101 A</td>
<td>24-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20023136 A3</td>
<td>16-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1266216 A2</td>
<td>18-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0169198 A2</td>
<td>20-09-2001</td>
</tr>
</tbody>
</table>