一种生产碳酸二乙酯的工艺方法及设备

本发明公开了一种利用反应精馏隔壁塔生产碳酸二乙酯的工艺方法及设备。本发明中的反应精馏隔壁塔是在常规精馏塔内垂直方向设置一块隔板，全塔分为四个区域：公共精馏段，反应段，侧线段，公共提馏段。以碳酸二甲酯和乙醇为原料，在催化剂作用下，在反应段进行酯交换反应生成碳酸二乙酯和甲醇，塔顶得到质量浓度大于95％的甲醇副产物，塔釜中的催化剂和碳酸二乙酯经分离后，得到质量浓度大于99.5％的碳酸二乙酯产品，分离出的催化剂与侧线采出的碳酸甲乙酯、乙醇、碳酸二乙酯和甲醇循环使用。本发明充分发挥了隔壁塔与反应精馏的优势，可使酯交换反应、产物分离在同一塔内实现，可有效降低设备投资及能耗。
1. 一种碳酸二乙酯的合成设备，包括反应精馏隔壁塔（11）、冷凝器（12、
17）、再沸器（10）、蒸发器（15）、混合器（19、20）及其它辅助设备。反应精
馏隔壁塔（11）内部设一垂直隔壁（8），隔壁（8）从塔的上部延伸到塔的下部，
全塔分为四个区域：公共精馏段（4），反应段（5），侧线段（6），公共提馏段（7）。

2. 如权利要求书 1 所述的合成设备，其特征在于反应精馏隔壁塔（11）为
板式塔或填料塔或两者的任意组合。

3. 一种生产碳酸二乙酯的工艺方法，其特征在于：
   (a) 催化剂、碳酸二甲酯和乙醇进入反应精馏隔壁塔（11）进行反应精馏。
   (b) 采用蒸发器（15）和冷凝器（17）提纯碳酸二乙酯。

4. 如权利要求 3 所述工艺方法，其特征在于：
   (a) 催化剂从反应精馏隔壁塔（11）的反应段（5）的顶部进入，碳酸二甲酯
和乙醇及侧线采出的碳酸甲乙酯、乙醇、碳酸二乙酯和甲醇经混合后从反应精馏
隔壁塔（11）的反应段（5）的中部进入，在反应段（5）发生酯交换反应后，甲
醇副产物由反应精馏隔壁塔（11）塔顶排出，产品碳酸二乙酯与催化剂的混合物
经反应精馏隔壁塔（11）塔釜排出后，送入后续工段，由侧线采出的碳酸甲乙酯、
乙醇、碳酸二乙酯和甲醇送入反应精馏隔壁塔（11）循环使用。
   (b) 由反应精馏隔壁塔（11）塔釜排出的物流进入蒸发器（15）进行分离，
在蒸发器（15）底部得到催化剂，送入反应精馏隔壁塔（11）循环使用，碳酸二
乙酯蒸汽从蒸发器（15）顶部进入冷凝器（17）冷凝后，得到高纯度的碳酸二乙
酯产品。

5. 如权利要求 3 所述的工艺方法，其特征在于新鲜进料的乙醇与碳酸二甲
酯摩尔比为 1～8，反应精馏隔壁塔（11）塔顶回流比为 3～20。

6. 如权利要求 3 所述的工艺方法，其特征在于催化剂为碳酸钾、碳酸钠、
碳酸锂、氢氧化钾、氢氧化钠和甲醇钠中的一种。

7. 如权利要求 3 所述的工艺方法，其特征在于反应段（5）的温度为 60～
110℃，塔顶温度为 30～90℃，塔釜温度为 80～170℃。反应精馏隔壁塔（11）
的操作压力为 0.08～0.3MPa。
说明 书

一种生产碳酸二乙酯的工艺方法及设备

技术领域

本发明涉及一种反应精馏工艺方法及设备，具体是指一种利用反应精馏隔离塔合成碳酸二乙酯的新型工艺方法及设备，可将碳酸二乙酯产品的合成、产物分离合并在一个塔内完成。

背景技术

碳酸二乙酯是一种性能优良的溶剂和重要的有机合成中间体，广泛应用于合成纤维、合成树脂、制药等行业，可作为锂电池的电解质溶剂，也是一种性能优良的汽油添加剂，具有很高的工业应用价值。

传统合成碳酸二乙酯的方法是光气法，先由光气与沸腾的乙醇反应生成氯甲酸甲酯，生成的氯甲酸甲酯再与无水乙醇反应制得碳酸二乙酯。日本专利 JP6-41019(1994) 对第二步反应设计了一个流程，使反应速率和收率都有了明显提高。但是光气法有十分明显的缺点，其工艺流程复杂，操作周期长，光气及中间体氯甲酸甲酯的毒性非常大，严重污染环境，副产物盐酸对设备腐蚀也较为严重。

为了克服光气法的缺点，美国专利 US5534649（1996）公开了一种采用尿素、氨基甲酸甲酯或氨基甲酸乙酯与乙醇在催化剂作用下进行反应制造碳酸二乙酯的方法。但是该方法反应时间长，产物中有氨释放出来，碳酸二乙酯的收率低，因此经济性较差。

中国专利 CN200710060355.X 公开了一种用于乙醇气相氧化羰基合成碳酸二乙酯的催化剂及其制备方法。所述的催化剂活性组分是氧化铜或氧化亚铜，载体为介孔碳，负载量占载体的 5～20%。但是该方法的反应温度和压力较高。

中国专利 CN94112211.5 公开了一种改进的碳酸二烷基酯的合成方法，主要包括反应精馏、萃取精馏、二酯分离三个过程，反应精馏主要在反应精馏塔的反应段进行，可将碳酸丙烯酯转化成碳酸二烷基酯。

中国专利 CN1105822.6 公开了一种能以稳定的方式连续生产碳酸二乙酯的方法，以碳酸二甲酯和乙醇为原料，在催化剂作用下，通过反应精馏制备碳酸二
乙酯，塔釜中的乙醇、碳酸二乙酯及催化剂进行分离后，分离出的乙醇和催化剂可以循环使用，所获得的碳酸二乙酯的质量浓度可达到99.5%以上，塔顶的甲醇与乙醇分离后，乙醇可回到反应精馏塔循环使用。但是该方法乙醇循环量太大。

本发明的反应精馏隔离塔是将反应精馏过程应用于隔离塔中，是一种高度集成的化工生产工艺。在一个反应精馏隔离塔内同时完成酯交换反应、碳酸二乙酯产品分离等任务。反应精馏隔离塔流程与常规反应精馏流程比，省去了两个精馏塔，一个冷凝器与两个再沸器，因此可以有效地降低能耗和设备投资，提高经济效益。

发明内容

本发明的目的在于提供一种利用反应精馏隔离塔实现碳酸二乙酯的合成与分离的工艺方法及设备。本发明可使酯交换反应、产物分离在同一个塔内实现，简化了常规反应精馏流程，有效地降低了能耗和设备投资。

本发明所采用的设备为反应精馏隔离塔（11），即在一普通精馏塔内部设置一垂直隔壁（8），隔壁（8）从塔的上部延伸到塔的下部。隔壁（8）将反应精馏隔离塔（11）分为四个区域：公共精馏段（4），反应段（5），侧线段（6），公共提馏段（7）。隔壁（8）在反应精馏隔离塔（11）内中心或偏心设置，反应段（5）与侧线段（6）横截面积之比为1:1～1:5。原料进入隔壁（8）左侧。液相混合物流在公共精馏段（4）底部按一定比例被分成两股物流分别进入反应段（5）和侧线段（6），汽相混合物流在公共提馏段（7）顶部按一定比例被分成两股物流分别进入反应段（5）和精馏段（6），从公共精馏段（4）底部进入反应段（5）和侧线段（6）的液相混合物流质量流率之比为1:1～1:5，从公共提馏段（7）顶部进入反应段（5）和侧线段（6）的汽相混合物流质量流率之比为1:1～1:7。

所说的反应精馏隔离塔（11）为板式塔或填料塔或两者的任意组合。

本发明所述的方法为：催化剂从反应段（5）的顶部加入，碳酸二甲酯与乙醇进料从反应段（5）的中部加入，在催化剂的作用下，在反应段（5）发生酯交换反应生成碳酸二乙酯产品。塔内上升的气相混合物流经过反应段（5）与公共精馏段（4）的作用除去碳酸二乙酯、碳酸甲乙酯及乙醇后，在塔顶得到质量浓度大于95%的甲醇副产物。塔内下降的液相混合物流经过公共提馏段（7）的作用除去碳酸甲乙酯和乙醇后，在塔釜得碳酸二乙酯产品与催化剂的混合物，将其混合物送入蒸发器（15）进行分离，碳酸二乙酯蒸汽经蒸发器（15）顶部进入冷
凝器 (17) 冷凝后，得到质量浓度大于 99.5%的碳酸二乙酯产品，在蒸发器 (15) 底部得到催化剂，送入反应精馏隔壁塔 (11) 循环使用。从侧线抽出的物流 (14) 送入反应精馏隔壁塔 (11) 循环使用。

在操作过程中，反应精馏隔壁塔 (11) 液相回流比为 3～20，塔顶温度控制在 30～90℃，反应段 (5) 的温度控制在 60～110℃，塔釜温度控制在 80～170℃，操作压力为 0.08～0.3MPa。新鲜进料的乙醇与碳酸二甲酯摩尔比为 1～8。

本发明中产品碳酸二乙酯质量分数达到 99.5%以上，碳酸二甲酯转化率达到 99%以上，选择性达到 99%以上，达到同样碳酸二甲酯转化率与选择性及产品分离要求所需能量比常规反应精馏流程节省 20%～50%。

附图说明

图 1 为碳酸二乙酯合成的反应精馏隔壁塔流程示意图

图 1 中：4 公共精馏段，5 反应段，6 侧线段，7 公共提馏段，8 隔壁，11 反应精馏隔壁塔，12、17 冷凝器，10 再沸器，15 蒸发器，19、20 混合器。

具体实施方案

下面结合附图 1 对本发明作进一步的详细描述；

如图 1 所示，本发明所述的反应精馏合成设备主要由反应精馏隔壁塔 (11)、冷凝器 (12、17)、再沸器 (10)、蒸发器 (15)、混合器 (19、20) 及其他辅助设备构成，其中反应精馏隔壁塔 (11) 被分成四个区域：区域 (4) 是公共精馏段，有 1～10 块理论板，用于除去未反应的乙醇，在塔顶得到甲醇副产物，区域 (5) 是反应段，有 10～30 块理论板，在其中发生酯交换反应，区域 (6) 是侧线段，有 10～30 块理论板，用于采出碳酸甲乙酯、乙醇及少量的碳酸二乙酯和甲醇，区域 (7) 是公共提馏段，有 5～20 块理论板，用于除去碳酸甲乙酯与过量的乙醇，在塔釜得到碳酸二乙酯与催化液的混合物。反应段 (5) 与侧线段 (6) 横截面积之比按塔内物流流量具体而定，其值为 1:1～1:5。

本发明的工艺流程主要包括以下三个步骤：

(a) 来自贮槽的催化剂与循环使用的催化剂经计量后从反应精馏隔壁塔 (11) 的反应段 (5) 的顶部加入，原料碳酸二甲酯与来自贮槽的乙醇及循环使用的乙醇经混合后从反应段 (5) 的中部加入，原料中乙醇与碳酸二甲酯摩尔比为 1～8。碳酸二甲酯与乙醇在催化剂的作用下进行酯交换反应生成碳酸二乙酯产品和甲醇副产物，反应区域的温度为 60～110℃。来自反应段 (5) 和侧线段
（6）的汽相物流经过公共精馏段（4），除去其中的乙醇后从塔顶排出，得到质量浓度大于95%的甲醇副产物，塔顶回流比为3～20，塔顶温度控制在30～90℃。来自反应段（5）和侧线段（6）的液相混合物流经公共精馏段（7），除去碳酸甲乙酯和乙醇后从塔釜流出，送往后续工段，塔釜温度控制在80～170℃。由侧线段（6）采出的碳酸甲乙酯、乙醇、碳酸二乙酯和甲醇送往反应精馏隔壁塔（11），循环使用。反应精馏隔壁塔（11）的操作压力为0.08～0.3MPa。

（b）来自反应精馏隔壁塔（11）塔釜的物流进入蒸发器（15），碳酸二乙酯产品被汽化。经蒸发器（15）顶部送往后续工段，催化剂由蒸发器底部排出，送往反应精馏隔壁塔（11），循环使用。

（c）来自蒸发器（15）顶部的物流进入冷凝器（17），被全部冷凝后，得到质量浓度大于99.5%的碳酸二乙酯产品。

本发明可以通过以下实例说明：

实施例1：如图1所示流程。

在一主要由反应精馏隔壁塔（11）、冷凝器（12、17）、再沸器（10）、蒸发器（15）、混合器（19、20）所组成的工艺设备中，原料碳酸二甲酯与乙醇在催化剂硫酸钾的作用下制取碳酸二乙酯。

反应精馏隔壁塔（11）为一直径2000mm，高22000mm的板式塔，内部实际塔板设置：公共精馏段（4）9块，反应段（5）16块，侧线段（6）16块，公共精馏段（7）15块。

反应精馏隔壁塔（11）操作工况：

新鲜原料碳酸二甲酯以1414.8kg/h的质量流量、乙醇以1447.1kg/h的质量流量进入反应精馏隔壁塔（11）的反应段（4）的中部，催化剂硫酸钾以19kg/h的质量流量从反应精馏隔壁塔（11）的反应段（5）的顶部进入，塔顶回流比为10，塔顶温度为64.5℃，塔釜温度为126.8℃，反应段温度为80.6～107℃，操作压力为0.1MPa。塔顶甲醇质量流量为1018.3kg/h，质量浓度为98.2%。塔釜碳酸二乙酯产品质量流量为1862.4kg/h，质量浓度为99.0%，将其送入蒸发器（15）回收催化剂后，蒸发器（15）顶部的蒸汽进入冷凝器（17）进行冷凝，得到质量浓度为99.9%的碳酸二乙酯产品，质量流量为1843.4kg/h。侧线采出物流（14）的质量流量为19.0kg/h，质量组成为乙醇98.0%、碳酸甲乙酯2.0%，送往反应精馏隔壁塔（11），循环使用。在反应精馏隔壁塔（11）中，碳酸二甲酯的转化率99.4%，
碳酸二乙酯的选择性为 100%，收率为 99.4%。

实施例 2：如图 1 所示流程。

在一主要由反应精馏隔壁塔（11）、冷凝器（12、17）、再沸器（10）、蒸发
器（15）、混合器（19、20）所组成的工艺设备中，原料碳酸二甲酯与乙醇在催
化剂氢氧化钠的作用下制取碳酸二乙酯。

反应精馏隔壁塔（11）为一直径 1600mm，高 18000mm 的填料塔，填料层
高度：公共精馏段（4）2600mm，反应段（5）4600mm，侧线段（6）4600mm，
公共提馏段（7）4300mm。

反应精馏隔壁塔（11）操作工况：

进料位置、原料及催化剂进料量同实施例 1，塔顶回流比为 6，塔顶温度为
64.5℃，塔釜温度为 126.8℃，反应段温度为 76.1～100.9℃，操作压力为 0.15MPa。
塔顶甲醇质量流量为 1017.1kg/h，质量浓度为 98.4%。塔釜碳酸二乙酯产品质量
流量为 1863.9kg/h，质量浓度为 99.0%，将其送入蒸发器（21）回收催化剂后，
蒸发器（21）顶部的蒸汽进入冷凝器（23）进行冷凝，得到质量浓度为 99.9%的
碳酸二乙酯产品，质量流量为 1844.9 kg/h。侧线采出物流（14）的质量流量为
29.9kg/h，质量组成为乙醇 96.8%、碳酸二乙酯 0.10%、碳酸甲乙酯 3.0%、甲
醇 0.10%，送往反应精馏隔壁塔（11）循环使用。在反应精馏隔壁塔（11）中，
碳酸二甲酯的转化率 100%，碳酸二乙酯的选择性为 99.4%，收率为 99.4%。

实施例 3：如图 1 所示流程。

在一主要由反应精馏隔壁塔（11）、冷凝器（12、17）、再沸器（10）、蒸发
器（15）、混合器（19、20）所组成的工艺设备中，原料碳酸二甲酯与乙醇在催
化剂氢氧化钠的作用下制取碳酸二乙酯。

反应精馏隔壁塔（11）为一直径 2400mm，高 23500mm 的板式塔，内部实
际塔板设置：公共精馏段（4）10 块，反应段（5）17 块，侧线段（6）17 块，
公共提馏段（7）16 块。

反应精馏隔壁塔（11）操作工况：

进料位置、原料及催化剂进料量同实施例 1，塔顶回流比为 15，塔顶温度为
64.5℃，塔釜温度为 126.8℃，反应段温度为 84.7～110.0℃，操作压力为 0.2MPa。
塔顶甲醇质量流量为 1020.6kg/h，质量浓度为 97.9%。塔釜碳酸二乙酯产品质量
流量为 1860.3kg/h，质量浓度为 99.0%，将其送入蒸发器（21）回收催化剂后，
蒸发器（21）顶部的蒸汽进入冷凝器（23）进行冷凝，得到质量浓度为 99.9%的碳酸二乙酯产品，质量流量为 1841.3 kg/h。侧线采出物流（14）的质量流量为 38.2 kg/h，质量组成为乙醇 98.6%、碳酸甲乙酯 1.4%，送往反应精馏隔壁塔（11）循环使用。在反应精馏隔壁塔（11）中，碳酸二甲酯的转化率 99.2%，碳酸二乙酯的选择性为 100%，收率为 99.2%。

实施例 4：如图 1 所示流程。

在一主要由反应精馏隔壁塔（11）、冷凝器（12、17）、再沸器（10）、蒸发器（15）、混合器（19、20）所组成的工艺设备中，原料碳酸二甲酯与乙醇在催化剂甲醇钠的作用下制取碳酸二乙酯。

反应精馏隔壁塔（11）为一直径 1600mm，高 21000mm 的填料塔，填料层高度：公共精馏段（4）3000mm，反应段（5）5400mm，侧线段（6）5400mm，公共提馏段（7）5000mm。

反应精馏隔壁塔（11）操作工况：

新鲜进料碳酸二甲酯以 1080.9 kg/h 的质量流量、乙醇以 1151.7 kg/h 的质量流量进入反应精馏隔壁塔（11）的反应段（5）中部，催化剂甲醇钠以 15.5 kg/h 的质量流量从反应精馏隔壁塔（11）的反应段（5）的顶部进入，塔顶回流比为 10，塔顶温度为 64.8℃，塔釜温度为 123.7℃，反应段温度为 73.3℃～79.5℃，操作压力为 0.26MPa。塔顶甲醇质量流量为 966.8 kg/h，质量浓度为 95.2%。塔釜碳酸二乙酯产品质量流量为 1440.0 kg/h，质量浓度为 98.9%，将其送入蒸发器（21）回收催化剂后，蒸发器（21）顶部的蒸汽进入冷凝器（23）进行冷凝，得到质量浓度为 99.5%的碳酸二乙酯产品。侧线采出物流（14）的质量流量为 88.4 kg/h，质量组成为乙醇 89.6%、碳酸二乙酯 10.2%、碳酸甲乙酯 0.10%、甲醇 0.10%，送往反应精馏隔壁塔（11）循环使用。在反应精馏隔壁塔（11）中，碳酸二甲酯的转化率 100%，碳酸二乙酯的选择性为 100%，收率为 100%。