

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 October 2010 (28.10.2010)

(10) International Publication Number
WO 2010/123823 A1

(51) International Patent Classification:

A61B 17/34 (2006.01)

Eighth Floor, San Francisco, California 94111-3834
(US).

(21) International Application Number:

PCT/US2010/031612

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

19 April 2010 (19.04.2010)

(25) Filing Language:

English

(26) Publication Language:

English

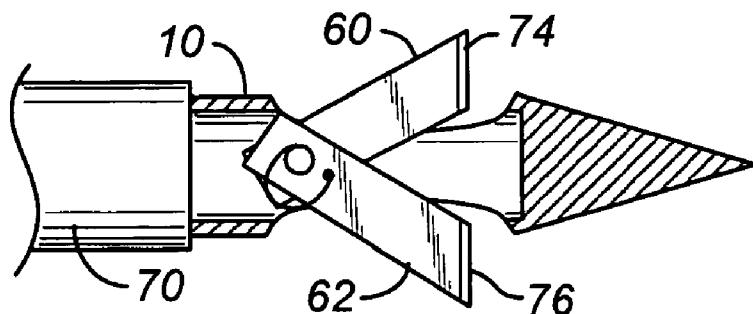
(30) Priority Data:

61/171,228 21 April 2009 (21.04.2009) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): XUL-MENA, INC. [US/US]; 453 Ravendale Drive, Suite H, Mountain View, California 94043 (US).

Published:


— with international search report (Art. 21(3))

(72) Inventors; and

(75) Inventors/Applicants (for US only): LUNSFORD, John [US/US]; 123 Leslie Drive, San Carlos, California 94070 (US). SANDER, Fiona [US/US]; 11640 Jessica Lane, Los Altos Hills, California 94024 (US). PHAN, Hoang [US/US]; 39152 Guardino Drive, #107, Fremont, California 94538 (US).

(74) Agents: HESLIN, James M. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center,

(54) Title: SYSTEM AND METHOD FOR DELIVERING EXPANDING TROCAR THROUGH A SHEATH

FIG. 5A

(57) Abstract: A trocar has an elongate body and a tissue-penetrating tip. One or more radially extending blade(s) are provided near the tissue-penetrating tip of the trocar body so that they automatically open as the trocar is advanced through tissue. The blades will enlarge the penetration which was formed by the tip of the trocar.

SYSTEM AND METHOD FOR DELIVERING EXPANDING TROCAR THROUGH A SHEATH

CROSS-REFERENCES TO RELATED APPLICATIONS

5 [0001] This application claims the benefit of priority of U.S. Provisional Patent Application No. 61/171,228 (Attorney Docket No. 026923-001200US), filed on April 21, 2009, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

10 [0002] 1. Field of the Invention. The present invention relates generally to medical apparatus and methods. In particular, the present invention relates to a penetration device, such as a trocar, having the ability to expand the size of a tissue penetration as the tool is advanced.

15 [0003] A number of endoscopic and other intraluminal procedures require penetration from one body lumen into an adjacent body lumen. For example, a number of procedures may be performed by entering the gastrointestinal (GI) tract, particularly the stomach, duodenum, small intestine and large intestine, and passing tools from the GI tract into adjacent organs, ducts, cavities and structures, such as the bile duct, the pancreatic duct, the gallbladder, urinary tract, a cyst or pseudocyst, abscess, and the like. Since the endoscopes and other 20 endoscopic access tools are generally small with narrow working channels, typically 2 to 7 millimeters in diameter, any penetrating tools which are advanced through such working channels will necessarily be small and provide for only small tissue penetrations.

25 [0004] Depending on the procedure being performed, it is often desirable to place a catheter, a stent, a drainage tube, a fiducial marker implant, an electrode or a like second diagnostic or therapeutic device, through the penetrations that have been formed. Often, placement of such tools and implants requires a relatively large diameter hole to allow 30 subsequent passage of the second device. In many cases the desired diameter of the second device is larger than the maximum diameter of the penetrating member and the insertion of the second device is often difficult. Commonly, the lumen walls include muscle layers and significant force is required to advance the catheter from one lumen to the next. Such

advancement can be more difficult and may fail if the size of the penetrating element is increased in order to provide a larger penetration.

[0005] For these reasons, it would be desirable to provide trocars or other tissue-penetrating devices which can be used intraluminally to penetrate from one body lumen into an adjacent

5 lumen where the size of the penetration can easily be enlarged. In particular, it would be desirable to provide such tools and methods where a relatively low force is needed to advance the tool through the tissue while still achieving a relatively large penetration. Such tools and methods should be compatible with standard endoscopes and other sheaths which can be used to access a target location in the gastrointestinal tract or other body lumen. At least some of 10 these objectives will be met by the inventions described hereinbelow.

[0006] 2. Description of the Background Art. Trocars and other medical access devices having deployable cutting blades are described in U.S. Patent Nos. 5,372,588; 5,620,456; 6,402,770; 7,429,264; and US 2008/0045989. Other disclosures of interest are found in U.S. Patent Nos. 5,224,945; 5,697,944; 6,371,964; 7,303,531; and US 2006/0190021.

15

BRIEF SUMMARY OF THE INVENTION

[0007] The present invention provides improved trocars and other tissue-penetrating devices which can be used with endoscopes and other viewing scopes and sheaths. The

20 trocars can be advanced from a working channel or other lumen or passage of the sheath and penetrated through an adjacent luminal wall and, typically, further into and through the wall of an adjacent body structure or organ. Thus, the trocars are particularly useful for providing intraluminal access from one body lumen or cavity into an adjacent body lumen or cavity.

The trocars will most often be used for forming penetrations and passages from a 25 gastrointestinal structure, such as the esophagus, the stomach, the duodenum, the small intestine, and the large intestine, into an adjacent structure or organ, such as the bile duct, the pancreatic duct, the gallbladder, the urinary tract, a cyst or pseudocyst, an abscess, and the like. The trocars of the present invention are useful in any medical procedure where an elongate, flexible tool is advanced through an access sheath to a remote location in order to penetrate tissue.

30 **[0008]** Trocars according to the present invention are intended for use with a catheter, endoscope, or delivery sheath having a working channel or other lumen. Such trocars usually comprise an elongate body which can be advanced through the sheath working channel or lumen, typically having a flexible body with a stiffness typical for standard endoscopic

biopsy needles. At least one blade will be disposed near a distal end of the elongate body where the blade is biased to open from a radially retracted configuration to a radially extended configuration. In particular, the blade will be radially retracted when the distal end of the elongate body is disposed within the sheath lumen, and the blade will open radially 5 when the distal end is advanced distally beyond the end of the sheath lumen. Usually, the blade(s) will be adapted to close radially in response to being drawn back into the sheath lumen. In this way, the trocar body can have a relatively small width or diameter, typically in the range from 0.4 mm to 5 mm, while the extended blades can significantly increase the size 10 of the tissue penetration which is formed when the distal end of the trocar is advanced through tissue. Moreover, as the blade is biased to open as the distal end of the trocar is extended beyond the working channel of the sheath, there is no need for the physician to separately actuate the blade and instead the larger cutting size is automatically provided as the penetration is being performed.

[0009] Usually, at least a portion of the forward edge or surface of the blade will be 15 sharpened or otherwise adapted so that it can penetrate tissue. Typically, conventional honing or other physical modification of the blade will be sufficient to provide the cutting surface. Alternatively, electrodes or other electrosurgical carriers, wires, metalized surfaces, or the like, may be provided on the blade in order to enhance the cutting effect when 20 connected to a suitable electrosurgical power supply. In contrast, the trailing or proximal side of the blade will usually be blunt or atraumatic in order to avoid accidental cutting or tissue trauma when the trocar is pulled back. A blunt trailing edge is further desirable when the blade is configured to close as it is drawn proximally to engage a leading edge of the working channel of the endoscope or sheath.

[0010] In other embodiments, the blade can be configured to be actively closed by the 25 physician after the tissue penetration is complete. For example, a tether or other structure for pulling the blade back to close the blade against the bias may be provided.

[0011] In most embodiments, the elongate body of the trocar will also have a fixed tissue-penetrating element at its distal tip to permit or facilitate advancement through tissue. The 30 tissue-penetrating tip may comprise a sharpened tip, a chamfered tip, an electrosurgical tip, or any other common tip or modification which allows the body to be advanced forwardly to penetrate tissue. In other embodiments, however, it may be possible to provide a body having a blunt or atraumatic tip where the deployed blade provides the entire cutting surface for the trocar.

[0012] In some embodiments, the trocar will include only a single blade which is pivotally mounted so that opposite ends of the blade rotate to open from opposite sides of the elongate body. Such embodiments may be biased using a coiled spring disposed about an axis or pivot point of the blade. Such rotating single blades can be used together with a tether for

5 tensioning the blade to rotate and collapse or otherwise close the blade back into the elongate body. Alternatively, the blade and sheath can be configured such that drawing the trocar proximally back into the sheath automatically retracts the blade.

[0013] In other embodiments, the trocar may comprise at least two biased blades attached to a single pivot point to open in a scissors-like pattern where each of the blades has a

10 sharpened distal edge to cut tissue as the elongate body is advanced. In still other embodiments, two biased blades may be attached to pivot points on opposite sides of the elongate body where the blades are parallel to each other when retracted within the elongate body. In further embodiments, two blades may be attached at axially spaced-apart locations on the elongate body and/or in rotationally spaced apart locations. In addition to planar 15 blades, the blades may comprise pre-shaped wires or other shape-memory components which radially expand outwardly when released from constraint. In such cases, the wires are typically not pivoted in any way. In still other embodiments, the blades may be conformed circumferentially over the surface of the elongate body and attached with an axial line hinge with springs to radially open or unfold the blades.

20 [0014] The present invention further provides methods for accessing internal body organs. The methods of the present invention comprise introducing a delivery sheath through the working channel of an endoscope to a location adjacent to a target location on a wall of an organ or lumen. A trocar is then advanced from a lumen in the delivery sheath so that the trocar penetrates the organ or lumen wall at the target location. As the trocar is advanced, a 25 blade is released from constraint so that the blade opens radially as the trocar exits the lumen. The released, expanded blade may thus enlarge the penetration which was made by the distal tip of the trocar as it was advanced. In many cases, the endoscope, viewing scope, or other delivery sheath from which the trocar was advanced will be introduced through a natural body orifice, such as the mouth, anus, ureter, and/or vagina and cervix, allowing for the 30 performance of a natural-orifice transluminal endoscopic surgery (NOTES) which avoids the need to form a percutaneous tissue penetration. In addition, transluminal interventional endoscopy procedures can be accomplished including transoral or transanal access of a cyst, pseudocyst or abscess for drainage into the GI tract, transoral or transanal access of the gallbladder, bile duct and pancreatic duct for drainage into the GI tract, transoral access of

the heart from the esophagus for delivery of drugs, placement of electrodes, and ablation of tissue, transoral access of the pancreas, gallbladder, kidneys, liver, spleen and any other organs or structure adjacent to the GI lumen to deliver fiducial markers, drugs, and tissue ablation from the GI tract.

5

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Fig. 1 illustrates a trocar having an extendable blade constructed in accordance with the principles of the present invention.

[0016] Figs. 2 and 2A illustrates a first particular construction of the actuatable blade of the 10 trocar of the present invention.

[0017] Fig. 3 illustrates a second particular embodiment of an actuatable blade constructed in accordance with the principles of the present invention.

[0018] Figs. 4A and 4B illustrate yet another embodiment of the actuatable blade mechanism of the trocars of the present invention, where Fig. 4A is a cross-sectional view of a distal 15 section of the trocar and Fig. 4B is an end view of the distal section.

[0019] Figs. 5A – 5C are similar to Figs. 4A and 4B, except that the blade structure has been actuated by advancing the trocar out the distal end of a constraining sheath.

[0020] Figs. 6A and 6B illustrate a blade assembly where three blades are axially hinged in order to open in a radial or petal pattern.

20 [0021] Figs. 7A and 7B illustrate a deformable wire blade structure on a trocar according to the present invention.

[0022] Figs. 8A and 8B illustrate axially and radially spaced-apart blades on a trocar in accordance with the principles of the present invention.

25 [0023] Figs. 9A to 9C illustrate a single asymmetric blade embodiment of the trocar of the present invention.

[0024] Figs. 10A-10D illustrate use of the trocar of Figs. 4A/B and 5A/B for penetrating a tissue wall in accordance with the principles of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0025] Referring to Fig. 1, a trocar 10 constructed in accordance with the principles of the 30 present invention comprises an elongate body 12 having a distal end 14 and a proximal end

16. An actuatable blade structure 18 is disposed near the distal end 14 of elongate body 12, where the blade is shown in a radially expanded configuration in broken line.

[0026] The length and dimensions of the elongate body 12 will depend on the intended use of the trocar. Typically for gastrointestinal procedures, elongate body 12 of the trocar will be 5 sized to be introduced through an endoscope and will have a length in the range from 50cm to 500 cm and a width or diameter in the range from 0.4mm to 5mm. The elongate body may be a solid wire or have a hollow structure with an axial passage or lumen. The body may be formed from polymers, such as polytetrafluoroethylene (PTFE), nylon, poly(ether ether ketone) (PEEK) or polyethyleneterephthalate (PET), or metals, such as stainless steel, 10 elgiloy, or nitinol. In certain instances, it may be desirable to reinforce the body with braid, helical wires, or other conventional components. In other cases, the body may be formed from different materials over its proximal length and its distal length. For example, the proximal length may be formed from metal hypotube or wire while the distal, more flexible portion is formed from a polymer tube, optionally a reinforced polymer tube. In other 15 embodiments, the elongate body 12 may be straight and relatively rigid over its entire length.

[0027] The elongate body 12 will usually have a tissue-penetrating tip 20 at its distal end, where the tip may be conical, chamfered, electrosurgical, or be provided in any conventional form for a trocar. For example, the tip might have a multi-faceted face with sharpened edges for penetrating, as is commonly employed with tissue-penetrating trocars (as shown in Figs. 20 9A and 9B).

[0028] Referring now to Fig. 2, a first embodiment of the blade assembly 18 will be described. A single blade 24 is mounted within the elongate body 12 on a pivot 26. A pair of opposed windows 28 allow the blade to rotate or pivot between an axially aligned configuration, as shown in broken line, where the blade is fully retracted within the peripheral 25 envelope of the trocar, and a radially extended configuration shown in full line where a leading, cutting edge 30 of the blade is disposed toward the distal end 14. The blade is biased by a coil spring 32 (a leaf or other spring could also be used) which is attached at one end to the blade and the other end to the fixed pivot so that, in the absence of constraint, the blade will open to its extended configuration as shown in full line. Thus, when constrained within a 30 sheath or working channel or other lumen of an endoscope, the blade will be held in its retracted or constrained configuration, as shown in broken line. When advanced from the sheath or working channel, however, the spring 32 will automatically open the blade so that the cutting edge 30 is exposed to the tissue as the trocar is advanced. It is also possible for the spring to only partially open the blade once the trocar is advanced from the sheath, the

initial tissue interference of cutting edge 30 then causing the blade to fully open and penetrate through the tissue layers. After use, the blade can be closed by pulling proximally on a tether 34 to close the blade down to its retracted (broken line) configuration.

[0029] Alternately the blade and constraining sheath can be configured such that proximal

5 movement of the trocar into the constraining catheter results in automatic retraction of the blade. In this instance, as shown in Fig 2A, the lower rear edge of the blade 24' has a protrusion 36 that contacts the constraining catheter as the trocar is moved proximally relative to the sheath, thus rotating the blade against the spring force into the retracted configuration. A relief or cut out 38 may also be formed on the upper rear edge of blade 24'

10 to prevent the rear edge of the blade from interfering with the catheter as it is retracted.

Alternatively, the upper rear edge of the blade may be sharpened (in addition to or in place of the cut out 38). Drawing the trocar into the constraining catheter or sheath causes the protrusion 36 to contact the leading edge of the constraining catheter/sheath rotating the blade counter-clockwise (as seen in Fig. 2). The sharpened edge will cut any tissue that may be

15 between it and the trocar, allowing it to retract fully.

[0030] Referring now to Fig. 3, a further embodiment of the blade structure 18 includes a pair of opposed blades 40 and 42. Each of the blades 40, 42 is mounted on a pivot 44 and 46, respectively, and includes a spring 48 and 50 which will open the blade from the retracted or constrained configuration shown in broken line to the extended configuration shown in full

20 line. Each blade has a cutting edge 52 which is exposed to tissue as the trocar 10 is advanced distally. The blades each have a tether 34 to permit the blades to be retracted after use.

Alternately these blades can be configured such that the tip of the retracted blade is positioned distal to the pivot, requiring a proximal rotation of the blade into the extended orientation. In this configuration the trocar can automatically retract as the trocar is pulled

25 distally into the restraining catheter.

[0031] In the embodiments of both Figs. 2 and 3, the blades will not automatically retract as the trocar 10 is pulled back into a sheath or endoscope. Thus the tethers are needed to retract the blades prior to pulling the trocars back into the sheath. In other embodiments, however, as described below, the blades will automatically retract as the trocar is pulled back

30 into a sheath. The first such structure is illustrated in Figs. 2A, 4A/B and 5A/B.

[0032] The trocar 10 of Figs. 4A and 4B includes blades 60 and 62 mounted on a single

common pivot 64. Each blade has a coil spring 66 attached to the blade and pivot in order to open the blade, as shown in Figs. 5A and 5B, in the absence of constraint. As shown in Figs.

4A and 4B, the blades 60 and 62 are constrained within a sheath 70 having a passage or channel 72 through which the trocar can be advanced or retracted. So long as the blades 60 and 62 of the trocar 10 are within the lumen 72 of the sheath 70, the blades remain constrained as shown in Figs. 4A and 4B. By advancing the distal end 14 of the trocar further from the distal opening of the sheath 70, as shown in Figs. 5A and 5B, the blades 60 and 62 will automatically open under the spring bias so that leading cutting edges 74 and 76 are exposed to tissue as the trocar is advanced therethrough. In this embodiment, the blades will automatically retract and close as the trocar 10 is pulled back within the sheath 70 since the distal end of the sheath will engage the back sides of the blades to close the blades as they reenter the sheath. Leading cutting edges 74 and 76 are shown being perpendicular to the axis of the trocar, however it may be desirable for cutting edges to be tapered or angled proximally to enhance the ease of the puncture. In this case, the lateral most tip of the open blade is positioned proximal to the inboard tip of the blade as shown in Fig 5C (blades 60' and 62').

15 [0033] A variety of other biased blade constructions may be employed. For example, as shown in Fig. 6A and 6B, multiple blades 80 may be mounted on axially aligned pivots 82 so that the blades open or unfold in a petal-like manner as they rotate about the longitudinal axes of the pivots 82. Springs may be provided in order to unfold the blades 80 and tethers may be provided to close the blades.

20 [0034] In still further embodiments, the blades may comprise deformable structures rather than pivoted structures. For example, as shown in Figs. 7A and 7B, a plurality of wire blades 90 will be provided on the elongate body 12 of the trocar 10. The blades may be formed from a resilient material, such as spring stainless steel, Nitinol, or other shape memory materials, and may be heat set to have the open, cutting configuration as shown in Fig. 7B. Thus, in the absence of constraint, the blades will "spring" to their extended cutting configuration. The blades may be retracted by drawing them into the constraining sheath 92, shown in broken line in Fig. 7A.

25 [0035] Referring to Figs. 8A and 8B, a plurality of blades may be provided in a variety of configurations. As seen in Fig. 8A, blades 100 and 102 may be axially spaced-apart over the elongate body 12, while as shown in Fig. 8B, the blades may be radially spaced-apart in configurations other than 180° opposition.

[0036] A trocar 120 having a single, asymmetrically attached blade 122 is illustrated in Figs. 9A-9C. The trocar 120 has a faceted tip 124 and a trough or recess 126 which receives

the pivotally mounted blade 122. The blade 122 will be biased, typically by a resilient structure such as a coil or leaf spring (not shown), to open at an angle greater than 90° so that the blade is “swept back” as it is held by engaging the rear edge of the recess 126. The blade 122 has a honed edge 128, as best seen in Fig. 9C, so that it will cut a wide incision through tissue as the trocar is advanced. The blade 122 may be closed by retraction back into the lumen or passage of the deployment sheath.

[0037] Referring now to Figs. 10A – 10D, use of the trocar 10 of Figs. 4A/4B and 5A/5B for penetrating a tissue layer TL will be described. Initially, trocar 10 is advanced to the tissue layer with the blades retracted within sheath 70 and the penetrating tip 20 of the trocar 10 engaged against the tissue layer. The blades 60 and 62 extend radially as the trocar 10 is advanced from the sheath 70, as shown in Fig. 10B. The penetrating tip 20 of the trocar will have entered the tissue as the blades extend and the cutting edges 74 and 76 engage the tissue. The trocar continues to be advanced through the tissue layer TL until it passes out the other side, as shown in Fig. 10C. It can be seen that the penetration P formed has a width which is much greater than would have been obtained using the trocar 10 without the blades 60 and 62. Before withdrawing the sheath 70, it can be advanced over the sheath to close the blades, as shown in Fig. 10D, and the sheath can be pulled back through the penetration P without exposing the blades unintentionally.

[0038] While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

WHAT IS CLAIMED IS:

- 1 1. A trocar for use with a delivery sheath having a lumen, said trocar
2 comprising:
3 an elongate body which can be advanced through the sheath lumen; and
4 at least one blade disposed near a distal end of the elongate body, said blade
5 being biased to open from a radially retracted configuration to a radially extended
6 configuration, wherein the blade is radially retracted when the distal end of the elongate body
7 is within the sheath lumen and said blade opens radially when the distal end is advanced
8 distally beyond the sheath lumen.

- 1 2. A trocar as in claim 1, wherein the blade closes radially in response to
2 being drawn back into the sheath lumen.

- 1 3. A trocar as in claim 2, wherein the blade has a proximal surface which
2 engages a distal surface of the delivery sheath to collapse the blade as the blade is drawn
3 proximally back into the sheath lumen.

- 1 4. A trocar as in claim 1, further comprising means for pulling the blade
2 back into the elongate body.

- 1 5. A trocar as in claim 1, wherein said elongate body has a tissue-
2 penetrating distal tip.

- 1 6. A trocar as in claim 5, wherein the tissue penetrating tip comprises a
2 sharpened tip.

- 1 7. A trocar as in claim 1, wherein a single blade is pivotally mounted so
2 that opposite ends of the blade rotate to open from opposite sides of the elongate body.

- 1 8. A trocar as in claim 7, further comprising a tether attached to the blade,
2 wherein the tether can be tensioned to collapse the blade prior to drawing the blade back into
3 the sheath.

- 1 9. A trocar as in claim 7, wherein the blade has a proximal surface which
2 engages a distal surface of the delivery sheath causing the blade to collapse as the blade is
3 drawn proximally back into the sheath lumen.

1 10. A trocar as in claim 1, comprising at least two biased blades attached
2 to a single pivot to open in a scissors-like pattern wherein the blades have sharpened distal
3 edges to cut tissue as the elongate body is advanced.

1 11. A trocar as in claim 1, comprising two biased blades attached to pivot
2 points on opposite sides of the elongate body, wherein the blades are parallel to each other
3 within the elongate body.

1 12. A trocar as in claim 1, comprising two blades which are axially
2 spaced-apart on the elongate body.

1 13. A trocar as in claim 12, comprising three blades axially spaced-apart
2 on the elongate body.

1 14. A trocar as in claim 1, wherein the blade(s) comprise pre-shaped wires
2 which expand radially outwardly when released from constraint.

1 15. A trocar as in claim 14, further comprising a tether attached to the
2 wire, wherein the tether can be tensioned to collapse the wire prior to drawing the trocar back
3 into the sheath.

1 16. A trocar as in claim 1, wherein the blade is conformed
2 circumferentially over the surface of the elongate body, wherein the blade is attached with an
3 axially aligned hinge.

1 17. A method for accessing an internal body organ, said method
2 comprising:

3 introducing a delivery sheath to a location adjacent to a wall of the organ; and
4 advancing a trocar from a lumen in the delivery sheath, wherein the trocar
5 penetrates the wall of the organ;

6 wherein advancing the trocar releases a blade from constraint within the
7 delivery sheath lumen so that the blade opens radially as the trocar exits the lumen such that
8 the blade enlarges the penetration made by the distal tip of the trocar.

1 18. A method as in claim 17, wherein the delivery sheath is introduced
2 through a natural body orifice.

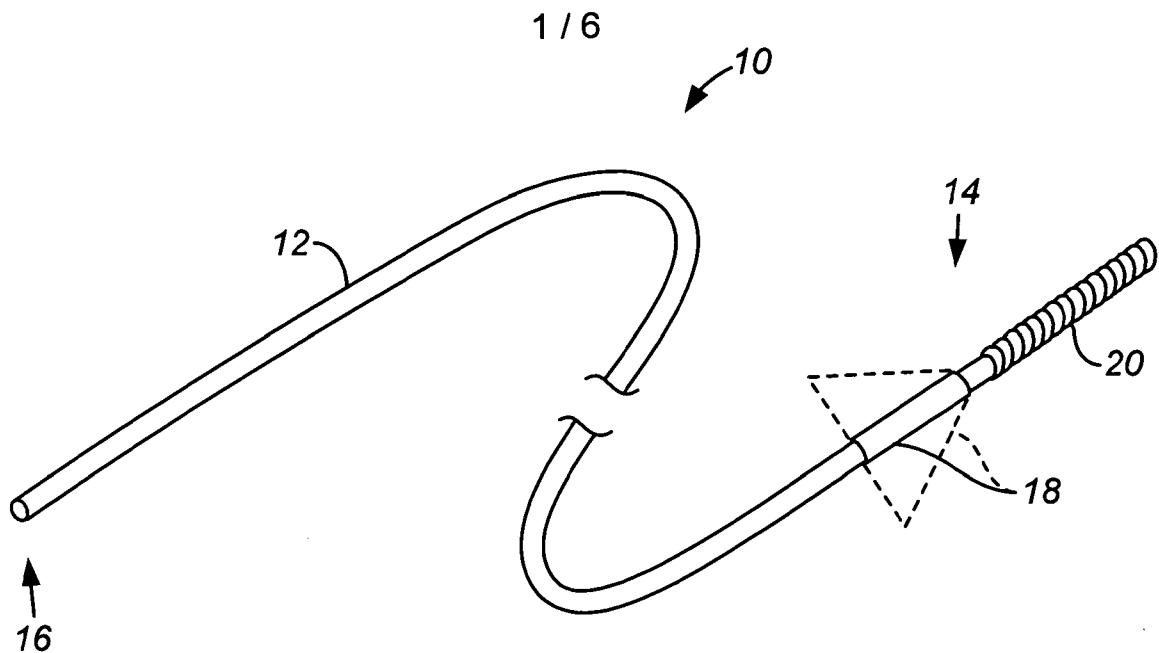
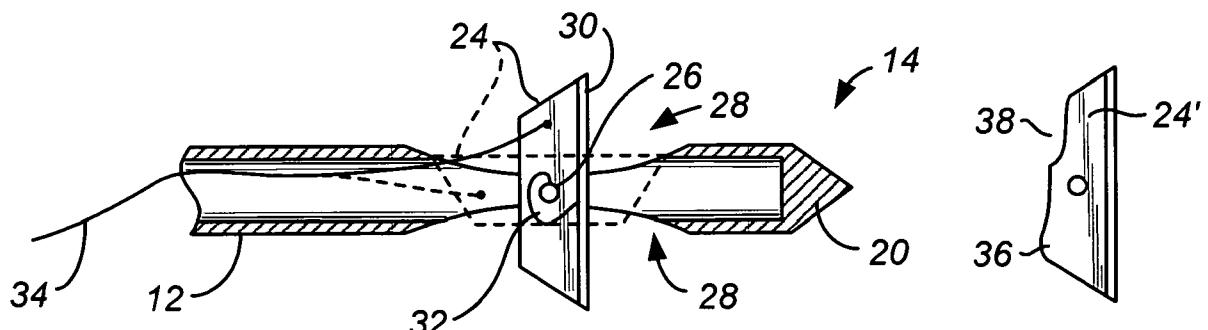
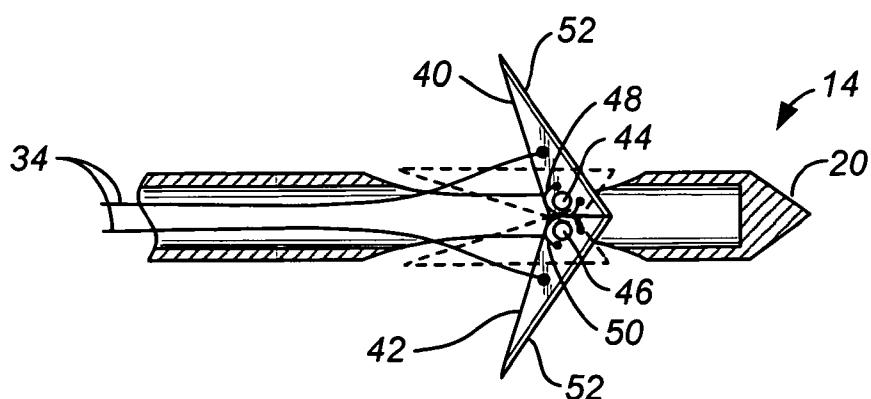
1 19. A method as in claim 18, wherein the delivery sheath is introduced
2 transorally or transnasally into the GI tract to access a cyst, pseudocyst or abscess.

1 20. A method as in claim 18, wherein the delivery sheath is introduced
2 transorally or transnasally into the GI tract to access a gall bladder or a urinary bladder.

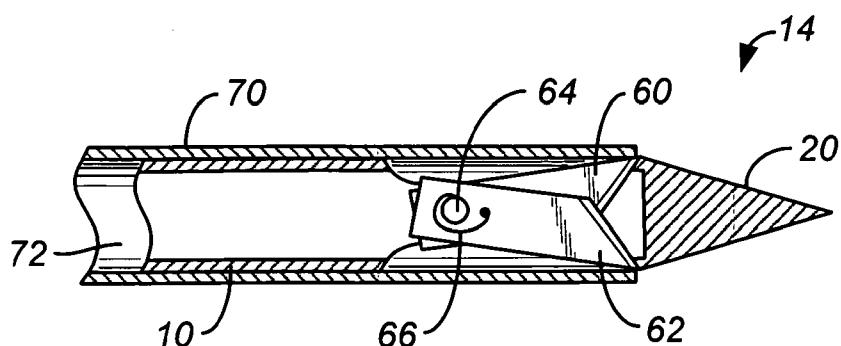
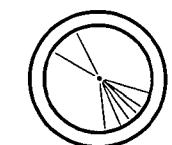
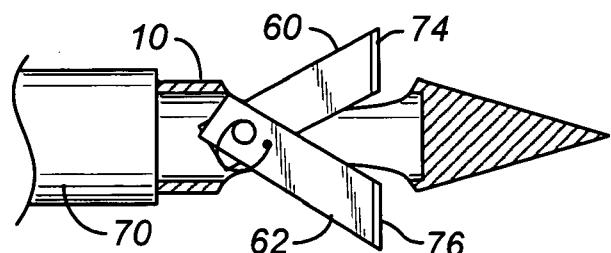
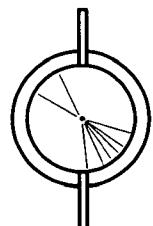
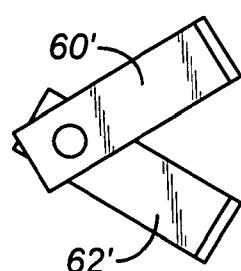
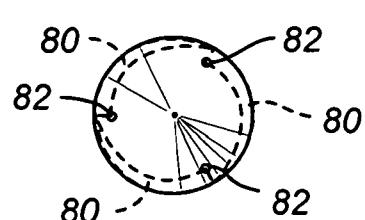
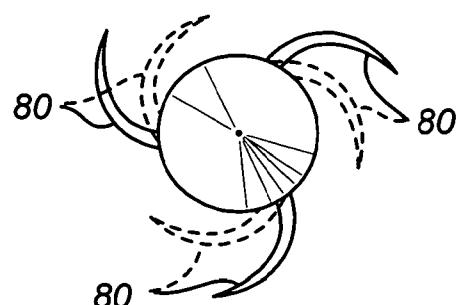
1 21. A method as in claim 17, wherein the delivery sheath comprises an .
2 endoscope and the lumen comprises a working channel of the endoscope.

1 22. A method as in claim 17, wherein the trocar has a tissue-penetrating tip
2 and forms the penetration as it is advanced through the organ wall.

1 23. A method as in claim 17, wherein the blade is biased to spring open as
2 the constraint is removed.




1 24. A method as in claim 17, wherein a single blade opens.

1 25. A method as in claim 17, wherein a pair of laterally opposed blades
2 open.








1 26. A method as in claim 18, wherein the delivery sheath is introduced
2 transorally or transanally into the GI tract to access the bile duct or pancreatic duct.

1 27. A method as in claim 18, wherein the delivery sheath is introduced
2 transorally or transanally into the GI tract to access an organ or structure in the abdominal,
3 pelvic or thoracic cavity adjacent to the GI tract.

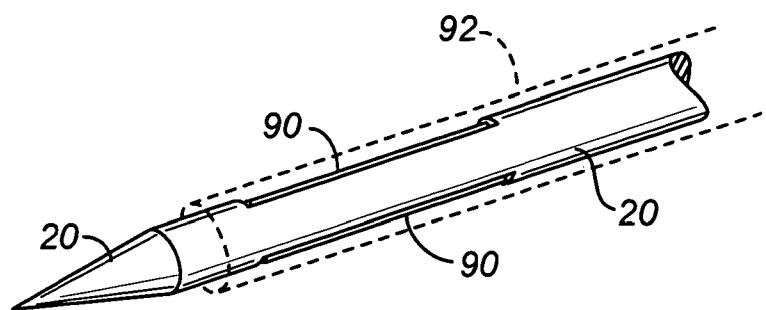
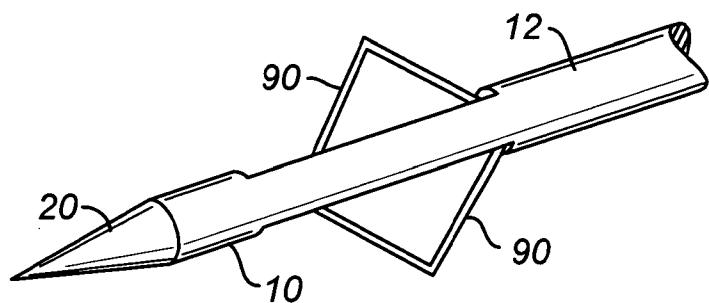
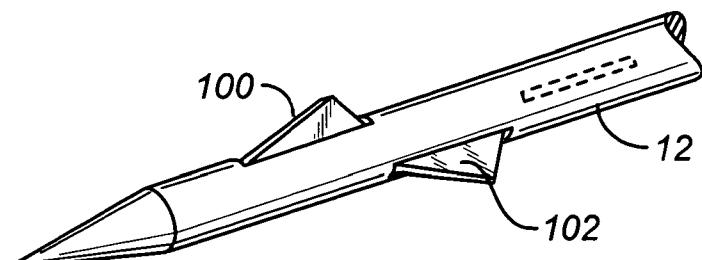
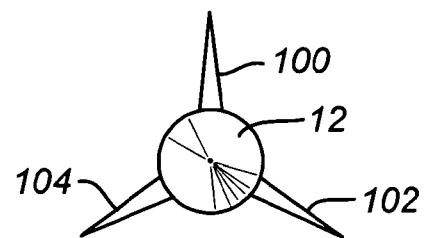




1 28. A method as in claim 17, wherein the delivery sheath comprises a
2 catheter with a length from 20 cm to 500 cm and a diameter from 1 mm to 5 mm.

FIG. 1**FIG. 2****FIG. 2A****FIG. 3**

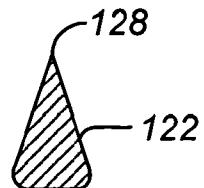
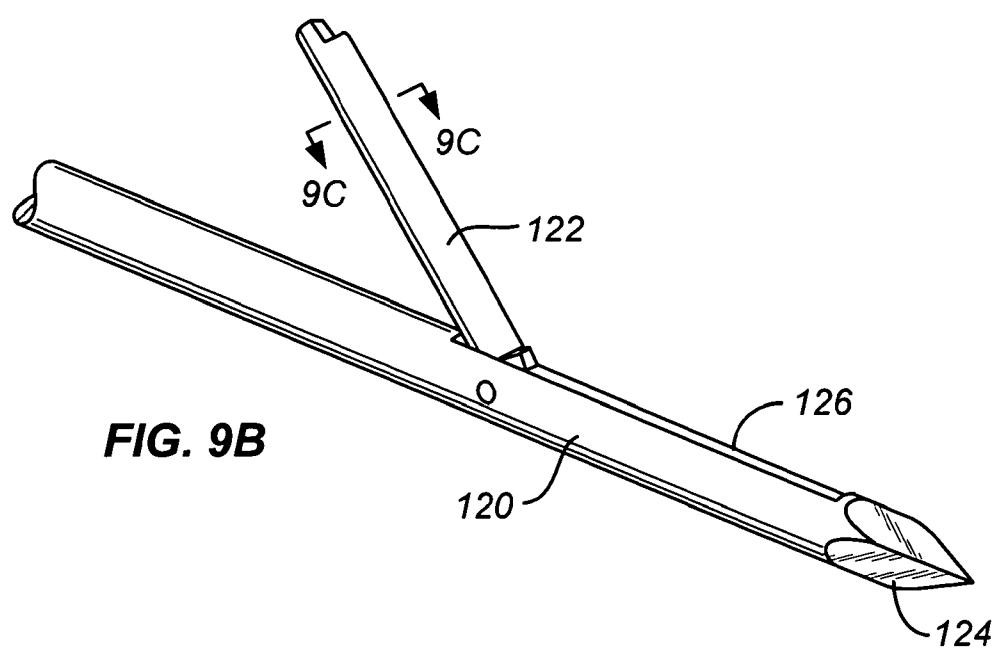
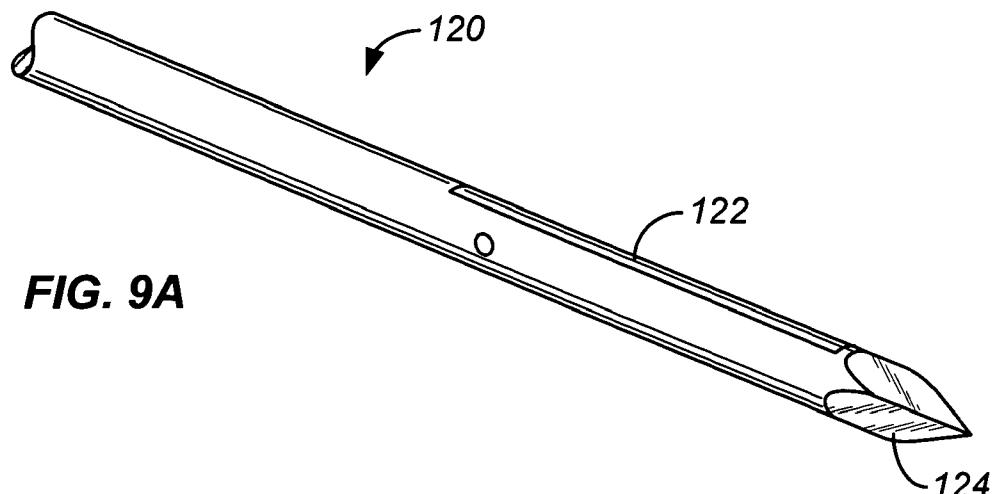



2 / 6

FIG. 4A**FIG. 4B****FIG. 5A****FIG. 5B****FIG. 5C****FIG. 6A****FIG. 6B**

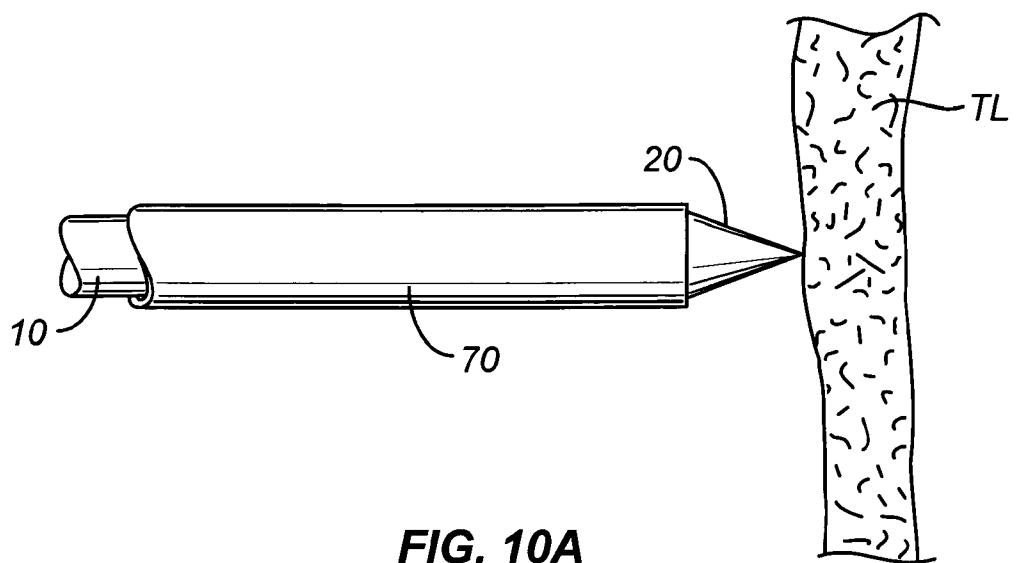
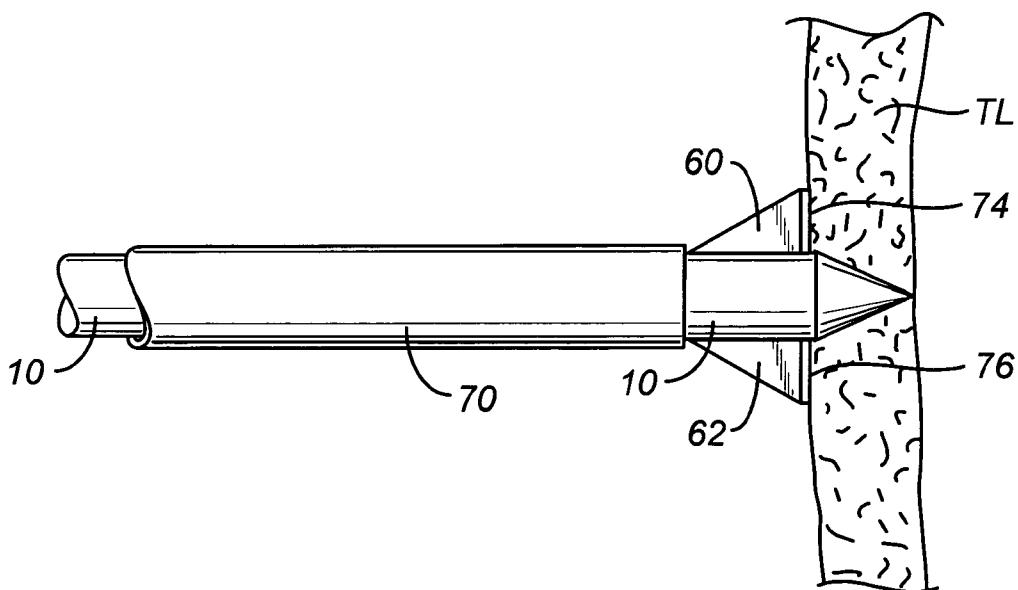

3 / 6

FIG. 7A**FIG. 7B****FIG. 8A****FIG. 8B**


4 / 6

5 / 6

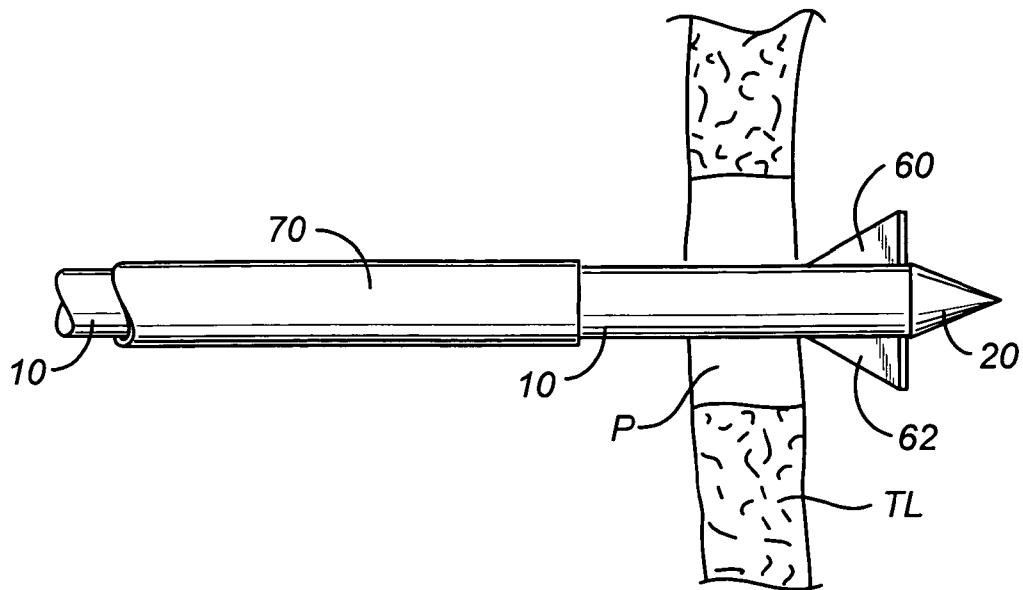
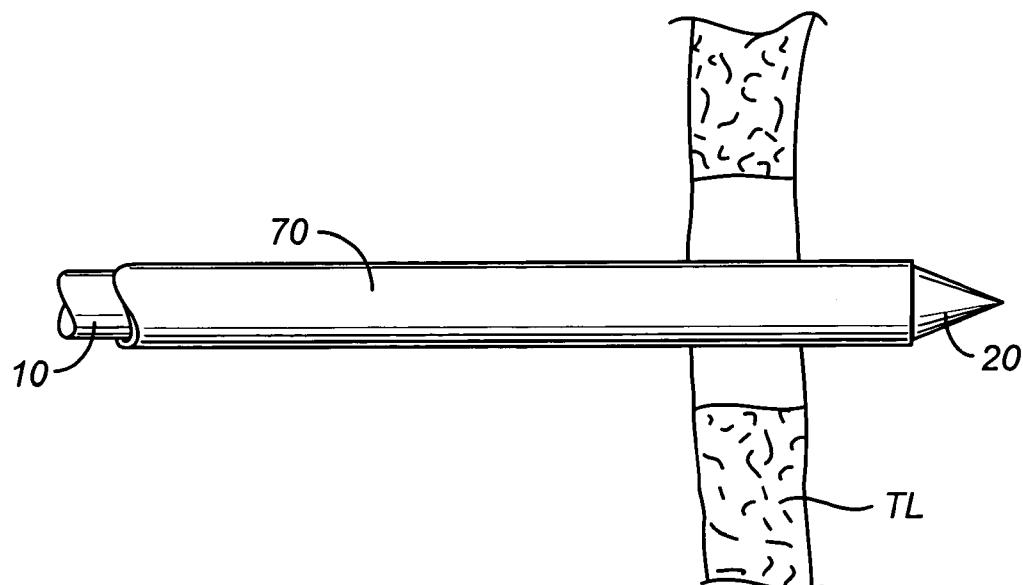



FIG. 10A

FIG. 10B

6 / 6

FIG. 10C**FIG. 10D**

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2010/031612

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61B 17/34 (2010.01)

USPC - 606/185

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - A61B 17/32, 17/34 (2010.01)

USPC - 604/164.01, 264; 606/167, 170, 185

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MicroPatent

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4,896,678 A (OGAWA) 30 January 1990 (30.01.1990) entire document	1-4, 10
Y		5-9, 11-16, 21, 23
X	US 5,797,906 A (RHUM et al) 25 August 1998 (25.08.1998) entire document	17, 22, 25, 28
Y		5-6, 18-21, 23-24, 26-27
Y	US 6,358,264 B2 (BANKO) 19 March 2002 (19.03.2002) entire document	7-9, 24
Y	US 5,372,588 A (FARLEY et al) 13 December 1994 (13.12.1994) entire document	11-13
Y	US 7,303,531 B2 (LEE et al) 04 December 2007 (04.12.2007) entire document	14-15
Y	US 5,211,651 A (REGER et al) 18 May 1993 (18.05.1993) entire document	16
Y	US 6,773,440 B2 (GANNOE et al) 10 August 2004 (10.08.2004) entire document	18-20, 26-27

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

31 May 2010

Date of mailing of the international search report

18 JUN 2010

Name and mailing address of the ISA/US:

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774