A method to form a thick layer by screen printing and a method to form a piezoelectric actuator of an inkjet head. The method to form the thick layer including forming a guide groove in a surface to a predetermined depth, and forming the thick layer by applying a material to the surface inside the guide groove through screen printing. The method to form the piezoelectric actuator including forming an insulating layer on a top surface of a vibration plate and forming a guide groove in the top surface of the vibration plate or an insulating layer to a predetermined depth at a position corresponding to each of a plurality of pressure chambers, forming a lower electrode on the top surface of the insulating layer; forming a piezoelectric layer inside the guide groove by screen printing, and forming an upper electrode on a top surface of the piezoelectric layer.
FIG. 1A (PRIOR ART)

FIG. 1B (PRIOR ART)
METHOD OF FORMING THICK LAYER BY SCREEN PRINTING AND METHOD OF FORMING PIEZOELECTRIC ACTUATOR OF INKJET HEAD

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present general inventive concept relates to a method of forming a thick layer more uniformly by screen printing, and a method of forming a piezoelectric actuator of an inkjet head using the method of forming the thick layer.

[0004] 2. Description of the Related Art

[0005] Inkjet heads are devices for printing an image on a printing medium by ejecting ink droplets onto a desired region of the printing medium. Depending on an ink ejecting method, the inkjet heads can be classified into two types: thermal inkjet heads and piezoelectric inkjet heads. A thermal inkjet head generates bubbles in an ink to be ejected by using heat and ejects the ink utilizing an expansion of the bubbles, and a piezoelectric inkjet head ejects an ink using a pressure generated by deforming a piezoelectric material.

[0006] FIG. 1A is a sectional view illustrating a conventional piezoelectric inkjet head, and FIG. 1B illustrates a sectional view taken along line A′-A′ of FIG. 1A. The conventional piezoelectric inkjet head illustrated in FIGS. 1A and 1B is formed by a conventional screen printing method.

[0007] Referring to FIGS. 1A and 1B, a manifold 11, a plurality of restrictors 12, and a plurality of pressure chambers 13 forming an ink flow channel are formed in a flow channel plate 10 of the conventional piezoelectric inkjet head. A vibration plate 20, which can be deformed by piezoelectric actuators 40, is bonded to a top surface of the flow channel plate 10, and a nozzle plate 30 in which a plurality of nozzles 31 are formed is bonded to a bottom surface of the flow channel plate 10. The vibration plate 20 can be formed integrally with the flow channel plate 10, and the nozzle plate 30 can also be formed integrally with the flow channel plate 10.

[0008] The manifold 11 is an ink passage for supplying ink from an ink reservoir (not illustrated) to the respective pressure chambers 13, and the restrictors 12 are ink passages allowing inflow of ink from the manifold 11 to the pressure chambers 13. The pressure chambers 13 are filled with and eject the supplied ink and are arranged at one side or both sides of the manifold 11. The nozzles 31 are formed through the nozzle plate 30 and are connected to the respective pressure chambers 13. The vibration plate 20 is bonded to the top surface of the flow channel plate 10 to cover the pressure chambers 13. The vibration plate 20 is deformed by the operation of the piezoelectric actuators 40. Thus, pressures in the respective pressure chambers 13 change and the ink is ejected from the pressure chambers 13 by the operation of the piezoelectric actuators 40. Each of the piezoelectric actuators 40 includes a lower electrode 41, a piezoelectric layer 42, and an upper electrode 43 that are sequentially stacked on the vibration plate 20. The lower electrode 41 is formed on the entire surface of the vibration plate 20 as a common electrode. The piezoelectric layer 42 is formed on the lower electrode 41 above each of the pressure chambers 13. The upper electrode 43 is formed on the piezoelectric layer 42 as a driving electrode for applying a voltage to the piezoelectric layer 42. In the conventional piezoelectric inkjet head, the piezoelectric actuator 40 is usually formed as follows. The lower electrode 41 is formed by sputtering a metal to a predetermined thickness on a top surface of the vibration plate 20. The piezoelectric layer 42 is formed by applying a piezoelectric ceramic material paste to a predetermined thickness on a top surface of the lower electrode 41 through screen printing, and by sintering the applied piezoelectric ceramic material paste. The upper electrode 43 is formed by applying a conductive material to a top surface of the piezoelectric layer 42 by screen printing and sintering the applied conductive material.

[0010] When forming the piezoelectric layer 42, the piezoelectric ceramic material paste is applied to the lower electrode 41 to a thickness of several tens of micrometers, and then the piezoelectric ceramic material paste is dried and sintered to obtain a thick layer for the piezoelectric layer 42. However, since the piezoelectric ceramic material paste applied to the lower electrode 41 is thick, the piezoelectric ceramic material paste spreads outward with time. This makes the piezoelectric layer 42 relatively thicker at a center portion and thinner at edge portions as illustrated in FIG. 1B, such that a thickness and a width of the piezoelectric layer 42 are not uniform. Further, an outer edge of the piezoelectric layer 42 can be curved although a straight outer edge is preferable. Accordingly, the overall shape of the piezoelectric layer 42 can be irregularly curved.

[0011] Furthermore, due to the unevenness of the piezoelectric layer 42, the thickness and the width of the upper electrode 43 formed on the piezoelectric layer 42 may not be uniform. In addition, the distance between the lower electrode 41 and the upper electrode 43 is not constant because of the uneven thickness of the piezoelectric layer 42, and thus an electric field cannot be uniformly formed between the lower electrode 41 and the upper electrode 43.

[0012] Additionally, nozzle density should be high to realize high-quality printing such as high-resolution and high-speed printing. The nozzle density is usually denoted using “cpi (channel per inch),” and the resolution of an image is usually denoted using “dpi (dot per inch).” To increase the nozzle density, the distance between adjacent pressure chambers 13 should be reduced. Accordingly, the distance between adjacent piezoelectric layers 42 should be reduced. However, as described above, since the piezoelectric layer 42 formed by a conventional method has an uneven width, the piezoelectric layer 42 may easily make contact with an adjacent piezoelectric layer 42 when they are formed closer to each other, making it difficult to increase the nozzle density much more.

[0013] As mentioned above, in the conventional method of forming a thick layer by screen printing, the thickness and width of the piezoelectric layer 42 of the piezoelectric actuator 40 cannot be uniformly formed. Further, the conventional method makes it difficult to increase the nozzle density of the inkjet head.

SUMMARY OF THE INVENTION

[0014] The present general inventive concept provides a method of forming a thick layer by screen printing and a
method of forming a piezoelectric actuator of an inkjet head using the method of forming the thick layer. The method allows a piezoelectric layer to have a uniform width and thickness, and also allows the nozzle density of the inkjet head to be increased.

[0015] Additional aspects and advantages of the present general inventive concept will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the general inventive concept.

[0016] The foregoing and/or other aspects and utilities of the present general inventive concept may be achieved by providing a method of forming a thick layer on a surface by screen printing, the method including forming a guide groove in the surface to a predetermined depth, and applying a paste material inside the guide groove formed on the surface through screen printing.

[0017] The guide groove may have the same contour as a desired contour of the thick layer.

[0018] A width of the material applied to the inside of the guide groove may be smaller than the width of the guide groove such that, the paste material is allowed to spread laterally inside the guide groove and the paste material has a width corresponding to the width of the guide groove and a uniform thickness.

[0019] The amount of the paste material applied to the inside of the guide groove may be such that a thick layer of the paste material has a uniform thickness.

[0020] A thick layer formed of the paste material may have a thickness of about several tens of micrometers.

[0021] The foregoing and/or other aspects and utilities of the present general inventive concept may also be achieved by providing a method of forming a piezoelectric actuator on a vibration plate of an inkjet head, the method including forming an insulating layer on a top surface of the vibration plate, forming a guide groove at a top surface of the vibration plate or the insulating layer to a predetermined depth at a position corresponding to a pressure chamber of the inkjet head, forming a lower electrode on the top surface of the insulating layer, applying a piezoelectric material to a top surface of the lower electrode inside the guide groove by screen printing to form a piezoelectric layer, and forming an upper electrode on a top surface of the piezoelectric layer.

[0022] The piezoelectric material may be a paste.

[0023] The guide groove may be formed at the top surface of the vibration plate, and then the insulating layer may be formed on the top surface of the vibration plate.

[0024] The insulating layer may be formed on the top surface of the vibration plate, and then the guide groove may be formed at the top surface of the insulating layer.

[0025] The insulating layer may be a silicon oxide layer.

[0026] The forming of the lower electrode may include depositing a conductive metal on the top surface of the insulating layer to a predetermined thickness.

[0027] The forming of the lower electrode may include sequentially depositing a Ti layer and a Pt layer through sputtering.

[0028] The guide groove may have the same contour as a desired contour of the piezoelectric layer.

[0029] The forming of the guide groove may include forming a guide groove having a same contour as a desired contour of the piezoelectric layer after the lower electrode is formed at the top surface of the insulating layer.

[0030] The guide groove may have a width corresponding to the width of the pressure chamber.

[0031] The applying of the piezoelectric material may include applying the piezoelectric material paste inside the guide groove in such a manner that the width of the piezoelectric material paste applied is smaller than the width of the guide groove.

[0032] The applying of the piezoelectric material paste may further include allowing the piezoelectric material paste applied inside the guide groove to spread laterally to have a width corresponding to the width of the guide groove.

[0033] The applying of the piezoelectric material paste may further include allowing the piezoelectric material paste applied inside the guide groove to spread laterally to have a uniform thickness, a uniform width, and a straightened vertical outer edge.

[0034] The forming of the upper electrode may include applying an electrode material paste to the top surface of the piezoelectric layer by screen printing.

[0035] The method may also include sintering the piezoelectric layer and the upper electrode.

[0036] The forming of the upper electrode may include depositing a conductive metal on the top surface of the piezoelectric layer to a predetermined thickness by sputtering.

[0037] The method may also include sintering the piezoelectric layer prior to the forming of the upper electrode.

[0038] The foregoing and/or other aspects and utilities of the present general inventive concept may also be achieved by providing a method of forming a piezoelectric actuator, the method including forming guide grooves at a first surface of a vibration plate, forming a lower electrode along the first surface of the vibration plate, including the guide grooves, applying a piezoelectric material to the lower electrode at the guide grooves, and forming an upper electrode over the piezoelectric material.

[0039] The piezoelectric material may be a paste.

[0040] The applying of the piezoelectric material may include spreading the piezoelectric material along an entire surface of the guide groove.

[0041] The applying of the piezoelectric material may include screen printing the piezoelectric material to form a piezoelectric layer.

[0042] The method may further include forming an insulating layer over the first surface of the vibration plate before forming the lower electrode along the first surface of the vibration plate.

[0043] The forming of the guide grooves at a first surface of the vibration plate may include forming of guide grooves at a surface of the insulating layer, and the forming of the lower electrode along the first surface of the vibration plate, including the guide grooves may include forming a lower electrode along a top surface of the insulating layer, including the guide grooves.

[0044] The foregoing and/or other aspects and utilities of the present general inventive concept may also be achieved by providing a piezoelectric inkjet head including a flow channel plate having a plurality of pressure chambers, a vibration plate bonded to a top surface of the flow channel plate to cover the pressure chambers, an insulating layer formed on a top surface of the vibration plate, a nozzle plate having a plurality of nozzles corresponding to the pressure chambers, bonded to a bottom surface of the flow channel plate, and a plurality of piezoelectric actuators bonded to a top surface of the insulating layer to provide ink-ejecting forces to the respective pres-
sure chambers by deforming the vibration plate, wherein a top surface of the insulating layer or a top surface of the vibration plate has a plurality of guide grooves of a predetermined depth and width, and the plurality of guide grooves are disposed in positions corresponding to the plurality of pressure chambers.

The top surface of the vibration plate may have the plurality of guide grooves.

The top surface of the insulating layer vibration plate may have the plurality of guide grooves.

The plurality of piezoelectric actuators may include a lower electrode formed on a top surface of the insulating layer as a common electrode, a plurality of piezoelectric layers formed inside each of the plurality of guide grooves on a top surface of the lower electrode, and a plurality of upper electrodes, each formed on a top surface of the plurality of piezoelectric layers as driving electrodes.

The piezoelectric layer may have a uniform width, a uniform thickness, and a straightened vertical outer edge.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages of the present general inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:

FIG. 1A is a sectional view illustrating a conventional piezoelectric inkjet head, and FIG. 1B illustrates a sectional view taken along line A’-A’ of FIG. 1A;

FIGS. 2A through 2E illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to an embodiment of the present general inventive concept; and

FIGS. 3A through 3D illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to another embodiment of the present general inventive concept.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept by referring to the figures.

FIGS. 2A through 2E illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to an embodiment of the present general inventive concept.

FIGS. 3A through 3D illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to another embodiment of the present general inventive concept.

FIGS. 2A through 2E illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to an embodiment of the present general inventive concept.

FIGS. 2A through 2E illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to an embodiment of the present general inventive concept.

REMARKS

The present general inventive concept is not limited thereto, and other forms of piezoelectric material may be used which result in the intended general inventive concept. The piezoelectric material paste may be applied in such a manner that a width of the piezoelectric layers 142 is slightly smaller than that of the guide grooves 125. Since the applied piezoelectric material paste may laterally spread with time, the piezoelectric layers 142 are leveled and widened into a more uniform shape as illustrated in FIG. 2D. The width of the piezoelectric layers 142 is restricted by the width of the grooves 125, such that the width of the piezoelectric layers 142 can be uniform. Further, a thickness of the piezoelectric layers 142 can be relatively uniform.
uniform when compared with the related art. The piezoelectric layers 142 may be dried naturally or dried forcibly by using a hot plate heated up to about 100°C. Other suitable drying methods can be selected depending on characteristics of the piezoelectric material paste applied, such as a viscosity of the piezoelectric material paste.

[0061] Referring to FIG. 2E, upper electrodes 143 are formed on the respective piezoelectric layers 142 as driving electrodes. The upper electrodes 143 may be formed by applying an electrode material, paste, such as an Ag—Pd paste, to top surfaces of the piezoelectric layers 142 by screen printing and drying the applied electrode material paste. Then, the piezoelectric layers 142 and the upper electrodes 143 may be sintered at a temperature of about 900°C—1200°C. After that, the piezoelectric layers 142 may shrink to a thickness of about 10 μm to about 30 μm.

[0062] As illustrated in FIG. 2E, after the above-described operations the piezoelectric actuators 140 can have a sequentially stacked structure formed by the lower electrode 141, the piezoelectric layers 142, and the upper electrodes 143. The piezoelectric layers 142 of the piezoelectric actuators 140 can have a relatively uniform width and thickness, and outer vertical edges of the piezoelectric actuators can be straightened owing to the guide grooves 125.

[0063] While the upper electrodes 143 can be formed by screen printing as described above, the present general inventive concept is not limited thereto and the upper electrodes 143 can also be formed by sputtering. For example, the piezoelectric layers 142 may be sintered before the upper electrode layers 143 are formed. Then, an electrode material, such as a conductive metal like Au or Pt, is deposited on the piezoelectric layers 142 to a predetermined thickness by sputtering, thereby forming the upper electrodes 143 as illustrated in FIG. 2E.

[0064] FIGS. 3A through 3C illustrate a method of forming a piezoelectric actuator of an inkjet head using a method of forming a thick layer by screen printing according to another embodiment of the present general inventive concept. The method illustrated in FIGS. 3A through 3C is similar to the method illustrated in FIGS. 2A through 2E, except that guide grooves are formed in a top surface of a vibration plate. Thus, the current embodiment will now be described briefly referencing similar processes illustrated in FIGS. 2A through 2E.

[0065] Referring to FIG. 3A, a plurality of guide grooves 126 are formed in a top surface of the vibration plate 120 to a predetermined depth. The guide grooves 126 may be formed by partially removing the top surface of the vibration plate 120 through a removal method, such as etching, using a patterned photosist as an etch mask. Since the vibration plate 120 may have a thickness of about 10 μm to about 20 μm, depending on the size of pressure chambers 113, the vibration plate 120 is not affected by the guide grooves 126 when a depth thereof is about 0.5 μm about 1 μm. The guide grooves 126 are formed in the vibration plate 120 at locations corresponding to the respective pressure chambers 113. The guide grooves 126 may be formed to have the same contour as a desired contour of the piezoelectric layers 142 (refer to FIG. 3C) of the piezoelectric actuators 140 or may be formed to have the same contour as a desired contour of the piezoelectric layer 142 taking into consideration the formation of an insulating layer 121 and a lower electrode 141, as described below. The width of the guide grooves 126 may be substantially the same as that of the pressure chambers 113.

[0066] Referring to FIG. 3B, an insulating layer 121 and a lower electrode 141 are sequentially formed on the entire top surface of the vibration plate 120. The insulating layer 121 and the lower electrode 141 are formed in the same way as for the embodiment illustrated in FIGS. 2A through 2E.

[0067] Referring to FIG. 3C, piezoelectric layers 142 are formed on the lower electrode 141 inside the guide grooves 126 by screen printing, and upper electrodes 143 are formed on the piezoelectric layers 142 by screen printing or sputtering. The piezoelectric layers 142 and the upper electrodes 143 are formed in the same way as in the embodiment illustrated in FIGS. 2A through 2E.

[0068] As illustrated in FIG. 3C, after the above-described operations, the complete piezoelectric actuators 140 can have a sequentially stacked structure formed by the lower electrode 141, the piezoelectric layers 142, and the upper electrodes 143.

[0069] According to the present general inventive concept, a piezoelectric layer of a piezoelectric actuator can be uniformly formed and a more uniform electric field can be formed between the lower electrode and the upper electrode since the distance between the lower electrode and the upper electrode is more uniform. Further, the width of the piezoelectric layer can be uniformly controlled, so that the nozzle density of the inkjet head can be easily increased.

[0070] Although a few embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.

What is claimed is:
1. A method of forming a thick layer on a surface by screen printing, the method comprising:
 a. forming a guide groove in the surface to a predetermined depth; and
 b. applying a paste material inside the guide groove formed on the surface through screen printing.
2. The method of claim 1, wherein the guide groove has the same contour as a desired contour of the thick layer.
3. The method of claim 1, wherein a width of the paste material applied to the inside of the guide groove is smaller than a width of the guide groove such that, the paste material is allowed to spread laterally inside the guide groove and the paste material has a width corresponding to the width of the guide groove and a uniform thickness.
4. The method of claim 1, wherein an amount of the paste material applied to the inside of the guide groove is such that a thick layer of the paste material has a uniform thickness.
5. The method of claim 1, wherein a thick layer formed of the paste material has a thickness of about several tens of micrometers.

* * * * *