

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

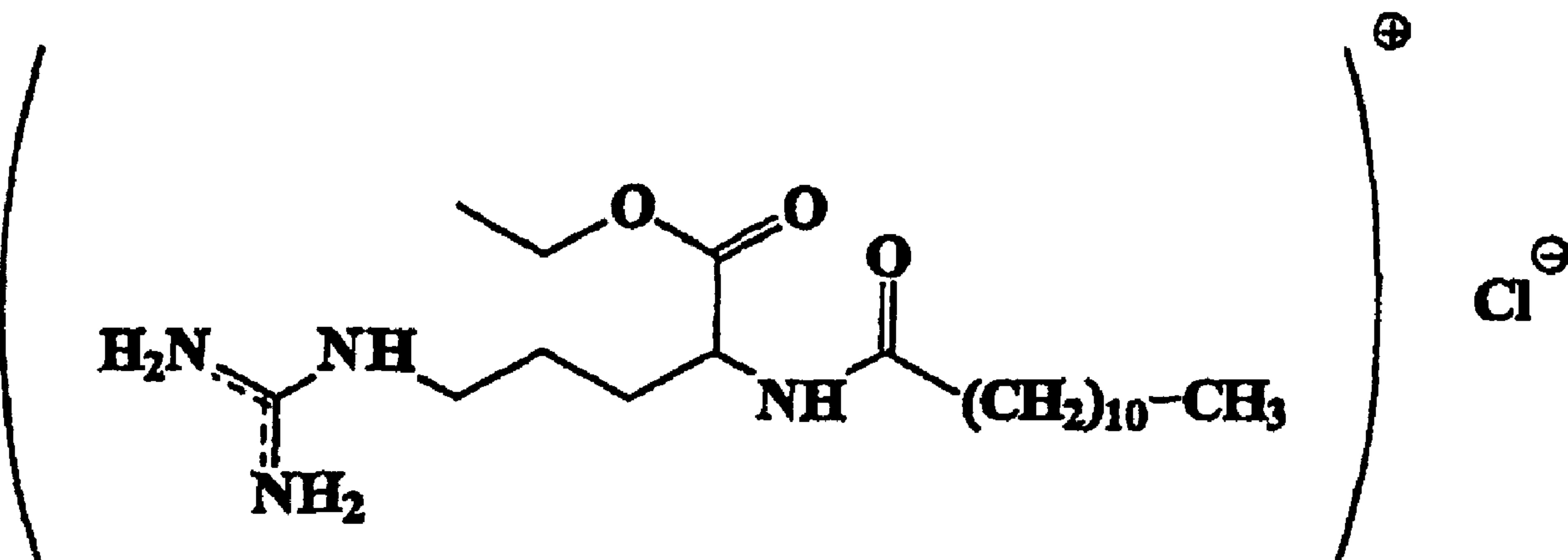
CA 2467244 C 2011/01/04

(11)(21) **2 467 244**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2001/11/15
(87) Date publication PCT/PCT Publication Date: 2003/05/30
(45) Date de délivrance/Issue Date: 2011/01/04
(85) Entrée phase nationale/National Entry: 2004/05/14
(86) N° demande PCT/PCT Application No.: EP 2001/013221
(87) N° publication PCT/PCT Publication No.: 2003/043593


(51) Cl.Int./Int.Cl. *A61K 31/198* (2006.01),
A61K 31/20 (2006.01), *A61K 31/4172* (2006.01)

(72) Inventeurs/Inventors:
URGELL BELTRAN, JOAN BAPTISTA, ES;
SEGUER BONAVENTURA, JOAN, ES

(73) Propriétaire/Owner:
LABORATORIOS MIRET S.A., ES

(74) Agent: SHAPIRO COHEN

(54) Titre : UTILISATION D'UN TENSIOACTIF CATIONIQUE EN TANT QU'AMPLIFICATEUR DE L'ACTIVITE
ANTIMICROBIENNE DANS DES DEODORANTS ET PREPARATIONS D'HYGIENE BUCCO-DENTAIRE
(54) Title: USE OF CATIONIC SURFACTANT AS ANTIMICROBIAL ACTIVITY ENHANCER IN DEODORANTS AND
ORAL CARE

(57) Abrégé/Abstract:

Antimicrobial system which comprises a cationic surfactant, derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula (I), where: X is Br, Cl, or HSO_4^- ; R_1 is linear alkyl chain from an saturated fatty acid, or hydroxyacid from 8 to 14 atoms of carbon bonded to the α -amino acid group through amidic bond. R_2 is a linear or branched alkyl chain from 1 to 18 carbon atoms or aromatic. R_3 is Formula (II), where n can be from 0 to 4, and at least one antimicrobial agent characterised for its enhanced activity.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
30 May 2003 (30.05.2003)

PCT

(10) International Publication Number
WO 03/043593 A1(51) International Patent Classification⁷: A61K 7/22, 7/32, 7/48, 7/16, 7/50(74) Agent: GILLE HRABAL STRUCK NEIDLEIN PROP
ROOS; Brucknerstrasse 20, 40593 Duesseldorf (DE).

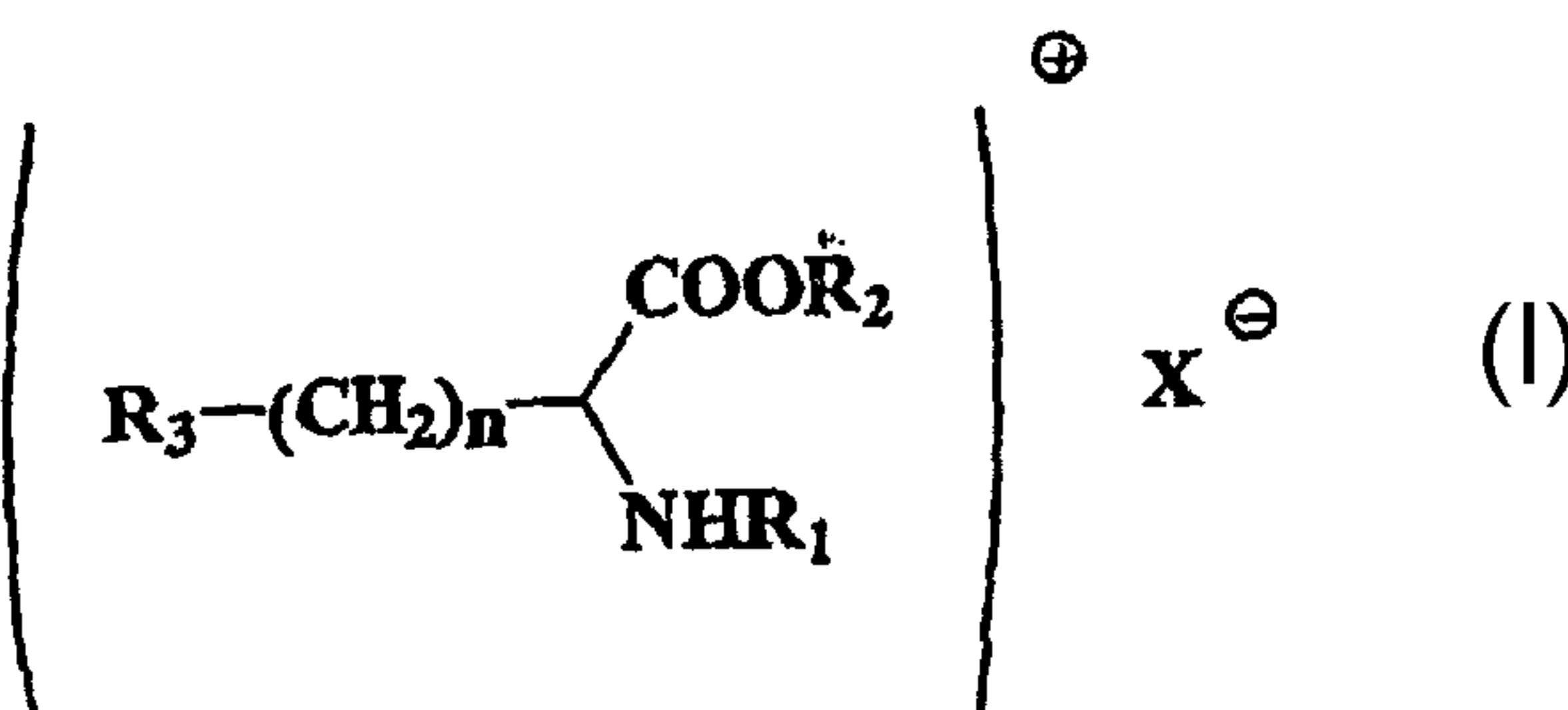
(21) International Application Number: PCT/EP01/13221

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

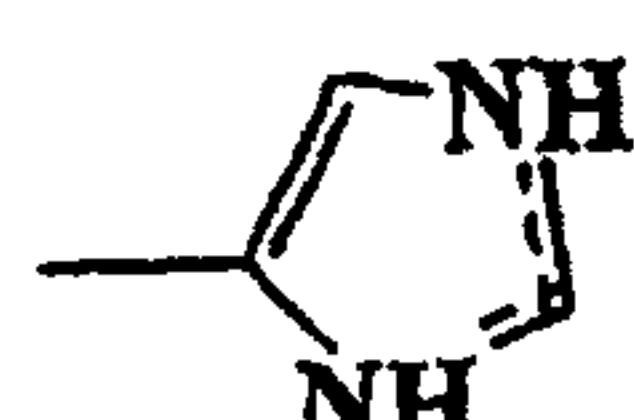
(22) International Filing Date: 15 November 2001 (15.11.2001)

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

(25) Filing Language: English


(26) Publication Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).(71) Applicant (for all designated States except US):
LAMIRSA S.A. [ES/ES]; Pol. Industrial Can Parellada,
c/ Geminis, nº 4, 08228 Les Fonts de Terrassa/Barcelona
(ES).



Published:

— with international search report

[Continued on next page]

(54) Title: USE OF CATIONIC SURFACTANT AS ANTIMICROBIAL ACTIVITY ENHANCER IN DEODORANTS AND
ORAL CARE

(57) Abstract: Antimicrobial system which comprises a cationic surfactant, derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula (I), where: X is Br, Cl, or HSO₄; R₁ is linear alkyl chain from an saturated fatty acid, or hydroxy-acid from 8 to 14 atoms of carbon bonded to the α -amino acid group through amidic bond. R₂ is a linear or branched alkyl chain from 1 to 18 carbon atoms or aromatic. R₃ is Formula (II), where n can be from 0 to 4, and at least one antimicrobial agent characterised for its enhanced activity.

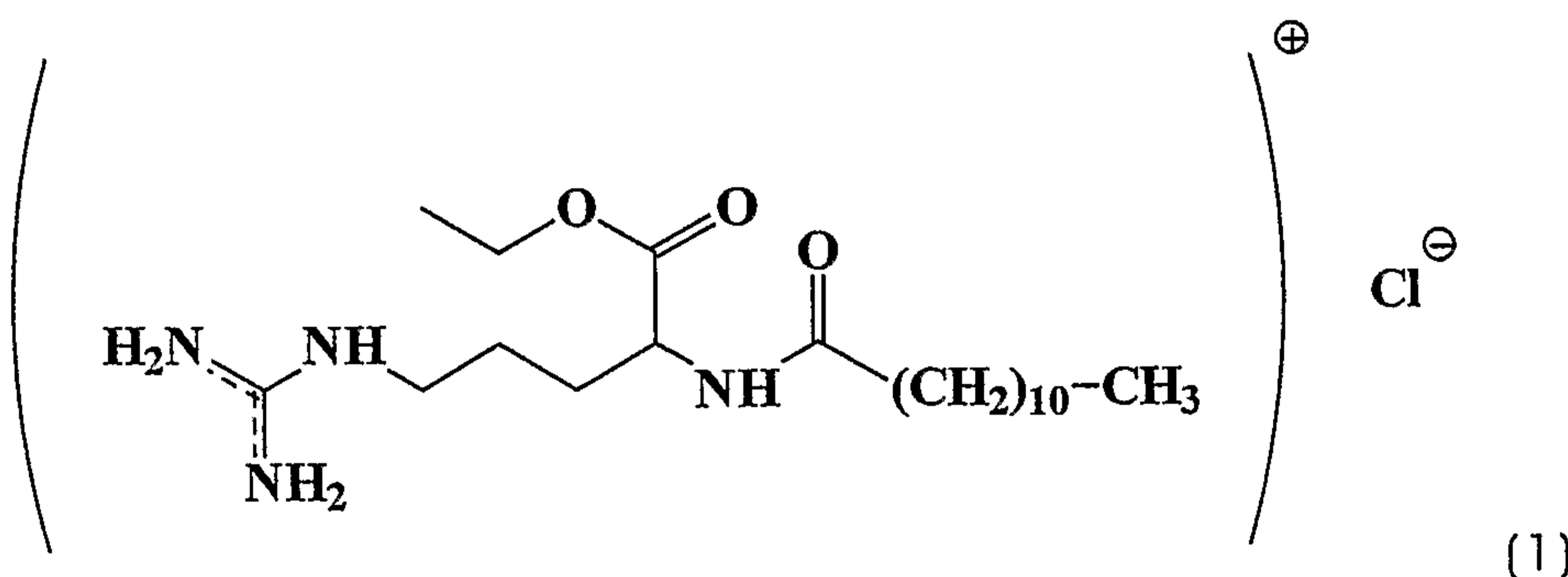
WO 03/043593 A1

WO 03/043593 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

USE OF CATIONIC SURFACTANT AS ANTIMICROBIAL ACTIVITY ENHANCER IN DEODORANTS AND ORAL CARE

5


DESCRIPTION

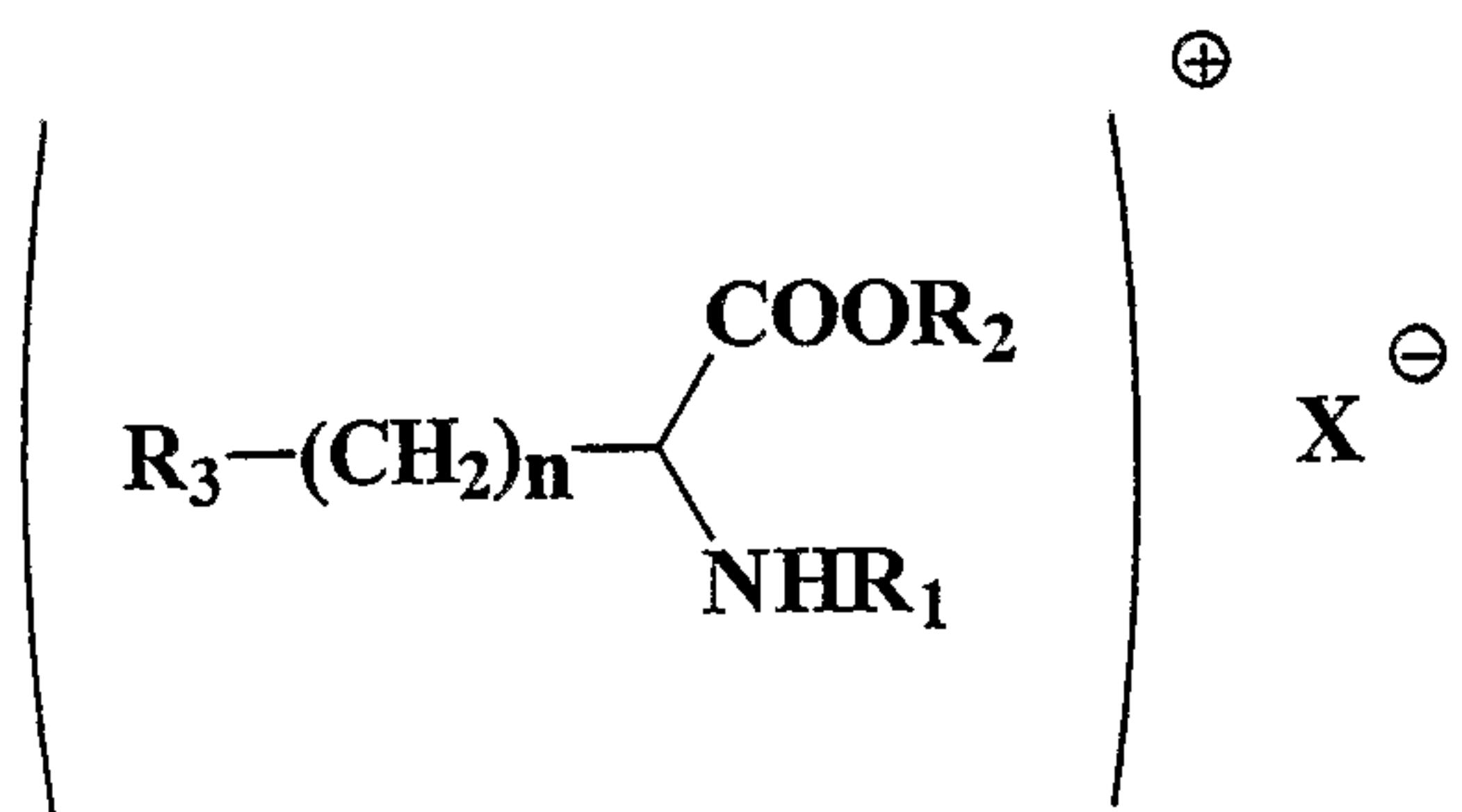
This invention relates to a novel use of cationic surfactants as activity enhancers of the traditional antimicrobials and preparations according to this novel use in deodorants and oral care.

10

Many antimicrobials are known to be effective against specific and general bacteria which are present in the oral cavity and such bacteria which are responsible for the body odour. But, most of them display incompatibilities with the human skin and the mouth cavity mucous membranes, such as irritations and allergies and are toxic to human beings as well.

On the other hand, it has been demonstrated that cationic surfactants derived from lauric acid and arginine are biologically active substances, in particular, the ethyl ester of the lauramide of the arginine monohydrochloride, hereafter referred to as LAE. LAE has the chemical structure of formula (1).

The preparation of this product has been described in a number of
25 different patents.

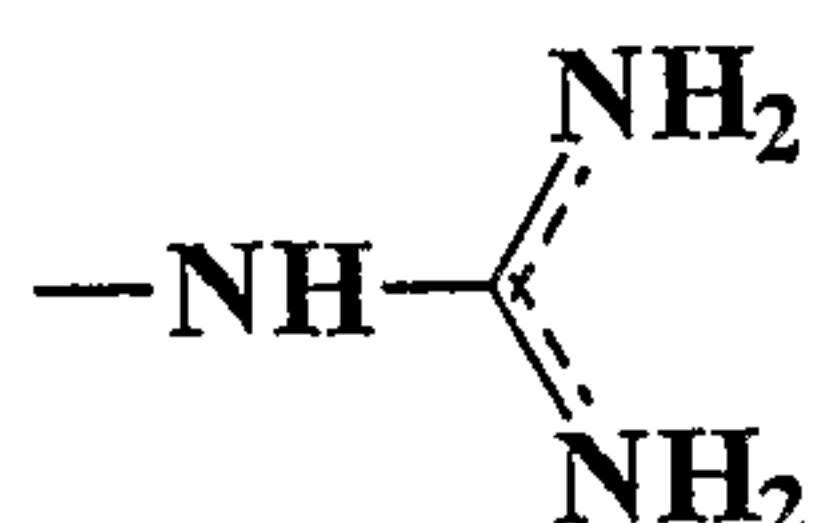

Biological studies carried out at different research centres under supervision of the applicant of the present invention showed LAE acts mainly over the external and cytoplasmatic membrane of the microorganisms and, also, into the cytoplasmatic media, preventing their proliferation. Its action 5 depends on the kind of microorganism and on the exposure time.

Besides, its metabolism in rats has been studied showing a fast absorption and metabolism into naturally-occurring amino acids and the fatty acid lauric acid, which are eventually excreted as carbon dioxide and urea. Toxicological studies have demonstrated LAE is completely harmless to 10 animals and humans.

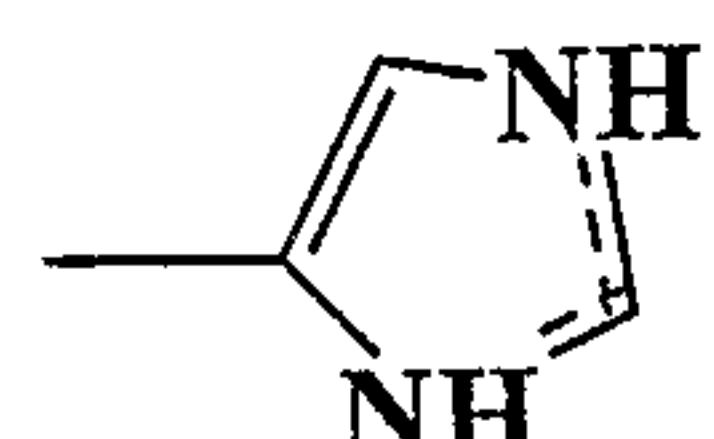
We have found that combinations of LAE with traditional antimicrobials have a better activity than LAE or these antimicrobials by themselves in the tested applications. This activity enhancement of LAE may be explained by its action over the cytoplasmatic membrane of the microorganisms.

15 So, it was the object of the present invention to provide further antimicrobial systems for cosmetic preparations for skin and oral care with in particular the goal of providing systems which comprise smaller amounts of the traditional antimicrobials in view of the risk of lack of tolerance.

20 The use of the invention relates to cationic surfactants derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula:


where:

25 X^- is Br^- , Cl^- , or HSO_4^-


R_1 : is a linear alkyl chain from a saturated fatty acid or hydroxyacid from 8 to 14 atoms of carbon bonded to the α - amino acid group through an amidic bond.

R₂: is a linear or branched alkyl chain from 1 to 18 carbon atoms or an aromatic group.

R₃: is:

5

and n can be from 0 to 4.

The most preferred compound of the above class of compounds is LAE.

10 This antimicrobial system is characterised for its enhanced activity. It has now been found that the antimicrobial activity of the combinations of LAE and the other compounds defined by the above formula (1) with most of the common antimicrobials used in formulations and preparations for skin and oral care is higher than the activity displayed by each of the 15 components when used alone at the same dosage. There has been observed activity enhancement when the amounts of the compounds of formula (1) and the antimicrobial are reduced.

Thus, the adverse toxic effects and/or irritation and/or allergy displayed by the antimicrobial systems have also been reduced.

20 LAE can be used in association with common antimicrobials, such as 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan), 3,4,4-trichlorocarbanilid (triclocarban), 2-phenoxyethanol, chlorhexidine salts, hexetidine and cetylpyridinium salts, for cosmetic formulations and preparations directed to avoid body odour and to provide oral care, which are applied to the 25 epidermis or on the teeth and in the mouth cavity mucous membranes, in order to clean, perfume and/or change body odour and/or protect a good physical state.

The antimicrobial system of the invention comprises the cationic surfactant of formula (1) in an amount from 0,001 to 1% by weight and the concentration of the traditional antimicrobial agent from 0,0001% to 2% by weight relative to whole weight.

5 The antimicrobial system of the invention comprises more in particular a preferred amount of the traditional antimicrobial agent in deodorant applications, from 0,001 to 0,5% by weight of 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) and/or from 0,001 to 1,5% by weight of 3,4,4-trichlorocarbanilid (triclocarban) and/or from 0,001 to 1% by weight of 2-10 phenoxyethanol and/or 0,001 to 1% by weight of chlorhexidine salts.

And the amount of the traditional antimicrobial agent in oral care applications is from 0,001 to 0,3% by weight of 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) and/or from 0,001 to 0,15% by weight of chlorhexidine gluconate and/or from 0,001 to 0,1% by weight of hexetidine 15 and/or from 0,001 to 0,05% by weight of cetylpyridinium salts.

The composition of this invention comprises a medium which is compatible with the skin, the mucous membranes, and hair. These compositions may contain the usual components such as: fatty compounds such as mineral oil, animal oil, vegetal oil, from synthesis and silicon, and 20 also alcohols, fatty acids and waxes; organic solvents, surface active agents, solubilizers and ionic and non ionic emulsifiers, thickening agents and jellying hydrophilic agents such as carboxyvinylic polymers (e.g. carbomer), acrylic copolymers (e.g. acrylates and alkylacrylates), polyacrylamides, polysaccharides, natural gums (e.g. xanthan gum); 25 thickening agents and jellying lipophilic agents such as modified clays (ex. bentonite), fatty acid metallic salts, hydrophobic silica and polyethylene; perfumes and essential oils; astringents; antiperspirants; fluorides; humectants; sweeteners; softeners; excipients; antioxidants; sequestrant agents; opacifiers; filters; colouring compounds which are either hydrophilic 30 or lipophilic, and pigments; and hydrophilic or lipophilic active ingredients. These compositions can also contain further antimicrobial agents which are different from the ones defined in the claims.

The amounts of these usual components mentioned in the previous paragraph are the normal ones as used in the art. These components are added to the antimicrobial systems of the invention without having any influence on their composition.

5

According to the invention the compositions can be in different cosmetic forms suitable for a topical application, such as:

a) Monophasic systems:

- 10 • water or hydro-glycolic solution that contains one or more surfactants to be used for the cleaning of the skin and mucous membranes;
- water, hydro-alcoholic, hydro-glycolic or oily solution that can contain other additives to be used in the general care and/or protection for skin and/or mucous membranes;
- 15 • water, hydro-alcoholic, hydro-glycolic or oily gel that can contain other additives to be used in general care and/or protection for skin and/or mucous membranes;
- solid anhydride products that can contain other additives to be used in the general care and/or protection for skin and/or mucous membranes;

20

b) Biphasic systems:

- water, hydro-alcoholic, hydro-glycolic or oily gel that can contain other additives to be used in general care and/or protection for skin and/or mucous membranes;
- 25 • solid anhydride products that can contain other additives to be used in the general care and/or protection for skin and/or mucous membranes;
- emulsions formed by dispersion of a oil phase in a water phase (O/W) or an inverse phase (W/O), to be used in general care and/or protection of the face skin and/or mucous membranes;

30

c) and combinations of the other systems that form multiphasic systems, suspensions and micro-emulsions.

The compositions previously mentioned can also be used as a spray, or as aerosol compositions and can contain a propulsion agent under pressure.

5

Thus, the compositions of the invention can have the aspect of a cream, a lotion, a milk, an emulsion, a gel or an oil for the skin, a salt, a gel, a foam/spray or an oil for a bath and shower and anyway aspect to be shown.

10

The compositions according to the invention have been prepared according to usual techniques well known for an expert in the matter.

Procedure to evaluate the efficacy of the antimicrobial system

15

The antimicrobial systems have been evaluated by the inhibition zone method (adapted from Association of Official Analytical Chemists, *J.Assoc.Off.Anal.Chem.*, 62, 466-467 (1982)), using specific test micro-organisms. These micro-organisms were:

- for oral care products evaluation:

20

<i>Streptococcus mutans</i>	ATCC	25175
<i>Lactobacillus acidophilus</i>	ATCC	4355
<i>Staphylococcus aureus</i>	ATCC	6538
<i>Candida albicans</i>	ATCC	10231

- for deodorant products evaluation:

25

<i>Propionibacterium acnes</i>	ATCC	33179
<i>Corynebacterium</i> sp.	ATCC	6931
<i>Trichophyton Mentagrophytes</i>	ATCC	9533
<i>Staphylococcus epidermidis</i>	ATCC	12600

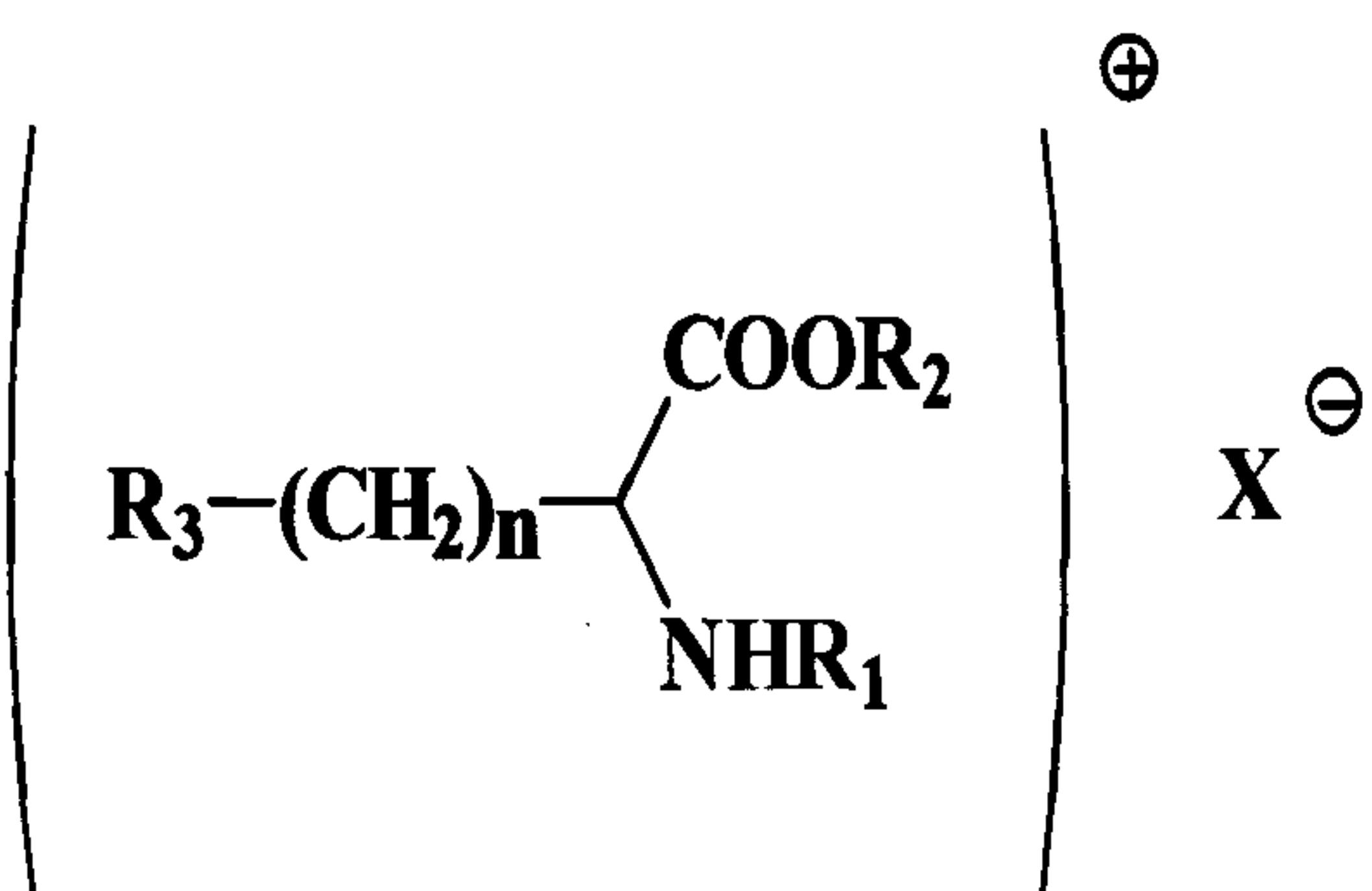
30

The method consists of measuring the inhibition zone created by the antimicrobial system of each cosmetic composition, placed in a media hole, for every test micro-organism.

Each test micro-organism was inoculated into the appropriate culture media with a target concentration of 10^6 cfu/mL, approximately, and 20 mL of inoculated media were pipetted into petri dishes and let to harden. It is also possible to seed the microorganism on the surface of the sterile media 5 if that is suitable.

A hole of 15 mm diameter was made in the media and 0,5 mL of the cosmetic composition was deposited into the hole. It is allowed to diffuse for an hour and is then incubated.

The temperature was kept at the optimum value for each micro-10 organism and dishes were protected against light.

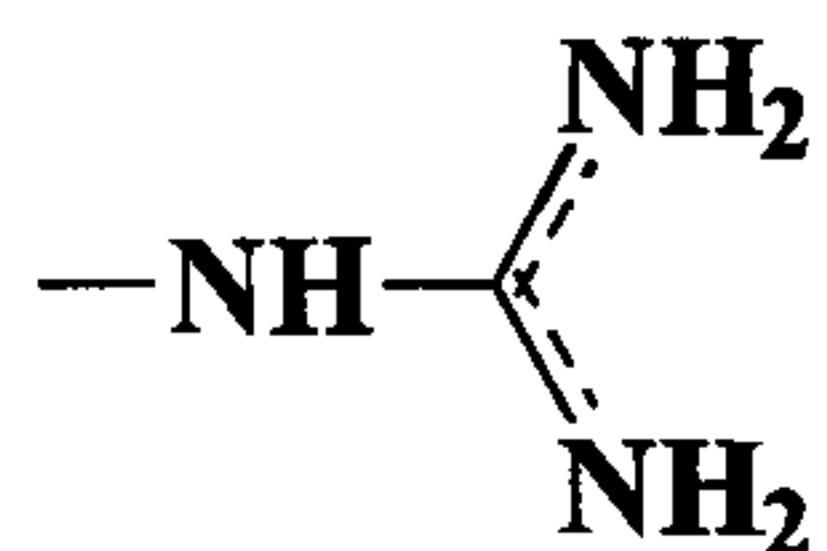

Each test was carried out in triplicate.

The radius of the inhibition zone was measured at 24 hours for bacteria and 4 days for yeasts after the cosmetic composition was placed.

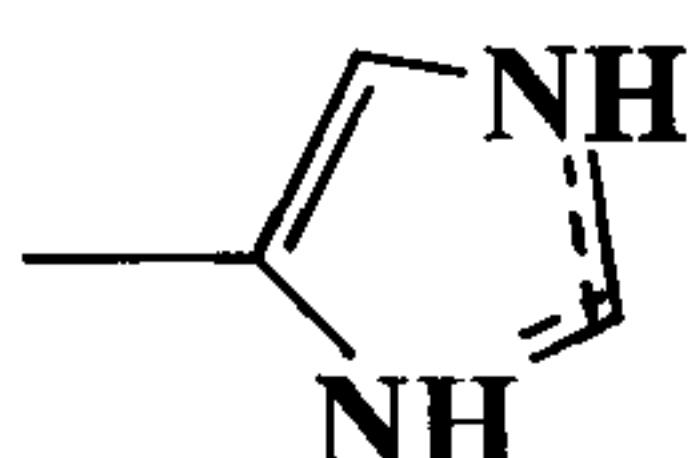
STATEMENT OF INVENTION

According to one aspect of the invention it is disclosed an antimicrobial preparation which comprises:

(a) a cationic surfactant, derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula:


where:

X^- is Br^- , Cl^- , HSO_4^- ,


R_1 : is a linear alkyl chain acyl group from a saturated fatty acid or hydroxyacid from 8 to 14 atoms of carbon bonded to the α -amino acid group through an amidic bond;

R_2 : is a linear or branched alkyl chain from 1 to 18 carbon atoms or an aromatic group;

R_3 : is

or

where n can be from 0 to 4, and

(b) at least one antimicrobial agent;

wherein said antimicrobial preparation is characterized for its enhanced antimicrobial activity.

According to other aspects of the invention, it is disclosed use of at least one of a cosmetic and dermatological composition containing the antimicrobial preparation for preventing body odor, providing oral care, preventing proliferation of micro-organisms to avoid body odor, or proliferation of micro-organisms to provide oral care.

EXAMPLES

Different examples of cosmetic preparation formulations according to the invention have been assayed. The displayed examples are only a selection, and do not represent a restriction to the use of the antimicrobial system in other cases.

The concentrations of the antimicrobial agents used in the following examples are shown in Table 1:

Table 1

Antimicrobial system	Composition
1	LAE at 0,3%
2	2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) at 0,2%
3	3,4,4-trichlorocarbanilid (triclocarban) at 0,75%
4	2-phenoxyethanol at 0,3%
5	chlorhexidine digluconate at 0,2%
6	hexetidine at 0,1%
7	cetylpyridinium chloride at 0,04%
8	LAE at 0,05% with 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) at 0,1%
9	LAE at 0,05% with 3,4,4-trichlorocarbanilid (triclocarban) at 0,35%
10	LAE at 0,1% with 2-phenoxyethanol at 0,15%
11	LAE at 0,05% with chlorhexidine digluconate at 0,1%
12	LAE at 0,15% with hexetidine at 0,05%
13	LAE at 0,15% with cetylpyridinium chloride at 0,02%

The activity of each antimicrobial system is related to the activity of antimicrobial system 1 through their inhibition radius. The resulting value is used to compare the activity of the traditional antimicrobial agent with and without LAE. So, a bigger value of this parameter represents a larger antimicrobial activity related to the 0,3% at LAE system.

EXAMPLE OF MOUTH RINSE

15 ▪ Example 1:

The composition of a direct use mouth rinse, made to test the effectiveness of the antimicrobial systems, is (in g):

5 - Ethanol.....9,00
 - Glycerol10,00
 - PEG 40 Hydrogenated castor oil2,00
 - Sodium saccharinate.....0,15
 - Aqua.....100 c.s.p.

10 This formulation is completed with a suitable amount of the antimicrobial system of the invention and its antimicrobial activity is evaluated against formulations with traditional antimicrobial agents used alone.

The results are shown in the table 2.

Table 2

<i>Streptococcus mutans</i>		<i>Lactobacillus acidophilus</i>	
Ant. sys. without LAE	Ant. sys. with LAE	Ant. sys. without LAE	Ant. sys. with LAE
Ant. sys. vs. Numbe r ⇒ ant. sys. 1	Zone vs. ant. sys. 1	Ant. sys. vs. Numbe r ⇒ system 1	Zone vs. ant. sys. 1
2 ⇒ 20	22 ≤ 8	16 ≤ 8	16 ≤ 8
5 ⇒ 15	15 ≤ 11	12 ≤ 11	12 ≤ 11
6 ⇒ 10	12 ≤ 12	9 ≤ 12	9 ≤ 12
7 ⇒ 22	21 ≤ 13	12 ≤ 13	12 ≤ 13

15

<i>Staphylococcus aureus</i>		<i>Candida albicans</i>	
Ant. sys. without LAE	Ant. sys. with LAE	Ant. sys. without LAE	Ant. sys. with LAE
Ant. sys. vs. Numbe r ⇒ ant. sys. 1	Zone vs. ant. sys. 1	Ant. sys. vs. Numbe r ⇒ system 1	Zone vs. ant. sys. 1
2 ⇒ 18	19 ≤ 8	10 ≤ 8	10 ≤ 8
5 ⇒ 12	13 ≤ 11	6 ≤ 11	6 ≤ 11
6 ⇒ 9	9 ≤ 12	8 ≤ 12	8 ≤ 12
7 ⇒ 15	17 ≤ 13	10 ≤ 13	10 ≤ 13

It is shown in the table 2 that the combination of LAE with the traditional antimicrobials leads to effects which are regularly higher than those displayed by these compounds used alone, with the advantages previously described.

5

EXAMPLES OF DENTIFRICES

- Example 2:

The general composition of a standard opaque dentifrice, is (in g):

-	Glycerol	25,00
10	- Sodium saccharinate.....	0,15
-	- EDTA 4 NA.....	0,10
-	- Sodium monofluorophosphate	1,00
-	- Silica.....	5,00
-	- Sodium metaphosphate.....	30,00
15	- Titanium dioxide	0,20
-	- Hydroxyethylcellulose.....	0,75
-	- Sodium lauryl sulfate.....	0,80
-	- Aqua.....	100 c.s.p.

20 This formulation is completed with a suitable amount of the antimicrobial system of the invention and its antimicrobial activity is evaluated against formulations with traditional antimicrobial agents used alone.

25 The results are shown in the table 3.

30

Table 3.

<i>Streptococcus mutans</i>		<i>Lactobacillus acidophilus</i>	
Ant. sys. without LAE	Ant. sys. with LAE	Ant. sys. without LAE	Ant. sys. with LAE
Ant. sys. vs. Numbe r ⇒ ant. sys. 1	Zone vs. ant. sys. 1	Zone vs. ant. sys. 1	Ant. sys. vs. Numbe r ⇒ system 1
2 ⇒ 15	17 ≤ 8	2 ⇒ 10	10 ≤ 8
5 ⇒ 12	14 ≤ 11	5 ⇒ 8	9 ≤ 11
6 ⇒ 7	10 ≤ 12	6 ⇒ 9	8 ≤ 12
7 ⇒ 12	13 ≤ 13	7 ⇒ 11	12 ≤ 13

<i>Staphylococcus aureus</i>		<i>Candida albicans</i>	
Ant. sys. without LAE	Ant. sys. with LAE	Ant. sys. without LAE	Ant. sys. with LAE
Ant. sys. vs. Numbe r ⇒ ant. sys. 1	Zone vs. ant. sys. 1	Zone vs. ant. sys. 1	Ant. sys. vs. Numbe r ⇒ system 1
2 ⇒ 13	14 ≤ 8	2 ⇒ 8	8 ≤ 8
5 ⇒ 9	10 ≤ 11	5 ⇒ 7	7 ≤ 11
6 ⇒ 7	8 ≤ 12	6 ⇒ 6	7 ≤ 12
7 ⇒ 9	12 ≤ 13	7 ⇒ 9	9 ≤ 13

5 It is shown in the table 3 that the combination of LAE with the common antimicrobials is equal or higher than those displayed by these compounds used alone, with the advantages previously described.

Further preparation examples of dentifrice, where the antimicrobial systems were also assayed, are described in the examples 3 to 5. The 10 experimental results obtained in the example 2 are representative for these examples.

- Example 3:

The composition of a standard transparent dentifrice, is (in g):

-	Glycerol	19,00.
-	Sorbitol.....	63,00
5	- Sodium saccharinate.....	0,15
-	EDTA 4 NA.....	0,10
-	Sodium fluoride	0,20
-	Silica.....	15,00
-	Hydroxyethylcellulose.....	0,75
10	- Sodium lauryl sulfate.....	0,80
-	Aqua.....	100 c.s.p.

- Example 4:

The composition of a liquid dentifrice, is (in g):

-	Glycerol	5,00
15	- Sorbitol.....	56,00
-	Sodium saccharinate.....	0,15
-	EDTA 4 NA.....	0,10
-	Sodium fluoride	0,20
-	Silica.....	16,00
20	- Hydroxyethylcellulose.....	0,50
-	Sodium lauryl sulfate.....	0,80
-	Aqua.....	100 c.s.p.

- Example 5:

The composition of a baking soda based dentifrice, is (in g):

25	- Glycerol	10,00
-	Sorbitol.....	20,00
-	Sodium saccharinate.....	0,20
-	EDTA 4 NA.....	0,10
-	Sodium monofluorophosphate	1,00

- Silica..... 15,00
- Sodium bicarbonate..... 15,00
- Hydroxyethylcellulose..... 0,50
- Sodium lauryl sulfate..... 1,50
- 5 - Aqua..... 100 c.s.p.

EXAMPLES OF DEODORANTS

- Example 6:

The general composition of a stick deodorant without alcohol, is (in g)

- Cyclomethicone..... 25,00
- 10 - Stearyl alcohol..... 26,00
- Octyl palmitate..... 23,00
- Dioctyl adipate 21,70
- C12-C15 alkyl benzoate..... 2,00
- Glycerol stearate..... 2,00

15 This formulation is completed with a suitable amount of the antimicrobial system of the invention and its antimicrobial activity is evaluated against formulations with traditional antimicrobial agents used alone.

The results are shown in the Table 4.

20 Table 4.

<i>Propionibacterium acnes</i>		<i>Corynebacterium</i> sp.	
Ant. sys. without LAE	Ant. sys. with LAE	Ant. sys. without LAE	Ant. sys. with LAE
Ant. sys. \Rightarrow Numbe r vs. ant. sys. 1	Zone vs. ant. sys. 1 \Leftarrow Numb er	Ant. sys. \Rightarrow system vs. system 1	Zone vs. system 1 \Leftarrow Numb er
2 \Rightarrow 9	10 \Leftarrow 8	2 \Rightarrow 10	10 \Leftarrow 8
3 \Rightarrow 8	8 \Leftarrow 9	3 \Rightarrow 7	9 \Leftarrow 9
4 \Rightarrow 5	6 \Leftarrow 10	4 \Rightarrow 6	8 \Leftarrow 10
6 \Rightarrow 8	7 \Leftarrow 12	6 \Rightarrow 9	10 \Leftarrow 12

<i>Trichophyton Mentagrophytes</i>		<i>Staphylococcus epidermidis</i>	
Ant. sys. without LAE	Ant. sys. with LAE	Ant. sys. without LAE	Ant. sys. with LAE
Ant. sys. vs. ant. sys. \Rightarrow r	Zone vs. ant. sys. 1	Zone vs. ant. sys. \Leftarrow Numb	Ant. sys. vs. system \Rightarrow 1
2 \Rightarrow 20	21 \Leftarrow 8	17 \Leftarrow 8	2 \Rightarrow 16
3 \Rightarrow 17	18 \Leftarrow 9	14 \Leftarrow 9	3 \Rightarrow 13
4 \Rightarrow 13	15 \Leftarrow 10	12 \Leftarrow 10	4 \Rightarrow 10
6 \Rightarrow 16	18 \Leftarrow 12	17 \Leftarrow 12	6 \Rightarrow 14

It is shown in the table 4 that the activity of a combination of LAE with the common antimicrobials is equal or higher than those displayed by these compounds used alone, with the advantages previously described.

Further examples of deodorants, where the antimicrobial systems were 5 also assayed, are described in the following preparation examples 1 to 5. The experimental results obtained in the example 6 are representative for these preparation examples as well.

▪ Preparation Example 1:

The composition of a stick deodorant with alcohol, is (in g):

10 - Ethanol..... 21,30
 - Propylene glycol..... 68,90
 - Stearic acid..... 6,10
 - Octyl dodecanol..... 1,00
 - Sodium hydroxide..... 0,93
 15 - Aqua..... 100 c.s.p.

▪ Preparation Example 2:

The composition of a deodorant aerosol, is (in g):

- Ethanol..... 51,93
 - Isopropyl myristate 1,50
 20 - Propellant..... 100 c.s.p.

▪ Preparation Example 3:

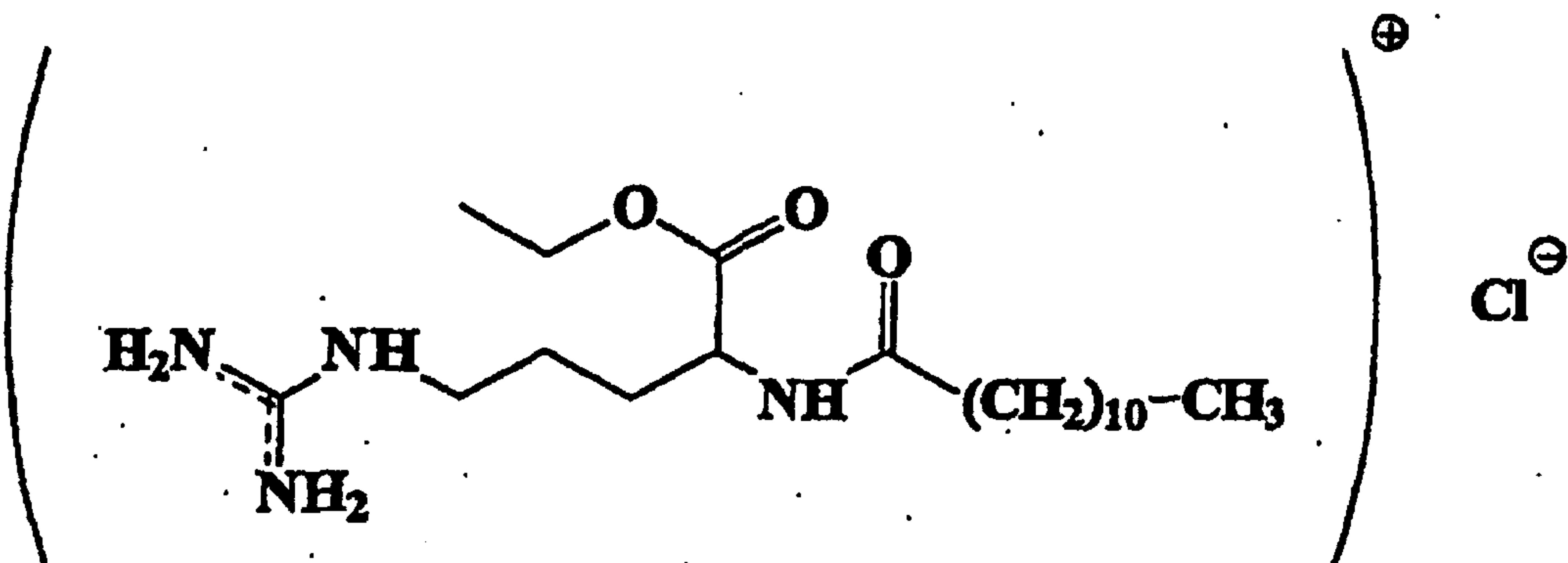
The composition of a roll-on deodorant composition without alcohol, is (in g):

- CETEARETH-20.....3,00
- 5 - Cetyl alcohol2,00
- Glyceryl stearate1,50
- Caprylic capric triglycerides2,00
- Isopropyl myristate2,00
- Aqua100 c.s.p.

10 ▪ Preparation Example 4:

The composition of a deodorant composition with alcohol for a roll-on, is (in g):

- Ethanol.....41,00
- Dipropylene glycol5,25
- 15 - Hydroxyethyl cellulose.....0,45
- Aqua100 c.s.p.


▪ Preparation Example 5:

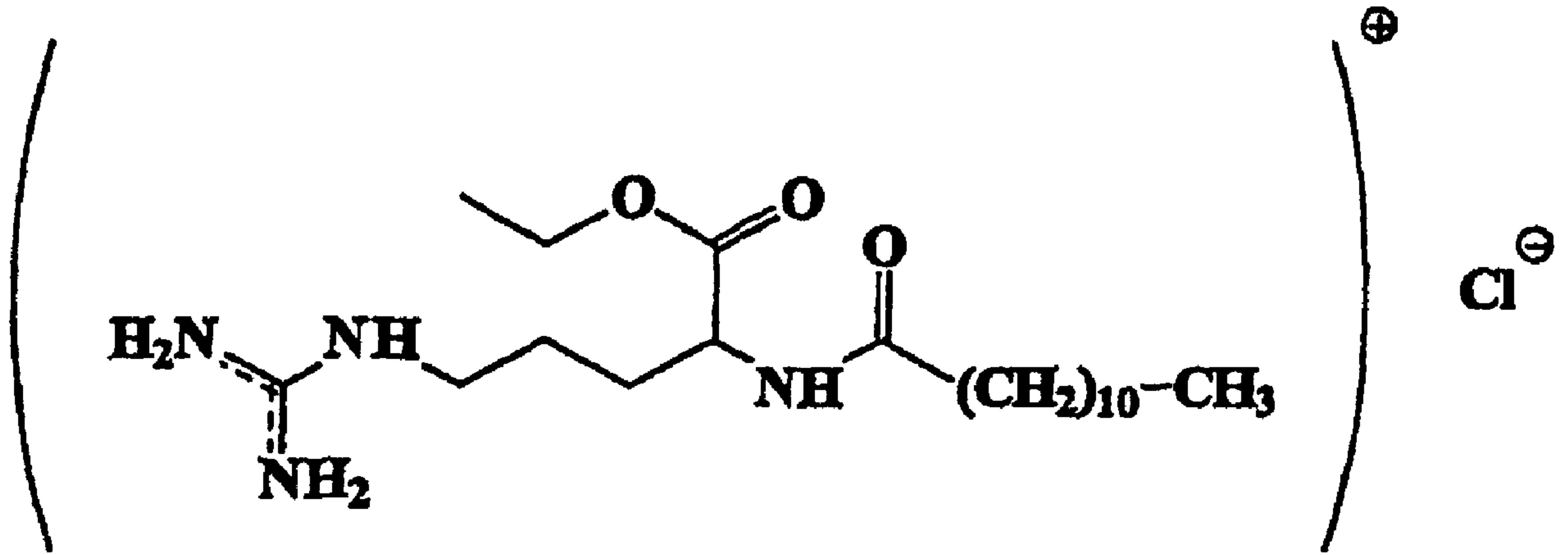
The composition of a deodorant cream, is (in g):

- Cetearyl alcohol + sodium cetearyl sulfate 4,00
- 20 - CETEARETH-12.....2,00
- Paraffinum4,00
- Propylene glycol.....3,00
- Caprylic capric triglycerides5,00
- Dimethicone1,00
- 25 - Isopropyl myristate5,00
- Aqua100 c.s.p.

Claims

1. An antimicrobial preparation which comprises: (a) a cationic surfactant, which cationic surfactant is the ethyl ester of the lauramide of arginine hydrochloride, according to the following formula:

and (b) at least one antimicrobial agent; wherein said antimicrobial preparation is characterized for its enhanced antimicrobial activity.


2. The antimicrobial preparation as claimed in claim 1, wherein the antimicrobial agent is selected from the group consisting of at least one of 2,4,4'-trichloro-2'-hydroxy-diphenylether, 3,4,4-trichlorocarbanilid, 2-phenoxyethanol, chlorhexidine salts, hexetidine, and cetylpyridinium salts.

3. The antimicrobial preparation according to claim 1, wherein the concentration of the cationic surfactant is from 0.001 to 1 % by weight and the concentration of the antimicrobial agent is from 0.0001% to 2% by weight relative to the total weight of the antimicrobial preparation.

4. The antimicrobial preparation according to claim 3, wherein the amount of the antimicrobial agent in deodorant applications is at least one of from 0.001 to 0.5% by weight of 2,4,4'-trichloro-2'-hydroxy-diphenylether, from 0.001 to 1.5% by weight of 3,4,4-trichlorocarbanilid, from 0.001 to 1% by weight of 2-phenoxyethanol, and from 0.001 to 1% by weight of chlorhexidine salts.

5. The antimicrobial preparation according to claim 3, wherein the amount of the antimicrobial agent in oral care applications is at least one of: from 0.001 to 0.3% by weight of 2,4,4-trichloro-2'-hydroxy-diphenylether, from 0.001 to 0.15% by weight of chlorhexidine gluconate, from 0.001 to 0.1% by weight of hexetidine, and from 0.001 to 0.05% by weight of cetylpyridinium salts in oral care applications.
6. The antimicrobial preparation according to claim 1, further comprising at least one of fatty compounds; organic solvents; surface active agents; solubilizers; ionic and non-ionic emulsifiers, thickening agents and jellying hydrophilic agents; thickening agents and lipophilic agents; perfumes and essential oils; astringents; antiperspirants; fluorides; humectants; sweeteners; softeners; excipients; antioxidants; sequestrant agents; opacifiers; mineral oil; synthetic oil; silicon oil; alcohol; filters; colouring compounds or pigments; and a hydrophilic or lipophilic active ingredients.
7. The antimicrobial preparation according to claim 6, wherein the fatty compounds comprise an animal oil, a vegetable oil, fatty acids or waxes.
8. The antimicrobial preparation according to claim 6, wherein the thickening agent and jellying hydrophilic agents comprise carboxyvinyl polymers, acrylic copolymers, polyacrylamides, polysaccharides or natural gums.
9. The antimicrobial preparation according to claim 8, wherein the carboxyvinyl polymer is a carbomer.
10. The antimicrobial preparation according to claim 8, wherein acrylic copolymers are selected from at least one of acrylates and alkylacrylates.
11. The antimicrobial preparation according to claim 8, wherein the natural gum is xanthan gum.
12. The antimicrobial preparation according to claim 6, wherein the thickening agents and jellying lipophilic agents comprise modified clays, fatty acid metallic salts, hydrophobic silica, or polyethylene.

13. The antimicrobial preparation to claim 12, wherein the modified clays is bentonite.
14. A cosmetic or dermatological composition comprising the antimicrobial system of claim 1.
15. A cosmetic composition for skin or oral care comprising the antimicrobial system of claim 3.
16. The composition according to claim 14 in the form of an aqueous solution, hydro-alcoholic, hydro-glycolic emulsion, micro-emulsion, aqueous or anhydride gel of a vesicles dispersion.
17. Use of at least one of a cosmetic and dermatological composition containing the antimicrobial preparation according to claim 1 for preventing body odor.
18. Use of at least one of a cosmetic and dermatological composition containing the antimicrobial preparation according to claim 1 for providing oral care.

