
(19) United States
US 20090089574A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0089574 A1
PRYOR et al. (43) Pub. Date: Apr. 2, 2009

(54) SYSTEM, METHOD AND PROGRAM FOR
PROTECTING COMMUNICATION

(75) Inventors: Robert Franklin PRYOR, Lynn
Haven, FL (US); Marc Lawrence
STEINBRECHER, Boulder, CO
(US)

Correspondence Address:
CHRISTOPHER & WEISBERG, PA.
200 EAST LASOLAS BOULEVARD, SUITE 2040
FORT LAUDERDALE, FL 33301 (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(21) Appl. No.: 12/331,700

(22) Filed: Dec. 10, 2008

Related U.S. Application Data

(63) Continuation of application No. 10/850.997, filed on
May 20, 2004, now Pat. No. 7,487,353.

10

Client
Transfer
Program

Initiate Session Connection
50

Transfer Connection
52-1

Transfer Connection
54

Transfer Connection
56

Publication Classification

(51) Int. Cl.
H04L 9/00 (2006.01)

(52) U.S. Cl. .. 713/150

(57) ABSTRACT

A system, method and program product for transferring data
between a first computer and a second computer. A first
request to starta session is received. An encrypted hash value
in the first request is decrypted and a hash value for the
information in the first request is independently determined.
The independently determined hash value is compared to the
decrypted hash value, and if there is match, a session with the
first computer is started. Subsequently, a second request is
received and the encrypted hash value in the second request is
decrypted. A hash value for the information in the second
request is independently determined. The independently
determined hash value is compared to the decrypted hash
value, and if there is match, the second computer processes a
request to at least partially download or upload a file.

Server
Transfer
Program

Create Session

Transfer data
(ex. upload)

Transfer data
(ex. download)

Transfer data

(ex. download)

US 2009/0089574 A1 Apr. 2, 2009 Sheet 1 of 4

I "OICH

Patent Application Publication

US 2009/0089574 A1 Apr. 2, 2009 Sheet 2 of 4 Patent Application Publication

---~--~~~~~~~~--~~~~~~~--~~~~~----------------------+;--······---···---······ ?SuOds3}} Z * OIH

···---·····---·········---····················---···········---····---·······---······························:}
US 2009/0089574 A1 Patent Application Publication

US 2009/0089574 A1

SYSTEM, METHOD AND PROGRAM FOR
PROTECTING COMMUNICATION

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation of patent applica
tion Ser. No. 10/850,997, filed May 20, 2004, entitled SYS
TEM, METHOD AND PROGRAM FOR PROTECTING
COMMUNICATION, the entirety of which is incorporated
herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH ORDEVELOPMENT

0002 n/a

BACKGROUND OF THE INVENTION

0003. The invention relates generally to computer sys
tems, and deals more particularly with a technique to deter
mine if changes have been made to data during transmission,
either through error or malicious activity.
0004. It is well known today to transmit data across a
network Such as the Internet or any other, internal or external
TCP/IP network. Various protocols such as File Transfer Pro
tocol (“FTP) and Hyper-Text Transfer Protocol (“HTTP)
can be used for the transmission. Typically, before the data is
sent, the sender and receiver establish a communication ses
Sion. Typically, the data is sent in a single connection, i.e. one
or more requests and one or more respective responses
through the same Socket of both participants. However, in
other environments, to speed the data transfer, the data is sent
in multiple, asynchronous connections some of which are
concurrent with each other. These multiple, asynchronous
connections can be in the same or different session as each
other and the original session. See allowed U.S. patent appli
cation entitled “Internet Backbone Bandwidth Enhance
ment” Ser. No. 09/644,494 filed Aug. 23, 2000 by Bauman,
Escamilla and Miller, which patent application is hereby
incorporated by reference as part of the present disclosure.
The multiple connection mode requires a multithreaded func
tion which can manage and coordinate the multiple connec
tions in parallel. An IBM Download Director program cur
rently transferS data across multiple connections in parallel
using Download Director Protocol (“DDP). The IBM
Download Director program begins operation by defining a
session which includes all the connections needed to authen
ticate the client and server to each other and transfer a file in
separate segments. The IBM Download Director program is
also capable of resuming a file transfer which has been ter
minated, so that the transmission is restarted at the point in the
transfer where it terminated. The IBM Download Director
program uses encryption for the transmitted files.
0005. “Public/private” key encryption such as RSA is also
well known. The public key (i.e. publicly known key) is used
by the sender to encrypt data, and a private key known only to
the recipient is used to decrypt the data which was encrypted
with the public key. Thus, for each public key, the recipient
has a corresponding private key used to decrypt the commu
nication encrypted with the public key.
0006 Symmetric encryption such as AES is also well
known. With symmetric encryption, the same key is used for
both encryption and decryption, and is kept secret by both the
sender and recipient. Typically, the key is randomly generated
by the sender or recipient, and sent to the other ahead of the

Apr. 2, 2009

communication. For security, the symmetric key can be sent
encrypted using a public/private key encryption.
0007 Neither FTP nor HTTP provides integrity checking
or file protection through encryption. However, encryption
has been added to both FTP and HTTP by encapsulation of
the FTP files and HTTP files with a known Secure Sockets
Layer (“SSL). SSL is an encryption protocol. The secure
FTP (called “FTPS) is not yet standardized. According to
FTPS, integrity checking and file protection are performed by
encrypting the file data. The secure HTTP (called “HTTPS'')
uses certificates to authenticate the server to the client and can
also use certificates to authenticate the client to the server.
HTTPS uses public/private key encryption during a hand
shake phase (which includes the sending of a symmetric key
encrypted with a public key). HTTPS guarantees file integrity
by symmetric key encryption of the entire data stream and
message authentication codes (“MAC). The MAC includes a
hash of the transfer data, a sequence number, and other
descriptors used in the protocol to identify the content and
operations such as compression and encryption. The MAC
however does not include a file name, file creation data or file
size. In HTTPS, there is a hash of each block of data; a file is
transmitted as one or more blocks. However, HTTPS does not
have a high-performance capability (such as that of IBM
Download Director Program) because it cannot manage mul
tiple simultaneous connections. In other words, in HTTPS, all
the requests and responses of one session proceed through the
same connection.

0008. An existing IBM Lotus Notes program encrypts
data during transfer. Lotus Notes uses a S/MIME protocol to
send encrypted messages. S/MIME protocol is a mail proto
col that includes both a hash value and encrypted data, but
does not include a session ID. S/MIME is intended for content
delivery and is used as an asynchronous process. The sender
identifies the recipient or recipient(s), and data encryption
and hash values are created. The delivery can be at that time
or at a later time. Transfer of the data is over a single connec
tion and the content is not used in the transfer protocol.
0009 “Hashing is also well known today. Hashing is a
process analogous to parity checking or cyclical redundancy
checking where a function is performed on a set of bits or
bytes to yield a unique “hash' value. Different algorithms can
be used for hashing, such as SHA-1 and MD5. Two identical
files will yield the same hash value (if they use the same
hashing algorithm), and a difference in hash values indicates
a difference between the two files. For example, U.S. Pat. No.
6,393,438 discloses a method and apparatus for identifying
differences between two files, such as two versions of a
Microsoft Windows registry file. Portions of the file are
hashed to yield one four byte value per portion to provide a set
of hash results. The set of hash results are combined with a
four byte size of the portion of the file from which the hash
was generated to produce a signature of each file. If the two
files are different versions of a Windows registry file, the hash
signatures of the two files will likely be different. It is also
well known to hash data before transmission, hash the
received data, and compare the two hash values to determine
if any changes occurred to the data during transmission.
0010. An object of the present invention is to expedi
tiously transfer data and reveal any changes that occur to the
data in transit.

US 2009/0089574 A1

0011. A more specific object of the present invention is to
apply the foregoing technique to data transmitted during mul
tiple connections in the same session.

SUMMARY OF THE INVENTION

0012. One aspect of the invention resides in a method for
transferring data between a first computer and a second com
puter. The second computer receives a first request in a first
connection. The first request includes a request to start a
session, an encrypted ID of the session, and an encrypted hash
value for information in the first request. The information in
the first request includes the request to start the session and
the encrypted session ID. The encrypted hash value in the first
request is decrypted, and a hash value for the information in
the first request is independently determined. The indepen
dently determined hash value is compared to the decrypted
hash value. If there is match, the second computer starts a
session with the first computer. Subsequently, a second
request from the first computer is received in a second con
nection in the session. The second request includes a request
to download or upload data of a file, an encrypted ID of the
session, an identity of the file to at least partially upload or
download, and an encrypted hash value for information in the
second request. The information in the second request
includes the request to download or upload data, the
encrypted session ID and the file identity. The encrypted hash
value in the second request is decrypted and a hash value for
the information in the second request is independently deter
mined. The independently determined hash value is com
pared to the decrypted hash value. If there is match, the
request to at least partially download or upload the file is
processed.
0013. In accordance with one aspect, the present invention
provides a computing device for transferring data, the com
puting device having a means for receiving a first request in a
first connection. The first request includes a request to start a
session, an encrypted ID of the session, and an encrypted hash
value for information in the first request. The information in
the first request includes the request to start the session and
the encrypted session ID. A means for decrypting decrypts the
encrypted hash value in the first request, and a hash value for
the information in the first request is independently deter
mined. The independently determined hash value is com
pared to the decrypted hash value. If there is match, the
computing device starts a session. A means for Subsequently
receiving a second request receives that second request in a
second connection in the session. The second request
includes a request to download or upload data of a file, the
encrypted ID of the session, an identity of the file to at least
partially upload or download, and an encrypted hash value for
information in the second request. The information in the
second request includes the request to download or upload
data, the encrypted session ID and the file identity. The
encrypted hash value in the second request is decrypted, and
a hash value for the information in the second request is
independently determined. The independently determined
hash value is compared to the decrypted hash value. If there is
match, the request to at least partially download or upload the
file is processed.
0014. In accordance with another aspect, the present
invention provides a computer program product for transfer
ring data between a first computer and a second computer.
The computer program product includes a computer readable
medium. The computer program product includes first pro

Apr. 2, 2009

gram instructions to receive from the first computer a first
request in a first connection, the first request including a
request to start a session, an encrypted ID of the session, and
an encrypted hash value for information in the first request.
The information in the first request includes the request to
start the session and the encrypted session ID. The computer
program product includes second program instructions to
receive the first request, and in response, decrypt the
encrypted hash value in the first request, independently deter
mine a hash value for the information in the first request and
compare the independently determined hash value to the
decrypted hash value, and if there is match, start a session
with the first computer. The computer program product
includes third program instructions to Subsequently receive a
second request in a second connection in the session, the
second request including a request to download or upload
data of a file, the encrypted ID of the session, an identity of the
file to at least partially upload or download, and an encrypted
hash value for information in the second request. The infor
mation in the second request includes the request to download
or upload data, the encrypted session ID and the file identity.
The computer program product includes
fourth program instructions to receive the second request in
the session, and in response, decrypt the encrypted hash value
in the second request, independently determine a hash value
for the information in the second request and compare the
independently determined hash value to the decrypted hash
value, and if there is match, process the request to at least
partially download or upload the file. The first, second, third
and fourth program instructions are recorded on the medium.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 is a block diagram of a client and server
which implement the present invention, and communications
between the client and server.
0016 FIG. 2 is a flow chart illustrating the steps involved
in establishing a session between the client and server of FIG.
1.
0017 FIG. 3 is a flow chart illustrating the steps involved
in uploading data from the client to the server of FIG. 1 in the
session established in FIG. 2.
0018 FIG. 4 is a flow chart illustrating the steps involved
in downloading data from the server to the client of FIG. 1 in
the session established in FIG. 2. FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

0019. The present invention will now be described in
detail with reference to the figures. FIG. 1 illustrates a client
10, a server 20 and a network 22 for communication there
between. By way of example, the network 22 can be the
Internet, any other, internal or external TCP/IP network, or
other types of networks as well. In accordance with the
present invention, FIG. 1 illustrates four “connections'
between the client and the server, all made in the same “ses
sion'. An initial connection 50 is for a request from the client
to the server to establish the session and a response from the
server indicating whether the session was successfully estab
lished. A subsequent connection 52 is for a request from the
client to the server to upload data and a response from the
server whether the data was successfully received. A subse
quent connection 54 is for a request from the client to the
server to download data and a response from the server which
includes the data to be downloaded. A Subsequent connection

US 2009/0089574 A1

56 is for another request from the client to the server to
download data and a response from the server which includes
the data to be downloaded. In the illustrated embodiment,
connections 54 and 56 are used to download two segments of
the same file. While not shown, there can be many more
connections for the same session, for example, to transfer a
lengthy file in multiple segments, one segment per connec
tion. The multiple connections can be concurrent and asyn
chronous. Because of the multiple connections for uploading
or downloading a single file and the associated management
of these multiple connections as described below, the transfer
will be expeditious. Also, ifa connection fails, the file transfer
can be resumed in a different connection in the same session
without having to retransmit the portions of the file that were
already successfully transmitted. Furthermore, if the session
is interrupted by a catastrophic event such as the network
failing, all successful segments will be maintained so that
when a new session is created at a later date, the new session
will only transfer the remaining segments.
0020. In the illustrated embodiment, each of the requests
and responses from the client 10 and the server 20 contains a
header and metadata. The header includes prior art IP desti
nation address or destination host name and other information
such as found in a prior art HTTP header. The meta data
includes a parameter indicating the nature of the request, for
example, to start a session, download or upload data. The
meta data for a request also specifies an encrypted session
identifier ("ID"). In the illustrated embodiment, the metadata
for a response does not specify the session ID, because it is
made in the same connection as the request. Therefore the
connection for the response is assumed to be the same as the
connection for the request. The metadata for both a request
and a response also describes features of the file data being or
to be transferred such as file name, file size, file creation date,
and a file data hash value. Each request and response also
includes an encrypted meta data hash value. The client and
server encrypt and decrypt the meta data hash value in mes
sages from the other using a symmetric cypher. As described
in more detail below, encryption of the metadata hash value
is used to reveal changes to the meta data that occur during
transmission. (In Symmetric ciphering, an encryption key is
Supplied to the encryption function, and this one key is used
for both encryption and decryption. Symmetric ciphering is
also used for a user ID and password exchange.) For file data
upload requests, the request also includes the actual file data.
The actual file data can be encrypted if confidential. For data
download responses, the response also includes the actual file
data. The actual file data can be encrypted if confidential.
Where encryption of the file data is needed, the encryption of
the file data can be based on the symmetric cypher used for the
session key or some other key or encryption method. The
present invention is implemented at the client computer 10 by
a client transfer program 12, and implemented at the server
computer 20 by a server transfer program 22.
0021. The following describes the general flow of requests
and response according to one embodiment of the present
invention. The client identifies a new session by a randomly
generated session ID. The client then encrypts the session ID
with the server's public key (acquired by the client during an
earlier exchange or otherwise pre-determined)), and then
sends the encrypted session ID to the server in an initial
connection to create the session. If the client expects to make
a Subsequent file upload request, the client also furnishes a
name, file size, and hash value for the entire file to be

Apr. 2, 2009

uploaded. If the client expects to make a Subsequent down
load request, the client also furnishes a name of the file to be
downloaded. When the server receives the encrypted session
ID from the client and decrypts the session ID using the
server's private key, the server then has the key for a symmet
ric cipher function. The server then initializes a symmetric
cypher using the decrypted session ID as the decryption key
for the symmetric cyphering. Then, the server can validate the
metadata from the client by decrypting the hash value sent by
the client for the meta data, independently calculating the
hash value of the metadata in the request, and comparing the
two hash values for the meta data. If they differ, this reveals
that changes were made to the metadata sent from the client.
If they are the same, then the meta data was received
unchanged at the server. In response to the client request, the
server generates in the same connection its own responsive
communication indicating whether the session was estab
lished. This response includes meta data and an encrypted
metadata hash value. The server also encrypts the metadata
hash using the symmetric cypher. If the client's request speci
fied a name of a file stored at the server, server includes in its
response a file size and hash value for the entire file data. The
client validates the server's meta data by independently cal
culating the hash value of the server's metadata and compar
ing it to the hash value received from the server after decryp
tion by the client. This reveals if any changes occurred to the
metadata during transmission.
0022. Subsequent upload and download requests (in dif
ferent connections) are made in the same session as created
above, and include the same session ID (encrypted) and an
encrypted meta data hash value. A file upload request
includes a segment of the file when long, or the entire file
when short. A server response includes an encrypted meta
data hash value (and in the case of a download request, a file
segment when the file is long or the entire file when the file is
short). After the entire file is received by the server (in mul
tiple connections) in the case of an upload request, the server
independently generates ahash value for the complete file and
compares it to the hash value sent by the client during session
establishment to determine if any changes were made to the
file. After the entire file is received by the client (in multiple
connections) in the case of a download request, the client
independently generates a hash value for the file and com
pares it to the hash value sent by the server during the session
establishment to determine if any changes were made to the
file. For both uploads and downloads, the hash value check for
the complete file will reveal any changes in file data during
transmission even when the file transmission is split between
multiple connections. (The split can occur purposely when
the file is long or inadvertently when a file transfer connection
is terminated due to a failure or other reason and then the file
transfer is resumed in another connection.) If a change in
transmission has occurred, the recipient can discard the data
and request retransmission.
0023 The present invention will now be described in more
detail with reference to FIGS. 2-5. FIG. 2 illustrates the
establishment of the session between the client 10 and server
20 according to the present invention. To initiate a new ses
Sion, the client transfer program 12 initializes a new session
object (step 100). The session object contains the session ID,
an indication that the session is not yet active, the identity or
IP address of the server or its socket to which connection is
made, and a field to track the file upload progress in the case
of a Subsequent upload. Then, the client transfer program

US 2009/0089574 A1

creates a random session ID (step 102). Then, the client
transfer program encrypts the session ID with a public key
previously obtained (step 104). The encryption of the session
ID can use a known RSA algorithm or other known encryp
tion algorithm. Then, the client transfer program initializes a
symmetric cipher (to encrypt a metadata hash value) with the
unencrypted session ID serving as the key for the symmetric
ciphering (step 106). Examples of known symmetric cipher
ing functions are RC4 and AES.
0024. Next, the client transfer program 12 creates the
actual request 110 to send to the server. In the illustrated
embodiment, this request is in HTTP form. The request
includes an HTTP header, meta data and an encrypted hash
value for the meta data. The HTTP request header from the
client specifies the server name and port to receive the client
request. The metadata comprises a request to start a session,
the encrypted session ID, and for each file to subsequently
upload a file name, file creation date, file size and file data
hash, and for each file to Subsequently download a file name.
(An application that called the client transfer program 12 to
initiate the data transfer previously specified the file(s) to
download or upload. The client transfer program 12 calcu
lated the hash value for each complete file data to upload.)
The request also includes a meta data hash value encrypted
with the symmetric cipher. The client transfer program 12
determined the meta data hash value for the foregoing meta
data based on the SHA-1, MD5 or other known hashing
algorithm. In the illustrated embodiment, the initial request to
create the session does not include the actual file data to
upload.
0025. In response to the start session request, the server
transfer program 22 creates a session object (step 126). Then,
the server transfer program 22 reads the metadata and inde
pendently generates a hash value for the meta data using the
SHA-1, MD5 or other algorithm used by the client transfer
program 12 (step 130). Next, the server transfer program 22
decrypts the session ID Supplied with the client request, using
the server's private key (step 132). The decryption is based on
the same algorithm used by the client transfer program 12 in
the encryption. Next, the server starts (on its side) a session
with the client identified by the decrypted and encrypted
session ID (step 134). To start this session on the server side,
the server transfer program 22 fills-in the session object with
the session ID, an indication that the session is currently
active and the identity or IP address of the client or its socket
to which is made. The server transfer program 22 also creates
a field to track the file upload progress in the case of a Sub
sequent upload. Next, the server transfer program 22 initial
izes a symmetric cipher function with the decrypted session
ID serving as the decryption key (step 136), and decrypts the
metadata hash value Supplied in the client request using the
symmetric cipher function (step 138). Then, the server trans
fer program 22 compares its independently calculated hash
value to the decrypted hash value to determine if the client is
authentic and the meta data was received without change
(step 139). If the metadatahash value calculated by the server
matches the meta data hash value supplied by the client, the
client is authentic, the metadata was received without change
and server transfer program 22 prepares a response 142 to
send to the client 10.

0026. The response 142 includes a header, metadata and a
meta data hash value. In the illustrated embodiment, the
response is in HTTP form. The HTTP response header from
the server specifies the content type and length (which header

Apr. 2, 2009

parameters are needed to support HTTP proxies, but are
ignored by the client). The metadata comprises a return code
indicating whether the session was successfully started. For
each file to Subsequently upload, the meta data in the client
start request includes a file name, file size, file creation date,
file creation date and a file data hash value. In the case of an
upload, the server transfer program 22 will assume the file
metadata Supplied in the client request is accurate, and update
its records accordingly. For each file to Subsequently down
load, the meta data in the client start request includes a file
name, file creation date, file size and file datahash. The server
transfer program 22 calculates the hash value for the complete
file data to subsequently download. The file names and file
creation dates in the server's response were referenced in the
client request to start the session. In the case of a download
request, if the server transfer program 22 cannot locate the
file, the server will indicate such for this file. If any of the file
metadata found by the server transfer program 22 is different
than that specified by the client transfer program 12 in the
client session start request, the server will return the file meta
data as the server finds it, and the client will update its records
accordingly. The server transfer program 22 determines a
hash value for the metadata and encrypts the hash value with
the symmetric cipher. Next, the server 20 sends the response
to the client 10.

0027 Next, the client transfer program 12 receives and
processes the response from the server as follows. The client
transfer program 12 reads the meta data and independently
calculates a hash value using the SHA-1. MD5 or other algo
rithm used by the server transfer program 22 (step 150). Then,
the client transfer program 12 decrypts, using the symmetri
cal cypher, the metadata hash value Supplied with the request
(step 152), and compares its independently calculated meta
data hash value to the decrypted meta data hash value (step
154). If they match, then the response is considered valid, and
the client transfer program 12 has confirmed that the server is
authentic and that the session has begun with the server. Also,
in the case of a download request, the client transfer program
12 now knows the complete and correct file meta data. The
client then records that the session with the server has offi
cially begun by making an entry in its session object.
0028 Next, the client transfer program 12 can use the
same session (established in FIG. 2) to create requests to
upload or download file data (in other connections). As
explained below, the same session ID will be used, a hash will
be created for the metadata, the hash value will be encrypted
before being sent, and a comparison of the hash value which
is sent to the hash value independently generated by the
recipient will indicate whether the communication has been
changed during transmission.
(0029 FIG.3 illustrates an upload request 160 by the client
transfer program 12 and the response 181 by the server trans
fer program 22, both in a Subsequent connection in the same
session as created in FIG. 2. The client transfer program 12
initializes the symmetric cypher for the metadata hash, using
the session ID as the encryption key (step 162). In the illus
trated embodiment, the upload request 160 comprises an
HTTP requestheader, metadata, an encrypted metadata hash
value, and a 'send file. The meta data comprises an upload
request, the encrypted session ID and the name of the file or
file segment to be uploaded. If this request pertains to a file
segment (instead of an entire file) Such as to upload a segment
of a file from the client to the server, the meta data also
includes a file start/stop parameter which indicates where the

US 2009/0089574 A1

file segment begins and ends within the file. The meta data
hash value was calculated using the SHA-1, MD5 or other
algorithm. The metadata hash value was encrypted using the
symmetric cipher. The “send file contains the actual data in
the file or file segment to be uploaded to the server. If the file
data is sensitive, the client transfer program 12 can encrypt
the file data using a symmetric cipher and send the encrypted
file data instead of the unencrypted file data. In one embodi
ment of the present invention, the same cipher function with
the same encryption key (i.e. the sessionID) is used to encrypt
the file data. However, in other embodiments of the present
invention, a different cipher algorithm and/or a different
cipher key can be used to encrypt the file data. Next, the client
transfer program 12 sends the HTTP request 160 to the server
20.

0030 Upon receipt of the HTTP upload request 160 from
the client, the server transfer program 22 reads the metadata
and independently generates a corresponding hash value
using the SHA-1, MD5 or other algorithm corresponding to
that used by the client transfer program 12 (step 170). Then,
the server transfer program 22 reads the encrypted session ID
from the client transfer program 12 request, and checks if this
(encrypted) session ID was previously recorded by the server
in a session object, and is an active session (step 172). If so,
the server transfer program 22 initializes the symmetric
cipher for this encrypted session ID using the session ID as
the key (step 174), and decrypts the encrypted metadata hash
Supplied by the client, using this symmetric cipher (step 176).
Next, the server transfer program 22 compares the metadata
hash value that it independently calculated to the decrypted
meta data hash supplied by the client (step 178). If they
match, then the server accepts the file data or file segment data
supplied in the client upload request (step 180). If the file data
or file segment data Supplied in the client upload request was
encrypted by the client, then the server transfer program 22
decrypts it using the same cipher as used to encrypt the file
data (step 185).
0031. Next, the server transfer program 22 prepares the
response 181 to the client. The response includes an HTTP
header, metadata and an encrypted metadata hash value. The
meta data comprises a return code indicating whether the
upload request was successful and the name of the file or file
segment that was successfully received. If the server response
181 pertains to a file segment (instead of an entire file), the
metadata also includes a file start/stop parameter which indi
cates where in the file the file segment begins and ends. The
hash value is encrypted using the symmetric cipher. Next, the
server transfer program 22 sends the HTTP response to the
client.

0032. Upon receipt of the HTTP response, the client trans
fer program 12 reads the metadata and independently calcu
lates a corresponding hash value using the SHA-1, MD5 or
other algorithm (step 190). Then, the client transfer program
12 decrypts the metadata hash value supplied in the server's
HTTP response using the symmetric cypher (step 192), and
compares the server Supplied hash value to the one indepen
dently calculated by the client transfer program 12 (step 194).
If the two hash values are the same, this authenticates the
server to the client, and the client learns that the server suc
cessfully (or unsuccessfully) received the file data contained
in the client's previous HTTP upload request. If the two hash
values do not match, the client will re-send the file data in
another HTTP upload request.

Apr. 2, 2009

0033. As explained above, if a file is lengthy, multiple
HTTP upload requests may be required to transfer the com
plete file from the client to the server. In the illustrated
embodiment, each pair of upload request and response are
made in a separate connection, but all the upload requests and
responses for this file are made in the same session as created
in FIG. 2. So, the foregoing steps 162-194 are repeated for
each additional upload request and response. FIG. 3 illus
trates additional processing performed by the server 20 after
it has received all the data of a file (when the file data is sent
in either one upload request or in multiple upload requests in
segments in multiple, respective connections). Server transfer
program 22 independently calculates a hash value using the
SHA-1, MD5 or other algorithm for all the data in the file
(step 196). Then, server transfer program 22 compares its
independently calculated hash value to the hash value Sup
plied by the client 10 in the initial HTTP request to create the
session (step 198). If the two hash values are the same, then
the file data was transferred from the client to the server
without change and is considered valid by the server. Conse
quently, the server can then use the data (step 200).
0034 FIG. 4 illustrates the steps involved in the client
making a download request 210 to the server, and the server
responding to the download request. Both the download
request 210 and the response 230 are made in a new connec
tion but the same session initiated in FIG. 2. The download
request will use the same session ID, encrypted using the
server's public key. The client transfer program 12 will ini
tialize a symmetric cipher with the session ID to encrypt the
metadata hash (step 204). The client's download request 210
comprises an HTTP request header, meta data and an
encrypted meta data hash value. The metadata comprises a
download request, the encrypted session ID, and the name of
the file or file segment (“part-m) to be downloaded. The meta
data hash is encrypted with the symmetric cipher. Then, the
client sends the HTTP request to the server. In response, the
server transfer program 22 reads the metadata from the client
request and independently generates a corresponding hash
value using the SHA-1, MD5 or other algorithm used by the
client (step 212). Then, the server transfer program 22 checks
from its records whether the session ID is valid and whether
this session is currently active (step 214). If so, the server
transfer program 22 initializes a symmetric cipher with this
session ID (step 216) to decrypt the meta data hash value
contained in the client download request (step 218). Next, the
server transfer program 22 compares the decrypted metadata
hash value to the metadata hash value independently gener
ated by the server transfer program 22 (step 220). If they
match, the server transfer program 22 will process/respond to
the request as follows. The server transfer program 22 will
fetch the requested file data or file segment data from memory
or storage, and then prepare the HTTP response 230. The
HTTP response comprises an HTTP response header, meta
data, and the requested “receive' file data. The meta data
comprises a return code indicating whether the download
request was successfully received, the name of the file data or
file segment data that is being downloaded and an encrypted
hash value for the metadata. The send file contains the actual
file data or file segment data that was requested. If the data is
confidential or otherwise sensitive, the server transfer pro
gram 22 can encrypt the file data or file segment data and send
the encrypted form to the client instead of the unencrypted
form. The encryption can use the same symmetric cipher with
the same encryption key as used for the metadata hash, or a

US 2009/0089574 A1

different symmetric cipher and/or a different encryption key.
Next, the server transfer program 22 sends the HTTP
response to the client.
0035. Upon receipt of the HTTP response, the client trans
fer program 12 reads the metadata and independently gener
ates a corresponding hash value using the SHA-1, MD5 or
other algorithm used by the server (step 240). Then, the client
transfer program 12 decrypts the meta data hash value from
the server's HTTP response (step 242), and compares the two
metadatahash values (step 244). If they are the same, then the
server is authentic and the client receives the actual file data or
file segment data from the server HTTP response. If the file
data or file segment data was encrypted, then the client trans
fer program 12 decrypts the file data or file segment data using
the same cipher as used by the server transfer program 22. As
noted above, it may require multiple download requests/re
sponses to download a lengthy file, or the entire file may be
downloaded in a single request/response if the file is short.
For each file completely downloaded by the client in one or
more server HTTP responses, the client transfer program 12
generates a hash value for the complete file (step 248), and
compares it to the corresponding hash value Supplied in the
server's HTTP response to the start session request (step 250).
If the two hash values match, then the client can use the data.
If the two hash values do not match, then the client will
discard all the file data, and begin again the foregoing process
of requesting the file data.
0036 Based on the foregoing, a system, method and pro
gram product for revealing errors or other changes in trans
missions have been disclosed. However, numerous modifica
tions and Substitutions can be made without deviating from
the scope of the present invention. For example, other encryp
tion algorithms or hash algorithms than those mentioned can
be substituted. In another example, the HTTP request header
and HTTP response header can be eliminated without chang
ing the object of the invention. The use of these headers
simply enables this invention to be implemented under a
“standard” protocol. Therefore, the present invention has
been disclosed by way of illustration and not limitation, and
reference should be made to the following claims to deter
mine the scope of the present invention.
What is claimed is:
1. A method for transferring data between a first computer

and a second computer, said method comprising the steps of
receiving from said first computer a first request in a first

connection, said first request including a request to start
a session, an encrypted ID of said session, and an
encrypted hash value for information in said first
request, said information in said first request comprising
said request to start said session and said encrypted
session ID:

decrypting said encrypted hash value in said first request,
independently determining a hash value for said infor
mation in said first request and comparing the indepen
dently determined hash value to the decrypted hash
value, and if there is match, starting the session with said
first computer;

Subsequently, receiving from said first computer a second
request in a second connection in said session, said
second request including a request to download or
upload data of a file, said encrypted ID of said session, an
identity of said file to at least partially upload or down
load, and an encrypted hash value for information in said
second request, said information in said second request

Apr. 2, 2009

comprising said request to download or upload data, said
encrypted session ID and said file identity; and

decrypting said encrypted hash value in said second
request, independently determiningahash value for said
information in said second request and comparing the
independently determined hash value to the decrypted
hash value, and if there is match, processing said request
to at least partially download or upload said file.

2. A method as set forth in claim 1 wherein said informa
tion in said first request also comprises said identity of said
file to at least partially download or upload in said second
connection in said session.

3. A method as set forth in claim 2 wherein said file iden
tified in said first request is a file to at least partially upload,
and said information in said first request also comprises a
hash value for said file.

4. A method as set forth in claim 1 wherein said first request
also includes a hash value for a file to upload, and said second
request is to upload a first segment of said file; and further
comprising the steps of

said second computer receiving from said first computer a
third request to said second computer in a third connec
tion, said third request including a request to upload
another segment of said file in said session, said
encrypted ID of said session, an identity of said other
segment of said file, and an encrypted hash value for
information in said third request, said information in
said third request comprising said request to upload said
other segment of said file, said encrypted session ID, and
said identity of said file;

said second computer decrypting said encrypted hash
value in said third request, independently determining a
hash value for said information in said third request and
comparing the independently determined hash value to
the decrypted hash value, and if there is match, process
ing said third request to upload said other file segment;
and

if said other segment completes the upload of said file, said
second computer independently determining a hash
value for said file and comparing said independently
determined hash value to the hash value received by said
second computer for said file, and if they match, pro
cessing said file.

5. A method as set forth in claim 1 wherein said first request
also includes a hash value for a file to upload, and said second
request is to upload said file and contains said file; and further
comprising the steps of

independently determining a hash value for said file and
comparing said independently determined hash value to
the hash value received by said second computer for said
file, and if they match, processing said file.

6. A method as set forth in claim 1 wherein said second
request is to download a portion orall of said file, and wherein
said second computer processes said second request by
responding to said first computer with a response comprising
the requested portion or all of said file, information about the
requested portion or all of said file and an encrypted hash
value for said information, said information comprising a
name of said file and/or file portion.

7. A method as set forth in claim 1 wherein said second
request is to upload said file or a first segment of said file and
contains said file or first segment in encrypted form.

8. A method as set forth in claim 7 wherein said first request
also includes a hash value for said file or first segment.

US 2009/0089574 A1

9. A method as set forth in claim 1 wherein the step of
starting a session with said first computer comprises the step
of sending a response to said first computer in said first
connection, said response including an encrypted hash value
for information in said response.

10. A computing device for transferring data, said comput
ing device comprising:

means for:
receiving a first request in a first connection, said first

request including a request to start a session, an
encrypted ID of said session, and an encrypted hash
value for information in said first request, said infor
mation in said first request comprising said request to
start said session and said encrypted session ID;

decrypting said encrypted hash value in said first
request, independently determining a hash value for
said information in said first request and comparing
the independently determined hash value to the
decrypted hash value, and if there is match, starting a
session;

Subsequently receiving a second request in a second
connection in said session, said second request
including a request to download or upload data of a
file, said encrypted ID of said session, an identity of
said file to at least partially upload or download, and
an encrypted hash value for information in said sec
ond request, said information in said second request
comprising said request to download or upload data,
said encrypted session ID and said file identity; and

receiving said second request in said session, and in
response, decrypting said encrypted hash value in said
second request, independently determining a hash
value for said information in said second request and
comparing the independently determined hash value
to the decrypted hash value, and if there is match,
processing said request to at least partially download
or upload said file.

11. A computing device as set forth in claim 10 wherein
said information in said first request also comprises said
identity of said file to at least partially download or upload in
said second connection in said session.

12. A computing device as set forth in claim 11 wherein
said file identified in said first request is a file to at least
partially upload, and said information in said first request also
comprises a hash value for said file.

13. A computing device as set forth in claim 10 wherein
said first request also includes a hash value for a file to upload;
said second request is to upload said file and contains said file;
and said processor includes means for independently deter
mining a hash value for said file and comparing said indepen
dently determined hash value to the hash value sent by said
first computer for said file, and if they match, processing said
file.

14. A computing device as set forth in claim 10 wherein:
said second request is to download a portion or all of said

file, and wherein said processor processes said second
request by responding with a response comprising the
requested portion or all of said file, information about
the requested portion or all of said file and an encrypted
hash value for said information, said information com
prising a name of said file and/or file portion.

15. A computer program product for transferring data
between a first computer and a second computer, said com
puter program product comprising:

Apr. 2, 2009

a computer readable medium;
first program instructions to receive from said first com

puter a first requestina first connection, said first request
including a request to start a session, an encrypted ID of
said session, and an encrypted hash value for informa
tion in said first request, said information in said first
request comprising said request to start said session and
said encrypted session ID;

second program instructions to receive said first request,
and in response, decrypt said encrypted hash value in
said first request, independently determine a hash value
for said information in said first request and compare the
independently determined hash value to the decrypted
hash value, and if there is match, starta session with said
first computer;

third program instructions to Subsequently receive a sec
ond request in a second connection in said session, said
second request including a request to download or
upload data of a file, said encrypted ID of said session, an
identity of said file to at least partially upload or down
load, and an encrypted hash value for information in said
second request, said information in said second request
comprising said request to download or upload data, said
encrypted session ID and said file identity; and

fourth program instructions to receive said second request
in said session, and in response, decrypt said encrypted
hash value in said second request, independently deter
mine a hash value for said information in said second
request and compare the independently determined hash
value to the decrypted hash value, and if there is match,
process said request to at least partially download or
upload said file; and wherein

said first, second, third and fourth program instructions are
recorded on said medium.

16. A computer program product as set forth in claim 15
wherein said information in said first request also comprises
said identity of said file to at least partially download or
upload in said second connection in said session.

17. A computer program product as set forth in claim 16
wherein said file identified in said first request is a file to at
least partially upload, and said information in said first
request also comprises a hash value for said file.

18. A computer program product as set forth in claim 15
wherein said first request also includes a hash value for a file
to upload; said second request is to upload said file and
contains said file; and further comprising fifth program
instructions to independently determine a hash value for said
file and compare said independently determined hash value to
the hash value sent by said first computer for said file, and if
they match, process said file; and wherein said fifth program
instructions are recorded on said medium.

19. A computer program product as set forth in claim 18
wherein:

said second request is to download a portion or all of said
file, and wherein said fourth program instructions pro
cess said second request by responding to said first com
puter with a response comprising the requested portion
or all of said file, information about the requested por
tion or all of said file and an encrypted hash value for said
information, said information comprising a name of said
file and/or file portion.

c c c c c

