Title: FLOW CONTROL MANAGEMENT TO EXTEND THE PERFORMANCE RANGE OF FIBRE CHANNEL LINK

Abstract: Supplemental flow control mechanisms are provided to facilitate efficient data exchange between Fibre Channel ports over extended distances. In one implementation, a supplemental buffer mechanism is maintained and managed in part by substituting a locally generated ready indication signal for the remotely generated ready indication signal provided by the Fibre Channel standard. In this way, data flow may be adjusted optimally irrespective of the relatively long propagation time of the ready signals exchanged by the two sides of the link.
FLOW CONTROL MANAGEMENT TO EXTEND THE PERFORMANCE RANGE OF FIBRE CHANNEL LINK

BACKGROUND OF THE INVENTION

The present invention relates to data networking and more particularly to systems and methods for flow control.

The Fibre Channel standard defines a bi-directional link protocol commonly used to connect computers to disk drives and other peripherals. A typical Fibre Channel link may have a bandwidth of 1063 Mb/s and a span of up to 10 kilometers.

One typical application of Fibre Channel is interconnecting computer CPUs with arrays of disk drives in large scale computing centers, as would be used in, e.g., financial transaction processing. For reasons of fault tolerance, it is desirable to locate redundant storage resources at remote locations. The advent of high data rate metropolitan optical networks makes it possible to implement so-called storage area networks (SANs) that span over a much longer distance than 10 kilometers.

It would be preferable to apply the widely prevalent Fibre Channel standard to communication across SANs and therefore minimize the need to redesign computing center equipment. A problem arises, however, in that most Fibre Channel devices available now assume link distances no more than 10 kilometers while it is desirable to locate SAN nodes much further apart, e.g., hundreds of kilometers.

The Fibre Channel standard defines a flow control scheme that maximizes data throughput while preventing the transmitter from sending more data than the receiver is currently able to process. For the most prevalent classes of Fibre Channel devices, the standard utilizes a buffer-to-buffer credit management scheme. When a link is set up, the two ends exchange information about the size of their receiver buffers. A Fibre Channel receiver port sends a ready signal indication after each received frame but only if there is sufficient buffer space to accommodate the largest possible frame of new data. The transmit port counterpart uses the ready signal indication and its knowledge of the receiver port's buffer size to determine whether or not to transmit a frame. This scheme works well over relatively short distances but
breaks down over larger distances because of the long delay between sending a frame and receiving a ready indication in response.

What is needed are systems and methods for managing flow control in Fibre Channel links that may extend over large distances.

SUMMARY OF THE INVENTION

By virtue of one embodiment of the present invention, supplemental flow control mechanisms are provided to facilitate efficient data exchange between Fibre Channel ports over extended distances. In one implementation, a supplemental buffer mechanism is maintained and managed in part by substituting a locally generated ready indication signal for the remotely generated ready indication signal provided by the Fibre Channel standard. In this way, data flow may be adjusted optimally irrespective of the relatively long propagation time of the ready signals exchanged by the two sides of the link.

A first aspect of the present invention provides a method for operating a transport interface to a local Fibre Channel port to manage flow control. The method includes: receiving a frame for transmission to a remote Fibre Channel port and locally issuing a shadow receiver ready signal indication to said local Fibre Channel port to permit further data transmission from said local Fibre Channel port to said remote Fibre Channel port.

A second aspect of the present invention provides apparatus for operating a transport interface between a local Fibre Channel interface and a link to a remote Fibre Channel interface. The apparatus includes: an ingress/egress block that issues a shadow receiver ready indication to said local Fibre Channel interface to regulate flow based on remote buffer availability and a supplemental buffer that buffers data received from said remote Fibre Channel interface to allow continued data transmission prior to remote receipt of a receive ready signal indication from said local Fibre Channel port.

Further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 depicts an enhanced Fibre Channel link according to one embodiment of the present invention.

Fig. 2 depicts steps of operating a metropolitan port in handling a Fibre Channel frame to be transmitted to a remote site according to one embodiment of the present invention.

Fig. 3 depicts steps of operating a metropolitan port in receiving a receiver ready indication according to one embodiment of the present invention.

Fig. 4 depicts steps of operating a metropolitan port in handling a frame received from the remote end of the link according to one embodiment of the present invention.

Fig. 5 depicts steps of operating a metropolitan port in forwarding a frame received from the remote link end to the local Fibre Channel port.

Fig. 6 depicts a network device according to one embodiment of the present invention.

DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention will be described with reference to a representative application where a Fibre Channel link is tunneled through a transport network (TN).

In one particular implementation, the transport network is implemented as a metropolitan optical network. Fibre Channel frames are transported through the network encapsulated within packets, such as Ethernet packets. Optical network details are not germane to the description of the present invention but it will be appreciated that the Ethernet packets may be carried on optical signals modulated with e.g., 2.5 Gbps or 10 Gpbs data waveforms. Multiple optical signals also may share the same fiber by use of wavelength division multiplexing (WDM) techniques.

Fig. 1 depicts a Fibre Channel link that is carried through a metropolitan network by use of Ethernet transport interfaces according to one embodiment of the present invention. Two Fibre Channel ports 102 and 104 exchange data in accordance with the Fibre Channel standard as described in, e.g., "Fibre Channel Framing and Signaling (FC-FS), Rev 1.70," NCITS Working Draft Proposed American National
Standard for Information Technology, February 8, 2002, the contents of which are herein incorporated by reference in their entirety. Fibre Channel ports 102 and 104 may provide connectivity to devices such as, e.g., disk drives, disk storage arrays, magnetic tape drives, processing units, printers, etc.

A bi-directional link 106 interconnects the Fibre Channel ports, carrying the Fibre Channel frames encapsulated within Ethernet packets. The link 106 can be either an actual physical link or a tunnel through a network cloud. Metro ports 108 and 110 interface Fibre Channel ports 102 and 104 to the metro-optical network.

Metro port 108 includes an ingress block 112 to encapsulate frames to be transmitted and an egress block 114 to deencapsulate Fibre Channel frames from received packets. Similarly, metro port 110 includes an ingress block 116 and an egress block 118.

According to one embodiment of the present invention, metro ports 108 and 110, in addition to encapsulating and deencapsulating Fibre Channel frames, also operate a supplemental flow control mechanism to optimize throughput over longer distances. In support of the supplemental flow control mechanism, metro ports 108 and 110 operate supplemental buffers 120 and 122, respectively. In addition to providing supplemental buffer capacity, metro ports 108 and 110 substitute locally generated receiver ready indications for the remotely generated ones. Remotely generated receiver ready indications are deleted from received frames. (It is understood that "local" in this context refers to the connection between a metro port and its associated Fibre Channel port rather than any specific distance while "remote" refers to the other end of the link.) This scheme overcomes the throughput drop caused by the long delay in receiving the remotely generated ready indication.

Optimal throughput is provided while assuring that the supplemental buffers and the buffers internal to the Fiber Channel ports are not overrun.

Before describing the supplemental flow control mechanism in greater detail, it will be useful to define certain parameters:

M_SIZE: the maximum frame size.
F_SIZE: the frame size of a particular Fibre Channel frame being processed.
BB CREDIT: the "credit number" of a Fibre Channel port, the number of consecutive frames that may be sent to that port in sequence without overrunning the port's internal buffer. The metro port learns the BB CREDIT value of its local Fibre Channel port by monitoring the "login" frame used in establishing the Fibre Channel link.

BB CREDIT_CNT: a variable maintained by each metro port to track the number of unacknowledged frames that have been sent to the local Fibre Channel port. The initial value is zero.

TOTAL_BUF_SIZE: the total buffer size of a metro port's attached buffer.
L_FREE_BUF_SIZE: a variable maintained by a metro port to count free buffer size in its attached buffer. This value is initialized to TOTAL_BUF_SIZE - BB CREDIT*M_SIZE.

R_FREE_BUF_SIZE: a variable maintained by a metro port to count free buffer available at the remote metro port. Initialized to zero.

NEW_BUF_FREED: a value, described below, carried in the encapsulation header of an Ethernet packet carrying a Fibre Channel frame between the two metro ports.

R_RDY_DEBT: a variable maintained by a metro port to count the number of Fibre Channel frames that have been received from the local Fibre Channel port but for which no ready indication response has been sent.

Detailed flow control operation of the metro ports will now be explained with reference to Figs. 2-5. Figs. 2-3 depict the ingress block operation of each metro port while Figs. 4-5 depict the egress block operation.

Fig. 2 depicts steps of operating a metro port ingress block in handling a packet received from the local port according to one embodiment of the present invention. At step 202, the metro port ingress block receives a Fibre Channel frame from its attached local Fibre Channel port. At step 204, the ingress block tests whether R_FREE_BUF_SIZE is greater than or equal to F_SIZE, indicating the availability of buffer space at the remote metro port. If R_FREE_BUF_SIZE is greater than or equal to F_SIZE, then processing proceeds to step 206 where a locally generated ready indication (R_RDY in Fibre Channel terminology) is sent through the
egress block to the local Fibre Channel port. Then, at step 208, R_FREE_BUF_SIZE is decremented by F_SIZE to account for the frame to be transmitted to the remote metro port.

If step 204 finds that R_FREE_BUF_SIZE is less than F_SIZE, then processing proceeds to step 210 where R_RDY_DEBT is incremented, indicating that a frame has been received from the local Fibre Channel Port but no R_RDY has been sent back in exchange. Then at step 212, R_FREE_BUF_SIZE is incremented by M_SIZE - F_SIZE. The increase by M_SIZE is because BB_CREDIT*M_SIZE of buffer space was reserved initially. Therefore, for each unacknowledged frame, the flow control mechanism can release M_SIZE of buffer space. At step 214, the Fibre Channel frame is encapsulated with a header including a value of NEW_BUF_FREED that has been set to L_FREE_BUFF_SIZE. L_FREE_BUFF_SIZE is then reset to zero. The encapsulated frame is sent to the remote end of the link. If no frame has been received from the local Fibre Channel port for a predetermined time, e.g., a time equivalent to the time necessary to receive 2 to 8 consecutive maximum size frames, then step 214 is performed anyway, encapsulating and transmitting an empty frame for the purpose of sending the header information.

Fig. 3 depicts steps of operating a metro port ingress block in handling a receive ready indication (R_RDY) received from the local Fibre Channel port. At step 302, R_RDY is received from the local Fibre Channel port indicating readiness for new data. Rather than being relayed to the remote Fibre Channel port, the R_RDY simply causes the metro port to decrement the value of BB_CREDIT_CNT by one at step 304 to locally account for the local Fibre Channel port's indicated receptiveness to new data.

Fig. 4 depicts steps of operating a metro port egress block to handle a packet received via the link. In particular, Fig. 4 pertains to steps prior to release from the local buffer. At step 402, the egress block receives an encapsulation packet from the remote metro port. The value NEW_BUF_FREED is extracted from the encapsulation header and the FC frame (if non-empty) is locally buffered. At step 404, R_FREE_BUF_SIZE is incremented by NEW_BUF_FREED. A step 406 tests
whether R_RDY_DEBT is greater than zero indicating unacknowledged frames. If R_RDY_DEBT is not greater than zero, the process terminates. If R_RDY_DEBT is greater than zero, then processing proceeds to step 408 which tests if R_FREE_BUF_SIZE is greater than or equal to the maximum frame size, M_SIZE. If R_FREE_BUF_SIZE is not greater than or equal to M_SIZE, the process terminates. If R_FREE_BUF_SIZE is greater than or equal to M_SIZE then the process moves on to step 410. At step 410, a locally generated R_RDY is sent to the local Fibre Channel port, the value of R_RDY_DEBY is decremented by one, and the value of R_FREE_BUF_SIZE is decremented by M_SIZE. After step 410, processing returns to step 406. Thus the ready indication is generated depending on remote buffer availability and whether ready indications are "owed" to the local Fibre Channel port based on the port's earlier transmissions.

Fig. 5 depicts steps of operating the metro port egress block to transfer frames from the local buffer to the local Fibre Channel port. The steps of Fig. 5 are performed periodically when the local buffer is non-empty. A step 502 determines if there is free buffer within the local Fibre Channel port by comparing BB_CREDIT_CNT to BB_CREDIT. If there is no free buffer space there (BB_CREDIT_CNT greater than or equal to BB_CREDIT), the process terminates. If BB_CREDIT_CNT is less than BB_CREDIT, then processing proceeds to step 504. At step 504, a frame is dequeued from the metro port's buffer and sent to the local Fibre Channel port. Also, the BB_CREDIT_CNT value is incremented and the value of L_FREE_BUF_SIZE is increased by F_SIZE, the size of the just-dequeued frame.

The flow control mechanism process described above provides maximum throughput while guaranteeing no buffer overflow. Unlike the original Fibre Channel flow control mechanism, the actual frame size is used in managing the metro port buffers, making for more efficient use of available buffer space. Excellent performance has been found over a broad range of traffic patterns.

NETWORK DEVICE DETAILS

Fig. 6 depicts a network device 600 that may be used to implement, e.g., the metro ports of Fig. 1 and/or perform any of the steps of Figs. 2-5. In one
embodiment, network device 600 is a programmable machine that may be implemented in hardware, software or any combination thereof. A processor 602 executes code stored in a program memory 604. Processor 602 may perform the encapsulation, deencapsulation, and flow control operations described above. Program memory 604 is one example of a computer-readable storage medium. Program memory 604 can be a volatile memory. Another form of computer-readable storage medium storing the same codes would be some type of non-volatile storage such as floppy disks, CD-ROMs, DVD-ROMs, hard disks, flash memory, etc. A carrier wave that carries the code across a network is another example of a computer-readable storage medium.

Network device 600 interfaces with physical media via a plurality of network interfaces 606. For example, one of network interfaces 606 may couple to an optical fiber and may incorporate appropriate physical and link layer functionality. In one implementation, there may be a network interface for the bi-directional metropolitan optical Ethernet link and another network interface for connecting to the local Fibre Channel port. The optical Ethernet interface may be a Gigabit Ethernet interface, 10-Gigabit Ethernet interface, etc. As packets are received, processed, and forwarded by network device 600, they may be stored in a packet memory 608.

Packet memory 608 may serve to implement buffers such as buffers 120 and 122. Network device 600 implements all of the network protocols and extensions thereof described above as well as the data networking features provided by the present invention.

It is understood that the examples and embodiments that are described herein are for illustrative purposes only and that various modifications and changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims and their full scope of equivalents.

The flowchart steps of Figs. 2-5 may be omitted, rearranged, substituted, or supplemented within the scope of the present invention.
CLAIMS

1. A method for operating a transport interface to a local Fibre Channel port to manage flow control, said method comprising:
 receiving a frame for transmission to a remote Fibre Channel port; and
 locally issuing a shadow receiver ready signal indication to said local Fibre Channel port to permit further data transmission from said local Fibre Channel port to said remote Fibre Channel port.

2. The method of claim 1 further comprising:
 operating a local supplemental buffer to allow said remote Fibre Channel port to continue data transmission prior to remote receipt of a receive ready signal indication from said local Fibre Channel port.

3. The method of claim 2 further comprising:
 transmitting said frame to said remote Fibre Channel port.

4. The method of claim 3 wherein transmitting said frame to said remote Fibre Channel port comprises:
 encapsulating said frame with information about available space in said local supplemental buffer.

5. The method of claim 1 wherein locally issuing said shadow receiver ready indication comprises:
 tracking remote buffer availability based on received frame encapsulation data; and
 issuing said shadow receiver ready indication only when there is remote buffer availability.

6. Apparatus for operating a transport interface between a local Fibre Channel interface and a link to a remote Fibre Channel interface, said apparatus comprising:
an ingress/egress block that issues a shadow receiver ready indication
to said local Fibre Channel interface to regulate flow based on remote buffer
availability; and

a supplemental buffer that buffers data received from said remote Fibre
Channel interface to allow continued data transmission prior to remote receipt of a
receive ready signal indication from said local Fibre Channel port.

7. The apparatus of claim 6 wherein said ingress/egress block
receives a frame for transmission to said remote Fibre Channel port.

8. The apparatus of claim 7 wherein said ingress/egress block
transmits said frame to said remote Fibre Channel port encapsulated with information
about availability of storage within said supplemental buffer.

9. The apparatus of claim 7 wherein said ingress/egress tracks
remote buffer availability based on received frame encapsulation data and issues said
shadow receiver ready indication only when there is remote buffer availability.

10. A computer program product for operating a transport interface
to a local Fibre Channel port to manage flow control, said computer program product
comprising:

 code that receives a frame for transmission to a remote Fibre Channel
 port;

 code that locally issues a shadow receiver ready signal indication to
 said local Fibre Channel port to permit further data transmission from said local Fibre
 Channel port to said remote Fibre Channel port; and

 a computer-readable storage medium that stores the codes.

11. The computer program product of claim 10 further comprising:
 code that operates a local supplemental buffer to allow said remote
 Fibre Channel port to continue data transmission prior to remote receipt of a receive
 ready signal indication from said local Fibre Channel port.

12. The computer program product of claim 11 further comprising:
code that transmits said frame to said remote Fibre Channel port.

13. The computer program product of claim 12 wherein said code that transmits said frame to said remote Fibre Channel port comprises:
 5 code that encapsulates said frame with information about available space in said local supplemental buffer.

14. The computer program product of claim 10 wherein said code that locally issues said shadow receiver ready indication comprises:
 10 code that tracks remote buffer availability based on received frame encapsulation data; and
 code that issues said shadow receiver ready indication only when there is remote buffer availability.

15. Apparatus for operating a transport interface to a local Fibre Channel port to manage flow control, said apparatus comprising:
 15 means for receiving a frame for transmission to a remote Fibre Channel port; and
 means for, locally issuing a shadow receiver ready signal indication to said local Fibre Channel port to permit further data transmission from said local Fibre Channel port to said remote Fibre Channel port.

16. The apparatus of claim 15 further comprising:
 20 means for operating a local supplemental buffer to allow said remote Fibre Channel port to continue data transmission prior to remote receipt of a receive ready signal indication from said local Fibre Channel port.

17. The apparatus of claim 16 further comprising:
 25 means for transmitting said frame to said remote Fibre Channel port.

18. The apparatus of claim 17 wherein said means for transmitting said frame to said remote Fibre Channel port comprises:
 means for encapsulating said frame with information about available space in said local supplemental buffer.
19. The apparatus of claim 15 wherein said means for locally issuing said shadow receiver ready indication comprises: means for tracking remote buffer availability based on received frame encapsulation data; and means for issuing said shadow receiver ready indication only when there is remote buffer availability.
Receive frame.

Does remote buffer have sufficient space?

yes

Send receiver ready indication.

no

Increment count of unacknowledged frames

Increase remote buffer size value by maximum frame size minus sent frame size.

Encapsulate frame with local number of free buffers.

End

Decrease remote buffer size value by sent frame size.
Fig. 3

- 302 Receive receiver ready indication.
- 304 Decrement buffer-to-buffer credit count.
402
Receive packet from other link end.

404
Increase local value of remote buffer size by received free buffer val.

406
Are there unacknowledged frames?

408
Is remote buffer size > max. frame size?

410
Transmit receive ready indication to local FC port.

End

Yes

No
Fig. 5

Is there free buffer in local FC port?

no

yes

Transmit frame to local FC port.

Increment buffer-to-buffer credit count.

Increase local free buffer size by frame size.

End.

End
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H04L12/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 610 745 A (BENNETT DWAYNE) 11 March 1997 (1997-03-11) figures 2,3,5,6 column 2, line 35-67 column 3, line 12-24,57-67 column 4, line 1-7 column 6, line 16-26,36-67 column 7, line 1-67 column 8, line 1-67</td>
<td>1-19</td>
</tr>
<tr>
<td>X</td>
<td>US 5 638 518 A (MALLADI SRINIVASA R) 10 June 1997 (1997-06-10) figures 2,6,8,10B column 4, line 13-18 column 5, line 54-69 column 7, line 5-15 column 8, line 1-22</td>
<td>1-19</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another publication or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **Z** document member of the same patent family

Date of the actual completion of the international search: 2 October 2003

Date of mailing of the international search report: 14/10/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HJ Rijswijk
Tel. (+31-70) 945-2040, Tx. 31 051 epi nl, Fax. (+31-70) 340-3016

Authorized officer
Mircescu, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
<pre><code> | column 3, line 64-67 | 1-19 |
</code></pre>
<p>| | column 4, line 1-13,38-48 | |
| | column 10, line 50-62 | |
| | column 21, line 29-43 | |
| | column 24, line 61-67 | |
| | column 25, line 1-5 | |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 0772323 A2</td>
<td>07-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9149083 A</td>
<td>06-06-1997</td>
</tr>
<tr>
<td>US 5638518 A</td>
<td>10-06-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6656998 A</td>
<td>26-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 457444 B</td>
<td>01-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9835307 A2</td>
<td>13-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6169398 A</td>
<td>26-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0960517 A1</td>
<td>01-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 495671 B</td>
<td>21-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9835480 A1</td>
<td>13-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6076115 A</td>
<td>13-06-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6085248 A</td>
<td>04-07-2000</td>
</tr>
</tbody>
</table>