Office de la Propriete Canadian CA 2390849 A1 2003/12/18

Intellectuell Intellectual P
du Canada Office o opery 2n 2 390 849
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2002/06/18 (51) Cl.Int.//Int.Cl.” GO6F 17/27, GO6F 7/00

(41) Mise a la disp. pub./Open to Public Insp.: 2003/12/18 (71) Demandeur/Applicant:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
FLASZA, MIROSLAW A., CA;
SHARPE, DAVID C., CA

(74) Agent: ROSEN, ARNOLD

(54) Titre : SYSTEME ET METHODE DE TRI DE DONNEES
(54) Title: SYSTEM AND METHOD FOR SORTING DATA

(57) Abrége/Abstract:
A method for comparing data, and in particular character data, Is disclosed. Two pieces of data are compared to determine If

they are within an equivalence class based on using a dictionary sort order table with a non-unigue collating sequence. If so, the
pleces of data are compared using a dictionary sort order table with a unique collating sequence. The comparison method may
be iImplemented within a sorting module that receives an input data set and then uses the comparison to compare two pieces of
data in the Input data set at a time. The sorting module uses the result of the comparison method to sort the input data set into
equivalence classes. The results of a second comparison provides data sorted within equivalence classes. The sorting module
may provide sorting services to a database management system or to a calling program.

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191




10

15

Cke el

CA 02390849 2002-06-18

SYSTEM AND METHOD FOR SORTING DATA

ABSTRACT

A method for comparing data, and in particular character data, is disclosed. Two

pieces of data are compared to determine if they are within an equivalence class based
on using a dictionary sort order table with a non-unique collating sequence. If so, the
pieces of data are compared using a dictionary sort order table with a unique collating
sequence. The comparison method may be implemented within a sorting module that
receives an input data set and then uses the comparison to compare two pieces of data
in the input data set at a time. The sorting module uses the result of the comparison
method to sort the input data set into equivalence classes. The results of a second
comparison provides data sorted within equivalence classes. The sorting module may
provide sorting services to a database management system or to a calling program.




10

15

20

235

CA 02390849 2002-06-18

SYSTEM AND METHOD FOR SORTING DATA

Field of the Invention

The present invention relates to a system and method for sorting data. More
particularly, the invention relates to sorting character data into equivalence classes and
within equivalence classes. '

Background of the Invention

Sorting character data is a common operation performed by computer systems.
The English language, like many languages, makes use of multiple forms of letters in
an alphabet. Each English letter has an uppercase form and a lowercase form.

Various grammatical rules require the use of the uppercase and lowercase letters in
particular circumstances in written English. In addition, writers may elect to use
uppercase and lowercase letters to emphasize words or for other reasons. The use of
uppercase or lowercase letters does not normally affect the meaning of an English
word, and all variations of the English word are generally considered to be equivalent to
one another.

Words are often sorted alphabetically based on a standard dictionary sort order,
without regard to whether they are written using uppercase letter, lowercase letter or a
mixture of uppercase and lowercase letters. For example, the words "Chad", "CHAD"
and "chad" are generally considered equivalent by most readers. Any version of the
word "alpha" would be alphabetized before any version of the word "chad”, and any
version of the word "delta" would be alphabetized after any version of the word "chad".
The three versions of the word "chad", as well as other versions such as "cHAd", can
be said to be in a single equivalence class, when words are organized alphabetically.
Within such an equivalence class, one typical method of alphabetizing different forms of
a word is to give precedence to an uppercase letter over a lowercase letter.
Accordingly, the three versions of "chad" above may be ordered as follows: "CHAD",

then "Chad”, and then "chad".




10

15

20

25

30

e et i -
CA 02390849 2002-06-18

Computer systems use character sets that are used to form coded character
strings to represent words. Typically, a character set will include different characters for
each form of a letter. A common character set used by digital computers is the ASCII
character set which provides distinct coded characters for representing all uppercase
forms of letters and distinct coded characters for representing all lowercase forms of
letters. To the digital computer system, the different coded characters (‘coded
character’ is hereinafter refered to as ‘character’) are unrelated to one another, and
character strings formed using the different characters are seen by the computer
system as distinct from one another.

A computer system would see the three character strings “Chad”, "CHAD" and
“chad” as distinct from one another. As a result, the computer system may not
alphabetize the character string “alpha” before the character string “CHAD". The
computer system may also not alphabetize the character string “DELTA" before the
character string “chad”. In general , the computer system cannot use its basic
character set to sort words in the same way that a person would. To allow computers
to group different forms of the same word, dictionary sort order tables are defined to
map the dictionary sort order to the order of characters in the computer system’s
character set.

Dictionary sort order tables may have a unique collating sequence that allows all
character strings to be distinguished from one another and organized in a desirable
sequence, such as the alphabetic sequence described above. Such sort order tables
have the problem that they cannot be used to identify character strings that are in the
same equivalence class — i.e. they are different forms of the same word using different
combinations of uppercase and lowercase letters.

Other dictionary sort order tables have a non-unique collating sequence that
allows character strings in the same equivalence class to be identified, but they cannot
be used to order the strings in a desirable order within an equivalence class.

Accordingly, a solution that addresses, at least in part, this and other

shortcomings is desired.




10

15

20

235

S N A TR :
CA 02390849 2002-06-18

Summary of the Invention

The invention provides a system and method for sorting data such as character
data by equivalence classes as well as within equivalence classes. In one
embodiment, the present invention provides a method of comparing two pieces of data
in which the two data are first compared using a dictionary sort order table with a
non-unique collating sequence, and if the two pieces of data are found to members of
the same equivalence class, they are compared again using a dictionary sort order
table with a unique collating sequence, and the result of the second comparison is used
to identify which of the two pieces of data should be presented first.

In an aspect of the invention, there is provided a method of ordering a first
character string and a second character string including comparing the first character
string and the second character string according to a first dictionary sort order table with
a non-unique collating sequence, and comparing the first character string and the
second character string according to a second dictionary sort order table with a unique
coliating sequence.

In another aspect of the present invention, there is provided a data processing
system having computer readable code for directing said data processing system to
impliment the method of as described in the previous paragraph.

In yet another aspect of the invention, there is provided a method of sorting an
input data list containing a list of character strings including (a) selecting one of the
character strings as a first character string and another of the character strings as a
second character string, (b) comparing the first character string and the second
character string according to a first dictionary sort order table with a non-unique
collating sequence, (c) comparing the first character string and the second character
string according to a second dictionary sort order table with a unique collating
sequence, (d) repeating steps (a) to (c) iteratively by selecting different pairs of first and
second character strings in accordance with a sorting algorithm, (e) using the results of
step (b) to sort the character strings into equivalence classes, and (f) using the results
of step (c) to sort the character strings within their equivalence classes.




10

15

20

25

30

SRR I N [N |
CA 02390849 2002-06-18

In yet another aspect of the present invention, there is provided a data
processing system having computer readabie code for directing said data processing
system to impliment the method of as described in the previous paragraph.

In yet another aspect of the invention, there is provided a computer readable

medium embodying instructions for performing a method of ordering a first character
string and a second character string, the method including comparing the first character
string and the second character string according to a first dictionary sort order table with
a non-unique collating sequence, and comparing the first character string and the
second character string according to a second dictionary sort order table with a unique
collating sequence.

In yet another aspect of the invention, there is provided a computer readable
medium embodying computer readable instructions for performing a method of sorting
an input data list containing a list of character strings, the method including (a) selecting
one of the character strings as a first character string and another of the character
strings as a second character string, (b) comparing the first character string and the
second character string according to a first dictionary sort order table with a non-unique
collating sequence, (c) comparing the first character string and the second character
string according to a second dictionary sort order table with a unique collating
sequence, (d) repeating steps (a) to (c) iteratively by selecting different pairs of first and
second character strings in accordance with a sorting algorithm, (e) using the results of
step (b) to sort the character strings into equivalence classes, and (f) using the results
of step (c) to sort the character strings within their equivalence classes.

A better understanding of these and other embodiments of the present invention
can be obtained with reference to the following drawings and description of the

preferred embodiments.

Brief Description of the Drawings

An exemplary embodiment of the present invention will now be described with

reference to the accompanying drawings, in which:




10

15

20

25

30

CA 02390849 2002-06-18

Figure 1 illustrates a portion of the ASCI| character set widely used in computer
systems;

Figure 2 illustrates a dictionary sort order table with a unique collating sequence;

Figure 3 illustrates a dictionary sort order table with a non-unique collating
sequence;

Figure 4 illustrates a system including a comparison module according to the
present invention; and

Figures 5 and 6 illustrate a method according to the present invention.

Detailed Description of an Exemplary Embodiment

Reference is first made to Figure 1. Alphabetic characters are represented in
computer memory by numbers defined by a character set. A common example of a
character set is the ASCII character set. The ASCII character set uses 8 bit numbers
between 0 and 255 to represent alpha- numeric characters, control characters and
other characters. Other character sets may have more than 256 characters, requiring
the use of numbers with more than 8 bits. Each character in the character set has a
unique number, which may be referred to as the character’s code point. Figure 1
illustrates a portion of the ASCII character set 20.

ASCI character set 20 includes characters for the Roman letters that are
generally used for the English language and other languages. The alphabet of most
languages is typically presented in a standardized dictionary sort order. This dictionary
sort order defines the weight of each letter in the alphabet to be used when sorting
letters in the alphabet. In the dictionary sort order, a letter with a lower weight precedes
a letter with a higher weight. The dictionary sort order for a particular alphabet can
depend on the particular language and, in some cases, the geographic territory in
question. In some languages a single letter may have more than one representation.
For example, in English, each letter has an uppercase and a lowercase form. In the
dictionary sort order of the English alphabet, the uppercase and a lowercase form of
each letter are given the same weight.




10

15

20

25

30

A
CA 02390849 2002-06-18

The order of characters in a computer character set, such as ASCII character set
20, will typically be different from the dictionary sort order for the letters that are
included in the character set. To sort the characters in the computer character set
consistently with the dictionary sort order for the alphabet in use, computer programs
use dictionary sort order tables that provide a mapping between the character code
points in the character set and the letter weights in the dictionary set order. Known
dictionary sort order tables may have a unique collating sequence or a non-unique
collating sequence.

Figure 2 illustrates a dictionary sort order table 22 with a unique collating
sequence. In a dictionary sort order table with a unique collating sequence each
character in the computer character set is assigned a unique collating weight based on
the weights assigned to corresponding letters in the dictionary sort order of the relevant
language. Since all characters are assigned unique weights, different forms of the
same letter are often assigned consecutive or effectively consecutive weights. Typically,
the uppercase form of an English letter is considered to have a lower weight than its
corresponding lowercase form. Dictionary sort order table 22 follows this rule, but could
follow the opposite rule. In dictionary sort order table 22, the uppercase “D” is assigned
a weight of 69 and the lowercase “d” is assigned a higher weight of 70.

A single word, such as “chad” may be written in various combinations of
uppercase and lowercase letters. In a computer, such combinations are usually
referred to a character strings. Two different character strings corresponding to the
word “chad” are “CHAD” and “Chad”. When character strings are sorted using
dictionary sort order table 22 with a unique collating sequence, uppercase and
lowercase forms of the same letter have different weights. By comparing successive
pairs of letter in a pair of strings, one of the strings may be determined to have a lower
collating weight, unless the strings are identical. For example, the character string
“CHAD” can be determined to have a lower collating weight that the character string
“Chad”. Initially, the first letter of each string is compared. Each string begins with an
uppercase C so these letters have equal weight (144). Then the next letter of each
string is compared. Since the uppercase H in “CHAD" has a lower weight (154) than

6




10

15

20

25

S

CA 02390849 2002-06-18

the lowercase h in Chad (which has a weight of 165), the character string “CHAD" has a
lower collating weight than the character string Chad according to dictionary sort order
table 22.

As noted above, the character strings “CHAD” and Chad (as well as “chad’, etc.)
are typically considered to be the same word in the English language. These character
strings can be said to be in an “equivalence class”. By sorting them with dictionary sort
order table 22, the two different character strings have been distinguished and sorted,
but the fact that they are in the same equivalence class (i.e. they are the same English
word) has been lost. This type of sort may be referred to as a “case-sensitive” sort.

Figure 3 illustrates a dictionary sort order table 24 with a non-unique collating
sequence. In a dictionary sort order table with a non-unique collating sequence each
character corresponding to the same letter is assigned the same collating weight, based
on the weight of the letter in the dictionary sort order for the language in use.
Accordingly, both the uppercase A and lowercase a are assigned the same collating
weight in dictionary sort order table 24.

When the character strings “CHAD” and Chad are sorted using dictionary sort
order table 24, they are determined to be in the same equivalence class, since each
corresponding pair of letters in both strings has the same weight. These and other
character strings such as “chad”, cHad, chAD, etc) are all in the same equivalence
class and/ dictionary sort order table 24 does not distinguish between them. As a
result, they could be sorted in any arbitrary order. As noted above, in many cases It
preferable to list these strings in the order “CHAD”, Chad. This may be desirable to
provide an aesthetically pleasing list for a report, etc. In other cases, the opposite
order may be preferable.

By sorting these character strings using dictionary sort order table 23 with a
non-unique collating sequence, the fact that both character strings “CHAD” and Chad
are the same English word and in the same equivalence class is recognized but the
desired sort order of the character strings (within the equivalence class) themselves is
ignored. This type of sort may be referred to as a “case- insensitive” sort.




10

15

20

25

30

I TR (.
CA 02390849 2002-06-18

Reference is next made to Figure 4 which illustrates a system 40 that allows
different character strings to be sorted in a desirable sequence, including character
strings that represent the same word.

System 40 includes a sorting module 44, a dictionary sort order table 46 with a
non-unique collating sequence and a dictionary sort order table 48 with a unique
collating sequence. Sorting module 44 also includes a comparison module 52.
Alternatively, comparison module 52 may be separate from sorting module 44 and may
include a function call to allow sorting module 44 to access comparison module 52.

In this exemplary embodiment of the present invention, dictionary sort order table
46 is identical to dictionary sort order table 24 (Figure 3) and dictionary sort order table
48 is identical to dictionary sort order table 22 (Figure 2). Dictionary sort order table 46
is chosen to allow equivalence classes of English language character strings to be
distinguished from one another, without providing any distinction between character
strings that are in the same equivalence class. Dictionary sort order table 48 is chosen
to allow character strings within an equivalence class to be distinguished from one
another. In other embodiments of the invention, other dictionary sort order tables may
be used depending on the dictionary sort order for the language in use or on the
specific distinctions to be made between equivalence classes and elements within
equivalence classes.

System 40 may be used to provide data sorting services to a calling program 42.
Alternatively, system 40 may be part of a database management system (not shown)
and may provide data sorting services to the database management system. Typically,
system 40 will be installed in a computer system 56. Computer system 56 may include
more than one computer, storage devices and other elements. The components of
system 40 may be distributed in different parts of computer system 56.

Sorting module 44 is configured to receive an unsorted input data set 60 from
calling program 42. Input data set 60 may be any type of character string data in which
any particular datum may include different forms of letters or other symbols that could
be given an equal weight in a dictionary sort order, but for which a preferred order of
sorting may be defined. An exemplary input data set 60 comprises the five data:

8




10

15

20

25

CA 02390849 2002-06-18

character strings “chad”, “Alpha”, “CHAD?", “delta”, and “Chad”. This exemplary input
data set 60 will be used to explain the operation of system 40.

Sorting module 44 sorts the data in input data set 60 into their equivalence
classes according to dictionary sort order table 46 and within their equivalence classes
according to dictionary sort order table 48 to produce an output data set 62. Output
data set 62 is returned to calling program 42.

To sort input data set 60 to produce output data set 62, sorting module 44 may
implement any sorting algorithm such as bubble sort, quick sort, insertion sort, etc.
During each iteration of the sorting algorithm, sorting module 44 passes two data from
input data set 60 to comparison module 52. In response, comparison module 52
returns a first return value R1 to sorting module 44. The first return value R1 is based
on a comparison of the two datum based on dictionary sort order table 46. If the two
datum are equal (i.e. they are in the same equivalence class) when compared
according to dictionary sort order table 46, comparison module 52 also returns a
second return value R2 to sorting module 44. The second return value R2 is based on
a comparison of the two datum based on dictionary sort order table 48. During
successive iterations of the sorting algorithm, sorting module 44 will receive a series of
return values R1 and R2 from comparison module 52.

Sorting module 44 sorts the data in input data set 60 into a single list in which (i)
equivalence classes are sorted and grouped together based on the series of return
values R1 and (ii) data within equivalence classes are ordered into a desirable order
based on the series of return values R2. The sorted data forms output data set 62,
which is returned to the calling program 42 when input data set 60 has been fully
sorted.

Reference is next made to Figures 5 and 6. Method 100 illustrates the operation
of comparison module 52. Method 100 will be explained using an example in which two
of the data in input data set 60, character strings “CHAD"” and “Chad”, are compared to

each other.




10

15

20

25

30

R N E N T
CA 02390849 2002-06-18

Method 100 begins in step 102 in which sorting module 44 receives a pair of
data D1 and D2 from calling program 42. For example, D1 may be character string
“CHAD"” and D2 may be character string “Chad”.

Method 100 proceeds to step 104, in which a current position counter POS is set
to 0.

Method 100 proceeds to step 106. In step 106, a variable N1 is set equal to the
weight of the character in the current position of datum D1, according to dictionary sort
order table 46, which has a non-unique collating sequence. A skilled person will
understand that the characters in a character string having a length of M characters are
typically referred to as being in positions 0, 1, 2, ..., M-1. Accordingly, when the current
position counter equals 0, the first character of the character string is at the current
position. Alternatively, the current position counter POS could be initialized to 1 in step
104 and the positions of each character string may be numbered 1, 2, 3, ..., M.

The character in the current position of datum D1 is “C” and N1 is thus equal to
93 (See Figure 3). In addition, a variable N2 is set equal to the weight of the character
in the current position of datum D1. The character in the current position of datum D2
is “C” and N2 is thus also set to 93.

Method 100 next proceeds to decision step 108, in which the values of N1 and
N2 are compared. If N1 is equal to N2, then method 100 proceeds to decision step
110. If N1 is not equal to N2, then method 100 proceeds to step 126.

From decision step 110, if the character at the current position of datum D1 is
the last character of datum D1 or if the character at the current position of datum D2 is
the last character of datum D2, then method 100 proceeds to decision step 114.
Otherwise, there is at least one more character in each of datum D1 and datum D2 and
method 100 proceeds to step 112.

In step 112, the current position pointer POS is incremented and method 100
returns to step 106.

In the present example, method 100 will loop through steps 106, 108 and 110
four times and step 112 three times while the successive characters in datum D1
(“CHAD") and datum D2 (“Chad”) are compared. Since variables N1 and N2 are set in

10




10

15

20

25

30

CA 02390849 2002-06-18

step 106 using dictionary sort order table 46, with has a non-unique collating sequence
with uppercase and lowercase forms of each letter having the same weight, method
100 will reach the ends of datum D1 and D2 on the fourth iteration through step 110. At
that point, method 100 will proceed to step 114.

In decision step 114, the lengths of datum D1 and D2 are compared. If their
lengths are equal, then method 100 proceeds to step 116. Otherwise, method 100
proceeds to decision step 120.

In step 116, return value R1 is set to EQ, indicating that data D1 and D2 are
members of the same equivalence class according to dictionary sort order table 46.
Data D1 and D2 will be in the same equivalence class if they have the same number of
characters and if each corresponding letter of each datum D1 and D2 have the same
weight according to dictionary sort order table 46. Method 100 proceeds to step 140
(Figure 6).

In the present example, method 100 will proceeds through step 116 to step 140,
since datum D1 and datum D2 are of equal length.

From decision step 120, method 100 proceeds to step 122 if the length of datum
D1 is less than the length of datum D2. If the length of datum D1 is longer than the
length of datum D2, then method 100 proceeds to step 124.

In step 122, return value R1 is set to “D1”, indicating that datum D1 has a lower
weight than datum D2. Method 100 then proceeds to step 132.

In step 124, return value R2 is set to “D2", indicating that datum D2 has a lower
weight than datum D1. Method 100 then proceeds to step 132.

Step 114, 116, 120 and 122 implement a rule that if one of the datum is longer
than the other, but no difference in the weight of corresponding character is found in
any iteration of step 108, then the shorter datum is deemed to have a lower collating
weight. In another embodiment, the longer datum may be deemed to have a lower
collating weight. In another embodiment, differences in the length of data D1 and D2
may be ignored and method 100 may proceed directly from step 110 to step 116 if the
end of datum D1 or D2 has been reached. In such an embodiment, steps 114, 120 and

122 would not exist.

11




10

15

20

25

30

N R T TR T
CA 02390849 2002-06-18

In step 126, the weights N1 and N2 of the characters in the current position of
data D1 and D2 are compared. If N1 is less than N2, then method 100 proceeds to
step 128. If N2 is greater than N1, then method 100 proceeds to step 130.

In step 128, return value R1 is set to “D1", indicating that datum D1 has a lower
weight than datum D2, when they are compared according to dictionary sort order table
46. Method 100 then proceeds to step 132.

In step 130, return value R1 is set to “D2", indicating that datum D2 has a lower
weight than datum D1, when they are compared according to dictionary sort order table
48. Method 100 then proceeds to step 132.

In step 132, method 100 returns return value R1 to calling program 42 and then
ends.

Reference is next made to Figure 6. If method 100 reaches step 140, then data
D1 and D2 are equal when compared according to dictionary sort order table 46 and
they have the same length. In the following steps, data D1 and D2 are compared
according to dictionary sort order table 48, which has a unique collating sequence. This
allows uppercase and lowercase forms of the same letter to be distinguished and
allows character strings within the same equivalence class to be ordered based on the
unique collating weights defined in dictionary sort order table 48.

In step 140, current position counter POS is set to 0.

Method 100 proceeds to step 142. In step 142, variable N1 is set equal to the
weight of the character in the current position of datum D1, according to dictionary sort
order table 48. The character in the current position of datum D1 is an uppercase “C”
and N1 is thus set equal to 144. Variable N2 is set equal to the weight of the character
in the current position of datum D2. The character in the current position of datum D2
is also an uppercase “C” and N2 is also set to 144.

Method 100 next proceeds to decision step 144, in which the values of N1 and
N2 are compared. If N1 is equal to N2, then method 100 proceeds to decision step
146. If N1 is not equal to N2, then method 100 proceeds to step 152.

From decision step 144, if the character at the current position of datum D1 is
the last character of datum D1 or if the character at the current position of datum D2 is

12




10

15

20

25

30

TR AR R
CA 02390849 2002-06-18

the last character of datum D2, then method 100 proceeds to step 150. Otherwise,
there is at least one more character in each of datum D1 and datum D2 and method
100 proceeds to step 148.

In step 148, the current position pointer POS is incremented and method 100
returns to step 142.

In step 150, return value R1 is set to EQ, indicating that data D1 and D2 are
equal according to dictionary sort order table 46. Data D1 and D2 will be equal if each
corresponding pair of letters in each of them is the same form (uppercase or lowercase)
of the same letter. Method 100 proceeds to step 158.

In the present example, method 100 will loop through steps 142 and 144 twice
and steps 146 and 148 once while the successive characters in datum D1 ("CHAD")
and datum D2 (“Chad”) are compared. Variables N1 and N2 are set in step 142 using
dictionary sort order table 48, with has an unique collating sequence with uppercase
and lower case forms of each letter having distinct weights. When the position counter
is incremented to 1, variables N1 and N2 will be set based on the second character in
datum D1 and datum D2, respectively. The second character in datum D1 is an
uppercase “H” and the value of N1 is set to 154. The second character of datum D2 is
a lowercase “h” so the value of N2 is set to 155. When method 100 reaches step 144
for the second time, method 100 will proceed to step 152, since N1 will not be equal to

N2.
In step 152, the weights N1 and N2, according to dictionary sort order tabie 48,

of the characters in the current position of data D1 and D2 are compared. If N1 is less
than N2, then method 100 proceeds to step 154. If N2 is greater than N1, then method

100 proceeds to step 156.
In step 128, return value R2 is set to “D1”, indicating that datum D1 has a lower

weight than datum D2, according to dictionary sort order table 58. Method 100 then

proceeds to step 158.
In step 156, return value R2 is set to “D2", indicating that datum D2 has a lower

weight than datum D1, according to dictionary sort order table 58. Method 100 then
proceeds to step 158.

13




10

15

20

ST R T T I
CA 02390849 2002-06-18

In step 158, method 100 returns return values R1 and R2 to calling program 42.
Method 100 then ends.

Return value R1 returned by method 100 to calling program 42 indicates
whether, when data D1 and D2 passed to method 100 in step 102 are compared
according to dictionary sort order table 46, (i) datum D1 has a lower weight than datum
D2; (ii) datum D2 has a lower weight than datum D1; or (iii) data D1 and D2 have the
same weight and are in the same equivalence.

If return value R1 indicates that data D1 and D2 are in the same equivalence
class, then return value R2 indicates whether, when data D1 and D2 are compared
according to dictionary sort order table 48, (i) datum D1 has a lower weight than datum
D2; (it) datum D2 has a lower weight than datum D1; or (iii) data D1 and D2 have the
same weight. In this exemplary embodiment, when the value of return value is D1 or
D2, then the value of return value R2 is not calculated by method 100 and therefore has
nO meaning.

In an alternative embodiment of the present invention, return value R2 may be
calculated regardiess of the value of return value R1. To implement this option, method
100 would proceed from step 122, 124, 128 or 130 to step 140, rather than to step 132.

Return values R1 and R2 are returned to calling program 42 together in step 158.

Table 1 illustrates the results of method 100 when each combination of the data
“chad”, Alpha, “CHAD", delta, and “Chad” is passed to method 100 as data D1 and D2
in step 102.

D1 RD

“chad”

R1
“Alpha”
“CHAD” D2
“chad” D1
“Chad”

uCHADu D1

“Alpha”
“Alpha”

]




10

15

20

cdheha o f

CA 02390849 2002-06-18

“Alpha” “Chad” D1
“CHAD’ D1
“CHAD” “Chad”
“Chad”

D2

-
e
| E -
.
-
- '
wes
'
P
S
———
dokd

Table 1. Return values R1 and R2 from method 100 for combinations of data D1 and
D2.

Depending on the sorting algorithm implemented in sorting module 44, sorting
module may call comparison module 52 and pass it some or all of the combinations of
data D1 and D2 set out in Table 1. Sorting module 44 uses return values R1 and R2
from comparison module 52 to organize the character strings in output data set in the
order set out in Table 2. Character strings “chad”, “Chad” and “CHAD" are listed
consecutively, since the are in the same equivalence class. The order of these strings
in output data list 62 is controlied by the unique collating sequence defined in dictionary
sort order table 48.

“Alpha”
“CHAD”
“Chad”

“chad”

Table 2. Output data set 62

In another embodiment of the present invention, a sorting module may be
configured to provide an output data set in which duplicate data in the same
equivalence class have been eliminated so that only one datum from each equivalence
class, according to dictionary sort order table 46, is included. Such a sorting module
would use return values R1 to identify duplicate members of a single equivalence class.

15




10

15

20

IS N N

CA 02390849 2002-06-18

The sorting module may be configured to select one member of the equivalence class
for inclusion in the output data on any basis. The one member may be selected at
random, based on the order in which the members of the equivalence class appear in
the input data set, or return values R2 may be used to select the member of the
equivalence class with the lowest (or highest) collating weight according to dictionary
sort order tabie 46.

An embodiment of the present invention based on sorting English language
words or character strings has been described. The invention may be modified by a
skilled person to be used to sort word or character strings in any other language by
configuring dictionary sort order tables 46 and 48.

In addition, the present invention may be modified to provide multi-level sorting
between character strings formed of symbols or other indicia by similarly configuring

dictionary sort order tables 46 and 48.

It will be appreciated that variations of some elements are possible to adapt the
invention for specific conditions or functions. The concepts of the present invention can
be further extended to a variety of other applications that are clearly within the scope of
this invention. Having thus described the present invention with respect to a preferred
embodiments as implemented, it will be apparent to those skilled in the art that many
modifications and enhancements are possible to the present invention without
departing from the basic concepts as described in the preferred embodiment of the
present invention. Therefore, what is intended to be protected by way of letters patent
should be limited only by the scope of the following claims.

16




10

15

20

25

v ke b

CA 02390849 2002-06-18

The embodiments of the invention in which an exclusive property or privilege is claimed

are defined as follows:

1. A method of ordering a first character string and a second character string
comprising:
(a) comparing the first character string and the second character string

according to a first dictionary sort order table with a non-unique collating sequence; and

(b) comparing the first character string and the second character string
according to a second dictionary sort order table with a unique collating sequence.

2. The method of claim 1 wherein step (a) is performed to determine whether:

(i) the first character string has a lower collating weight than the
second character string according to the non-unique collating sequence;

(i) the second character string has a lower collating weight than the
first collating sequence according to the non-unique collating sequence; or

(i) the first and second character strings are in a single equivalence
class according to the non-unique collating sequence,

and step (b) is performed to determine whether:

(i) the first character string has a lower collating weight than the
second character string according to the unique collating sequence,

(if) the second character string has a lower collating weight than the
first character string according to the unique collating sequence; or

(i)  the first and second characters strings are equal according to the

unique collating sequence.

3. The method of claim 1 or 2 wherein step (b) if performed only is the result of step

(a) is that the first and second character strings are in the single equivalence class.

4. The method of claim 1, 2 or 3 wherein step (a) is performed by:

17




10

15

20

25

E R N TR

CA 02390849 2002-06-18

(A) selecting a first comparison character from the first character string
wherein the first comparison character is the first character in the first character string;

(B) selecting a second comparison character from the second character
string, wherein the second comparison character is the first character in the second
character string;

(C) comparing the first comparison character and the second comparison
character to determine if:

(i) the first comparison character and the second comparison
character do not have an equal weighting according to the first dictionary sort order
table;

(i)  the first comparison character is the last character of the first

character string;

(i) the second comparison character is the last character of the
second character string; or

(iv) the first comparison character is the last character of the first
character string and the second comparison character is the last character of the
second character string; and

(D) repeating step (C) until at least one of conditions set out in parts (i), (ii),

(iii) and (iv) of step (C) occurs, wherein during each such repetition, the first comparison
character is the next successive character of the first character string and the second

comparison character is the next successive character of the second character string.

5. The method of claim 4 wherein step (a) further includes:

(E) if during step (C), the first comparison character has a lower weighting
than the than the second comparison character according to the first dictionary sort
order table, then determining that the first character string is ordered before the second
character string;

(F) if during step (C), the second comparison character has a lower weighting
than the first comparison character according to the first dictionary sort order table,

18




10

15

20

25

30

CA 02390849 2002-06-18

then determining that the second character string is ordered before the first character
string; and

(G) if during step (C), the characters being compared have an identical
weighting and the first character string ends before the second character string, then
determining that the first character string is ordered before the second character string;

(H) if during step (C), the characters being compared have an identical
weighting and the second character string ends before the first character string, then
determining that the second character string is ordered before the first character string;
and

(1) if during step (C), the characters being compared have an identical
weighting and the first character string and the second character string have an
identical length, then determining that the first character string and the second
character string are in the single equivalence class.

6. The method of any of claims 1 to 5 wherein step (b) includes:

(A) selecting a first comparison character from the first character string
wherein the first comparison character is the first character in the first character string;

(B) selecting a second comparison character from the second character
string, wherein the second comparison character is the first character in the second
character string;

(C) comparing the first comparison character and the second comparison
character to determine |If:

(i) the first comparison character and the second comparison

character do not have an equal weighting according to the second dictionary sort order

table; or
(i)  the first comparison character is the last character of the first

character string and the second comparison character is the last character of the

second character string; and
(D) repeating step (C) until at least one of conditions set out in parts (i) or (ii)

of step (C) occurs, wherein during each such repetition, the first comparison character

19




10

15

20

25

N R TN

CA 02390849 2002-06-18

is the next successive character of the first character string and the second
comparison character is the next successive character of the second character string.

7. The method of claim 6 wherein step (b) further includes:

(E) if during step (C), the first comparison character has a lower weighting
than the than the second comparison character according to the second dictionary sort
order table, then determining that the first character string is ordered before the second
character string within the single equivalence class,

(F) if during step (C), the second comparison character has a lower weighting
than the first comparison character according to the first dictionary sort order table,
then determining that the second character string is ordered before the first character
string within the single equivalence class; and

(G) if during step (C), the characters being compared have an identical
weighting and the first character string ends before the second character string, then
determining that the first character string is ordered before the second character string
within the single equivalence class;

(H) if during step (C), the characters being compared have an identical
weighting and the second character string ends before the first character string, then
determining that the second character string is ordered before the first character string
within the single equivalence class; and

() if during step (C), the characters being compared have an identical
weighting and the first character string and the second character string have an
identical length, then determining that the first character string and the second
character string are not distinct from one another within the single equivalence class.

8. The method of any one of claims 1 to 5§ further comprising:
(c) outputting the results of steps (a) and (b).

9. The method of any one of claims 1 to 5 further comprising:

20




10

15

20

25

30

R N I SN T B
CA 02390849 2002-06-18

(a.1) before step (a), receiving the first and second character strings from an

invoking program; and

10.

(c) passing the results of steps (a) and (b) to the invoking program.

The method of any one of claims 1 to 6, wherein the unique collating sequence

IS case sensitive.

11.

The method of any one of claim 1 to 7, wherein the non-unique collating

sequence is case insensitive.

12.

A method of sorting an input data list containing a list of character strings

comprising:

(a) selecting one of the character strings as a first character string and
another of the character strings as a second character string;

(b) comparing the first character string and the second character string
according to a first dictionary sort order table with a non-unique collating
sequence;

(c) comparing the first character string and the second character string
according to a second dictionary sort order table with a unique collating
sequence;

(d) repeating steps (a) to (c) iteratively by selecting different pairs of first and
second character strings in accordance with a sorting algorithm;

(e) using the results of step (b) to sort the character strings into equivalence

classes: and

13.

(f) using the results of step (c) to sort the character strings within their

equivalence classes.

The method of claim 12 wherein step (b) is performed to determine whether:
(i) the first character string has a lower collating weight than the
second character string according to the non-unique collating sequence;

21




10

15

20

25

30

14.

AN AT TR

CA 02390849 2002-06-18

(il the second character string has a lower collating weight than the
first character string according to the unique collating sequence; or

(iii) the first and second character strings are in a same equivalence
class according to the non-unique collating sequence,

and step (c) is performed to determine whether:

(1) the first character string has a lower collating weight than the
second character string according to the unique collating sequence;

(ii) the second character string has a lower collating weight than the
first character string according to the unique collating sequence; or

(ii) the first and second characters strings are equal according to the

unique collating sequence.

The method of either of claims 12 or 13 wherein, during each iteration in step (d),

step (c) is performed only if the result of step (b) is that the first and second character

strings are in the same equivalence class.

15.

16.

The method of any one of claims 12 to 14 further comprising:
(a.1) before step (a), receiving the input data list from a calling program; and

(9)

data list.

passing the sorted character strings to the calling program as an output

The method of any one of claims 12 to 15, wherein the unique collating

sequence is case sensitive.

17.

The method of any one of claim 12 to 16, wherein the non-unique collating

sequence is case insensitive.

18.

A computer readable medium embodying computer-readable instructions for

directing a data processing system to perform a method of ordering a first character

string and a second character string, the method comprising:

22




20

CA 02390849 2002-06-18

(@) comparing the first character string and the second character string
according to a first dictionary sort order table with a non-unique collating sequence; and

(b) comparing the first character string and the second character string
according to a second dictionary sort order table with a unique collating sequence.

19. The computer readable medium of claim 18 wherein step (a) is performed to
determine whether:
(i) the first character string has a lower collating weight than the
second character string according to the non-unique collating sequence;
(ii) the second character string has a lower colliating weight than the
first collating sequence according to the non-unique collating sequence; or
(i) the first and second character strings are in a single equivalence
class according to the non-unique collating sequence,
and step (b) is performed to determine whether:
(1) the first character string has a lower collating weight than the
second chafacter string according to the unique collating sequence;
(i) the second character string has a lower collating weight than the
first character string according to the unique collating sequence; or
(i)  the first and second characters strings are equal according to the

unique collating sequence.

20. The computer readable medium of claim 18 or 19 wherein step (b) if performed
only is the result of step (a) is that the first and second character strings are in the

single equivalence class.

21. The computer readable medium of claim 18, 19 or 20 wherein step (a) is

performed by:
(A) selecting a first comparison character from the first character string

wherein the first comparison character is the first character in the first character string;

23




10

15

20

25

o R E TN I T

CA 02390849 2002-06-18

(B) selecting a second comparison character from the second character
string, wherein the second comparison character is the first character in the second
character string;

(C) comparing the first comparison character and the second comparison
character to determine if:

(i) the first comparison character and the second comparison
character do not have an equal weighting according to the first dictionary
sort order table;

(i) the first comparison character is the last character of the first

character string;

(ii) the second comparison character is the last character of the

second character string; or

(iv) the first comparison character is the last character of the first

character string and the second comparison character is the last character

of the second character string; and

(D) repeating step (C) until at least one of conditions set out in parts (i), (i),

(i} and (iv) of step (C) occurs, wherein during each such repetition, the first comparison
character is the next successive character of the first character string and the second
comparison character is the next successive character of the second character string.

22. The computer readable medium of claim 21 wherein step (a) further includes:

(E) if during step (C), the first comparison character has a lower weighting
than the than the second comparison character according to the first dictionary sort
order table, then determining that the first character string is ordered before the second
character string;

(F) if during step (C), the second comparison character has a lower weighting
than the first comparison character according to the first dictionary sort order table,
then determining that the second character string is ordered before the first character

string; and

24




10

15

20

25

B TSNS NN E I TN
CA 02390849 2002-06-18

(G) if during step (C), the characters being compared have an identical
weighting and the first character string ends before the second character string, then
determining that the first character string is ordered before the second character string;

(H) if during step (C), the characters being compared have an identical
weighting and the second character string ends before the first character string, then
determining that the second character string is ordered before the first character string;
and

(1) if during step (C), the characters being compared have an identical
weighting and the first character string and the second character string have an
identical length, then determining that the first character string and the second

character string are in the single equivalence class.

23. The computer readable medium of any of claims 18 to 22 wherein step (b)
includes:
(A) selecting a first comparison character from the first character string
wherein the first comparison character is the first character in the first character string;
(B) selecting a second comparison character from the second character
string, wherein the second comparison character is the first character in the second
character string;
(C) comparing the first comparison character and the second comparison
character to determine If:
(1) the first comparison character and the second comparison
character do not have an equal weighting according to the second
dictionary sort order table; or
(i)  the first comparison character is the last character of the first
character string and the second comparison character is the last character
of the second character string; and
(D) repeating step (C) until at least one of conditions set out in parts (i) or (ii)
of step (C) occurs, wherein during each such repetition, the first comparison character

25




10

15

20

25

N R T . |

CA 02390849 2002-06-18

is the next successive character of the first character string and the second
comparison character is the next successive character of the second character string.

24. The computer readable medium of claim 23 wherein step (b) further includes:

(E) if during step (C), the first comparison character has a lower weighting
than the than the second comparison character according to the second dictionary sort
order table, then determining that the first character string is ordered before the second
character string within the single equivalence class,;

(F) if during step (C), the second comparison character has a lower weighting
than the first comparison character according to the first dictionary sort order table,
then determining that the second character string is ordered before the first character
string within the single equivalence class; and

(G) if during step (C), the characters being compared have an identical
weighting and the first character string ends before the second character string, then
determining that the first character string is ordered before the second character string
within the single equivalence class;

(H) if during step (C), the characters being compared have an identical
weighting and the second character string ends before the first character string, then
determining that the second character string is ordered before the first character string
within the single equivalence class; and

(1) if during step (C), the characters being compared have an identical
weighting and the first character string and the second character string have an
identical length, then determining that the first character string and the second

character string are not distinct from one another within the single equivalence class.
25. The computer readable medium of any one of claims 18 to 22 further

comprising:
(c) outputting the results of steps (a) and (b).

26




10

15

20

25

30

26.

N R
CA 02390849 2002-06-18

The computer readable medium of any one of claims 18 to 22 further

comprising:

(a.1) before step (a), receiving the first and second character strings from an

invoking program; and

27.

(c) passing the results of steps (a) and (b) to the invoking program.

The computer readable medium of any one of claims 18 to 23, wherein the

unique collating sequence is case sensitive.

28.

The computer readable medium of any one of claim 18 to 23, wherein the

non-unique collating sequence is case insensitive.

29.

A computer readable medium embodying computer readable instructions for

directing a data processing system to perform a method of sorting an input data list

containing a list of character strings, the method comprising:

(a) selecting one of the character strings as a first character string and
another of the character strings as a second character string;

(b) comparing the first character string and the second character string
according to a first dictionary sort order table with a non-unique collating
sequence;

(C) comparing the first character string and the second character string
according to a second dictionary sort order table with a unique collating
sequence;

(d) repeating steps (a) to (c) iteratively by selecting different pairs of first and
second character strings in accordance with a sorting algorithm;

(e)  using the results of step (b) to sort the character strings into equivalence
classes; and

(f) using the results of step (c) to sort the character strings within their

equivalence classes.

27




10

15

20

25

B TR NEVRY 'R 1 NI (N

CA 02390849 2002-06-18

30. The computer readable medium of claim 29 wherein step (b) is performed to
determine whether:
(i) the first character string has a lower collating weight than the
second character string according to the non-unique collating sequence,;
(i) the second character string has a lower collating weight than the
first character string according to the unique collating sequence; or
(iii) the first and second character strings are in a same equivalence
class according to the non-unique collating sequence,
and step (c) is performed to determine whether:
(i) the first character string has a lower collating weight than the
second character string according to the unique collating sequence,
(i) the second character string has a lower collating weight than the
first character string according to the unique collating sequence; or
(i)  the first and second characters strings are equal according to the

unique collating sequence.

31. The computer readable medium of either of claims 29 or 30 wherein, during each
iteration in step (d), step (c) is performed only if the result of step (b) is that the first and
second character strings are in the same equivalence class.

32. The computer readable medium of any one of claims 29 to 31 further
comprising:

(a.1) Dbefore step (a), receiving the input data list from a calling program; and

(g) passing the sorted character strings to the calling program as an output

data list.

33. The computer readable medium of any one of claims 29 to 32, wherein the

unique collating sequence is case sensitive.

28




10

i bbb
H ii} ;: . . q4% Ig-i :l; ! %:'

CA 02390849 2002-06-18

34. The computer readable medium of any one of claim 29 to 33, wherein the
non-unique collating sequence is case insensitive.

35. A data processing system having computer readable code for directing said data
processing system to impliment the method of any of claims 1 to 11.

36. A data processing system having computer readable code for directing said data
processing system to impliment the method of any of claims 12 to 17.

29



CA 02390849 2002-06-18

Figure 1

Code Point

Character

65

|

66

W et s g e e e i 0 N 8 .
H
3

67

68|

69

—— —gn—r @ remves s r arn. -

70

——

—
——

7

72

PR T S

73

—| —|T| e Mmoo w >:

74

97

MM.._.___.,E____ - P P R L S N P g —— - ——
L

08

99

100

101

102

|

103

J/QQ ™o O T :

104

105

. & .
L—-nm L ]

100

20



CA 02390849 2002-06-18

Figure 2

159

Character Collating ASCII Code
Weight Points
A [ 140 | 65
B ‘_ 142 | 66
C 144 67
D 146 68
= 148 69
- 150 70
G 152 71
H 154 72
| 156 73
J 158 74 |
4 141 97
b “ 143 98
C 145 99
d 147 100
& 149 | 101
f 151 102
g 153 103
h 155 104
i B 157 105
j 106

22



CA 02390849 2002-06-18

Figure 3

- Character Collatirig | ASCIlI Code
) Weight Points

A 91 65
B - 92 66
C 93 67
D 94 68
= 95 69 |
F * 96 70
G 97 | 71
= 98 72
| 99 73
J '* 100 74
& 91 97
b 92 98
C 93 99
d * 94 100
e 95 101
f ) 96 102

Eg | 97 103
h 98 104

K 99 105
] 100 106

24



CA 02390849 2002-06-18

B ;
EEE: o |
<t
e z
LD
II
| @
<r
' N
| .4,_,,,__,,__‘,,,,__ L
B .
| = @1
| N
Y
i <<
{
-

06/11/00



‘|I.i -
) ndinQ - 4
1 =24 1°S
cel \ i mmv
a S3A
i —ries o e
b1 -« e zus o Emco_ uey)
S . SS9 LS o yibus| sj
ON I 4] S

-l.l

001

G ainbi4

: saa

: cA=cdPS o . (ZN>INSI

m 0t} ON e
3

-
-
-
~.

<

*

Om = vm_ 198

-
-
-
ll.a..l.]
-
-
-
-
-
-
-

. Ir...t...af.rf...--.,,..f. —msg FD &.o cumcw— m— ..... 1-1.%11\..»
S3A *
(Zhs o Lasjopus ON

e~ ‘poyoeRIoManeH
o

-\l\.\nl-\l
- l...\l

-
o

\\l\\l\l\\l. - ulffrr
- .-
- -
. -~ -
'll\ ..
- ~.
- e
- * .
- -
. —

- - — . — = = — — "

| + sod = -sod jos

.~

-
-
.
-

7 | uomsod Jusund aoUBAPY
A%’

‘.~
-

- - - . tII
- ~ -
T ma L
.. .\.\.\
;Ifrll .l.\l\
. -
¥

.
~.

= — — t — ——

- —  — — o ——

ot @|qe} JapJo LOoS bmco_ﬁ_v 0} mc_Eooom Z2d
ui JajorJeyd Juauno jo 1ybiom 0] ZN 189S pue L
WwNjep Ui Jajoeleyd juading jo Jybiam o} LN 18S

901

0 = SO uonisod Jualno 19S

» e

Zd pue | elep OAI009Y
144)

» @ . e -
B e ¢ pY— — —

\.\1.\' . .,Jlf)-

- 1MVIS
A

CUUL/IV




| ]

CA 02390849 2002-06-18

Fhee = - Il\gs\\\\\gL

20 =24 19S

.
..

ikl

- e Wi ee— e

N

-

ON

001

.‘I\\-)l

— s W} S—t—

L S

1a=24Ps

12°2

- oy

......

A

g 2i1nb14

‘v,

.-
-

o . ~ -
-t ..
\.\t v .
- .
-’ ~,
1..:-‘ '~ ..
\.-...\l\ ] :m o 0 ( -
- - A m “Q v SI.,I )
'1- -

\\\-\\.lil

\
= o
-,
£ .\\\
.

ON

DI=ZHPS
e e 8 F
A

S3A

-\-(-\
.u\\\ll-
-

...(f

payoesl om dAeH -
-, 9L T
~. / \1..,,-\
.
7 ¢ZN[enbd |N S|

441

o
.
-

ON

- Y

| + sod = sod Jos

vonisod JUaLND SJUBAPY

8yl

2 p—

8 9|qe] JopJ0 Jos Ateuololp o} Buipiodoe zQg
Ul JajoeJeyd Juaund Jo Jybiom 0} ZN 1es pue g
wnjep ul Jajoeleyd Juaund Jo ybiam 0] LN 189S

vl

= ar
~
- o.\
L,
— — - - e a' - — - - - - s om * Yoo S —— ha'h 1 - — - . - — EEnE—— e® =&

I = - ==

»..

| 0 = SOd co;.woa ucm.w._.:o ﬁow,
ovl

— — _ rsr awi - y PR - - = - — ——— S

CU/UL IOV







	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - abstract drawing

