(12) STANDARD PATENT (11) Application No. AU 2007329468 B8
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)
(31)
(43)
(44)
(48)

(71)

(72)

(74)

(56)

Title
Program modification and loading times in computing devices

International Patent Classification(s)
GOG6F 11/30 (2006.01) GO6F 15/16 (2006.01)

Application No: 2007329468 (22) Date of Filing: 2007.11.30
WIPO No: WOO08/070587

Priority Data

Number (32) Date (33) Country
11/566,170 2006.12.01 us
Publication Date: 2008.06.12

Accepted Journal Date: 2011.10.20
Corrigenda Journal Date: 2011.12.08

Applicant(s)
Microsoft Corporation

Inventor(s)
Lee, Juhan;Roussev, Roussi;Liu, Xiaogang;Wang, Yi-Min;Verbowski, Chad

Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art
US 2007/0128899 A1 (its family mrmbers are:US 2005/0240756 A1, US 2004/0255179 A1)

wo 20087070587 A1 I 000 000 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 June 2008 (12.06.2008)

Py) {00 0000 OO O

(10) International Publication Number

WO 2008/070587 Al

(51) International Patent Classification:
GOGF 11/30 (2006.01) GOGF 15/16 (2006.01)

(21) International Application Number:
PCT/US2007/086195

(22) International Filing Date:
30 November 2007 (30.11.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/566,170 1 December 2006 (01.12.2006) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: VERBOWSKI, Chad; One Microsoft Way,
Redmond, Washington 98052-6399 (US). LEE, Juhan;

(81)

(84)

One Microsoft Way, Redmond, Washington 98052-6399
(US). LIU, Xiaogang; One Microsoft Way, Redmond,
Washington 98052-6399 (US). ROUSSEYV, Roussi; One
Microsoft Way, Redmond, Washington 98052-6399 (US).
WANG, Yi-min; Onc Microsoft Way, Redmond, Wash-
ington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, 1S, JP, KIi, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
IR, LS, LI, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, §Y,
TIJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated Stales (unless otherwise indicated, for every
kind of regional protection availuble): ARIPO (BW, GH,
GM, KL, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: SYSTEM ANALYSIS AND MANAGEMENT

/— 100

(57) Abstract: Systems and methods for implementing system
management which are based on reviewing of the interactions
between one or more programs and the persistent state they tend to
represent. The system provides [or the detection of modifications

that occur within a system, verifying whether the modifications are

102\
eHii— O AGENT

104—\

ARCHIVE
COLLECTION
106

A 4

REPORT(S)
108

approved or not and generating notifications on detecting unknown
modifications.

WO 2008/070587 A1 |1 01K VA0 000 00O OO

ZW), Eurasian (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), — as to the applicant’s entitlement to claim the priority of the

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, earlier application (Rule 4.17(iii))

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

PT, RO, SL, SI, SK, TR), OAPI (BT, BJ, CT, CG, CI, CM, Published:

GA, GN, GQ, GW, M1, MR, NE, SN, TD, TG). o R

— with international search report

Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of

patent (Rule 4.17(ii)) amendments

29 Sep 2011

2007329468

10

15

20

25

CANRPonbhDCOWMKAKNWRL | DOC- 200972011

Program modification and loading times in computing devices

BACKGROUND

.

[0001] A primary challenge to building a reliable and secure computer system is
managing a persistent state (PS) of the system, which includes all the executable files,
configuration settings, and other data that govern how the system functions.
Misconfigurations and other PS problems are among the primary causes of failures and
security vulnerabilities across a variety of systems ranging from individual desktop
machines to large-scale Internet services. PS problems, along with problems caused by
failures in system elements such as hardware components and programming logic, can

deleteriously affect the entire system.

[0002] The cost of not effectively managing a system’s PS is high. For example, PS
problems can reproduce themselves after a system reboot or an application restart. In
addition, PS state drifts during run-time due to changes such as patches and application
related updates. Currently there exists no effective way to close the loop on changes
occurring on the system. In such a scenario, if known problem identification fails, and if a
subsequent system reboot/application restart fails to remedy the PS problem, there may be

no choice but to manually examine the system to identify a root cause PS.

[0003] Manual investigation of a system to identify the root cause PS is difficult and
expensive due to the large number of potential problems. For example, a potential set of
state that can impact an application having trouble is huge, and correspondingly a potential
root cause list can include a complete set of state on the system. Furthermore, the situation
may be potentially worse if consideration is made of every possible combination of set as

well, in particular for the case where there is not a single PS root cause.

[0003A] It is desired, therefore, to provide a method implemented on a computing
device, a computing device, and a computer-readable storage media having computer-
readable instructions thereon which, when executed by a computer, implement a method,

that alleviate one or more of the above difficulties, or at least provide a useful alternative.

29 Sep 2011

2007329468

10

15

20

25

30

C:\NRPonbRDCOMK AVRNRS_ | DOC. 2009201 |

-2

SUMMARY

[0004] In accordance with the present invention, there is provided a method
implemented on a computing device by a processor configured to execute instructions that,
when executed by the processor, direct the computing device to perform acts comprising:

cataloging programs loaded onto the computing device;

acquiring last load times of files associated with the programs that are registered on
the computing device;

acquiring last modification times of the files associated with the programs that are
registered on the computing-based device; and

comparing the last modification times with the last load times of the files associated
with the programs that are registered on the computing device; and

noting any inconsistencies found during the comparing, that includes a report that
the program is not responding to a last attempted modification, and an attempt to retry the

last attempted modification of the program.

[0004A] The present invention also provides a computing device comprising:
a processor unit;
a log storage component configured to store:
last load times of files associated with programs registered on the
computing device; and
last modification times of the files associated with the programs registered
on the computing device; and
a query log component configured to:
catalog the programs registered on the computing device; and
compare the last modification times with the last load times to detect stale
files in the computing device, wherein a presence of stale files results to
disregarding of an upgrade in the programs, wherein the disregarding of the
upgrade will continue to execute the programs from old files;
report the stale files to entities such as a user or system administrator, the report
includes the program that is not responding to last attempted modification, and an attempt

to retry last attempted modification of the programs.

29 Sep 2011

2007329468

10

15

20

25

30

€ \NRPorbRDCCOMK AVIKMKINS _| DOLC- 287097201)

Z2A -

[0004B] The present invention also provides a computer-readable storage media having
computer-readable instructions thereon which, when executed by a computer, implement a
method comprising:

cataloging and enumerating files and settings associated with programs registered
on a computing-based device;

acquiring last load times and dates of the files and the settings associated with the
programs that are registered on the computing-based device,

acquiring last modification times and dates of the files and the settings associated
with the programs that are registered on the computing-based device; and

comparing the last modification times and dates with the last load times and dates
of the files and the secttings associated with the programs that are registered on the
computing-based device, wherein the comparing further includes noting inconsistencies in
the programs registered in the computing-based device that generates a report that includes

the program that is not responding to last attempted modification.

[0005] In an embodiment, programs of computing-based device are cataloged and
enumerated, last load times of programs registered with the computing-based device are
acquired, and a comparison is made as to last modification times of files associated with

the programs that are registered with the computing-based device with the last load times.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments of the present invention are hereinafter described, by way of
example only, with reference to the accompanying drawings, wherein the left-most digit(s)
of a reference number identifies the figure in which the reference number first appears.
The same numbers are used throughout the drawings to reference like features and

components.

Fig. 1 illustrates an exemplary architecture for systems management.
Fig. 2 illustrates an exemplary collection server.

Fig. 3 illustrates an exemplary visual interface depicting generated notification.

29 Sep 2011

2007329468

C:NRPONbRDCCWMKAIRINIE | DOC-20/0v/201 1

_2B -

Fig. 4 illustrates an exemplary visual interface depicting the dependency of
execution of one program on the execution of a first program.

Fig. 5 illustrates exemplary method(s) for capturing data associated with
modification in PS of a system.

Fig. 6 illustrates exemplary method(s) for classifying noted changes.

WO 2008/070587 PCT/US2007/086195

Fig. 7 illustrates exemplary method(s) for prohibiting execution of unauthorized
interactions.

Fig. 8 illustrates exemplary method(s) for detecting one or more extensibility points.

Fig. 9 illustrates exemplary method(s) for detecting leaked entries.

Fig. 10 illustrates exemplary method(s) for detecting common misconfigurations or
stale files.

Fig. 11 illustrates an exemplary computer environment.

DETAILED DESCRIPTION

[0007] To implement this, the system includes one or more computer programs or
agents that report data associated with the modifications that occur within a system. The
data includes information associated with all interactions with files and/or settings. Such
types of interactions include activities like read and write access to registry entries, files, as
well as binary module interactions such as load, and so on. The agents report the data
collected to a back-end service which processes the reported information for activities like
generating web-reports, alerts, or integrating with other services for performing system
management. Furthermore, processing can be done on a single machine where the data is
collected as well. This includes generation of reports, alerts, etc In particular, a persistent
statc (PS) of the system is addressed, where the PS includes all the executable files,
configuration settings, and other data that govern how the system functions. Although
persistent state is discussed, it should be appreciated the techniques and methods discussed
are applicable to other kinds of states.

[0008] The data reported can be used for several purposes. For example, data can be

examined to verify that interactions being instigated are in conformance with a set policy or

WO 2008/070587 PCT/US2007/086195

are associated with an authorized interaction.

[0009] While aspects of described systems and methods for system management can
be implemented in any number of different computing systems, environments, and/or
configurations, embodiments of system analysis and management are described in the
context of the following exemplary system architecture(s).

Exemplary System

[0010] Fig. 1 illustrates an exemplary computer system 100 in which the information
associated with the interactions between on one or more programs can be collected and
analyzed. The system 100 includes computing-based device 102 on which one or more
programs are running or installed, a collection server 104, an archive collection 106 and
report(s) 108.

[0011] The information associated with the interactions between one or more
programs and/or file systems or settings, is representative of the modifications in the
persistent state (PS) that may occur within system 100. The computing-based device 102
can include any number of computing-based devices 102. For example, in one
implementation, system 100 can also include a company network, including thousands of
office personal computers (PCs), various servers, and other computing-based devices spread
throughout several countries, all acting as computing-based devices 102. Alternately, in
another possible implementation, system 100 can include a home network with a limited
number of PCs. Computing-based devices 102, can be coupled to each other in various
combinations through a wired and/or wireless network, including a LAN, WAN, or any
other networking technology known in the art.

[0012] Computing-based devices 102 can include an agent 110 capable of

instrumenting functions in system 100 to capture information associated with interactions

WO 2008/070587 PCT/US2007/086195

between one or more of computing-based devices 102 and/or file systems and settings. In
one implementation, agent 110 can be a thread data recorder (TDR) capable of modifying,
adding and/or deleting computer readable instructions in the function to intercept threads
calling the function. In another possible implementation, instrumenting functions also
includes modifying, adding and/or deleting computer readable instructions in a function to
require a thread to execute computer readable instructions in the function that enable the
capture of data associated with the thread. In yet another implementation, data associated
with the thread includes information relating to a program with which the thread is
associated, one or more interactions associated with the thread, and information relating to
user of the program with which the thread is associated. Although a TDR is discussed, it
should be appreciated that interception may not necessarily be needed for all algorithms,
therefore the techniques and methods discussed may not necessarily be tied to TDR based
data collection. Furthermore, virtual machine (VM) based instrumentation may be different
than TDR based instrumentation where code is dynamically added. In a VM, it may be a
hard-coded function of the VM internals to do this kind of collection.

[0013] The instrumented functions can include functions that might be called by a
program/process. In one implementation, the instrumented functions can include low level
chokepoint functions, such as file system drivers, registry functions, functions creating new
processes and/or services, cte.

[0014] Data captured from threads by the thread data recorder can be stored and/or
processed to regulate the behavior of system 100, and to investigate a condition or the
persistent state of system 100. Types of data which can be captured from threads by thread
data recorder, and the operation of thread data recorder is discussed in more detail in United

States Patent Application titled “Thread Interception and Analysis™ by Verbowski et al.,

29 Sep 2011

2007329468

10

15

20

CANRPortbRDCCIMK AVKINNDNA_ 1. DOC-28197200 |

-6-

application serial number 11/567,113, filed on S5 December 2006, which is hereby

incorporated by reference.

[0015] Collection server 104 is responsible for collecting information in relation to the
modification that may have occurred in system 100. In one implementation agent 110 stores
the information associated with the interactions in collection server 104 as compressed logs.
In yet another implementation, the information associated with the interactions can further be
uploaded in archive collection 106. The analysis of the information collected in collection
server 104 or archive collection 106 is used for the generation of report(s) 108. Report(s) 108
generated as a result of analysis performed on information collected on collection server 104
or archive collection 106 provides an insight into the interactions or modifications that may be
occurring within one or more computing-based devices 102. In another implementation,
report(s) 108 can be generated through a visual interface. In yet another implementation, the
visual interface can be implemented through a browser for retrieving and displaying
previously created and/or cached reports, for performing programmable data access of the
information stored in collection server 104 or archive collection 106. Collection server 104
and archive collection 106 can reside or be part of a single device which serves either as

collection server 104 or archive collection 106.

[0016] As indicated above, the information collected by agent 110 and stored in
collection server 104 or archive collection 106 can be analyzed to provide an insight into the
functioning of system 100. The analysis that is performed can include anomaly detection,
change management, managing abnormal system activity, identifying security vulnerabilities,

identifying unauthorized applications, performing compliance audit, and so on.

WO 2008/070587 PCT/US2007/086195

[0017] Fig. 2 illustrates an exemplary collection server 106 configured to store,
process and/or analyze data from agent 110. Collection server 106 includes one or more
processor(s) 202 and a memory 204. Processor(s) 202 include, for example,
microprocessors, microcomputers, microcontrollers, digital signal processors, central
processing units, state machines, logic circuits, and/or any devices that manipulate signals
based on operational instructions. Among other capabilities, processor(s) 202 are
configured to fetch and execute computer-readable instructions stored in memory 204.
[0018] Memory 204 may be any computer-readable medium known in the art, for
example, volatile memory (e.g., RAM) and/or non-volatile memory (e.g., ROM, flash, and
so on). Memory 204 can also include program(s) 206 and data 208. Program(s) 206 can
perform, among other operations, query-related processes on data associated with
interactions between programs running on one or more computing-based devices 102 and
file system and/or settings. Program(s) 206 further includes, for example, a query module
210, a notification module 212, operating system 214 and other application(s) 216.
Operating system 214 provides an operational environment for the functioning of one or
more of the modules in program(s) 206.

[0019] Query module 210 performs query-based operations on information collected
by agent 110, such as information included in log storage 218. Information collected by
agent 110 can also be retrievable from archive collection 106. Query(s) 220 includes a
plurality of queries such as predefined queries. Such predefined queries can relate to
conditions that relate to one or more policy definitions, such as security policy definitions,
that may be prescribed for system 100. In such a case, any or all analysis that may be
performed by query module 210 can be in conformance to such predefined policy

definitions or predefined queries.

WO 2008/070587 PCT/US2007/086195

[0020] Query module 210 can restrict query(s) 220 to one or more attributes. Such
attributes can include filename, application type, time of execution, and so on. When
functioning on the basis of a restricted query, query module 210 scans all information that is
stored in log storage 218 and/or archive collection 106, for values that indicate the presence
of the afttribute. For example, if an individual wishes to search archive collection 106 for
data related to a certain application such as a word processor, query module 210 searches for
entries or events associated with the interactions that have been initiated and affected by the
word processor.

[0021] Query(s) 220 can include queries entered or programmed by one or more
individuals or entities, such as a system administrator. For example, query(s) 220 can
include instructions to detect all interactions associated with a given user ID. Furthermore,
query(s) 220 can include instructions to detect all interactions associated with an application
running on one or more of the computing-based devices 102.

[0022] Referring back to the collection server 104, the analysis of the information,
associated with interactions of one or more computing-based devices 102 with file systems
and/or settings, is to be performed to determine the functioning and/or persistent state of
system 100. Query module 210 can be used to perform analysis on information collected by
agent 110 and stored in log storage 218 and/or archive collection 106. Query module 210
can implement this by performing a search of log storage 218 and/or archive collection 106
using ong or more queries as specified in query(s) 220. Results generated by the execution
of query(s) 220 are indicative of the interactions between one or more of the computing-
based devices 102 and the file systems and/or settings.

[0023] Query module 210 can instruct notification module 212 to issue a notification

for the results generated as a result of the execution of query(s) 220. The notification

WO 2008/070587 PCT/US2007/086195

generated by notification module 212 can be stored in notification(s) 222 in data 208. The
notifications issued by the notification module 212 can also be stored in an external
database, like an external storage device. Notification module 212 can also be instructed by
query module 210 to communicate the notifications generated as a result of execution of
query(s) 220.

[0024] Query module 210 can search log storage 218 and/or archive collection 106 to
detect deviations in information associated with interactions between one or more
computing-based devices 102 with respect to query(s) 220 being executed by query module
210. In such a case, detection of such deviations in relation to certain interactions can again
be notified by notification module 212 and corresponding notification(s) 222 can be
communicated to individuals, like system administrator or computing systems for storing
notifications for reference in future.

[0025] Notification module 212 is also capable of providing contextual information
associated with the notification(s) 222. The contextual information may additionally specify
the sctting that may be associated with the corresponding interaction. Contextual
information can be annotated to the relevant notification(s) 222 in on¢ or more stages. For
example, one level provides statistical information related to the number of machines that
may have a program installed on them, most common version of files and so on. Another
level of annotation indicates the comparison of hash values of the installed files with a data
collection that indexes attributes for example, program name, version information and so on.
Yet another level of annotation can be present that may provide for comments or any
subsidiary information, related to known problems, vendors and so on. Additional levels of
annotation may be implemented thereby specifying additional attributes in relation to

associated notification(s) 222. Notification(s) 222 can also be displayed through a visual

WO 2008/070587 PCT/US2007/086195

interface allowing individuals, for example system administrator, to review the
notification(s) 222 and take appropriate actions for required cases.

[0026] Query module 210 can be used for the detection of noted changes that occur
within system 100 due to the interaction between programs running on one or more
computing-based devices 102 and file systems and/or settings. Noted changes include
changes or modifications to the PS of a system that may result due to the unexpected
execution of a program, operating system, programs that are used for accomplishing specific
business tasks like accounting and other programs. Such noted changes to the PS of a
system are authorized and controlled to prevent undesirable situations like choked
performance of system, security issues and so on. It would also be noted that all changes
that occur in PS are not noted changes.

[0027] Noted changes can be annotated by an identifier and classified as per the
annotation allotted. Annotation of noted changes can be performed by specifying a
classification rule by query module 210. Based on the parameters specified in the
classification rule, appropriate parameters are associated with certain attributes related to the
noted change. For example, query module 210 associates each match of a substring
contained in a classification rule to name or type of modification contained in each noted
change. Classifications for the noted changes can be assigned on the basis of a priority
value. For example, in such a case, matches to a classification substrings with higher
priority take precedence over classification substrings with lower priority. Classification
substrings with higher priority are then determinate as the relevant classification for the
relative noted change.

[0028] Noted changes can be classified by labeling the changes as at least one or more

of the following classifications:

10

WO 2008/070587 PCT/US2007/086195

e Problem: Indicates a known problem or results from the existence or removal

of the instant PS.

e Install: Indicates change in PS as a result of an installation or upgrade.

e Setting: Indicates changes made to configuration settings or configuration PS.

e Content: Indicates web pages, images, textual and user data.

e Management Change: Indicates installation, patching, or configuration

changes made to programs responsible for management of system running on the

system.

o Unauthorized: Indicates installation of unauthorized or prohibited applications,

or configuration changes that include prohibited values.

e User Activity: Indicates changes in PS as a result of users logging in or running

window applications.

e Noise: Indicates temporary or cached PS.

e Unknown: Indicates unclassified PS.
[0029] Additional annotations can be provided to further classify noted changes and
make them discernable from other changes.
[0030] Query module 210 can also be used for determining the status of a program
running on system 100 as authorized or unauthorized. This is based on the need that only
authorized processes or programs should be running on system 100. Query module 210
determines the status of a program running on system 100 as authorized or unauthorized by
comparing attributes as specified in query(s) 220 and the attributes that define a specific
change or modification in PS of a system. For example, query module 210 executes
query(s) 220 that specifies an application type as an unauthorized program. Results

obtained as a result of the execution of query(s) 220 contain information in relation to

11

WO 2008/070587 PCT/US2007/086195

changes in PS that have occurred in response to execution of the specified application type.
Query module 210 on obtaining the results marks such results as changes induced by the
execution or action of an unauthorized program.

[0031] Query module 210 can compare the attributes specified in a predefined list of
approved and/or unapproved programs, with attributes that define a specific change or
modification in PS of a system. The list in the instant case may contain a specific number of
approved or unapproved programs. Programs running on system 100 that are similar to the
programs identified as unapproved in the predefined list are marked as unauthorized
programs.

[0032] Approved and/or unapproved programs specified in the predefined list may
also contain additional information, like a label, attributing the nature and/or various
characteristics of the programs. Examples of such additional information include labels
such as “approved”, “type”, “category”, “function”, “product information”, “manufacturer
information”, and “product description”. For example, programs that are labeled as
“approved” are considered authorized programs for running on one or more of the
computing-based devices 102 in system 100; and a “category” label specifies the intended
use of the program.

[0033] Changes or modifications performed by a program for the first time are by
default not approved and marked as “unauthorized”. For example, upon detecting changes
or modifications by a program for the first time, the query module 210 marks the program
and its associated interactions as “unauthorized”. Such programs that have been marked as
“unauthorized” can be notified by notification module 212 for review, for example by a
system administrator, for performing diagnostics if necessary or for a pending approval. If

an approval is obtained then the approved program is further associated with an appropriate

12

WO 2008/070587 PCT/US2007/086195

label attributing the program, and can also be added to the predefined list containing the
approved and/or unapproved programs.

[0034] Query module 210 can also detect extensibility points (EP). EPs are
interactions that are indicative of dynamic loading and execution of instructions associated
with a program or an operating system running on one or more of computing-based devices
102. For example, when a first program, such as a word processor, a spreadsheet application
and so on, running on one or more of computing-based devices 102 starts up, the first
program may also trigger instructions associated with other programs, such as add-on
programs, that provide additional functionality to the running of the first program. In this
way, the running of the first program can generate various interactions, including
interactions between the first program and file system, and interactions between the other
programs providing additional functionality to the running of the first program and the file
system. Such information can provide insight into the functioning of the system on which
the first program was installed and also to speculate the impact that such installations may
produce onto the system.

[0035] The information associated with various interactions generated as a result of
the running of the first program can be intercepted and copied by, for example, agent 110.
Event information associated with the various interactions can be stored as compressed logs
in log storage 218 and/or archive collection 106. Although the event information is stored in
compressed storage, it is to be appreciated that compressed storage may not be necessarily
used; however, the use of compressed storage makes the system more scalable by having the
storage take up less space. The stored event information can be reviewed by entities, such
as a system administrator, or by query module 210 to detect interactions associated with the

first program and the other programs with the file system. In this way, the other programs if

13

WO 2008/070587 PCT/US2007/086195

associated with the running of the first program can be detected.

[0036] Query module 210 can also be used to detect direct EPs for the first program.
For example, query module 210 can detect direct EPs by isolating interactions which both
(1) pertain to various programs loaded in system memory for execution before the execution
of the first program, and (2) reference the first program or are associated with the running of
the first program.

[0037] In one exemplary implementation, query module 210 can identify potential
direct EPs for the first program by querying log storage 218 and/or archive collection 106
for interactions pertaining to various programs loaded in system memory for execution
before execution of the first program. For example, query module 210 can query for
interactions pertaining to various programs loaded in system memory for execution within a
given time range, such as 1 second, before the execution of the first program. Query module
210 can identify direct EPs for the first program from the potential EPs by querying the
potential EPs for interactions that reference the first program or are associated with the
running of the first program. Direct EPs can be stored in other data(s) 224.

[0038] Query module 210 can also be used to detect indirect EPs. For example,
returning to the first program example above, query module 210 can query log storage 218
and/or archive collection 106 for interactions which reference, or which are associated with,
the direct EPs. Such interactions may be termed indirect EPs. Iindirect EPs can be stored in
other data(s) 224.

[0039] Query module 210 can also be used to detect a presence of malicious software
applications by monitoring direct EPs. Malicious software applications can include
“spyware”, “Trojan horses”, “worms”, “viruses”, etc., which under normal circumstances

would not be associated with a program. For example, query module 210 can compare EPs

14

WO 2008/070587 PCT/US2007/086195

for a program running on one or more of computing-based devices 102 against control EPs
for the same program found when the program was running on computing-based devices
102 in the absence of malicious software. Differences between the EPs and the control EPs
can be examined by entities such as query module 210 and/or a system manager, to
determine if the differences indicate the presence of malicious software running in
conjunction with the program. Malicious software found using EPs can be removed from
the effected computing-based device 102 by query module 210, the system administrator,
and so on.

[0040] In another implementation, query module 210 can be used for generating
notification(s) 222 by notification module 212 in response to the detection of EPs. In yet
another implementation, notification(s) 222 that are generated can further be viewed or
retrieved through a visual interface facilitating the reviewing of the notification(s) 222 by an
individual like a system administrator for further analysis or for performing a required
diagnostic.

[0041] Fig. 3 illustrates an exemplary visual interface 300 that depicts the generated
notification(s) 222 in onec of the possible implementations. In the illustrated
implementation, visual interface 300 depicts downloads that have been performed by a first
program (e.g., a web browser), on its execution. Visual interface 300 depicts in segment 302
and 304 a list of programs that were downloaded by the first program (in the example shown
in Fig. 3, in particular “MSN Search Toolbar” and “Winamp Media Player”), during its
execution. In the illustration it can be seen in segment 306 that the download of the
programs as seen in segments 302, 304 also results in the creation of program files
corresponding to programs other than the first program and programs illustrated in segments

302, 304. A visual representation in the form of visual interface 300 thus provides a list of

15

WO 2008/070587 PCT/US2007/086195

programs that inadvertently get installed on one or more of computing-based devices 102 of
system 100 while executing, downloading, and/or installing the first program.

[0042] Segment 306 can also indicate the impact or the modifications in PS of system
100 as a result of the installation or execution of programs other than the first program.
Further execution of a program or programs other than the first program may be dependent
on the execution of the first program. For example, as illustrated the “MSN Search Toolbar”
may get activated on the execution of program files of the first program. A determination to
this effect can be implemented by detecting the EPs corresponding to the first program. By
monitoring the EPs associated with the first program, instances of program execution of
other programs depending on the execution of the first program can be detected and
corrective action be taken, if necessary.

[0043] Instances of execution of other programs that are dependent on the execution
first program can also be displayed through another visual interface 400, as illustrated in
Fig. 4. Fig. 4 illustrates the execution of a first program depicted as segment 402, for
example “iexplorer.exe”, induces the execution of Winamp depicted as segment 404 which
in turn further executes the “emusic.exe” depicted as segment 406. From such an
illustration, detection of EPs associated with the first program can be implemented in detail
and through visual means.

[0044] Query module 210 can be used to detect leaked PS Leaked files include files
or registry settings that are left on a system, such as system 100, after a program that created
the files or registry settings is uninstalled. It may also include files or settings that may have
been created as a result of an installation, for example temporary files, but failed to be
deleted after the installation process was complete. Furthermore, another class of PS may be

leaked, such as PS that are generated during the runtime of the program (i.c., after

16

WO 2008/070587 PCT/US2007/086195

installation). Examples of these are state that may be generated on first use or extensions to
the program that are installed separately after the initial install.

[0045] To detect leaked files, query module 210 catalogues installation files and
settings changes associated with each program loaded onto system 100, which may be
tracked through the use of programs as well as initial installation. Later, if the program is
uninstalled, a corresponding catalog of installation files and configuration or registry
settings for the program can be recalled, and system 100 can be checked to make sure all
installation files and registry settings have been removed or reset. To detect leaked files on
computing-based device 102 query module 210 catalogues installation files by running a
scan through one or more computing-based devices 102 to detect all programs, such as
applications, installed on computing-based devices 102.

[0046] Query module 210 can also acquire a list of all programs registered in an
installer database of operating systems of the one or more computing-based devices 102.
Examples of installer databases include components which produce a populated list of
programs installed on a computing-based device under consideration.

[0047] Query module 210 queries log storage 218 and/or archive collection 106 for
registry configurations or settings information and for enumerating a list of programs
registered with operating systems of computing-based devices 102. Query module 210 can
then scan log storage 218 and/or archive collection 106 to enumerate the files and registry
entries, which can be ge generalized to all PS, of all programs installed on computing-based
device 102. In order to enumerate the files and registry entries, query module 210 can query
for all files and registry entries corresponding to one or more attributes, for example

program IDs, of the programs installed on computing-based device 102.

17

WO 2008/070587 PCT/US2007/086195

[0048] If a file or setting on computing-based device 102 is not included in the files
and registry entries corresponding to the program IDs of the programs installed on
computing-based device 102, then query module 210 can deduce that the file or setting is a
leaked file. Leaked files can be removed by query module 210, or various other programs,
including an operating system, a system administrator, and so on.

[0049] The leaked files (PS) detected can be displayed through a visual interface
allowing individuals, for example system administrator, to review the leaked files and take
appropriate actions for required cases. Furthermore, the displayed leaked files (PS) and
associated information can be stored in an external storage collection, for example an
external database, for future reference. The leaked PS list can be used to automatically
remove the leaked state by systems when the main application is removed. This leaked PS
list can also be used to associate each PS on the system with an owner application.

[0050] Query module 210 can detect stale processes due to changed files, settings, or
stale modules, including common misconfigurations, old software versions, and so on. Stale
processes occur when, for example, software upgrades fail to restart affected processes after
replacing on-disk executable files, program files, or settings. As a result, the computing-
based device on which the stale process is found will disregard the upgrade and continue to
execute based on the old executable files, program files, or settings.

[0051] To detect stale processes, query module 210 can query information associated
with interactions of programs stored in log storage 218 and/or archive collection 106. Query
module 210 queries log storage 218 and/or archive collection 106 for the last-load time of
programs installed on one or more of computing-based devices 102. Query module 210 can

also query log storage 218 and/or archive collection 106 for the last-load time of files or

18

WO 2008/070587 PCT/US2007/086195

registry settings associated with the software installed. In one exemplary implementation,
query module 210 queries log storage 218 and/or archive collection 106 for the last-load
time of files or registry settings associated with the software associated dynamic link
libraries (DLLs) installed with the software. Query module 210 can also query log storage
218 and/or archive collection 106 for the time or date of the last modification of the software
installed on the computing-based device. Such modifications include, for example, accesses
performed on one or more files or program settings associated with the last known version
of the installed software.

[0052] In case the last load time of the software is later than the time or date of the last
known modification of the software, inconsistencies resulting from the software not utilizing
the last loaded update, may occur. Such inconsistencies, if detected by the query module
210, can be noted and corrected by an individual such as a system administrator.

[0053] The detected stale files can be displayed through a visual interface allowing
individuals, for example system administrator, to review the stale files and take appropriate
actions for required cases. The displayed stale files and associated information can be stored
in an external storage collection, say an external database, for future reference.

[0054] Query module 210 can detect occurrences of known unwarranted programs
including software applications such as “malware, “spyware”, “Trojan horses”, “viruses”,
etc. To accomplish this, query module 210 can query and scarch log storage 218 and/or
archive collection 106 for programs loaded for execution in memory of one or more of
computing-based devices 102. The programs loaded for execution in memory may then be
compared by, for example query module 210, against a list of known unwarranted programs.
[0055] For example, query module 210 can detect occurrences of programs loaded for

execution in memory on computing-based device 102 on the basis of identifiers, such as

19

WO 2008/070587 PCT/US2007/086195

program IDs, associated with the programs. Query module 210 can then compare the
identifiers of the programs loaded for execution in memory on computing-based device 102
against a list of identifiers, such as program IDs, of known unwarranted programs. If an
identifier of a program loaded for execution in memory matches an identifier of a known
unwarranted program, query module 210 may implement the removal of the program loaded
for execution in memory from computing-based device 102. In one possible
implementation, the list of identifiers of known unwarranted programs can be entered, at
least in part, by a system administrator.

[0056] The unwarranted program detected by query module 210 can be displayed
through a visual interface allowing individuals, such as a system administrator, to review the
unwarranted program and take appropriate actions for their removal. The displayed
unwarranted program and associated information can be stored in an external storage
collection, for example an external database, for future reference for detecting same or
similar unwarranted programs.

[0057] An unidentified program on one or more computing- based devices 102 which
does not have an identifier associated with it can be detected by query module 210 and
reported to a system administrator to ascertain whether the unidentified program is an
unwarranted program or not. The system administrator can examine the nature of the
unidentified program by reviewing the list of unidentified programs, in the form of a report.
Reviewing by system administrator may include examining a purpose of the unidentified
program, dependence of the unidentified program on other programs, and to determine if the
unidentified program is unwarranted. Additionally, the system administrator can review past
experience with programs having characteristics similar to those of the unidentified program

to determine if the unidentified program is unwarranted.

20

WO 2008/070587 PCT/US2007/086195

[0058] If the system administrator determines that the unidentified program is
unwarranted, the system administrator can implement the removal of the unidentified
program from computing-based devices 102. For example, the system administrator can
remove the unidentified program itself, or the system administrator can instruct elements of
computing-based device 102 to remove the unidentified program.

[0059] Additionally, the system administrator may on the basis of a generated report
or one or more of notification(s) 222, assign an identifier, such as a program ID, to the
unidentified program, and include the identifier on a list of unwarranted programs. In this
way, if the unidentified program reappears on computing-based device 102 it can be quickly
identified as an unwarranted program on the basis of the associated identifier. Moreover, the
removal of the unidentified program can be implemented by elements of computing-based
device 102, agent 110 and so on.

[0060] The unidentified programs and their associated processes detected by query
module 210 can be displayed through a visual interface allowing individuals, for example
system administrator, to review the unidentified programs and take appropriate actions for
their removal. The displayed unidentified program and associated information can be stored
in an external storage collection, say an external database, for future reference for detecting
same or similar unwarranted programs. Furthermore, the unwanted changes may also be
identified and/or tracked.

[0061] Query module 210 can block copy files to network drives or removable
locations by vetoing writes to such locations by a program running on one or more of the
computing-based devices 102. Query module 210 can also review previous such vetoing

writes performed for auditing purposes so as to prevent such writes in future.

21

WO 2008/070587 PCT/US2007/086195

Exemplary Methods

[0062] Exemplary methods for thread interception and analysis are described with
reference to Figs. 1 to 4. These exemplary methods may be described in the general context
of computer executable instructions. Generally, computer executable instructions can
include routines, programs, objects, components, data structures, procedures, modules,
functions, and the like that perform particular functions or implement particular abstract data
types. The methods may also be practiced in a distributed computing environment where
functions are performed by remote processing devices that are linked through a
communications network. In a distributed computing environment, computer executable
instructions may be located in both local and remote computer storage media, including
memory storage devices.

[0063] Fig. 5 illustrates an exemplary method 500 for capturing and collecting
information that is associated with interactions between programs running on ong or more of
computing-based devices 102 and/or file systems and settings. The order in which the
method is described is not intended to be construed as a limitation, and any number of the
described method blocks can be combined in any order to implement the method, or an
alternate method. Additionally, individual blocks may be deleted from the method without
departing from the spirit and scope of the subject matter described herein. Furthermore, the
method can be implemented in any suitable hardware, software, firmware, or combination
thereof.

[0064] At block 502 information or data associated with a program running or
executing on a system is intercepted. In one implementation, said information is collected
when a program/process calls an instrumented function including a modified function code.

For example, the computer readable instructions can be modified to instruct the one or more

22

WO 2008/070587 PCT/US2007/086195

functions to capture data associated with interactions between program running on one or
more of computing-based devices 102 and/or file systems and scttings. In an
implementation, a Virtual Machine applies data collection logic directly when it interprets
original code executing. This technique would not require modification of the original code.
Similarly this could be implemented directly in processor hardware.

[0065] An agent, such as agent 110, can instrument one or more functions in system
100. The one or more functions can be instrumented by modifying computer readable
instructions associated with the one or more functions.

[0066] An agent 110, such as thread data recorder, can intercept threads calling
modified functions in system 100. Programs with which the threads are associated may be
running in one of several operating layers, such as program layer, middleware layer,
operating system layer, and so on. A file system with which the program may be trying to
interact can include files (such as data files, executable files), and settings information (such
as configuration settings or registry settings), and so on.

[0067] At block 504, various information or data associated with execution of
programs running on on¢ ot more of computing-based devices 102 are collected in or copied
to a memory location. Information associated with interactions of programs with file system
and/or settings including interaction being instigated by modified functions, is copied and
transmitted into a memory location. For example, agent 110 can copy all or selected data
associated with the interactions and store the data in a memory location, such as collection
server 104. Data associated with the interactions can include information regarding
interactions instigated by the instrumented function.

[0068] At block 506, data stored in the memory location is compressed. In one

implementation, the compressed data can be stored in another memory location. For

23

WO 2008/070587 PCT/US2007/086195

example, the compressed data can be stored in log storage 218 in collection server 104
and/or archive collection 106.

[0069] At block 508, the compressed data is periodically uploaded for analysis. The
compressed data may be uploaded to a collection server 106 or to a memory location
serving as a collection server 106. The periodicity of uploading the compressed data for
analysis can be varied. In one implementation, the compressed data is uploaded after
specified intervals of time. In another implementation, the compressed data can be uploaded
when the compressed data exceeds a predefined threshold limit of memory.

[0070] Fig. 6 illustrates an exemplary method 600 for classifying noted changes.
Noted changes include changes or modifications that may occur due to an unexpected
execution of a program, operating system, programs that are used for accomplishing specific
business tasks like accounting and other programs. The order in which the method is
described is not intended to be construed as a limitation, and any number of the described
method blocks can be combined in any order to implement the method, or an alternate
method. Additionally, individual blocks may be deleted from the method without departing
from the spirit and scope of the subject matter described herein. Furthermore, the method
can be implemented in any suitable hardware, software, firmware, or combination thereof.
[0071] At block 602 a classification rule attributed by various parameter values is
specified. For example, the classification rule can be specified by query module 210 along
with the parametric values that define the classification rule.

[0072] At block 604, parameters defining the classification rule are associated with
the one or more attributes that define the nature and characteristics of a noted change.
Query module 210 associates the parameters defining the classification rule with the

attributes characterizing the noted change. Association of one or more parameter values

24

WO 2008/070587 PCT/US2007/086195

with the attributes characterizing the noted change in consideration results in a set of
probable classifications. For example, query module 210 associates each match of a
substring contained in a classification rule to PS name contained in each noted change.
[0073] At block 606, one or more of the probable classifications are assigned a
priority value. Query module 210 can assign a priority value to one or more of the probable
classifications. For example, a specific noted change occurring for a longer period of time
will be assigned a higher priority value.

[0074] At block 608, the probable classification with the highest priority value is
allotted to the noted change in consideration. In one implementation, query module 210
determines the highest priority value allotted to the probable classifications and assigns that
classification to the noted change in consideration.

[0075] Fig. 7 illustrates an exemplary method 700 for prohibiting execution of
unauthorized interactions -- as defined by a system administrator, for example — on one or
more computing-based devices 102. Examples of unauthorized interactions include read
and/or write actions performed on a file system by an entity or program not authorized to
perform such an action.

[0076] The order in which the method is described is not intended to be construed as a
limitation, and any number of the described method blocks can be combined in any order to
implement the method, or an alternate method. Additionally, individual blocks may be
deleted from the method without departing from the spirit and scope of the subject matter
described herein. Furthermore, the method can be implemented in any suitable hardware,
software, firmware, or combination thereof.

[0077] At block 702, information associated with a program running on a system is

received. The information is associated with the interactions between the program and file

25

WO 2008/070587 PCT/US2007/086195

system and/or configuration settings. Query module 210 may query log storage 218 and/or
archive collection 106 for information in relation to the interactions performed by a program
on one or more of computing-based devices 102. The information obtained by the execution
of the query is characterized by one or more attributes.

[0078] At block 704, attributes of the program running on system is compared with
attributes of a plurality of approved and unapproved programs/processes included in a
predefined list. For example, query module 210 compares the attributes, say program type,
of the program and the attributes of the programs included in the predefined list.

[0079] At block 706, it is determined whether the attributes corresponds to that of an
unapproved program/process or interactions. For example, if the attribute of the program
running on system 100 corresponds to an attribute associated with unapproved interactions
(i.c., “ves’ path from block 706), the interactions associated with program are not allowed to
proceed (i.e., block 708). Alternately, if the attribute of the program running on system 100
does not correspond to an attribute associated with unapproved interactions (i.e., ‘no’ path
from block 7006), the interactions associated with the programs are allowed to proceed (i.e.,
block 710).

[0080] Fig. 8 illustrates an exemplary method 800 for detecting one or more
extensibility points (EPs) of a program installed on one or more computing-based device(s)
102. EPs include interactions that control the dynamic loading and execution of a computer
application. The order in which the method is described is not intended to be construed as a
limitation, and any number of the described method blocks can be combined in any order to
implement the method, or an alternate method. Additionally, individual blocks may be
deleted from the method without departing from the spirit and scope of the subject matter

described herein. Furthermore, the method can be implemented in any suitable hardware,

26

WO 2008/070587 PCT/US2007/086195

software, firmware, or combination thereof.

[0081] At block 802, previous interactions (i.e. interactions pertaining to various
programs loaded for execution in a system memory before the execution of a first program)
are checked. For example, query module 210 can identify potential direct extensibility point
(EPs) for a first program by querying log storage 218 and/or archive collection 106 for
interactions pertaining to various programs loaded into memory of one or more of
computing-based devices 102 for execution before execution of the first program. Query
module 210 can query for interactions pettaining to various programs loaded in memory for
execution within a given time range, such as two seconds, before execution of the first
program.

[0082] At block 804, a check is performed to find previous interactions which
reference a filename of the first program loaded for execution in system memory of a
computing-based device. For example, query module 210 can query for interactions
associated with various programs referencing the first program or which are associated with
the execution of the first program on computing-based devices 102. Query module 210 can
query for interactions including various attributes, such as a filename of the first program, a
program ID of the first program, and so on.

[0083] At block 806, the previous interactions referencing the filename of the first
program are flagged as direct EPs. For example, query module 210 can identify direct EPs
for the first program by querying for all previous interactions which reference the first
program or which are associated with the execution of the first program.

[0084] Fig. 9 illustrates an exemplary method 900 for detecting leaked entries that
have been left behind as a result of uninstalling a program from one or more computing-

based devices 102. The order in which the method is described is not intended to be

27

WO 2008/070587 PCT/US2007/086195

construed as a limitation, and any number of the described method blocks can be combined
in any order to implement the method, or an alternate method. Additionally, individual
blocks may be deleted from the method without departing from the spirit and scope of the
subject matter described herein. Furthermore, the method can be implemented in any
suitable hardware, software, firmware, or combination thereof.

[0085] At block 902, installation files and settings changes associated with each
program loaded onto a computing-based device and/or system are cataloged and
enumerated. Enumeration includes creating a list of programs registered with an operating
system of the computing-based device.

[0086] For example, the system 100 can be scanned to detect all programs that are
installed on computing-based devices in the system as well as all operating system
installation files associated with the programs on the computing-based devices. All
programs installed on the computing-based devices and/or all operating system installation
files associated with the programs may be enumerated by placing them in a list.

[0087] Query module 210 runs a scan through system 100 detecting all programs that
are installed on one or more computing-based devices 102 to catalogue and enumerate all
operating system installation files on computing-based devices 102. For example, query
module 210 can query log storage 218 and/or archive collection 106 for all programs
registered with operating system of one or more of computing-based devices 102 in the
system 100. The programs found may be cataloged and enumerated by a variety of devices,
such as query module 210, agent 110, and so on. Moreover, all operating system installation
files on computing-based devices 102 associated with the programs found may be cataloged

and enumerated by a variety of devices, such as query module 210, agent 110, and so on.

28

WO 2008/070587 PCT/US2007/086195

[0088] At block 904, persistent state (PS) present on a computing-based device and/or
system, including files and registry settings associated with uninstalled programs, are
enumerated. This can involve the scanning of memory on the computing-based device
and/or system for files and registry settings of all programs that have been installed on the
computing-based device and/or system, including files and registry settings for programs
that have been uninstalled. For example, query module 210 can query log storage 218
and/or archive collection 106 to obtain all files and registry settings corresponding to
identifiers, such as program IDs, of all programs that have been installed on computing-
based devices 102.

[0089] At block 906, the files and registry settings associated with programs
registered with the operating system are compared against the files and registry settings of
programs that have been installed on the computing-based devices 102 and/or system 100.
For example, query module 210 can compare identifiers, such as program IDs, of the
enumerated files and registry settings associated with the programs registered with the
operating system of computing-based devices 102 against identifiers of files or settings of all
programs which have been installed on computing-based devices 102.

[0090] At block 908, files and registry settings associated with programs on both lists
can be excluded from consideration. The remaining files and registry settings, which
represent files and registry settings corresponding to programs that have been uninstalled
from the computing-based device 102 and/or system 100 can be annotated as leaked files,
and can be removed from the computing-based device 102 and/or system 100. For example,
query module 210 can correlate identifiers, such as program IDs, of files and registry

settings associated with programs registered with operating systems of computing-based

29

WO 2008/070587 PCT/US2007/086195

devices 102 with identifiers of files and registry settings associated with programs that have
been installed on computing-based devices 102. The files and registry settings associated
with the non correlated programs can be termed leaked files by query module 210, and can
be removed from computing-based devices 102, by elements such as query module 210,
agent 110, and so on.

[0091] Fig. 10 illustrates an exemplary method 1000 for detecting stale files including
common misconfigurations, old software versions etc., installed on one or more computing-
based devices 102. Stale files occur when, for example, software upgrades fail to restart
affected processes after replacing on-disk executable files. As a result, the computing-based
devices 102 on which the stale file is found will disregard the upgrade and continue to
execute the program from the old file. The order in which the method is described is not
intended to be construed as a limitation, and any number of the described method blocks can
be combined in any order to implement the method, or an alternate method. Additionally,
individual blocks may be deleted from the method without departing from the spirit and
scope of the subject matter described herein. Furthermore, the method can be implemented
in any suitable hardware, software, firmware, or combination thereof.

[0092] At block 1002, programs loaded onto a computing-based device and/or system
are cataloged and enumerated. In one implementation, enumeration includes creating a list
of programs registered with an operating system of the computing-based device. For
example, a system can be scanned to detect all programs that are installed on computing-
based devices in the system. All programs installed on the computing-based devices may be
enumerated by placing them in a list.

[0093] In one possible implementation, query module 210 runs a scan through system

100 detecting all programs that are registered on one or more computing-based devices 102

30

WO 2008/070587 PCT/US2007/086195

to catalog and enumerate all programs registered with operating system of the computing-
based devices 102. For example, query module 210 can query log storage 218 and/or
archive collection 106 for all programs registered with operating system of one or more of
computing-based devices 102 in system 100. The programs found may be cataloged and
enumerated by a variety of devices and/or entities, such as query module 210, agent 110,
and so on.

[0094] At block 1004, last load times of all programs registered on a computing-based
device and/or system, as well as for files associated with the programs registered on the
computing-based device and/or system, are acquired. For example, query module 210
queries log storage 218 and/or archive collection 106 for the last-load times of programs
registered on computing-based devices 102 and/or last-load times of files, such as system
dynamic link libraries (DLLs) files, installed with the programs registered on computing-
based devices 102 in system 100.

[0095] At block 1006, last modification times of files or settings associated with
programs registered on a computing-based device and/or system are acquired and compared
with the last-load times of the programs. For example, query module 210 can query log
storage 218 and/or archive collection 106 for a time or date of the last modification of a
program registered with operating system of computing-based devices 102. Query module
210 can compare the time or date of the last modification with a last load time of the
program,

[0096] At block 1008, any inconsistencies found during the comparison are noted.
For example, in case a last load time of a program registered on a computing-based device
and/or system is later than a time or date of a last known modification of the program, it is

possible that the program has not responded to the last modification. In such a case, an error

31

WO 2008/070587 PCT/US2007/086195

report may be issued to entities such as a user or a system administrator, reporting that the
program is not responding to the last attempted modification. Alternately, an attempt may
be made to retry the last attempted modification of the program.

[0097] In one exemplary implementation, query module 210 can query for both a last
load time and a last modification time of a program registered with operating system of the
computing based devices 102 in system 100. Query module 210 can compare the last load
time and the last modification time and if the last load time of the program is later than the
last modification time of the program, query module 210 can issue an error report to entities
such as a user or a system administrator, reporting that the program is not responding to the
last attempted modification. In yet another implementation, query module 210 can also
attempt to retry the last attempted modification of the program.

Exemplary Computer Environment

[0100] Fig. 11 illustrates an exemplary general computer environment 1100, which
can be used to implement the techniques described herein, and which may be
representative, in whole or in part, of clements described herein. The computer
environment 1100 is only one example of a computing environment and is not intended
to suggest any limitation as to the scope of use or functionality of the computer and
network architectures. Neither should the computer environment 1100 be interpreted as
having any dependency or requirement relating to any one or combination of components
illustrated in the example computer environment 1100.

[0101] Computer environment 1100 includes a general-purpose computing-based
device in the form of a computer 1102. Computer 1102 can be, for example, a desktop
computer, a handheld computer, a notebook or laptop computer, a server computer, a

game console, and so on. The components of computer 1102 can include, but are not

32

WO 2008/070587 PCT/US2007/086195

limited to, one or more processors or processing units 1104, a system memory 1106, and
a system bus 1108 that couples various system components including the processor 1104
to the system memory 1106.

[0102] The system bus 1108 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a variety of bus architectures. By
way of example, such architectures can include an Industry Standard Architecture (ISA)
bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video
Electronics Standards Association (VESA) local bus, and a Peripheral Component
Interconnects (PCI) bus also known as a Mezzanine bus.

[0103] Computer 1102 typically includes a variety of computer readable media.
Such media can be any available media that is accessible by computer 1102 and includes
both volatile and non-volatile media, removable and non-removable media.

[0104] The system memory 1106 includes computer readable media in the form of
volatile memory, such as random access memory (RAM) 1110, and/or non-volatile
memory, such as read only memory (ROM) 1112. A basic input/output system (BIOS)
1114, containing the basic routines that help to transfer information between elements
within computer 1102, such as during start-up, is stored in ROM 1112. RAM 1110
typically contains data and/or program modules that are immediately accessible to and/or
presently operated on by the processing unit 1104.

[0105] Computer 1102 may also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example, Fig. 11 illustrates a
hard disk drive 1116 for reading from and writing to a non-removable, non-volatile

magnetic media (not shown), a magnetic disk drive 1118 for reading from and writing to

33

WO 2008/070587 PCT/US2007/086195

a removable, non-volatile magnetic disk 1120 (e.g., a “floppy disk™), and an optical disk
drive 1122 for reading from and/or writing to a removable, non-volatile optical disk 1124
such as a CD-ROM, DVD-ROM, or other optical media. The hard disk drive 1116,
magnetic disk drive 1118, and optical disk drive 1122 are each connected to the system
bus 1108 by one or more data media interfaces 1126. Alternately, the hard disk drive
1116, magnetic disk drive 1118, and optical disk drive 1122 can be connected to the
system bus 1108 by one or more interfaces (not shown).

[0106] The disk drives and their associated computer-readable media provide non-
volatile storage of computer readable instructions, data structures, program modules, and
other data for computer 1102. Although the example illustrates a hard disk 1116, a
removable magnetic disk 1120, and a removable optical disk 1124, it is to be appreciated
that other types of computer readable media which can store data that is accessible by a
computer, such as magnetic cassettes or other magnetic storage devices, flash memory
cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access
memorics (RAM), read only memories (ROM), electrically erasable programmable read-
only memory (EEPROM), and the like, can also be utilized to implement the exemplary
computing system and environment.

[0107] Any number of program modules can be stored on the hard disk 1116,
magnetic disk 1120, optical disk 1124, ROM 1112, and/or RAM 1110, including by way
of example, an operating system 1127, one or more application programs 1128, other
program modules 1130, and program data 1132. Each of such operating system 1127,
one or motre application programs 1128, other program modules 1130, and program data
1132 (or some combination thereof) may implement all or part of the resident

components that support the distributed file system.

34

WO 2008/070587 PCT/US2007/086195

[0108] A user can enter commands and information into computer 1102 via input
devices such as a keyboard 1134 and a pointing device 1136 (e.g., a “mouse”). Other
input devices 1138 (not shown specifically) may include a microphone, joystick, game
pad, satellite dish, serial port, scanner, and/or the like. These and other input devices are
connected to the processing unit 1504 via input/output interfaces 1140 that are coupled to
the system bus 1108, but may be connected by other interface and bus structures, such as
a parallel port, game port, or a universal serial bus (USB).

[0109] A monitor 1142 or other type of display device can also be connected to the
system bus 1108 via an interface, such as a video adapter 1144. In addition to the
monitor 1142, other output peripheral devices can include components such as speakers
(not shown) and a printer 1146 which can be connected to computer 1102 via the
input/output interfaces 1140.

[0110] Computer 1102 can operate in a networked environment using logical
connections to one or more remote computers, such as a remote computing-based device
1148. By way of example, the remote computing-based device 1148 can be a personal
computer, portable computer, a server, a router, a network computer, a peer device or
other common network node, and the like. The remote computing-based device 1148 is
illustrated as a portable computer that can include many or all of the clements and
features described herein relative to computer 1102,

[0111] Logical connections between computer 1102 and the remote computer 1148
are depicted as a local area network (LAN) 1150 and a general wide area network
(WAN) 1152. Such networking environments are commonplace in offices, enterprise-

wide computer networks, intranets, and the Internet.

35

WO 2008/070587 PCT/US2007/086195

[0112] When implemented in 2 LAN networking environment, the computer 1102
is connected to a local network 1150 via a network interface or adapter 1154. When
implemented in a WAN networking environment, the computer 1102 typically includes a
modem 1156 or other means for establishing communications over the wide network
1152. The modem 1156, which can be internal or external to computer 1102, can be
connected to the system bus 1108 via the input/output interfaces 1140 or other
appropriate mechanisms. It is to be appreciated that the illustrated network connections
are exemplary and that other means of establishing communication link(s) between the
computers 1102 and 1148 can be employed.

[0113] In a networked environment, such as that illustrated with computing
environment 1100, program modules depicted relative to the computer 1102, or portions
thereof, may be stored in a remote memory storage device. By way of example, remote
application programs 1158 reside on a memory device of remote computer 1148. For
purposes of illustration, application programs and other executable program components
such as the operating system are illustrated herein as discrete blocks, although it is
recognized that such programs and components reside at various times in different
storage components of the computing-based device 1102, and are executed by the data
processor(s) of the computer.

[0114] Various modules and techniques may be described herein in the general
context of computer-executable instructions, such as program modules, executed by one
or more computers or other devices. Generally, program modules include routines,
programs, objects, components, data structures, etc. that performs particular tasks or

implement particular abstract data types. Typically, the functionality of the program

36

WO 2008/070587 PCT/US2007/086195

modules may be combined or distributed as desired in various embodiments.
[0115] An implementation of these modules and techniques may be stored on or
transmitted across some form of computer readable media. Computer readable media can
be any available media that can be accessed by a computer. By way of example, and not
limitation, computer readable media may comprise “computer storage media” and
“communications media.”
[0116] “Computer storage media” includes volatile and non-volatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules, or
other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store the
desired information and which can be accessed by a computer.
[0117] Alternately, portions of the framework may be implemented in hardware or
a combination of hardware, software, and/or firmware. For example, one or more
application specific integrated circuits (ASICs) or programmable logic devices (PLDs)
could be designed or programmed to implement one or more portions of the framework.
CONCLUSION
[0118] Although embodiments of system management and analysis have been
described in language specific to structural features and/or methods, it is to be understood
that the subject of the appended claims is not necessarily limited to the specific features
or methods described. Rather, the specific features and methods are disclosed as

exemplary implementations of system management and analysis.

37

29 Sep 2011

2007329468

10

CANRPonbRDCOMKAVKNKNG_1 DOC-28092011

-37A -

[0119] Throughout this specification and claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" and
"comprising", will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers or

steps.

[0120] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

29 Sep 2011

2007329468

10

15

20

25

30

CANRPONBADCOWMK AVIXOMGAL 1. DOC- 28097201 |

.38 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method implemented on a computing device by a processor configured to
execute instructions that, when executed by the processor, direct the computing device to
perform acts comprising:

cataloging programs loaded onto the computing device;

acqutring last load times of files associated with the programs that are registered on
the computing device;

acquiring last modification times of the files associated with the programs that are
registered on the computing-based device; and

comparing the last modification times with the last load times of the files associated
with the programs that are registered on the computing device; and

noting any inconsistencies found during the comparing, that includes a report that
the program is not responding to a last attempted modification, and an attempt to retry the

last attempted modification of the program.

2. The method of claim 1, wherein the cataloging comprises creating a list of

programs registered with an operating system of the computing-based device.

3. The method of claim 1 or 2, wherein the cataloging comprises enumerating the

programs by placing the program in a list.

4. The method of any one of claims | to 3, wherein the cataloging comprises scanning

to detect all the programs registered on the computing-based device.

5. The method of any one of claims 1 to 4, wherein the acquiring comprises querying
a log file.
6. The method of any one of claims 1 to S, wherein the comparing comprises querying

a log file.

29 Sep 2011

2007329468

10

15

20

25

30

CANRPONBRDCCOMKAVGRNNAS | DOC-28m201 |

-39-

7. A computing device comprising:
a processor unit;
a log storage component configured to store:
last load times of files associated with programs registered on the
computing device; and
last modification times of the files associated with the programs registered
on the computing device; and
a query log component configured to:
catalog the programs registered on the computing device; and
compare the last modification times with the last load times to detect stale
files in the computing device, wherein a presence of stale files results to
disregarding of an upgrade in the programs, wherein the disregarding of the
upgrade will continue to execute the programs from old files;
report the stale files to entities such as a user or system administrator, the report
includes the program that is not responding to last attempted modification, and an attempt

to retry last attempted modification of the programs.

8. The computing device of claim 7 further comprising archive collection components
configured to store the last load times and the last modification times of the files associated

with the programs registered on the computing device.

9. The computing device of claim 7 or 8, wherein the last load times and the last

modification times include dates of the last load times and the last modification times.

10. The computing device of any one of claims 7 to 9, wherein the query log
component is further configured to scan all the programs registered on the computing-

based device.

1. A computer-readable storage media having computer-readable instructions thereon

which, when executed by a computer, implement a method comprising:

29 Sep 2011

2007329468

10

15

20

25

30

CANRPonbNDCCIMK AVIROOIRA_ | DOC-2009/201 |

- 40 -

cataloging and enumerating files and settings associated with programs registered
on a computing-based device;

acquiring last load times and dates of the files and the settings associated with the
programs that are registered on the computing-based device;

acquiring last modification times and dates of the files and the settings associated
with the programs that are registered on the computing-based device; and

comparing the last modification times and dates with the last load times and dates
of the files and the settings associated with the programs that are registered on the
computing-based device, wherein the comparing further includes noting inconsistencies in
the programs registered in the computing-based device that generates a report that includes

the program that is not responding to last attempted modification.

12. The computer-readable storage media of claim 11, wherein the comparing further
includes comparing files and settings associated with uninstalled programs registered in the

computing-based device to determine leaked files.

13. The computer-readable storage media of claim 12, wherein the leaked files are

removed from the computing-based device.

14. The computer-readable storage media of any one of claims 11 to 13, wherein the

comparing comprises querying a log file.

15. The method of any one of claims 1 to 6, substantially as hereinbefore described

with reference to the accompanying drawings.

16. The computing device of any one of claims 7 to 10, substantially as hercinbefore

described with reference to the accompanying drawings.

17. The computer-readable storage media of any one of claims 11 to 14, substantially

as hereinbefore described with reference to the accompanying drawings.

29 Sep 2011

2007329468

CANRPonbI\DCCWMKALIRIKNIRA_| DOC-2R4191201 |

- 41 -

18. A computer-readable storage media having computer-readable instructions thereon
which, when executed by a computer, implement the method of any one of claims | to 6

and11to 15,

‘WO 2008/070587

1711

PCT/US2007/086195

ac—

| e | s |
s | e |
=ac—
s | s |

ke
s | s |

ARCHIVE
COLLECTION
106

|f|[|[| O AGENT
= A RPN I 110 l
—
\
]

REPORT(S)
108

J

‘WO 2008/070587

PCT/US2007/086195
2111
[COLLECTION SERVER 106 A
PROCESSOR(S)
202
(MEMORY 204)
(PROGRAM(S) 206 A
4 N
QUERY MODULE
210
\\
é N
NOTIFICATION MODULE
212
\,
4 N
OTHER APPLICATION(S)
214
\|
\
OPERATING SYSTEM
216
.

(DATA 208)
4)
LOG STORAGE
218
(A
QUERY(S)

220

\
4)
NOTIFICATION(S)
222
\\
4 R
OTHER DATA(S)
224
.
\\
\\

Fig. 2

‘WO 2008/070587

{ axaman Al
2l

3/11

PCT/US2007/086195

300

N
RENREE
SIRESTNCE £2URLD S

Sl

Z

e
R x&\

ARSI HrIMBE AN

ENERIENRN
SRR
£ blcech 2

ot éne

AR

PR EEIR AN

eretusals 7 ieg s

30 6 M‘D e

W Rmpe SR

e psieclient aes

s e PRl ars

‘WO 2008/070587 PCT/US2007/086195

411

400

Exphpreraxe

Rk mgr Res v

B Etup BRE R
Apaploreeee v

= gaploresre S

sRsear o

R[masie- Pping €

names bl

3

swm;}‘ss‘sc& YA
406 :

Fiocplormeis ou
Fnaplorn g

§ ¥ oanersmiaak wwaven v

‘WO 2008/070587 PCT/US2007/086195
5/11

f 500

502

WITH PROGRAM EXECUTING ON A
SYSTEM

l

[Cory DATA TO A MEMORY

[INTERCEPT DATA ASSOCIATED

504

LOCATION

l

[COMPRESS THE DATA COLLECTED

506

IN THE MEMORY LOCATION

l

[PERIODICALLY UPLOAD

508

COMPRESSED DATA FOR
ANALYSIS

))

‘WO 2008/070587 PCT/US2007/086195

6/11

602

SPECIFY CLASSIFICATION RULE
WITH PARAMETERS

604

ASSOCIATE PARAMETERS WITH
ATTRIBUTES OF NOTED CHANGE
TO GIVE PROBABLE
CLASSIFICATIONS

[ASSIGN PRIORITY VALUE TO

PROBABLE CLASSIFICATIONS

608

ALLOT CLASSIFICATION
CORRESPONDING TO HIGHEST
PRIORITY VALUE

.
.
-
.

‘WO 2008/070587 PCT/US2007/086195

711

f 700

702
RECEIVE INFORMATION
ASSOCIATED WITH PROGRAM
RUNNING ON A SYSTEM
704

COMPARE ATTRIBUTES OF
PROGRAM WITH ATTRIBUTES OF
PROGRAM SPECIFIED IN
PREDEFINED LIST

UNAPPROVED
INTERACTIONS?

708 ALLOW
PROHIBIT INTERACTIONS 10 INTERACTIONS

‘WO 2008/070587 PCT/US2007/086195

8/11

f 800

802

CHECK FOR PREVIOUS INTERACTION(S)

BEFORE EXECUTION OF A FIRST PROGRAM

804

CHECK FOR PREVIOUS INTERACTION(S)

REFERENCING A FILENAME OF FIRST
PROGRAM

806

FLAG PREVIOUS INTERACTIONS
REFERENCING THE FIRST PROGRAM AS
DIRECT EPs

‘WO 2008/070587 PCT/US2007/086195

9/11

f 900

ENUMERATE ALL FILES AND REGISTRY 902

SETTINGS ASSOCIATED WITH PROGRAMS
REGISTERED WITH OPERATING SYSTEM ON
A COMPUTING-BASED DEVICE

904

SETTINGS PRESENT ON THE COMPUTING-
BASED DEVICE

906

COMPARE THE FILES AND REGISTRY
SETTINGS

[ENUMERATE ALL FILES AND REGISTRY

908
EXCLUDE FILES AND REGISTRY SETTINGS
OF CORRELATED PROGRAMS TO ARRIVE AT
LEAKED ENTRIES

N Y Y0

Fig. 9

‘WO 2008/070587 PCT/US2007/086195

10/11

f‘IOOO

1002

CATALOGUE & ENUMERATE LIST OF
PROGRAMS REGISTERED WITH OS

|

1004

QUERY LAST LOAD-TIME OF PROGRAMS
REGISTERED WITH OS

|

{COMPARE LAST LoAD TIME OF PROGRAMS

1006

REGISTERED WITH OS WITH LAST
MODIFICATION TIME OF PROGRAMS
REGISTERED WITH OS

|

NOTE INCONSISTENCIES FOUND DURING
COMPARISON

1008

NN Y

Fig. 10

‘WO 2008/070587

PCT/US2007/086195

1100 ﬂ‘ 11/11
1118 —
1122 d_ - 1120 s
Tl 1124 1148 || REMOTE
= S N | CowpuTING
\ e
1142 i | IS 1152 DEVICE _
(S5io—% GN\TTNEL
MONITOR MODEM vy
| {II0] row i
AN~ "0 RenoTE
PN 1158 —/ AppLicaTION
4 AN 1102 1106 PROGRAMS
7 N S N
AN N N
144 — 1108 ; \ \
/ / 1154 N SYSTEM MEMORY
10y %%W%%ﬁm S
oooon |} ;:f\l s OPERATING
ETWORK YSTEM
1 126 V|DEO ADAPTER ADAPTER S w
\\ SYSTEM BUs APPLICATION
(DaTA MEDIA K > PROGRAMS 1128
INTERFACES
OTHER PROGRAM
/—’—I\ 1104 Y MoDULES1130
M~ L
we_/ nzy e :>¢\\:ng PRE?ET'TAAMHSQ
/ N
L
|\ procns 12 PROCESSING | 114 RAM
UNIT -
PROGRM 1130} | | T TTTTmTT T
~—Moouirs — 1140 BIOS
PROGRAM 1132 ALL 111
. DATA - = Y
MO B85 1112 ROM
oooco [.
| |
|/O INTERFACES

N

|
At
i N eeen O
PRINTER \\ Mouse \\ KEYBOARD \\
N— 1146 ~— 1136 ~— 113

Fig. 11

S‘)THER DEVICE(S)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

