(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 April 2019 (18.04.2019)

(10) International Publication Number

WO 2019/073350 Al

WIPO I PCT

(51) International Patent Classification:
G011 15/00 (2006.01)

(21) International Application Number:

(74)

Agent: GRAHAM, Timothy, IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2JN (GB).

PCT/IB2018/057745 (81) Designated States (unless otherwise indicated, for every
. - kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO. AJ"I", AU. AZp BA. BB, BG, BIL BN, BR, BW, BY, BZ.
05 October 2018 (05.10.2018) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
(25) Filing Language: English Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
.. : HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
(26) Publication Language: English KR.KW.KZ. LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
15/728,962 10 October 2017 (10.10.2017) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
. SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: INTERNATIONAL BUSINESS TR, TT, TZ. UA. UG, US. UZ, VC, VN, ZA, ZM., ZW.
MACHINES CORPORATION [US/US]; New Orchard
Road, Armonk, New York 10504 (US). (84) Designated States (unless otherwise indicated, for every
. kind of regional protection available): ARIPO (BW, GH,
(71) Applicants (for MG only): IBM UNITED KING- GM. KE, LR, LS, MW, MZ, NA, RW, SD, SL. ST, SZ. TZ.
DOM LIMITED [QB/GB]; PO Box 41, North Harbour, UG, ZM. ZW), Eurasian (AM, AZ. BY. KG, KZ. RU. TJ.
Portsmouth Hampshire PO6 3AU (GB). IBM (CHINA) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
INVESTMENT COMPANY LIMITED [CN'/CN]; 25/ EE, ES, FL FR, GB, GR, IR, HU, IE, IS, IT, LT, LU, LV,
F, Pangu Plgzg, No. 27 Central North 4th Ring Road, MC. MK, MT, NL, NO, PL. PT, RO, RS, SE, SI SK. SM,
Chaoyang District, Beijing 100101 (CN). TR), OAPI (BF. BJ. CF, CG. CL, CM., GA. GN. GQ. GW.
(72) Inventors: BYRON, Donna; IBM Corporation, 550 King KM, ML, MR, NE, SN, TD, TG).
Street, Littleton, Massachusetts 01460-1250 (US). SWIFT,
Mary, IBM Corporation, PO Box 218, 1101 Kitchawan Published:

Road, Yorktown Heights, New York 10598 (US). KUNC,
Ladislav; IBM Czech Republic, The Park, V Parku 2294/4,
Building 2/4, 14800 Praha (CZ). JOHNSON, Benjamin,
Luke; IBM Corporation, 100 East Pratt Street, Baltimore,
Maryland 21202-1009 (US).

with international search report (Art. 21(3))

(54) Title: ABSTRACTION AND PORTABILITY TO INTENT RECOGNITION

1002
212 Natural Language Processing System

—r)
Proxy Training 242+ |semantic Analysis

Tags Examples Model
21 02 2202 2302 2402 250

2

Proxy Creation Training Feature Semantic User Input
l\\//Io dule H Example | Extacton | Analysis Model | Processing
Creation Module Module Training Module Module

wo 2019/073350 A1 | IUHY 000 T 000000 0 Y 00

(57) Abstract: A computer-implemented method for building a semantic analysis model. In one embodiment, the computer- imple-
mented method includes creating proxy tags comprising a set of surface form variants. The computer- implemented method creates
training examples comprising a combination of terminal tokens and at least one of the proxy tags. The computer-implemented method
builds the semantic analysis model using the training examples.

WO 2019/073350 PCT/IB2018/057745
1

ABSTRACTION AND PORTABILITY TO INTENT RECOGNITION

TECHNICAL FIELD

[0001] The present disclosure relates generally to language modeling that may be used in natural language
processing systems or conversational agent systems. Natural language processing is a field that covers computer

understanding and manipulation of human language.

BACKGROUND

[0002] The use of natural language processing has grown in recent years as more applications are

interacting with users using voice dialogue.

[0003] Traditional approaches to language modelling have relied on a fixed corpus of text to provide training
samples in determining a probability distribution over word sequences. Increasing the corpus size often leads to
better-performing language models. However, achieving the quantity of valid training examples to reliably train a
classifier is challenging because the process is overly fitted to lexical features (i.e., surface form) that require every

alternative phrasing of a sentence or question be explicitly provided in the training example set.

[0004] Therefore, there is a need in the art to address the aforementioned problem.
SUMMARY
[0005] Viewed from a first aspect, the present invention provides a computer-implemented method for

building models for natural language processing systems, the computer-implemented method comprising: creating
proxy tags comprising a set of surface form variants; creating training examples comprising a combination of
terminal tokens and at least one of the proxy tags; and building a semantic analysis model using the training

examples.

[0006] Viewed from a further aspect, the present invention provides a system for building models for natural
language processing systems, comprising: a memory configured to store computer-executable instructions; a
processor configured to execute the computer-executable instructions to: create proxy tags comprising a set of
surface form variants; create training examples comprising a combination of terminal tokens and at least one of the

proxy tags; and build a semantic analysis model using the training examples.

[0007] Viewed from a further aspect, the present invention provides a computer program product for building

models for natural language processing systems, the computer program product comprising a computer readable

WO 2019/073350 PCT/IB2018/057745
2
storage medium readable by a processing circuit and storing instructions for execution by the processing circuit for

performing a method for performing the steps of the invention.

[0008] Viewed from a further aspect, the present invention provides a computer program stored on a
computer readable medium and loadable into the internal memory of a digital computer, comprising software code

portions, when said program is run on a computer, for performing the steps of the invention.

[0009] Viewed from a further aspect, the present invention provides a computer-implemented method for
building models for natural language processing systems, the computer-implemented method comprising: creating
proxy tags comprising a set of surface form variants; creating training examples comprising at least one of the proxy

tags; and building a semantic analysis model using the training examples

[0010] The disclosed embodiments include a natural language processing system, a computer program
product, and various computer-implemented methods for building a ssmantic analysis model and applying the
model to process natural language inputs. As an example embodiment, a computer-implemented method is
disclosed that includes the step of creating proxy tags comprising a set of surface form variants. The computer-
implemented method creates training examples comprising a combination of terminal tokens and proxy tags. The
computer-implemented method builds the semantic analysis model using the training examples.As another example
embodiment, a computer-implemented method for building and testing models for semantic analysis of natural
language is disclosed that includes the step of creating proxy tags that have a set of surface form variants. The
computer-implemented method creates training examples that include a combination of terminal tokens and at least
one of the proxy tags. The computer-implemented method performs feature extraction using the training examples
to extract features of the training examples. The computer-implemented method builds a semantic analysis model

that uses the features of the training examples as input data.

[0011] As another example embodiment, a computer-implemented method is disclosed that includes the step
of creating proxy tags comprising a set of surface form variants. The computer-implemented method creates
training examples comprising one or more proxy tags. The computer-implemented method builds the semantic

analysis model using the training examples.

[0012] One optional feature of various embodiments is that the set of surface form variants includes surface
form variants that are phrases (e.g., “are they’, “is it’, “is that’, etc.). In certain embodiments, the surface form
variants may have inconsistent structural classes. For example, surface form variants for one proxy tag may
include individual nouns, noun phrases, and question words plus noun phrases. In some embodiments, proxy tags
may be made up of other proxy tags. In some embodiments, the surface form variants for a proxy tag may be auto-

populated using various resources including, but not limited to, documents, knowledge graphs, thesauri,

WO 2019/073350 PCT/IB2018/057745
3
dictionaries, and a lexical database. Various embodiments may also include special handling for input language

test instances to infer proxy features from surface form elements.

[0013] The disclosed embodiments provide a solution to the problem in the current supervised machine
learning paradigm where training instances are naturally occurring language examples with no provided method for
noting generalities that should be treated similarly by language classification or other probabilistic inference
processes. Additionally, the disclosed embodiments provide several advantages over the current training paradigm
including enabling faster training of the semantic analysis model because the exact phrases are not required to be
created or listed. Another advantage is that the disclosed embodiments enable training examples to be broken up

into modular/swappable pieces, with no grammatical rules required to represent substitutability.

[0014] Other embodiments and advantages of the disclosed embodiments are further described in the

detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The present invention will now be described, by way of example only, with reference to preferred
embodiments, as illustrated in the following figures:

FIG. 1 is a schematic network diagram of a natural language processing system in accordance with various
embodiments.

FIG. 2 is a schematic diagram of a natural language processing system in accordance with various embodiments.
FIGS. 3A-3C are schematic diagrams illustrating the creation of proxy tags in accordance with various
embodiments.

FIG. 4 is a flowchart depicting a computer-implemented method for building a semantic analysis model in
accordance with various embodiments.

FIG. 5 is a flowchart depicting a computer-implemented method for testing the semantic analysis model in
accordance with various embodiments.

FIG. 6 is a block diagram of an example data processing system in accordance with various embodiments.
[0016] The illustrated figures are only exemplary and are not intended to assert or imply any limitation with
regard to the environment, architecture, design, or process in which different embodiments may be implemented.
Any optional component or steps are indicated using dash lines in the illustrated figures.

DETAILED DESCRIPTION

[0017] The disclosed embodiments seek to improve the process of developing language models that may be

used in natural language processing systems or conversational agent systems. For instance, the disclosed

WO 2019/073350 PCT/IB2018/057745
4
embodiments include various systems and methods for utilizing term or phrasal proxies or proxy tags within training
examples for building a semantic analysis model. The disclosed embodiments provide a solution to the problem in

the current training paradigm where all possible surface forms must be listed in the training examples.

[0018] It should be understood at the outset that, although an illustrative implementation of one or more
embodiments are provided below, the disclosed systems, computer program product, and/or methods may be
implemented using any humber of techniques, whether currently known or in existence. The disclosure should in
no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the
exemplary designs and implementations illustrated and described herein, but may be modified within the scope of

the appended claims along with their full scope of equivalents.

[0019] As used within the written disclosure and in the claims, the terms “including” and “comprising” are
used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to”. Unless
otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity, and the singular
forms “a’, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates

otherwise.

[0020] Current art for creating natural language understanding using supervised learning faces many
challenges. Rather than relying on developers building modular language resources such as a lexicon and
grammar, training examples are listed as naturally-occurring word sequences that are labeled with a desired output,
such as an intent classification or sentiment tag. This method works well at scale but is problematic for
bootstrapping some language understanding processes, such as for a new conversational agent working in a
closed domain where a large volume of attested natural language examples are not available for system developers
to train from. The hand-generated training examples that are produced in such scenarios often manifest repetition
of phrasing in order to exhaustively list the elements of a semantic category, such as variations of verb choice or

proper names.

[0021] This creates two distinct challenges to the performance of such language understanding systems.
First is that the training examples, because they embed very specific words such as proper names, are not portable
across deployments. Subsequent language understanding deployments, even if they are for a similar
conversational domain, cannot make optimal use of the training samples created for a previous product. Secondly,
artificial repetition of training example phrasing that was created in order to capture variants of one parameter (such
as a product name) can cause a statistical bias within the language model features extracted from the training

samples.

[0022] For example, using current art, training instances of a question whether a particular car is available in

a hybrid model may be listed as below. In order for each model name to be included in the n-gram features

WO 2019/073350 PCT/IB2018/057745
5

produced by training, an example is provided for each model name, whereas what the content developer is actually
attempting to do is demonstrate that the question template “Is there a hybrid version of X’ where X is any car model,

is a valid instance of this category.

[0023] Is there a hybrid version of RAVA4?

[0024] Is there a hybrid version of Yaris?
[0025] Is there a hybrid version of Tundra?
[0026] Is there a hybrid version of Tacoma?
[0027] Is there a hybrid version of Sienna?
[0028] Is there a hybrid version of Sequoia?
[0029] Is there a hybrid version of Mirai?
[0030] Is there a hybrid version of Land Cruiser?
[0031] Is there a hybrid version of Corolla?
[0032] Is there a hybrid version of Camry?
[0033] Is Yaris available in a hybrid model?
[0034] Is Tundra available in a hybrid model?
[0035] |s Tacoma available in a hybrid model?
[0036] |s Sienna available in a hybrid model?
[0037] ls Sequoia available in a hybrid model?

[0038] Is RAV4 available in a hybrid model?

[0039] Is Mirai available in a hybrid model?

WO 2019/073350 PCT/IB2018/057745

6
[0040] Is Land Cruiser available in a hybrid model?
[0041] Is Highlander available in a hybrid model?
[0042] Is Corolla available in a hybrid model?
[0043] ls Camry a hybrid?
[0044] Is RAV4 a hybrid?
[0045] ls Toyota RAV4 a hybrid?
[0046] There are numerous other questions that may be included in the above list.
[0047] As shown above, a technical problem with the current training paradigm is that building of the training

examples for the language model is a tedious task because there are countless variations of sentences/questions
that may be received as input, and substitutability of equivalent word classes is learned via explicit examples.
Accordingly, the disclosed embodiments include various systems and methods that provide a technical solution to
the current training paradigm by utilizing term or phrasal proxies or proxy tags within training examples for building
a semantic analysis model. As an example, in accordance with various embodiments, the above training set may
be captured as “Is @modelname a hybrid” accompanied by proxy set: @modlename= {Rav4, Sienna, Camry ...}.
In certain embodiments, the proxy tags capture surface form lexical variation with any arbitrary internal
grammatical/constituency structure. For instance, in some embodiments, variants for one proxy tag can shift from
individual nouns to houn phrases to question words plus noun phrases, with no requirement that the internal details
form a valid grammatical category. The disclosed embodiments provide a solution to the problem in the current
training paradigm where all combinations of surface forms must be listed in the training examples. Additionally, in
certain embodiments, the disclosed proxy tags surface form examples may be used across various training
example sets. For example, in one embodiment, patterns in question words and predicate synonym sets can be
listed as a set of surface form variants represented with a proxy tag and copied from one deployment to another.
Where the full sentence training examples themselves, such as those shown above, may not be relevant to a
different conversational training set, the proxy sets can contain isolated lexical content that is more portable across

conversations.

[0048] FIG. 1 is a network diagram of a natural language processing system 100 in accordance with various
embodiments. In the depicted embodiment, the natural language processing system 100 is communicatively
coupled over a communication network 140 to various other systems 110. The systems 110 may include systems

that store a corpus of training example sentences or a lexical database (e.g., WordNet®) that may be used by the

WO 2019/073350 PCT/IB2018/057745
7

natural language processing system 100 in building a semantic analysis model. The systems 110 may include
systems that interact with the natural language processing system 100 in creating or testing a semantic analysis
model (e.g., remote programmer or developer systems). The natural language processing system 100 may also be
communicatively coupled to at least one end user device 120. The end user device 120 may be any type of
electronic device that includes one or more applications that receives natural language input from a user. For
example, the end user device 120 may be a smart phone with the built-in cognitive agent that communicates with a
user via a verbal dialogue. Although the natural language processing system 100 is depicted as a separate and
remote system from the end user device 120, in various embodiments, the natural language processing system 100

may be integrated as part of the end user device 120 or as part of another system.

[0049] As referenced above and herein, the term “communicatively coupled” means capable of sending
and/or receiving data over a communication link. In certain embodiments, communication links may also
encompass internal communication between various components of a system and/or with an external input/output
device such as a keyboard or display device. Additionally, the communication link may include both wired and
wireless links, and may be a direct link or may comprise multiple links passing through one or more network devices
such as, but not limited to, routers, firewalls, servers, and switches. The network device may be located on various

types of networks.

[0050] Unless specifically indicated, any reference to the processing, retrieving, and storage of data and
computer executable instructions may be performed locally on an electronic device and/or may be performed on a
remote network device. For example, data may be retrieved or stored on a data storage component of a local

device and/or may be retrieved or stored on a remote database or other data storage systems.

[0051] A network, such as network 140, as used herein means a system of electronic devices that are joined
together via communication links to enable the exchanging of information and/or the sharing of resources. Non-
limiting examples of networks include local-area networks (LANs), wide-area networks (WANSs), and metropolitan-
area networks (MANS). The networks may include one or more private networks and/or public networks such as

the Internet. The networks may employ any type of communication standards and/or protocol.

[0052] FIG. 2 is a schematic diagram of a natural language processing system 100 in accordance with
various embodiments. In the depicted embodiment, the natural language processing system 100 includes a proxy
creation module 210, a training example creation module 220, a feature extraction module 230, a semantic analysis

model training module 240, and a user input processing module 250.

[0053] A module as referenced herein may comprise of software components, hardware components, and/or
a combination thereof. The software components may include, but is not limited to, data access objects, service

components, user interface components, application programming interface (API) components, and other computer

WO 2019/073350 PCT/IB2018/057745
8
executable instructions. The hardware components may include, but is not limited to, electrical circuitry, one or
more processors, and one or data storage components such as memory. The memory may be volatile memory or
non-volatile memory that stores data and computer executable instructions. The computer executable instructions
may be in any form including, but not limited to, machine code, assembly code, and high-level programming code
written in any programming language. The module may be configured to use the data to execute one or more

instructions to perform one or more tasks.

[0054] In one embodiment, the proxy creation module 210 is configured to enable the creation of proxy tags.
A proxy tag as referenced herein is an identifier that contains a set of surface form lexical variations. In certain
embodiments, the identifier may have a name, label, and/or identification number corresponding to the set of
surface form lexical variations. In certain embodiments, the proxy tag may be preceded by, end with, or include at
least one symbol to indicate that it is a proxy tag. For example, in one embodiment, the @ symbol may precede a
named identifier to indicate that it is a proxy tag. As non-limiting examples, @colors may be a proxy tag that
contains a set of various colors, or @citiesInTexas may contain a set of names of cities in Texas. In various
embodiments, the proxy tags may be phrasal proxy tags that have a set of surface form lexical variations that
includes phrases. For example, @howMany may be a phrasal proxy tag that has a set of surface form lexical
variations such as {the number of, number of, how many, the amount of, amount of, the total number of, total
number of}. In certain embodiments, the proxy tags capture surface form lexical variation with any arbitrary internal
grammatical/constituency structure. For example, in various embodiments, the surface form lexical variations may
include misspellings of the surface form lexical variations or homonyms to enable fuzzy/inexact matching. In
various embodiments, the surface form variants may have inconsistent structural classes. For example, in certain
embodiments, variants for one proxy tag can shift from individual nouns to noun phrases to question words plus

noun phrases, with no requirement that the internal details form a valid grammatical category.

[0055] In various embodiments, the proxy tags and corresponding set of surface form lexical variations may
be created and populated by receiving input from a user. In some embodiments, the creation of the proxy tags and
the corresponding set of surface form lexical variations may be automated. For example, in certain embodiments,
the proxy creation module 210 may automatically create proxy tags and the corresponding set of surface form
lexical variations based on information gathered from glossaries, knowledge graphs or knowledge base, through
term discovery within a document collection, and from a lexical database such as WordNet® or other resources for
synonym, or by an automatic extraction of repeating word sequences that are present in raw training samples of a
corpus. In one embodiment, once the proxy tags are created, the proxy tags may be stored locally or remotely in a
proxy tags database 212. In some embodiments, the natural language processing system 100 may acquire

previously created proxy tags from one or sources for use in the training examples disclosed herein.

[0056] In one embodiment, the training example creation module 220 is configured to enable the creation of

training examples using the proxy tags. In some embodiments, the training examples may consist of any

WO 2019/073350 PCT/IB2018/057745
9

combination of proxy tags and surface form terminal tokens (e.g., ordinary words, punctuation marks, etc.). A
terminal token is the smallest meaningful unit of a statement and can consist of 1 or more characters. Examples of
terminal tokens include, but are not limited to, names, words, numbers, labels, operator symbols (e.g., + =, =>, ;, i,
., %), comma, and delimiters. |n various embodiments, the terminal tokens in a training example may include words
that are included as surface form variants in a proxy tag. For instance, when a particular training example is only
valid for some but not all instances of a proxy set, e.g. when only certain car models may have certain features
(e.g., “Does the RAV4 come with off-road tires?").

[0057] In one embodiment, a user may manually create/write training examples. As an example, the user
may create a training example that says “@howMany @Presidents were @occupation?” The @howMany proxy
tag may include the set of surface form lexical variations as described above. The @Presidents proxy tag may
include a set of surface form lexical variations that includes {U.S. Presidents, Presidents, and Presidents of the
United States}. The @occupation proxy tag may include a set of surface form lexical variations that includes
{lawyers, doctors, actors, farmers, Senators, and Congressman}. As shown, one training example in accordance
with the disclosed embodiments may provide countless variations of examples for building a semantic analysis
model. In certain embodiments, the training examples do not have to form a complete sentence, may include only
proxy tags (i.e., no terminal tokens), or may be in a grammatically incorrect sequence. For example, in some
embodiments, the natural language processing system 100 may be configured to produce the same examples for
building a semantic analysis model using training examples “@howMany @Presidents @occupation” or
‘@howMany @occupation @Presidents” as it would have using training example “@howMany @Presidents were
@occupation?” Similar to the creation of proxy tags, in some embodiments, a user may interact with a user
interface or an application for creating training examples. Additionally, in some embodiments, the training examples
may be automatically generated based on a corpus of sentences and/or documents. In one embodiment, once the
training examples are created, the training examples may be stored locally or remotely in a training examples
database 222.

[0058] In one embodiment, the feature extraction module 230 includes instructions for processing the
disclosed training examples and extracting the features out of the training examples. In some embodiments, the
feature extraction module 230 may expand each of the training examples into some other form such as a sentence,
question, or phrase. In some embodiments, the feature extraction module 230 may add terms or words to a training
example to form a complete sentence. In other embodiment, the feature extraction module 230 may process the
training examples without expanding each of the training examples into separate forms. In some embodiments, the
feature extraction module 230 may determine whether the statement is a question; whether the question is asking
for a name of a person, place, or thing; whether the question is asking for a number such as how many, a phone

number, or a temperature; or whether the question is asking for an address, directions, instructions, etc.

WO 2019/073350 PCT/IB2018/057745
10

[0059] In one embodiment, the data generated by the feature extraction module 230 using the training
examples is then inputted into the semantic analysis model training module 240. The semantic analysis model
training module 240 is configured to build a ssmantic analysis model based on the input data. A semantic analysis
model is a statistical model that is used to estimate the relative likelihood of different phrases (i.e., determine a
probability that a given input sequence matches a predetermined phrase or user defined intent category). In certain
embodiments, the semantic analysis model may include statistical matches of certain sounds to word sequences.
In some embodiments, the semantic analysis model may also provide context statistical analysis for distinguishing
between words and phrases that sound similar. In various embodiments, the semantic analysis model may be
stochastic and/or grammatical. The semantic analysis model may be stored locally or remotely in one or more
semantic analysis model database 242. In various embodiments, each training example is a pair consisting of an
input object and a desired output value. A supervised learning algorithm analyzes the training data and produces a
semantic analysis model, which can be used for mapping new examples or an unknown lexical sequence. For
example, in some embodiments, the semantic analysis model pairs output values or labels from the training
examples with input feature combinations. An optimal scenario will allow for the semantic analysis model to be

used to correctly determine the class labels for unseen instances.

[0060] In one embodiment, the user input processing module 250 is configured to receive a user input such
as a voice command, dialog, or text input, and process the user input to determine the meaning or intent of the user
input. For example, in one embodiment, the user input processing module 250 may be configured to use the
created semantic analysis model to convert a voice command into plain text and determine the semantic meaning
of the voice command. In certain embodiments, the user input processing module 250 may include a dialog
manager for determining an output or response to the user input and generating the output or response. In certain
embodiments, the user input processing module 250 may communicate with one or more external systems in
determining the appropriate output or response. |n certain embodiments, the dialog manager may convert the

output to speech for conversing with the user.

[0061] FIGS. 3A-3C are schematic diagrams illustrating the creation of proxy tags in accordance with various
embodiments. The proxy tags may be created using the proxy creation module 210 and stored in the proxy tags
database 212 as described in FIG. 2. FIG. 3Aillustrates a user interface 300 for adding a phrasal proxy tag called
@ARETHERE. FIG. 3B illustrates a user interface 310 for adding a word proxy tag called @HYBRID. In the
depicted embodiments, a user may type or enter in a word or phrase at “Add a new valug” 302 to the set of surface
form variants associated with the proxy tag. Additionally, the user interface 300 may include predefined terms or
phrases 304 that a user may select to add to the proxy tag. The user interface 300 may also depict terms or
phrases 306 that have already been added to the proxy tag either manually by the user or were automatically
added by the system as described above. In certain embodiments, an “X” 308 next to a term/phrase 306 may be

selected to delete the term/phrase 306 from the proxy tag.

WO 2019/073350 PCT/IB2018/057745
11

[0062] FIG. 3C illustrates a user interface 330 for adding a category proxy tag called @CARMODEL. Similar
to FIGS. 3A and 3B, a user may type or enter in a word or phrase at “Add a new value” 332 to the set of surface
form variants associated with the proxy tag. In this embodiment, the user interface 330 enables a user to add the
set of surface form variants associated with other proxy tags. For example, in the depicted embodiment, the proxy
tag @Avalon 334 may be selected to add the surface form variants Toyota® Avalon® and Avalon® to the
@CARMODEL proxy tag. A similar proxy tag @Rav4 336 may be selected to add the surface form variants
Toyota® Rav4® and Rav4® to the @CARMODEL proxy tag. Still, a proxy tag @FORD 338 may be selected to add
various Ford® car models such as the Ford Mustang and Ford F150 surface form variants to the @ CARMODEL

proxy tag. Thus, FIG. 3C illustrates that a proxy tag may be built using one or more other proxy tags.

[0063] FIG. 4 is a flowchart depicting a computer-implemented method 400 for building a semantic analysis
model in accordance with various embodiments. The computer-implemented method 400 may be performed by a
natural language processing system such as natural language processing system 100. The natural language
processing system may be configured to execute instructions or code corregponding to the computer-implemented
method 400 using one or more processors or processing components. In the depicted embodiment, the computer-
implemented method 400 begins at step 402 by creating proxy tags and populating each of the proxy tags with a
set of surface form variants. In various embodiments, each proxy tag includes a hame or identifier (ID) for the set of
surface form variants. As stated above, the proxy tags may be user created and/or may be created automatically
such as by performing text analysis or term discovery on a corpus of documents or sentences, glossaries,

knowledge graphs or knowledge base, lexical databases, or other resources.

[0064] The computer-implemented method 400 at step 404 creates training examples that include one or
more proxy tags. In various embodiments, the training examples include a combination of terminal tokens and
proxy tags. In some embodiments, the training examples may include only proxy tags. In certain embodiments, the
creation of the training examples may be automated or may be manually created by a user. In various

embodiments, the training examples do not need to form complete phrases or sentences.

[0065] In various embodiments, once the training examples are created, the computer-implemented method
400 may optionally at step 406 perform feature extraction using the training examples to generate various feature
extraction data as described above. For example, in certain embodiments, the feature extraction process may
perform parsing, generate keywords, determine fuzzy/inexact matches (e.g., misspelled words), and perform part-
of-speech tagging of the training examples. The computer-implemented method 400 at step 408 uses the training
examples and or the feature extraction data to build a ssmantic analysis model. For example, in one embodiment,
the computer-implemented method 400 may be configured to pair output labels from the training examples with
feature combinations. The semantic analysis model is used to determine the statistical likelihood of different
phrases matching an input phrase or to determine the best intent category of sentences matching an input phrase.

In various embodiments, the semantic analysis model may also be used to determine the tone of a phrase (e.g., as

WO 2019/073350 PCT/IB2018/057745
12
positive, negative or neutral). The disclosed embodiments may be used to build a ssmantic analysis model in any

language.

[0066] FIG. 5is a flowchart depicting a computer-implemented method 500 for testing the semantic analysis
model in accordance with various embodiments. The computer-implemented method 500 may be performed by a
natural language processing system such as natural language processing system 100 by executing instructions or
code corresponding to the computer-implemented method 500 using one or more processors or processing
components. In the depicted embodiment, the computer-implemented method 500 begins at step 502 by receiving
alexical sequence as an input. The lexical sequence may be a combination of keywords, a complete sentence, a
question, or any other sequence of characters. The lexical sequence may be received as a verbal dialog, a textual
input, or a combination thereof, As another optional feature, in some embodiments, the computer-implemented
method 500 may be configured to receive a proxy tag as part of the lexical sequence input. For example, in some

embodiments, a user may enter “What @CarModel is best rated” as a lexical sequence.

[0067] At step 504, the computer-implemented method 500 is configured to perform a proxy analysis on the
lexical sequence for word sequences that are listed in the surface form variants of the proxy tags. For example, if
one of the terms in the lexical sequence is Toyota®, the proxy analysis may determine that the lexical sequence
might involve the proxy tag @CarModels. In various embodiments, the proxy analysis may be configured to
determine inexact matches such as for misspelled versions of surface form variants or homonyms. In certain
embodiments, the proxy analysis may be configured to determine the proxy tags based on the surrounding word
context of the lexical sequence when the word sequences are listed in the surface form variants of more than one of
the proxy tags. In one embodiment, a boolean feature for the proxy tag is set to true when the proxy analysis finds
a match for a surface form variant of the proxy tag in the lexical sequence. Other forms of tracking when the proxy
analysis finds a match for a surface form variant of a proxy tag in the lexical sequence may also be used in

accordance with the disclosed embodiments.

[0068] In one embodiment, at step 506, the computer-implemented method 500 is configured to convert the
lexical sequence based on the proxy analysis. In one embodiment, the computer-implemented method 500
converts a basic lexical sequence into a form that includes proxy tags by replacing one or more words in the lexical
sequence with the proxy tags. For example, if the lexical sequence is ‘Do Honda Civics have a high resell value?,”
the computer-implemented method 500 may convert the lexical sequence into ‘Do @CarModel have a high resell

value.”

[0069] At step 508, the computer-implemented method 500 is configured to produce a semantic analysis of
the lexical sequence using the semantic analysis model. For example, in one embodiment, once the lexical
sequence is converted to proxy form, the computer-implemented method 500 uses the semantic analysis model

and the various lexical forms associated with the proxy tags to produce a semantic analysis of the lexical sequence.

WO 2019/073350 PCT/IB2018/057745
13
In certain embodiments, the computer-implemented method 500 may generate a list of possible intent categories

based on the semantic analysis model and a confidence score associated with each of the possible categories.

[0070] As an optional step 510, in some embodiments, the computer-implemented method 500 is configured
to determine a response to the lexical sequence and provide the response to a user. For example, once a lexical
sequence is determined, the computer-implemented method 500 may query one or more systems or databases for
an answer to the lexical sequence. The computer-implemented method 500 may then convert the answer using

text to speech to provide a verbal response to the user.

[0071] FIG. 6 is a block diagram of various hardware components of the natural language processing system
100 in accordance with an embodiment. Although FIG. 6 depicts certain basic components of the natural language
processing system 100, the disclosed embodiments may also be implemented in very advanced systems such as
an IBM® Power® 750 servers or the IBM Watson™ supercomputer, which employs a cluster of ninety IBM Power
750 servers, each of which uses a 3.5 GHz POWERY® eight-core processor, with four threads per core.
Additionally, certain embodiments of the natural language processing system 100 may not include all hardware
components depicted in FIG. 6. Similarly, certain embodiments of the natural language processing system 100
may include additional hardware components that are not depicted in FIG. 6.. IBM, Power, Watson, and POWERY

are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

[0072] In the depicted example, the natural language processing system 100 employs a hub architecture
including north bridge and memory controller hub (NB/MCH) 606 and south bridge and input/output (I/0) controller
hub (SB/ICH) 610. Processor(s) 602, main memory 604, and graphics processor 608 are connected to NB/MCH
606. Graphics processor 608 may be connected to NB/MCH 606 through an accelerated graphics port (AGP). A
computer bus, such as bus 632 or bus 634, may be implemented using any type of communication fabric or
architecture that provides for a transfer of data between different components or devices attached to the fabric or

architecture.

[0073] In the depicted example, network adapter 616 connects to SB/IICH 610. Audio adapter 630, keyboard
and mouse adapter 622, modem 624, read-only memory (ROM) 626, hard disk drive (HDD) 612, compact disk
read-only memory (CD-ROM) drive 614, universal serial bus (USB) ports and other communication ports 618, and
peripheral component interconnect/ peripheral component interconnect express (PCI/PCle) devices 620 connect to
SB/ICH 610 through bus 632 and bus 634. PCI/PCle devices 620 may include, for example, Ethernet adapters,
add-in cards, and PC cards for notebook computers. PCIl uses a card bus controller, while PCle does not. ROM
626 may be, for example, a flash basic input/output system (BIOS). Modem 624 or network adapter 616 may be

used to transmit and receive data over a network.

WO 2019/073350 PCT/IB2018/057745
14
[0074] HDD 612 and CD-ROM drive 614 connect to SB/ICH 610 through bus 634. HDD 612 and CD-ROM
drive 614 may use, for example, an integrated drive electronics (IDE) or serial advanced technology attachment
(SATA) interface. Super I/0 (SIO) device 628 may be connected to SB/ICH 610. In some embodiments, HDD 612

may be replaced by other forms of data storage devices including, but not limited to, solid-state drives (SSDs).

[0075] An operating system runs on processor(s) 602. The operating system coordinates and provides
control of various components within the natural language processing system 100 in FIG. 6. Non-limiting examples
of operating systems include the Advanced Interactive Executive (AIX®) operating system or the Linux® operating
system. Various applications and services may run in conjunction with the operating system. For example, in one
embodiment, International Business Machines (IBM)® DeepQA software, which is designed for information retrieval
that incorporates natural language processing and machine learning, is executed on natural language processing

system 100.

[0076] The natural language processing system 100 may include a single processor 602 or may include a
plurality of processors 602. Additionally, processor(s) 602 may have multiple cores. For example, in one
embodiment, natural language processing system 100 may employ a large number of processors 602 that include
hundreds or thousands of processor cores. In some embodiments, the processors 602 may be configured to

perform a set of coordinated computations in parallel.

[0077] Instructions for the operating system, applications, and other data are located on storage devices,
such as one or more HDD 612, and may be loaded into main memory 604 for execution by processor(s) 602. In
certain embodiments, HDD 612 may store proxy tags, training examples comprising a combination of terminal
tokens and proxy tags, and a semantic analysis model that is built using the training examples. In some
embodiments, additional instructions or data may be stored on one or more external devices. The processes for
illustrative embodiments of the present invention may be performed by processor(s) 602 using computer usable
program code, which may be located in a memory such as, for example, main memory 604, ROM 626, or in one or

more peripheral devices 612 and 614.

[0078] The present invention may be a system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer program product may include a computer readable
storage medium (or media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[0079] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an

electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A

WO 2019/073350 PCT/IB2018/057745
15

non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random-access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[0080] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0081] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such
as the “C” programming language or similar programming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external
computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state
information of the computer readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[0082] Aspects of the present invention are described herein with reference to flowchart illustrations and/or

block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the

WO 2019/073350 PCT/IB2018/057745
16
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[0083] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in
a particular manner, such that the computer readable storage medium having instructions stored therein comprises
an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0084] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented method, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0085] The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation
of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent
amodule, segment, or portion of instructions, which comprises one or more executable instructions for
implementing the specified logical function(s). In some alternative implementations, the functions noted in the
blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact,
be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of

special purpose hardware and computer instructions.

[0086] As referenced herein, the term database or knowledge base is defined as collection of structured
and/or unstructured data. Although referred in the singular form, the database may include one or more databases,
and may be locally stored on a system or may be operatively coupled to a system via a local or remote network.
Additionally, the processing a certain data or instructions may be performed over the network by one or more

systems or servers, and the result of the processing of the data or instructions may be transmitted to a local device.

WO 2019/073350 PCT/IB2018/057745
17

[0087] It should be apparent from the foregoing that the disclosed embodiments have significant advantages
over current art. As an example, the disclosed embodiments enable training examples to be broken up into
modular/swappable pieces, with no grammatical rules required to represent substitutability. Additionally, the
disclosed embodiments alter the training/testing algorithms, so that equivalent variation can be recognized in the
classification algorithm. Advantages of the disclosed embodiments include faster development of a semantic
analysis model because the exact phrases are not required to be created or listed. Instead, a proxy tag may simply
be altered. For example, if a new car model is created, the disclosed embodiments does not require that the exact
phrase for every single statement or question possibly involving that car model be created as part of the training
example corpus for building a semantic analysis model. Instead, the new car model may simply be inserted into
one or more proxy tags associated with car models. The disclosed embodiments may then auto expand the proxy
tags when building the semantic analysis model without the need for generating all possible sentences. Another
advantage of the disclosed embodiments includes the possibility to quickly adapt semantic analysis models to hew
languages. Translating terminal word sequences in training examples only, excluding proxy tags and finally

translating the content of proxy tags without the need of translating all raw training samples.

[0088] The descriptions of the various embodiments of the present invention have been presented for
purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many
modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of
the described embodiments. For example, although the above disclosed embodiments are described for use with

the English language, the disclosed embodiments may be employed for any language.

[0089] Further, the steps of the methods described herein may be carried out in any suitable order, or
simultaneously where appropriate. The terminology used herein was chosen to best explain the principles of the
embodiments, the practical application or technical improvement over technologies found in the marketplace, or to

enable others of ordinary skill in the art to understand the embodiments disclosed herein.

WO 2019/073350 PCT/IB2018/057745
18

CLAIMS

1. A computer-implemented method for building models for natural language processing systems, the
computer-implemented method comprising:

creating proxy tags comprising a set of surface form variants;

creating training examples comprising a combination of terminal tokens and at least one of the proxy tags;
and

building a semantic analysis model using the training examples.

2. The computer-implemented method of claim 1, wherein the set of surface form variants comprises surface

form variants that are phrases.

3. The computer-implemented method of claim 1, wherein the set of surface form variants comprises surface

form variants that have inconsistent structural classes.

4, The computer-implemented method of any of the preceding claims, wherein the proxy tags comprises

other proxy tags.

5. The computer-implemented method of any of the preceding claims, wherein the set of surface form

variants for the proxy tags are automatically populated using a lexical database.

6. The computer-implemented method of any of the preceding claims, further comprising:

receiving a lexical sequence as an input;

performing a proxy analysis on the lexical sequence for word sequences that are listed in the set of
surface form variants of the proxy tags;

converting the lexical sequence based on the proxy analysis; and

producing a semantic analysis of the lexical sequence using the semantic analysis model.

7. The computer-implemented method of claim 6, wherein the proxy analysis comprises determining the
proxy tags based on a surrounding word context of the lexical sequence when the word sequences are listed in the

set of surface form variants of more than one of the proxy tags.

8. The computer-implemented method of either of claims 6 or 7, wherein converting the lexical sequence

based on the proxy analysis comprises replacing words in the lexical sequence with the proxy tags.

9. The computer-implemented method of any of claims 6 to 8, further comprising determining a confidence

score for the semantic analysis of the lexical sequence using the semantic analysis model.

WO 2019/073350 PCT/IB2018/057745
19
10. The computer-implemented method of any of the preceding claims, further comprising
performing feature extraction using the training examples to extract features of the training examples; and
wherein building the semantic analysis model using the training examples comprises building the semantic

analysis model uses the features of the training examples as input data.

1. The computer-implemented method of claim 10, wherein the semantic analysis model pairs output
labels from the training examples with feature combinations for producing a semantic analysis of an unknown

lexical sequence.

12. The computer-implemented method of claim 11, further comprising determining a confidence score for the

semantic analysis of the unknown lexical sequence using the semantic analysis model.

13. The computer-implemented method of claim 12, further comprising performing a proxy analysis on the

unknown lexical sequence for word sequences that are listed in the set of surface form variants of the proxy tags.

14, A system for building models for natural language processing systems, the system comprising:
amemory configured to store computer-executable instructions
a processor configured to execute the computer-executable instructions to:
create proxy tags comprising a set of surface form variants;

create training examples comprising a combination of terminal tokens and at least one of the proxy tags;

and
build a semantic analysis model using the training examples.
15. The system of claim 14, wherein the set of surface form variants comprises surface form variants that are
phrases.
16. The system of claim 14, wherein the set of surface form variants comprises surface form variants that have

inconsistent structural classes.

17. The system of any of claims 14 to 16, wherein the proxy tags comprises other proxy tags.

18. The system of any of claims 14 to 17, wherein the set of surface form variants for the proxy tags are

automatically populated using a lexical database.

19. The system of any of claims 14 to 18, wherein the processor is further configured to execute the
computer-executable instructions to:

receive a lexical sequence as an input;

WO 2019/073350 PCT/IB2018/057745
20
perform a proxy analysis on the lexical sequence for word sequences that are listed in the set of
surface form variants of the proxy tags;
convert the lexical sequence based on the proxy analysis; and

produce a semantic analysis of the lexical sequence using the semantic analysis model.

20. The system of claim 19, wherein the processor is further configured to execute the computer-executable
instructions to: perform a proxy analysis by determining the proxy tags based on a surrounding word context of the
lexical sequence when the word sequences are listed in the set of surface form variants of more than one of the

proxy tags.

21, The system of either of claims 19 or 20, wherein the processor is further configured to execute the
computer-executable instructions to: convert the lexical sequence based on the proxy analysis replacing words in

the lexical sequence with the proxy tags.

22. The system of any of claims 19 to 21, wherein the processor is further configured to execute the computer-
executable instructions to determine a confidence score for the semantic analysis of the lexical sequence using the

semantic analysis model.

23. The system of any of claims 14 to 22, wherein the processor is further configured to execute the computer-
executable instructions:
to perform feature extraction using the training examples to extract features of the training examples; and

to build the semantic analysis model by using the features of the training examples as input data.

24, The system of claim 23, wherein the semantic analysis model pairs output labels from the training

examples with feature combinations for producing a semantic analysis of an unknown lexical sequence.

25, The system of claim 24, wherein the processor is further configured to execute the computer-executable
instructions:
to determine a confidence score for the semantic analysis of the unknown lexical sequence using the

semantic analysis model.

26. The system claim 25, wherein the processor is further configured to execute the computer-executable
instructions:
to perform a proxy analysis on the unknown lexical sequence for word sequences that are listed in the set

of surface form variants of the proxy tags.

WO 2019/073350 PCT/IB2018/057745
21
27. A computer program product for building models for natural language processing systems, the computer
program product comprising:
a computer readable storage medium readable by a processing circuit and storing instructions for

execution by the processing circuit for performing a method according to any of claims 1 to 13

28. A computer program stored on a computer readable medium and loadable into the internal memory of a
digital computer, comprising software code portions, when said program is run on a computer, for performing the

method of any of claims 110 13.

29. A computer-implemented method for building models for natural language processing systems, the
computer-implemented method comprising:

creating proxy tags comprising a set of surface form variants;

creating training examples comprising at least one of the proxy tags; and

building a semantic analysis model using the training examples.

WO 2019/073350 PCT/IB2018/057745
1/5

100
1

Natural Language Processing System
Communication Network

End User Device

FIG. 1

1002
212 Natural Language Processing System
222
Proxy Training
Tags Examples
21 02 2202 2302
. Training Feature Semantic User Input
Proxy Creation . . .
Module — Example | Extraction | Analysis Model | Processing
Creation Module Module Training Module Module

FIG. 2

WO 2019/073350 PCT/IB2018/057745
2/5
300
P N HEH L
| |
: @ARETHERE 309 |
: @ Add a new vaIue'_J 308 308 308 :
Y >y =) |
: D is ﬂ:Sre a [are there any LX] (tell me about LX] {are there 5(] :
: ’ ’ ’ |
, 304 306 306 306 !
3 |
FIG. 3A
310
(———"~—"FfYTF~——T"T=YfTF"™—f"" =Y/ "~™f"™""™"TYfT""™""™"""" ", e, e = I
I @HYBRID %9)2 I
I
Add a new value '
: hybriév 304 [regenerative power ‘X] (environmentally friendly ‘X J :
| |
i 2 ({alternative power xJ([green engi:e (}J (hyb;d version (}J 306 :
I G\[hybrid model x’j"308 306 3% 306 308 :
' |
e)
330 FIG. 3B
I
| @CARMODEL 337 !
| Add I
: @ a new value :
: M @Avalo rf§/3 4 [Toyota Avalon X } (Avalon :
I
: M @Rav 4,\3/36 [Toyota Rav4 X] {Rav4 :
I
: m @Ford’\3/38 [Ford Mustang X] {Ford F150 i
I

WO 2019/073350 PCT/IB2018/057745
3/5

400
\

Create And Populate Proxy Tags
402

l

Create Training Examples Comprising
Proxy Tags
404

406

Build Semantic Analysis Model
408

l
=

FIG. 4

WO 2019/073350 PCT/IB2018/057745
4/5

"

Receive Lexical Sequence As An
Input
202

'

Perform Proxy Analysis
204

'

Convert User Input Based On
Proxy Analysis
506

;

Produce A Semantic Analysis Of
The Sequence Using The
Semantic Analysis Model

508

: L
: Determine Response To Lexical |
Sequence And Provide Response:

|
: To User |
|

WO 2019/073350

5/5

PCT/IB2018/057745

100
602~ procESSOR(S) Ve
608 606 ﬁ 604 630 628
\ \ / / /
GRAPHICS MAIN AUDIO
PROCESSOR |<":>| NBMCH K ewORY apaPTER| | S1©
610 ﬁ
634 \ 632
BUS BUS
A SB/ICH ﬂ ﬂ £ ﬂ ﬂ lr
USB AND KEYBOARD
HoD || co-Rom| “L%&VF\,’(T)EF:(OTHER gg\';rCCE'g AND MOUSE | | Mopem]| | Rom
PORTS ADAPTER
/ / / / \ \ \ \
612 614 616 618 620 622 624 626

FIG. 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/1B2018/057745

A. CLASSIFICATION OF SUBJECT MATTER
GO1L 15/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOIL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNKIL,CNTXT; VEN;CNKI:proxy,tag?,sign?,marker?,badge?, language,voice,teller,model? train+,variant?,variable ?,example?,
semantic,token

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2007239444 A1 (MOTOROLA INC) 11 October 2007 (2007-10-11) 1-29
description, paragraphs 6-50, claims 1-21

A WO 2007069512 A1 (SHARP KKET AL.) 21 June 2007 (2007-06-21) 1-29
the whole document

A US 2014079202 A1 MOVSHOVICH VLADIMIRET AL.) 20 March 2014 (2014-03-20) 1-29
the whole documen

A WO 03001781 Al (TELLME NETWORKS INC) 03 January 2003 (2003-01-03) 1-29
the whole documen

DFurther documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: «1* later document published after the international filing date or priority
s - o . date and not in conflict with the application but cited to understand the
A” document defining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance g . . .
. . - . . . “X” document of particular relevance; the claimed invention cannot be
E” ecarlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is «y* document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination
«“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art
means «&” document member of the same patent family

«p” document published prior to the international filing date but later than
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

16 January 2019 30 January 2019

Name and mailing address of the ISA/CN Authorized officer

National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing .
100088 LLNing
China

Facsimile No. (86-10)62019451 Telephone No. 62412342

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2018/057745

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
us 2007239444 Al 11 October 2007 WO 2007117814 Bl 10 July 2008
WO 2007117814 A3 22 May 2008
WO 2007117814 A2 18 October 2007
WO 2007069512 Al 21 June 2007 WO02007069512 Al 21 May 2009
us 2014079202 Al 20 March 2014 None
WO 03001781 Al 03 January 2003 us 2004078201 Al 22 April 2004
us 6941268 B2 06 September 2005

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report

