03/023607 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau 40 g,}j
(43) International Publication Date (10) International Publication Number
20 March 2003 (20.03.2003) PCT WO 03/023607 Al
(51) International Patent Classification’: GO6F 9/00 Lakewood Circle, San Mateo, CA 94402 (US). SMITH,

(21) International Application Number: PCT/US02/28961

(22) International Filing Date:
10 September 2002 (10.09.2002)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/323,126 10 September 2001 (10.09.2001) US
60/322,899 10 September 2001 (10.09.2001) US

(71) Applicant (for all designated States except US): CENUS
TECHNOLOGIES, INC. [US/US]; 5550 Scotts Valley
Drive, Scotts Valley, CA 95066 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RAJU, Jyoti
[IN/US]; 5639 Le Fevre Drive, San Jose, CA 95118
(US). GARCIA-LUNA-ACEVES, J., J. [MX/US]; 82

74

@n

84)

Bradley, R. [US/US]; 2035 Bobwhite Lane, Santa Cruz,
CA 95065 (US).

Agents: FAHMI, Tarek, N. et al.; Blakely, Sokoloff, Tay-
lor & Zafman LLP, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR INFORMATION OBJECT ROUTING IN COMPUTER NETWORKS

Web Router 400

WILD Module
402

WRCP | Neighbor
412 Protocol 410

information

VON connectivity, ad
message Memory
encapsulafion 414

and delivery

y y Y
URL Routing 416 l

ALP Module 404

4\

Mapping

43—“"% Query Module [«
408

Web Router To / From
-

Requestors

Cache load
polling

\

TafFrom naighbor Wet routers

\

Local Cache Server
406

(57) Abstract: An address of a server (406) that should supply an information object or service to a requestor is returned in response
to a request therefor. The address (416) of the server (406) that is returned is an optimal server (406) selected according to specified
performance metrics. The specified performance metrics may include one or more of an average delay from the server to another,
average processing delays at the server, reliability of a path from the server to another, available bandwidth in said path, and loads

on the server.

w0 03/023607 A1 NI 0000 OO 0D A0 R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/023607 PCT/US02/28961

SYSTEM AND METHOD FOR INFORMATION OBJECT ROUTING IN COMPUTER
NETWORKS

RELATED APPLICATIONS

[0001] The present application is related to and hereby claims the priority benefit of the
following commonly-owned and co-pending U.S. Provisional Patent Applications:

(D Application No. 60/323,126, entitled “SYSTEM AND METHOD FOR
DIRECTING CLIENTS TO OPTIMAL SERVERS IN COMPUTER NETWORKS”
filed September 10, 2001, by J.J. Garcia-Luna-Aceves and Srinivas
Vutukury; and

) Application No. 60/322,899, entitled “SYSTEM AND METHOD FOR
INFORMATION OBJECT ROUTING IN COMPUTER NETWORKS”, filed
September 10, 2001, by Jyoti Raju, J.J. Garcia-Luna-Aceves and Bradley
R. Smith.

[0002] The present application is also a continuation in part of commonly owned and co-
pending U.S. Patent Application 09/810,148, entitled “SYSTEM AND METHOD FOR
DISCOVERING INFORMATION OBJECTS AND INFORMATION OBJECT
REPOSITORIES IN COMPUTER NETWORKS?”, filed March 15, 2001, by J.J. Garcia-Luna-

Aceves.

FIELD OF THE INVENTION

[0003] The present invention relates to a system and method for directing a client (i.e., an
information requesting application such as a Web browser) to an optimal content source such as
a cache or server (i.e., information object repository) among many available content

repositories for servicing of a request for one or more information objects or services.

BACKGROUND

[0004] An internetwork is a collection of computer networks interconnected by nodes, each
such node may be a general-purpose computer or a specialized device, such as a router. As
such, an internetwork is often called a network of networks. The purpose of building an
internetwork is to provide information services to end nodes, each end node may be a general-
purpose computer or a specialized device, such as a camera or a display. The Internet is an
internetwork in which information is organized into packets to be distributed on a store-and
forward manner from source to destination end nodes, and in which routers and end nodes use

the Internet Protocol (IP) to communicate such packets.

WO 03/023607 PCT/US02/28961

2
[0005] The World Wide Web (also known as WWW or Web) has become an essential

information service in the Internet. The Web constitutes a system for accessing linked
information objects stored in end nodes (host computers) all over the Internet. Berners-Lee

wrote the original proposal for a Web of linked information objects (T. Berners-Lee,

[0006] “Information Management: A Proposal,” CERN Document, March 1989). The Web
consists of a vast collection of information objects organized as pages, and each page may
contain links to other pages or, more generally, information objects with which content is
rendered as audio, video, imagevs, text or data. Pages are viewed by an end user with a program
called a browser (e.g., Netscape Navigator). The Web browser runs in an end system at the
user premises. The client (Web browser) obtains the required information 6bj ects from a server
(Web server) using a request-response dialogue as part of the Hypertext Transfer Protocol
(HTTP). Information objects are identified by means of names that are unique throughout the
Internet; these names are called Uniform Resource Locators or URLs. A URL consists of three

components:
€3] the protocol or scheme to be used for accessing the object (e.g., http);
@ the name (a DNS name) of the host on which the object is located; and
3) | a local identifier that is unique in the specified host.

[0007] Like any large-scale system, the Web requires the use of mechanisms for scaling and
reliability. More specifically, as the number of information objects that can be obtained through
the Web increases, people find it more difficult to locate the specific information objects they
need. Furthermore, as the number of Web users and servers increase, the sites or servers that
store the requested information objects may be very far from the users requesting the objects,
which leads to long latencies in the access and delivery of information, or the servers storing
the information objects may be overwhelmed with the number of requests for popular

information objects.

[0008] To enable the Web to scale to support large and rapidly increasing numbers of users
and a vast and growing collection of information objects, the information objects in the Web
must be stored distributedly at multiple servers, in a way that users can retrieve the information
objects they need quickly and without overwhelming any one of the servers storing the objects.
Accordingly, distributing information objects among multiple sites is necessary for the Web to
scale and be reliable. The schemes used to accomplish this are called Web caching schemes. In
a Web caching scheme, one or multiple Web caches or proxy Web servers are used in computer
networks and the Internet to permit multiple host computers (clients) to access a set of
information objects from sites other than the sites from which the content (objects) are provided

originally. Web caching schemes support discovering the sites where information objects are

WO 03/023607 PCT/US02/28961

3
stored, distributing information objects among the Web caches, and retrieving information

objects from a given Web cache. The many proposals and implementations to date differ on the

specific mechanisms used to support each of these services.

[0009] Many methods exist in the prior art for determining the server, cache, mirror server, or
proxy from which information objects should be retrieved. The prior art dates to the
development of the ARPANET in the 1970s and the study and implementation of methods to
solve the file allocation problem (FAP) for databases distributed over the ARPANET and

computer networks in general.

[0010] File allocation methods for distributed databases (e.g., W.W. Chu, “Optimal File
Allocation in a Multiple Computer System,” IEEE Transactions on Computers, October 1969;
S. Mahmoud and J.S. Riordon, “Optimal Allocation of Resources in Distributed Information
Networks,” ACM Transactions on Data Base Systems, Vol. 1, No. 1,

[0011] March 1976; H.L. Morgan and K.D. Levin, “Optimal Program and Data Locations in
Computer Networks,” Communications of the ACM, Vol. 20, No. 5, May 1977) and directory
systems (e.g., W.W. Chu, “Performance of File Directory Systems for Data Bases in Star and
Distributed Networks,” Proc. National Computer Conference, 1976, pp. 577-587; D. Small and
W.W. Chu, “A Distributed Data Base Architecture for Data Processing in a Dynamic
Environment,” Proc. COMPCON 79 Spring) constitute some of the earliest embodiments of
methods used to select a delivery site for accessing a file or information object that can be

replicated at a number of sites.

[0012] Another example of this prior art is the method described by Chiu, Raghavendra and
Ng (G. Chiu, C.S. Rahgavendra, and S.M. Ng, “Resource Allocation with Load Balancing
Consideration in Distributed Computing Systems,” Proc. IEEE INFOCOM 89, Ottawa, Ontario,
Canada, April 1989, pp. 758-765). According to this method, several identical copies of the
same resource (e.g., a file, an information object) are allocated over a number of processing
sites (e.g., a mirror server, a cache) of a distributed computing system. The method attempts to
minimize the cost incurred in replicating the resource at the processing sites and retrieving the

resource by users of the system from the processing sites.

[0013] Several different approaches exist in the prior art for discovering information objects in
Web caching schemes. Recent work has addressed the same resource allocation and discovery
problems within the context of Internet services. Guyton and Schwartz (J.D. Guyton and M.F.
Schwartz, “Locating Nearby Copies of Replicated Internet Servers,” Technical Report CU-CS-
762-95, Department of Computer Science, University of Colorado-Boulder, February 1995;
Proc. ACM SIGCOMM 95 Conference, Cambridge, Massachusetts, August 1995, pp. 288-298)

describe and analyze server location techniques for replicated Internet services, such as

WO 03/023607 PCT/US02/28961
4
Network Time Protocol (NTP) servers and Web caches. Guyton and Schwartz propose

gathering location data with router support in two ways. In one method, routers advertise the
existence or absence of replicated servers as part of their normal routing exchanges involving
network topological information. Routers examine a distance metric for the advertised servers
in a way that each router retains knowledge of at least the nearest servers. In this way, each
router in an internetwork has enough knowledge to direct client requests to the nearest servers,
without necessarily having to maintain knowledge of all the servers in the internetwork. In
another method, servers poll routers for the content of their routing tables. Guyton and
Schwartz also describe a method for gathering location data using routing probes without router
support by means of measurement servers. According to this method, measurement servers
explore the routes to the replicated servers providing services and content to clients. When a
client asks a measurement server for a list of nearby servers from which to request a service, the
measurement server takes into account the route back to the client in deciding the list of servers

that appear closer to the client.

[0014] One approach to object discovery consists in organizing Web caches hierarchically. In
a hierarchical Web cache architecture, a parent-child relationship is established among caches;
each cache in the hierarchy is shared by a group of clients or a set of children caches. A request
for an information object from a client is processed at a lowest-level cache, which either has a
copy of the requested object, or asks each of its siblings in the hierarchy for the object and
forwards the request to its parent cache if no sibling has a copy of the object. The process
continues up the hierarchy, until a copy of the object is located at a cache or the root of the

hierarchy is reached, which consists of the servers with the original copy of the object.

[0015] One of the earliest examples of hierarchical Web caching was the Discover system (A.
Duda and M. A. Sheldon, “Content Routing in Networks of WAIS Servers,” Proc. IEEE 14th
International Conference on Distributed Computing Systems, June 1994; M.A. Sheldon, A.
Duda, R. Weiss, J.W. O'Toole, Jr., and D.K. Gifford, “A Content Routing System for
Distributed Information Servers,” Proc. Fourth International Conference on Extending Database
Technology, March 1994), which provides associative access to servers; the user guides the

refinement of requests.

[0016] Harvest (A. Chankhunthod, P. Danzing, C. Neerdaels, M. Schwartz, and K. Worrell, “A
Hierarchical Internet Object Cache,” Proc. USENIX Technical Conference 96, San Diego,
California, January 1996) and Squid (D. Wessels, “Squid Internet Object Cache,” hitp://
www.squid.org, August 1998) are two of the best known hierarchical Web cache architectures.
Harvest and Squid configure Web caches into a static hierarchical structure in which a Web

cache has a static set of siblings and a parent. The Internet Caching Protocol or ICP (D.

WO 03/023607 PCT/US02/28961

5
Wessels and K. Claffy, “Internet Cache Protocol (ICP), Version 2,” RFC 2186, September

1997) is used among Web caches to request information objects.

[0017] In the Harvest hierarchies, siblings and parents are configured manually in Web caches
or proxies; this is very limiting and error prone, because reconfiguration must occur when a
cache enters or leaves the system. A more general limitation of hierarchical Web caching based
on static hierarchies is that the delays incurred in routing requests for information objects can
become excessive in a large-scale system, and the latency of retrieving the information object
from the cache with a copy of the object can be long, because there is no correlation between
the routing of the request to a given cache in the hierarchy and the network delay from that
cache to the requesting client. Furthermore, some Web caches may be overloaded with requests

while others may be underutilized, even if they store the same objects.

[0018] In the WebWave protocol (A. Heddaya and S. Mirdad, “WebWave: Globally Load
Balanced Fully Distributed Caching of Hot Published Documents,” Technical Report BU-CS-
96-024, Boston University, Computer Science Department, October 1996; A. Heddaya and S.
Mirdad, “WebWave: Globally Load Balanced Fully Distributed Caching of Hot Published
Documents,” Proc. IEEE 17th International Conference on Distributed Computing Systems,
Baltimore, Maryland, May 1997) Web caches are organized as a tree rooted at the server that
provides the original copy of one object or a family of information objects; the leaves of the
tree are the clients requesting the information objects, and the rest of the nodes in the tree are
Web caches. The objective of the protocol is to achieve load balancing among Web caches;
each Web cache in such a tree maintains a measurement of the load at its parent and children in
the tree, and services or forwards the request to its parent automatically based on the load
information. This approach reduces the possibility of overloading Web caches as in the Harvest
approach to hierarchical Web caching; however, delays are still incurred in the propagation of

requests from heavily loaded Web caches to their ancestors in the Web hierarchy.

[0019] Hash routing protocols (K.W. Ross, “Hash Routing for Collections of Shared Web
Caches,” IEEE Network, Vol. 11, No. 6, November 1997, pp 37-44) constitute another
approach to support object discovery in shared caches. Hash routing protocols are based on a
deterministic hashing approach for mapping an information object to a unique cache (D.G.
Thaler and C.V. Ravishankar, “Using Name-Based Mappings To Increase Hit,” IEEE/ACM
Trans. Networking, 1998; V. Valloppillil and J. Cohen, “Hierarchical HT' TP Routing Protocol,”
Internet Draft, http://www.nlanr.net/Cache/ICP/draft-vinod-icp-traffic-dist-00.txt) to distribute
the information objects (universal resource locator or URL in the case of the Web) among a
number of caches; the end result is the creation of a single logical cache distributed over many

physical caches. An important characteristics of this scheme is that information objects are not

WO 03/023607 PCT/US02/28961

6
replicated among the cache sites. The hash function can be stored at the clients or the cache

sites. The hash space is partitioned among the N cache sites. when a client requires access to an
information object o, the value of the hash function for o, h(0), is calculated at the client or at a
cache site (in the latter case the cache would be configured at the client, for example). The

value of h(o) is the address of the cache site to contact in order to access the information object

0.

[0020] The Cache Resolver is another recent approach to hierarchical Web caching (D.
Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy, “Consistent Hashing
and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web,” Proc. 29th ACM Symposium on Theory of Computing (STOC 97), El Paso, Texas,
1997; D. Karger, Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto, B. Kim, L.
Matkins, and Y. Yerushalmi, “Web Caching with Consistent Hashing,” Proc. 8th International
World Wide Web Conference, Toronto, Canada, May 1999). This approach combines
hierarchical Web caching with hashing and consists of two main tools, random cache trees and
consistent hashing. A tree of Web caches is defined for each information object. When a
browser (client) requires an information object, it picks a leaf of the tree and submits a request
containing its identifier, the identifier of the object, the sequence of caches through which the
request is to be routed if needed. A Web cache receiving a request, it determines if it has a local
copy of the page and responds to the request if it does; otherwise, it forwards the request to the

next Web cache in the path included in the request.

[0021] A Web cache starts maintaining a local copy of an information object when the number
of requests it receives for the object reaches a predefined number. A client selects a Web cache
by means of consistent hashing, which disseminates requests to leaves of the Web caching
hierarchy' evenly but, unlike traditional hashing techniques, need not redistribute an updated
hash table every time a change occurs in the caching hierarchy (e.g., a new Web cache joins or
a Web cache fails). Because caching is difficult to implement or add to existing Web browsers,

the Cache Resolver approach implements the hashing in DNS servers modified to fit this

purpose.

[0022] The remaining limitations with this approach stem from the continuing use of a
hierarchy of Web caches and the need to implement a hashing function in either Web cliénts or
DNS servers. Routing a request through multiple Web caches can incur substantial delays for
clients to retrieve information objects that are not popular among other clients assigned to the
same Web cache by the hashing function. Additional delays, even if small, are incurred at the
DNS server that has to provide the address of the Web cache that the client should access.

Furthermore, the DNS servers supporting the consistent hashing function must receive

WO 03/023607 PCT/US02/28961
7
information about the loading of all the Web caches in the entire system, or at least a region of

the system, in order to make accurate load-balancing decisions.

[0023] This DNS-based approach, without the use of hierarchies of Web caches, is advocated
in the Akamai CDN solution (F.T. Leighton and D.M. Lewin, “Global Hosting System,” U.S.
Patent 6,108,703, August 22, 2000). The “global hosting system” advocated by Akamai
assumes that a content provider services an HTML document in which special URLSs specifying
a domain name specific to Akamai. When the client needs to obtain the IP address of the Web
cache hosting the content specified in the special URL, the client first contacts its local DNS.
The local DNS is pointed to a “top-level” DNS server that points the local DNS to a regional
DNS server that appears close to the local DNS. The regional DNS server uses a hashing
function to resolve the domain name in the special URL into the address of a Web cache
(hosting server) in its region, which is referred to as the target Web cache in the present
application, in a way that the load among Web caches in the region is balanced. The local DNS
passes the address of that Web cache to the client, which in turn sends its request for the
information object to that Web cache. If the object resides in the target Web cache, the cache

sends the object to the client; otherwise, the object is retrieved from the original content site.

[0024] The global hosting system advocated by Akamai was intended to address problems
associated with traditional load-balanced mirroring solutions in which a load balancer or a
hierarchy of load balancers redirect requests to one of a few hosting sites to balance the load
among such sites. Companies such as Cisco Systems of Santa Clara, CA, F5 Networks, Inc. of
Seattle, WA, Resonate, Inc. of Sunnyvale, CA, Nottel Networks of Brampton, Ontario, and
Foundry Networks, Inc. of San Jose, CA currently provide examples of load-balanced solutions.
The limitations of the global hosting system are inherent to the fact that the approach is, in
essence, a DNS-based load-balanced mirroring solution. The global hosting system selects a
target Web cache based entirely on the region that appears to favor the local DNS, which need
pot favor the client itself, and balances the load among Web caches without taking into account
the latency between the Web caches and the clients. In the case of a cache miss, the information
object has to be retrieved from the original content site, which means that latencies in the
delivery of content can vary widely, unless the content is mirrored in all the caches of all
regions.

[0025] Another alternative approach to hierarchical web caching and hash routing protocols
consists of forwarding client requests for URLs using routing tables that are very similar to the
routing tables used today for the routing of IP packets in the Internet (L. Zhang, S. Michel, S.
Floyd, and V. Jacobson, "Adaptive Web Caching: Towards a New Global Caching
Architecture,” Proc. Third International WWW Caching Workshop, Manchester, England, June

WO 03/023607 PCT/US02/28961

8
1998, B.S. Michel, K. Nikoloudakis, P. Reiher, and L. Zhang, "URL Forwarding and

Compression in Adaptive Web Caching," Proc. IEEE Infocom 2000, Tel Aviv, Israel, April
2000). According to this approach, which is referred to as “URL request forwarding” herein,
Web caches maintain a “URL request routing table” and use it to decide how to forward URL
requests to another Web caches when requested information objects are not found locally. The
keys of the URL request routing tables are URL prefixes, which are associated with one ore
more identifiers to the next-hop Web caches or cache groups, and a metric reflecting the

average delay to retrieve a request from a matching URL.

[0026] In this approach, an entry in the URL request routing table specifies a URL prefix and
the next-hop Web cache towards an area or neighborhood of Web caches where the object
resides. Ideally, a Web cache needs to know where a copy of a given object resides; however,
because of the large number of objects (identified by URLs) that can be requested in a system,
the URL request forwarding approach requires Web caches to be organized into areas or
neighborhoods. All Web caches within the same area know the objects available in every other
Web cache in the same area. In addition, for those objects that are not found in the area of a
Web cache, the Web cache also maintains the next-hop Web cache towards the area in which a

Web cache with the content resides.

[0027] Unfortunately, this approach has several scaling and performance limitations. First,
requiring each Web cache to know all the Web caches where each object in the area resides
incurs a large overhead, which is akin to the overhead of a traditional topology-broadcast
protocol for IP routing, with the added disadvantage that the number of objects that can reside
in an area can be much larger than the number of IP address ranges maintained in backbone
routers of the Internet. Second, because Web caches only know about the next hop towards a
URL that does not reside in a region, a request for an object that lies outside the area of a Web
cache may traverse multiple Web-cache hops before reaching a Web cache in the area where an
object is stored. This introduces additional latencies akin to those incurred in the caching
hierarchies proposed in other schemes discussed above. Third, it is difficult to modify Web

caches in practice to implement the mechanisms needed for the forwarding of URL requests.

[0028] To reduce the delays incurredl in hierarchical Web caches, Tewari, Dahlin, Vin and Kay
(R. Tewari, “Architectures and Algorithms for Scalable Wide-area Information Systems,” Ph.D.
Dissertation, Chapter 5, Computer Science Department, University of Texas at Austin, August
1998; R. Tewari, M. Dahlin, H.M. Vin, and J.S. Kay, “Design Considerations for Distributed
Caching on the Internet,” Proc. IEEE 19th International Conference on Distributed Computing
Systems, May 1999) introduce hint caches within the context of a hierarchical Web caching

architecture. According to this scheme, a Web cache maintains or has access to a local hint

WO 03/023607 PCT/US02/28961

9
cache that maintains a mapping of an object to the identifier of another Web cache that has a

copy of the object and is closest to the local hint cache. Web caches at the first level of the
hierarchy maintain copies of information objects, while Web caches at higher levels only
maintain hints to the objects. Hints are propagated along the hierarchy topology from the Web
caches lower in the hierarchy to Web caches higher in the hierarchy. Furthermore, a Web cache
with a copy of an object does not propagate a hint for the object. The limitation with this
approach is that a Web caching hierarchy must still be established, which needs to be done
manually in the absence of an automated method to establish the hierarchy, and the Web

caching hierarchy must match the locality of reference by clients to reduce control overhead.

[0029] A number of proposals exist to expedite the dissemination of information objects using
what is called “push distribution” and exemplified by Backweb, marimba and Pointcast
(“BackWeb: http://www.backweb.com/”; *’"Marimba: http://www.marimba.com/"’; “Pointcast:
http://www.pointcast.com/™). According to this approach, a Web server pushes the most recent
version of a document or information object to a group of subscribers. The popular Internet
browsers, Netscape Navigator and Internet Explorer™, use a unicast approach in which the
client receives the requested object directly from the originating source or a cache. As the
number of subscribers of a document or information object increases, the unicast approach
becomes inefficient because of processing overhead at servers and proxies and traffic overhead
in the network. The obvious approach to make push distribution scale with the number of
subscribers consists of using multicast technology. According to this approach (P. Rodriguez
and E.W. Briesack, “Continuous Multicast Push of Web Documents over The Internet,” IEEE
Network Magazine, Vol. 12, No. 2, pp. 18-31, 1998), a document is multicasted continuously
and reliably within a multicast group. A multicast group is defined for a given Web document
and subscribers join the multicast group of the Web document they need to start receiving the
updates to the document. A multicast group consists of the set of group members that should
receive information sent to the group by one or multiple sources of the multicast group. The

main shortcoming of this particular approach to push distribution are:

[0030] The portion of the Internet where subscribers are located must support multicast routing
distribution. A multicast address and group must be used for each Web document that is to be
pushed to subscribers, which becomes difficult to manage as the number of documents to be
pushed increases. Furthermore, Rodriguez, Biersack, and Ross (P. Rodriguez, E.W. Biersack,
and K.W. Ross, “Improving The Latency in The Web: Caching or Multicast?,” Proc. Third
WWW Caching workshop, Manchester, UK, June 1998) have shown that multicasting Web
documents is an attractive alternative to hierarchical Web caching only when the documents to

be pushed are very popular, caching distribution incurs less latency.

WO 03/023607 PCT/US02/28961
10 ‘ '
[0031] Kenner and Karush (B. Kenner and A. Karush, “System and Method for Optimized

Storage and retrieval of Data on a Distributed Computer Network,” U.S. Patent No. 6,003,030,
December 14, 1999) propose a method for expediting the delivery of information objects to end
users. In this method, the end user site is equipped with special software in addition to the Web
browser. This software consists of a configuration utility and a client program. The
configuration utility is used to download a delivery site file specifying a list of the delivery sites
(Web caches or originating Web servers) from which the information objects can be retrieved
and a suite of tests that can be run to determine which delivery site to contact. The limitations
with this approach stem from the fact that it is not transparent to end user sites. In particular,
the end user site needs to run additional software; performance tests must be conducted from
the end-user site to one or more delivery sites to decide which site to use; and when changes
occur to the delivery sites, a new version of the delivery site file must be retrieved by the end-

user site, or new performance tests must be conducted.

[0032] Another approach to helping select servers in a computer network (Z. Fei, S.
Bhattacharjee, B.W. Zegura, and M.H. Ammar,”A Novel Server Selection Technique for
Improving The Response Time of a Replicated Service” Proc. IEEE Infocom 98, March 1998,
pp- 783-791) consists of broadcasting server loading information after a certain load threshold
or time period is exceeded. The limitation of this approach is that, just as with topology-
broadcast protocols used for routing in computer networks, the scheme incurs substantial

overhead as the number of servers increases.

[0033] Another recent approach to directing clients to hosting sites with requested information
objects or services is the replica routing approach proposed by Sightpath, Inc. (D.K. Gifford,
“Replica Routing,” U.S. Patent No. 6,052,718, April 18, 2000). According to the Replica
Routing approach, an information object or service is replicated in a number of replica servers.
The replica routing system redirects a client requesting the information object or service to a
“pearby” replica of the object or service. In one approach, all replica routers know the replica
advertisements from each of the replica servers in the system, which summarize information
about their location and observations about the local internetwork topology and performance.
Using this flooding of advertisements, a replica router discerns which replica server appears
nearby any one client. However, requiring each replica router to receive the advertisements
from every other replica server becomes impractical as the number of replica servers and

replica routers increases.
[0034] To remedy this problem, replica routers are organized into a hierarchy, and replica

advertisements are propagated only part way up such router hierarchy. A client request is

routed to the root of the hierarchy and from there is forwarded down the hierarchy, until it

WO 03/023607 PCT/US02/28961
11
reaches a replica router with enough knowledge about the replica’s internetwork location to

make an informed redirection decision. This approach has similar performance and scaling
limitations as the prior approaches summarized above based on hierarchies of Web caches,
flooding of information among caches or servers, and forwarding of requests over multiple
hops.

[0035] Another recent approach to directing clients to hosting sites with requested information
objects or services is the enhanced network services method by Phillips, Li, and Katz (S.G.
Phillips, A.J. Li, and D.M. Katz, “Enhanced Network Services Using a Subnetwork of
Communicating Processors,” U.S. Patent US 6,182,224, January 30, 2001.). Insofar as
directing clients to servers, the enhanced network services method is very similar to the
gathering of location data with router support advocated by Guyton and Schwartz described
previously. As in the Guyton and Schwartz’s approach, routers using the enhanced network
services approach gather network topological data and also include as part of their normal
routing exchanges information about the hosts that can provide content and services to clients;
routers can then rank the hosts according to their relative distance in the network. In addition
to data regarding hosts that can provide services, routers in the enhanced network services
approach can include in their normal routing exchanges host information regarding logged-in
users and willingness to pay for performing a designated service. In contrast to the proposal by
Guyton and Schwartz, the enhanced network services approach does not attempt to limit the
amount of network topological information that routers need to exchange in order to direct
clients to best qualified servers. This approach has, therefore, similar performance and scaling
limitations as the prior approaches summarized above based on flooding of information among

caches or servers, and forwarding of requests over multiple hops.

SUMMARY OF THE INVENTION
[0036] The present invention address shortcomings of the above-described schemes.

[0037] In one embodiment, the present method returns, in response to a request therefore, an
address of a first server that should service a second server's request for an information object.
The address of the first server is selected according to specified performance metrics, for
example one or more of average delay from the first server to the second server, average
processing delays at the first server, reliability of a path from the first server to the second
server, available bandwidth in said path, and loads on the first server. Preferably, though not

necessarily, the first server is an optimum server for servicing the second server’s request.

[0038] A further embodiment of the invention provides a communication protocol that

includes one or more messages passed between Web routers over a reliable transmission

WO 03/023607 PCT/US02/28961

12
protocol used for inter-Web router communication. These messages include information which

allows the Web routers to dynamically update mappings of information objects to server
addresses based on specified performance metrics. Preferably, the mappings are optimal
mappings of the information objects to the server addresses. The messages report updated
distances from the server addresses to another information object. For each updated distance,

the messages further report an associated server.

[0039] In yet another embodiment, an address of a requesting server seeking an information
object is mapped to an address of an information object repository that has a best distance to
the requesting server according to specified performance metrics. Distance information
between information object reﬁbsitories may be computed according to a shortest-path first
algorithm.

[0040] In still another embodiment, mapping an information object and a server by only
trusting a neighbor node of a communication network that offers a shortest path to the server is
provided. In the case of two or more equal distances, that mapping information which is

received is adopted.

BRIEF DESCRIPTION OF THE DRAWINGS

[0041] The present invention is illustrated by way of example, and not limitation, in the figures
of the accompanying drawings in which like reference numerals refer to similar elements and in
which:

[0042] Figure 1 illustrates an internetwork in which the methods and systems of the present
invention may operate.

[0043] Figure 2 illustrates a virtual overlay network of Web routers configured in accordance
with an embodiment of the present invention.

[0044] Figure 3 illustrates a hosting site configured with multiple information object
repositories and a Web router that operates in accordance with an embodiment of the present
invention.

[0045] Figure 4 illustrates functional componets of a Web router in accordance with an

embodiment of the present invention.

DETAILED DESCRIPTION

[0046] The core of the Internet is congested and, hence, delivering content across the Internet
incurs high latency. Increasing the bandwidth of the “last mile” (e.g., the last link in
communication path to the end user or content source) via high-speed modems and digital

subscriber line (DSL) technology, for example, alone will not improve the end-user experience

WO 03/023607 PCT/US02/28961

13
of the Internet. What is required is a reduction in the end-to-end latencies of the Internet by

avoiding congestion points in the core of the Internet.

[0047] To avoid Internet congestion and reduce latencies, content (e.g., web pages and related
information objects) must be moved to the edge, i.e., to locations that are close to the clients.
This requires maintaining copies of content on several caches (or servers or other storage
devices, which collectively may be and are referred to herein as information object repositories)
located around the Internet, and then directing clients to an optimum information object

repository for servicing of a request. The present invention enables this functionality.

[0048] Stated differently, the present invention provides a method and system for directing a
client (e.g., 2 Web browser) or another requestor (e.g., a server, name server, directory server,
cache or other computer system) to an optimal information object repository (e.g., a server or
cache) among many available such devices. An optimal information object repository, from a
requestor’s viewpoint, may be one that offers the lowest response time in delivering a requested
information object. When the information object repository does not hold the requested
information object (which term is used herein to include both information objects and services),
it obtains that information object from another information object repository that has the
information object. In the case that none of the information object repositories in the system
have the requested information object, the information object repository that first received the
request may approach the main or origin content server to obtain the requested information
object. As used herein, the term origin content server is meant to indicate a server that serves
as the origination point for a piece of content (e.g., text, video, audio, etc.). Such content may
subsequently be replicated at one or more Web caches (or other information object
repositories). Thus, a method and system for the discovery of information objects and
information object repositories storing those information objects distributed over computer

networks will be described herein.

[0049] In the following description, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. However, it will be evident to those of
ordinary skill in the art that some of these specific details need not be used to practice the
present invention and/or that equivalents thereof may be used. In other cases, well-known
structures and components have not been shown in detail to avoid unnecessarily obscuring the
present invention. Thus, although discussed with reference to certain illustrated embodiments,
upon review of this specification, those of ordinary skill in the art will recognize that the
present system and methods may find application in a variety of systems and the illustrated
embodiments should be regarded as exemplary only and should not be deemed to be limiting in

scope.

WO 03/023607 PCT/US02/28961
14
[0050] Some portions of the description that follow are presented in terms of algorithms and

symbolic representations of operations on data within a computer memory (e.g., in
pseudocode). These algorithmic descriptions and representations are the means used by those
skilled in the computer science arts to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent
sequence of steps leading to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these quantities take the
form of electrical or magnetic signals capable of being stored, transferred, combined, compared
and otherwise manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols, characters, terms,
numbers or the like. It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise, it will be appreciated that
throughout the description of the present invention, use of terms such as “processing”,

LN 1 kAl

“computing”, “calculating

9 &C

, “determining”, “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quantities within the computer system's
registers and memories into other data similarly represented as physical quantities within the
computer system memories or registers or other such information storage, transmission or
display devices.

[0051] As indicated above, the present invention may be used to determine an optimum
information object repository from which to retrieve an information object or service when a
client (or other requestor) requests such an information object or service from a server (or other
information object repository) that does not have the requested item or a copy thereof. Upon
receiving an instruction to do so, the server that has been contacted by the client contacts the
information object repository that has been determined to be the optimum one using the
methods and procedures of the present invention and directly requests the information object or

service.

[0052] The address of the information object repository returned in response to the request is
the one that maintains a local copy of the originally requested information object or service and
is the “best” information object repository selected according to specified performance metrics.
It is assumed in this discussion, therefore, that the information object repositories are connected
using a virtual (or physical) network and can reach each other. The specified performance
metrics may include one or more of an average delay from one information object repository to

another along the network(s) (i.e., network delays), average processing delays at an information

WO 03/023607 PCT/US02/28961
15
object repository, reliability of a path from one information object repository to another,

available bandwidth in said path, and loads on the various information object repositories.

[0053] As will become apparent, in order to enable the functionality provided by the present
invention, so~called Web routers are utilized. In the present discussion, the term Web router
refers to an embodiment of a computer system configured in accordance with the methods
(described below) needed to map or associate the identifier of an information object or service
with the address of the optimal information object repository that can deliver the requested
information object or service to another server (i.e., the requesting server that will uitimately
respond to the original client request). The performance metrics used by Web routers to choose
the information object repository(ies) that should provide the requested information object(s)
may include any of the above-noted parameters. The functionality of a Web router can be co-
located and/or implemented as part of a content server, a Web server, a Web cache, a router or
as a separate entity. To simplify its description, the Web router is described and treated herein
as a separate entity. Web routers may be implemented in software to be executed by general-
purpose (or special-purpose) computer systems, or some or all of a Web router’s functionality

may be implemented in hardware. Such details are not critical to the present invention.

[0054] Web routers make use of a communication protocol to pass messages between one
another over a reliable transmission protocol. These messages include information that allows
the Web routers to dynamically update the mappings of identifiers of information objects and
services to information object repository addresses based on one or more of the specified
performance metrics. As indicated, these mappings may, and preferably do, specify optimal
associations of information object identifiers to information object repository addresses. Also,
the messages passed using the inter-Web router communication protocol may further report an
associated address of a Web router co-located with an information object repository (optimal or

otherwise) that contains the information object that is the subject of the message.

[0055] In order to produce the above-mentioned mappings, distances (e.g., measured in terms
of link costs and the like) need to be measured. Thus, the present invention makes use of a
routing protocol that provides accurate distances from one Web router to another, these
distances being based on one or more of the specified performance metrics. In one particular
embodiment, a routing protocol known as ALP is used for this purpose (for further information
on the Adaptive Link-State Protocol or ALP see, J.J. Garcia-Luna-Aceves and M. Spohn,
“Scalable Link-State Internet Routing,” Proc. IEEE International Conference on Network
Protocols ICNP 98), Austin Texas, October 14-16, 1998, pp. 52-61, incorporated herein by
reference), though this is merely for convenience and many other suitable protocols exist and

may be used equally as well. In addition, an interfacing protocol between an information object

WO 03/023607 PCT/US02/28961
16
repository and an associated Web router co-located at the site is useful in conjunction with the

present invention. In one particular embodiment, the Web Router Communication Protocol
(WRCP) is used, however this is merely for convenience and other protocols may be used
equally as well, to inform a Web router of the information objects and services added and

deleted from its local information object repository.

[0056] Before describing further details of the present invention, an overview of an
internetwork environment in which Web routers may be deployed will be presented. For
purposes of the present invention, a topology of Web routers is defined such that a given Web
router has only a subset of all the Web routers in a given system as its neighbor Web routers.
Web routers that are neighbors connect to each other using tunnels across one or more
communication links. The topology of Web routers and tunnels between them constitutes a
virtual overlay network (VON). That is, a VON is defined which interconnects the Web routers
and overlays an internetwork made up of conventional IP routers, information object
repositories, and other network components. In the VON, each tunnel link is assigned a value

that describes the performance metric across the tunnel.

[0057] Figure 1 illustrates an internetwork 100 and the methods and systems described herein
enable the direction of clients and/or servers, etc. to either information objects or the caches
and servers storing information objects distributed over computer networks such as
internetwork 100. One example of an internetwork 100 is the Internet. Other examples include
enterprise networks, local area networks, wide area networks, metropolitan area networks and
networks of such networks. In the case where internetwork 100 is the Internet, clients 110 will
generally access content located at remote servers 170 through a series of networks operated by
different providers. For example, clients 110 may have accounts with local ISPs 120 that
enable the clients to connect to the Internet using conventional dial-up connections or one of a
variety of high-speed connections (e.g., DSL connections, cable connections, hybrids involving
satellite and dial-up connections, etc.). ISPs 120, in turn, may provide direct connections to the
Internet or, as shown, may rely on other service providers 130, 140, 150 to provide connections
through to a set of high-speed connections between computer resources known as a backbone
160. Connecting to a host (e.g., server 170) may thus involve connecting through networks

operated by a variety of service providers.

[0058] Figure 2 illustrates a VON 200 of Web routers 202a — 202h defined on top of the
physical topology of an internetwork, such as the Internet, consisting of routers interconnected
via point-to-point links or networks. The virtual network of Web routers includes point-to-point
links 204 configured between the Web routers, and the links 206 configured between a Web

router 202 and one or more Web caches 208 and content servers 210. Such links 204, 206 can

WO 03/023607 PCT/US02/28961
17
be implemented using tunnels (e.g., Internet protocol (IP) tunnels) between Web routers 202

and between Web routers 202 and Web caches 208. As discussed above, messages can be
exchanged between the Web routers 202 via the tunnels. As shown in the figure, a client 110 is

not necessarily part of the virtual network of Web routers.

[0059] In one embodiment of the present invention, a collection of one or multiple Web
routers 202 is used to refer the request for an object to a Web cache 208 or content server 210
that is able to transfer the requested object to the requestor while satisfying a given set of
parameters, such as network delays, bandwidth availability, reliability of paths from the chosen
sites to the target client 110, and loads on the Web caches 208 and content servers 210. The
method used to select the best site from which information objects should be retrieved by user
sites (clients) is transparent to the user sites, and the computer network or internetwork over

which the system operates need not support multicast delivery to end-user sites.

[0060] Although shown as separate entities in Figure 2, it should be remembered that Web
routers may be co-located with information object repositories (e.g., a Web server, a Web
cache, or an original content server) as shown in Figure 3, which is a depiction of a cache site
or a hosting site 300. Cache servers A, B and C may also be configured in an internetwork
address space by the host ISP. At the same time an internal address space for
intercommunication between the caches A, B and C and the web router 202 may be configured.
This internal address space may be used within the VON 200 for inter-Web router

communications.

[0061] As indicated above, to reduce communication and processing overhead in Web routers
a topology of Web routers is defined such that a given Web router has as its neighbor Web
routers a subset of all the Web routers in the system (where the term system refers to all or a
portion of the VON 200 for Web routers discussed above). A Web router may thus be
configured with its set of neighbor Web routers. Such a configuration may be expressed as a
table of neighbor Web routers that is defined by a network service provider and/or is
dynamically updated. In some cases, a Web router may dynamically select the set of neighbor

Web routers with which it should communicate out of all of the Web routers in the system.

[0062] A Web router preferably communicates with its neighbor Web routers using the Web
Information Locator by Distance (WILD) protocol. The WILD protocol is disclosed in
commonly owned U.S. Provisional Application No. 60/200401, entitled “System and Method
for Discovering Optimum Information Object Repositories in Computer Networks (WILD
Protocol), filed April 28, 2000 by J.J. Garcia-Luna-Aceves and Bradley R. Smith, now replaced
by commonly owned and co-pending U.S. Patent Application 09/810,148, entitled “System and

Method for Discovering Information Objects and Information Object Repositories in Computer

WO 03/023607 PCT/US02/28961
18
Networks”, filed March 15, 2001, by J.J. Garcia-Luna-Aceves, the complete disclosures of

which are hereby incorporated by reference. The WILD communication protocol provides for
the exchange of one or more inter-Web router messages via the tunnels. These messages carry
the mappings specifying the association between optimal information object repositories and
information objects according to the specified metrics. When these mappings change due to
changes in the topology of the Internet, the messages carry updated distance information (e.g.,
as computed according to the performance metrics) in the maps. Thus, using WILD each Web
router implements a distributed algorithm and executes a communication protocol with which it

determines:

¢)) the address of all the other Web routers participating in the same virtual

overlay network; and

)] the optimum distance to each Web router (i.e., the associated information
object repository) in the VON and the neighbor Web router that offers such

a distance.

[0063] The Web routers employ special rules when updating their local maps in response to
received messages. The WILD protocol (or simply WILD) running at each Web router then
constructs tables (which are stored locally in memory or other computer-readable media)
containing the optimal mapping information. Each Web router uses the tables computed by
WILD for directing a requestor to an optimal information object repository. Further details
regarding the manner in which the maps and tables are generated and shared among Web
routers ma be found in co-pending Application No. 60/323,126, entitled “System and Method
for Directing Clients to Optimal Servers in Computer Networks” filed September 10, 2001, the
complete disclosure of which is hereby incorporated by reference. Briefly, however, one or
more tables are constructed at each Web router and these tables contain client-to-server
distance information. The tables are stored in a computer-readable medium accessible by the
corresponding Web router and are updated in response to revised client-to-Web router distance
information. Such revised client-to-Web router distance information may be included in the
inter-Web router communication messages and is preferably determined, at least in part, from
internetwork connectivity information received through an exchange of messages according to
an inter-domain routing protocol. Furthermore, the tables may be updated in response to revised
server load information and the updated table information transmitted to one or more of the
Web routers using one or more inter-Web router communication messages.

[0064] A Web Router that receives more than one set of mapping information from its
neighbor picks the set that offers the optimum distance to the information object or service

identifier. When more than one neighbor offers an optimum distance to the information object

WO 03/023607 PCT/US02/28961
19
or service, one of them is chosen using a rule that reduces communication overhead. A mapping

for an information object identifier and a server is only accepted from a neighbor that offers the

optimum distance to the Web router that is sent in the mapping.

[0065] Figure 4 illustrates the interaction between various functional components that make
up a Web router 400. The method implemented in Web routers to determine an optimum server
for a given information object or service is referred to as "URL Routing" and an information
object identifier or service identifier is referred to as a "URL". The Web router maps each
URL provided by a requestor to the address of an information object repository that can
optimally provide the associated information object. This mapping of URLSs to addresses is
accomplished by the collaboration among Web routers through WILD. Accordingly, the Web
router contacted by the requestor can return the required addresses immediately after

processing the request.

[0066] In each Web router 400, a WILD protocol module 402 uses mappings of clients (or,
more generally, requestors)-to-Web routers received from other Web routers along with load
information regarding any local servers 406 to produce a mapping table that lists the address of
the server (i.e., information object repository) that is best suited to service requests from
identified clients. The WILD protocol module 402 further uses an ALP module 404 for
obtaining VON connectivity and Web router reachability information. It also uses ALP
messages to encapsulate and deliver its own WILD messages to neighbor Web routers. As
indicated above, other routing protocols can be used instead of ALP, provided that the protocol
does not create permanent or long-term loops after link cost increases or resource faitures. The
ALP module 404 reports distances to the WILD module 402, so that the WILD module 402
knows about unreachable Web routers while determining the validity of different maps. The
inter-communication between WILD module 402 and ALP module 404 may take place through
the use of shared memory 414.

[0067] In one embodiment, various modules, including the ALP module 404, are implemented
in GateD. GateD is a commercially available, modular software program that includes certain
core services, a routing database and various protocol modules supporting multiple routing
protocols. GateD and GateD-based products are available from NextHop Technologies, Inc. of
Ann Arbor, M. ALP module 404 notifies the WILD protocol module 402 as distances to
various Web routers and information object repositories change. When a Web router 400
receives a WILD message (i.e., a WILD message that was received encapsulated in an ALP
message), it first validates the message contents, and then updates its tables based on distance.
The end result is that the WILD tables at each Web router 400 converge to the optimum

mappings.

WO 03/023607 PCT/US02/28961
20
[0068] The WILD protocol module 402 obtains load information from its local information

object repository 406. This load information is subsequently used by the WILD protocol
module 402 for generating the mappings discussed above. More particularly, the WILD
module 402 periodically polls the local information object repository 406 to obtain the load
information. If the information object repository 406 fails, a load of infinity is reported to the
WILD module 402.

[0069] The WILD protocol module 404 also interacts with a Web router query (WRQ) module
408 in directing reﬁuestors to optimum information object repositories. The Web router 400
responds to queries from the WRQ module 408 for the nearest server, Web cache, redirector,
DNS server or another Web router. A Web router may be contacted through the WRQ module
408 by a client or a server (or other information object repository) seeking to discover an
optimum information object repository for one or more information objects distributed over the

computer network. This scheme makes use of a neighbor protocol module 410.

[0070] For purposes of the remaining discussion, assume that each hosting site includes at
Jeast one Web router 400 configured for URL routing. Each cache (or other information object
repository) establishes connectivity with only one Web router at a time. This Web router
becomes the originator of updates related to that cache. Accordingly, if an information object
exists on a cache server, then the local Web router becomes aware of that object using WRCP
module 412.

[0071] The Web router is responsible for determining which of a number of available
information object repositories should service a request for an information object or service.
The Web router may also determine the information object repository that actually maintains
the information object or service so requested, and initiate the process of bringing the
information object or service to the information object repository that should service the
request. Bringing the requested information object or service to the information object
repository which it has been determined should service the request is accomplished, in one
embodiment, by instructing that information object repository which will service the request to
retrieve the requested information object or service from the information object repository
which actually maintains the information object or service. Thereafter, upon receiving an
instruction to do so, the information object repository which it has been determined should
service the request contacts the information object repository that actually maintains the
requested information object or service directly to request the information object or service.
[0072] Knowing which information object repository is “optimal” for a given URL requires
that the Web routers be provided with distance information concerning those URLs. The

specific algorithm that a Web router executes to compute the distance to the nearest server

WO 03/023607 PCT/US02/28961
21
storing a copy of an information object or service depends on the routing information that the

Web routers use to compute distances to other Web routers, which are co-located with the
servers storing information objects and services. Recall that a Web router is informed by its
local server(s) of the load in the server(s) and the information objects and services stored in the
servers. Hence, a Web router knows that its distance to information objects and services stored
in local server(s) is the latency incurred in obtaining those objects or services from the local

servers, which is a direct function of the load in those servers.

[0073] Given that a Web router executes a routing algorithm enabling the Web router to know
its distance to other Web routers, a Web router selects the optimum server storing a copy of an
information object or service by comparing the local distance to the information object or
service (which is the latency incurred by a local server if the object or service is stored locally
or infinity if the object or service is not stored locally) with the reported matches of object
identifiers to servers reported by its neighbor Web routers. The object-server match report for a
given information object or service specifies the identifier of a service or information object,
the server where the service or information object is stored, the Web router that is local to that
server, and the distance to the server. The distance specified in the object-server match report
includes explicitly or implicitly the distance from the neighbor Web router to the server
specified in the report, plus the load of the server specified in the report. The Web router then
chooses the match of information object to server that produces the minimum distance to the

server storing the service or object.

[0074] The distance between Web routers is derived from the routing protocol that runs over
the virtual overlay network. This routing protocol can be any routing protocol that avoids
permanent and long-lasting loops. For instance, any one of the following routing algorithms
can be fun on the virtual overlay network:

1 Diffusing update algorithm (DUAL), which is the basis for Cisco's EIGRP;

)] Loop-Free path-finding algorithm (LPA);

3 Link-vector algorithm (LVA);

) Bandwidth efficient source tree (BEST) protocol;

5) Dynamic source tree (DST) routing protocol;

6) Diffusing algorithm for shortest multipaths (DASM);

@) Multipath distance vector algorithm (MDVA);

(8) Routing on-demand acyclic multipath (ROAM) protocol;

©)) Multiple-path partial-topology dissemination algorithm (MPDA);

(10) Multipath loop-free routing algorithm (MPATH);

(11) Adaptive link-state protocol (ALP);

(12) A topology broadcast protocol, such as the one implemented in the Open

WO 03/023607 PCT/US02/28961
22
Shortest Path First protocol (OSPF);

(13) The path vector algorithm used as part of the Border Gateway Protocol
(BGP); or
(14) A static table in a Web router specifying the next hops or paths to every
other active Web router in the system.

[0075] To provide for the reporting of object-server matches to requestors, each Web router
maintains a routing database consisting of a routing table, a server table, and a neighbor table.
These tables do not need to be exported to the kernel and therefore their size is only constrained
by the limits of the available system memory. The routing tables have sizes proportional to the
number of URLs they contain, whereas the server table has a size proportional to the number of
information object repositories known by the URL routing protocol. The neighbor table size
will be proportional to the number of neighbors (both Web router neighbors and local
information object repositories). In order to provide for a constant lookup time, a hash table
data structure may be used for all three data structures.

[0076] Each URL entry in the routing table has the following fields

[URL Cache |Local

name P

URL name is the name assigned to the information object. CachelP corresponds to the IP
address of the optimum information object repository from which to get the associated
information object. Local is a bit mask corresponding to the neighbor table. If a cache
neighbor has reported a URL, then its bit is set in the bit mask.

[0077] Each entry of the server table has the following fields:

Cache IP Address [Cache Load [Cache_SN (Web Neighbor |Alp_dist Counter

Router

Cache IP Address is the 32-bit IP address of the information object repository. Cache Load is
the value corresponding to the load on that information object repository. This may be
measured by a computer process resident at the information object repository and reported to
the associated Web router using WRCP. Cache_SN is the sequence number associated with the
last update regarding the information object repository (used for verification). The Web Router
is the Web router that is responsible for sending updates about the associated information
object repository. Neighbor stands for the neighbor Web router that offers the best path to the

information object repository. Alp_dist is the distance to the Web Router obtained by a routing

WO 03/023607 PCT/US02/28961
23
protocol running in the virtual overlay network. Counter is a count of the number of URLs

using the identified information object repository.

[0078] Each entry of the neighbor table has the following fields:

Neighbor [Link
)Address cost

Neighbor address is the IP address of the neighbor (Web router or local information object
repository). Link cost is the cost of the link in the case of Web router neighbors and load in
case of information object repository neighbors.

[0079] The URL routing process 416 running at each Web router exchanges updates with its
peer processes sitting on other Web routers. These updates are exchanged as packets (which

may be encapsulated in ALP packets) that include the following header fields.

Version NumberCloud ID [Type Count Neighbor Link Cost

Version number indicates the version of the routing protocol running on the Web router
originating the message. The version number needs to be checked by the receiving Web router
before processing a packet. If the version number indicates that the originating Web router is
using a different version of the routing protocol than the receiving Web router, the packet is
simply dropped.

[0080] It is possible that vendors that deploy URL routing may need to segment off different
sections of their network. Each segment is described as a cloud. A Cloud ID is therefore a
quantity that is set on initial configuration of a Web router. A Web router only accepts packets
having the same Cloud ID as itself.

[0081] The Type of the update message indicates whether the update is a UE1-UE2
combination update or a UE3 kind of update. In a UE1-UE2 update, the Count keeps track of
the number of information object repository entries in the message. In a UE3 update, the Count
keeps track of the number of Web router updates in the message. The Neighbor Link Cost is
the link cost to the neighbor Web router to which this message is being sent.

[0082] Each UE1-UE2 update has information regarding an information object repository,
followed by a list of URLS corresponding to that information object repository. Therefore, if
two URLs from the same information object repository are reported, an optimization can be
achieved by sending the information object repository information only once and appending the

list of URLSs that correspond thereto as follows:

WO 03/023607 PCT/US02/28961
24
Cache Ip Address [Load 'Web Router Alp distance to WR JURL Count

1 ADQ Flag
JURL 2 ADQ Flag

Cache IP Address, Load, Web Router and ALP distance have the same meaning as in the server
table. URL Count is the number of URL entries corresponding to the subject information object
repository. The ADQ flag specifies whether an update message corresponds to an add message
(i.e., a message indicating a URL has been added to the local cache), a delete message (i.e., a
message indicating a URL has been removed from the local cache) or a query. A Web router
that receives a query must return its latest routing table entry to the neighbor that sent the
query. In the pseudocode described below, the command to consolidate updates ends up
arranging each update in this fashion.
[0083] A UE3 update asks for all routes from a Web router. This query simply sends the Web
router address that is of interest and is an efficient method to keep updated tables in the absence
of neighbor tables.
[0084] URL routing module 416 tries to pick the URL entry whose sender is at the optimum
distance, i.e., whose network latency to the information object repository plus the associated
load is the smallest. The network latency to the actual information object repository is
essentially the same as the network latency to the Web router associated therewith. The
network latency to the associated Web router is obtained using a routing protocol that provides
distances to Web routers, such as ALP. Therefore, there is no tree traversal involved and the
complexity of URL routing is reduced to O(U.N), where U is the number of URLs and N is the
number of neighbors.
[0085] Using the URL routing process a Web router responds to the following external inputs
in order to maintain up-to-date matches between information object repositories and
information object or service identifiers:
) Adds/deletions from an associated information object repository
transmitted using WRCP.
) Changes in load from an associated information object repository
transmitted using WRCP.
3) Changes in information object repository connectivity received through the
neighbor protocol.
C)) URL updates from other neighbor Web routers (e.g., received via WILD).
o) Changes in Web router neighbor connectivity reported by the routing

protocol used to compute distances to other Web routers (e.g., ALP).

WO 03/023607 PCT/US02/28961

25
(6) Changes in distances to other Web Routers.

@) URL lookup queries from WRCP.
[0086] Also using URL routing, a Web router sends the following outputs:
¢y Response to a query sent by WRCP.
@ URL updates to Web router neighbors.
[0087] When a Web Router receives any of the above inputs, it takes the following actions:
¢)) If the input offers a better distance to the URL, change the routing table to
use the new input and send out an add update.
) If the input offers a worse distance than the present one, ignore it.
3) If the input causes the loss of the last path, send out a delete.
()] If the input causes a distance increase or causes the Web router to pick a
different path, change the routing table accordingly and send out a query.
[0088] The various functional modules described above, along with the interfaces between the
modules, are best presented in the following pseudocode. This includes the inter-process
communications (calls) as well as the main procedures themselves. For convenience, the
routing protocol used to compute distances between Web routers is assumed to be ALP;
however, other routing protocols could be used instead. Furthermore, the information object
repositories used to store information objects or services are referred to as caches, though this
term should be understood to include all forms of information object repositories. In the

pseudocode, the following variables and data structures are used:

i: The Web router in which the algorithm is running.

Ni: The current set of neighbors reported by ALP and Neighbor Protocol.

URT: Shared memory URL routing table with all known URLs. Each entry has the
following fields:

url: The first 32 bits of the MDS hash of the URL.

p_cache: The preferred cache.

p_port: The port used by the preferred cache.

local: bit mask corresponding to the local caches that have the URL.

NT: Neighbor Table with entries for each neighbor in Ni. Each entry has the
following fields:

nbr_ip: IP address of the neighbor

nbr_port: Port for a cache neighbor

I_cost: Cost of the link to the neighbor

WO 03/023607 PCT/US02/28961
26

CT: Cache table for all the caches currently known by URL Routing. Each entry
has the following fields:

cache: IP address of the cache

port: Port of the cache

load: Load on the cache

web_rtr: Web router associated with that cache

nbr: Neighbor that offers the shortest path to web_rtr

alp_dist: Alp distance to web_rtr

counter: Number of NURT entries that point to this cache entry

Each packet has the following header fields:
version: Version number of the protocol
cloud: Cloud in which the protocol is running

I_cost: Link cost to neighbor to whom the packet is being sent

UEI: update entry of type 1 in a packet. Each entry has the following fields:
cache: IP address of the cache
load: Load on the cache
cache_sn: Sequence number associated with the last update about the
cache
web_rtr: Web router associated with the cache

alp_dist: ALP distance to above web router

UEZ: update entry of type 2 in a packet. Each entry has the following fields:
url: First 32 bits of the MD5 hash of the URL
flag: Can be set to add or delete or query depending on the update

UES3: update entry of type 3 in a packet. Each entry has the following fields:

web_rtr: Web router to which distance has decreased

[0089] The first set of inter-process calls to be presented are those made by ALP module 404
to the URL roulting process 416. For each procedure, a description is provided to orient the

reader.

void alpUrlInit (u_int32 name);

WO 03/023607 PCT/US02/28961
27
PARAMETERS:

DESCRIPTION: This procedure is called by ALP when the routing protocol starts
up. Used for initialization of data structures, in one embodiment hash table

structures for the routing table and the neighbor tables are intialized.

void alpUrlCleanup (void);
PARAMETERS:
DESCRIPTION: This procedure is called by ALP when the routing protocol goes

down. This procedure will free up memory and any other resources.

void urlAlpRecvUpdate(u_int32 nbrAdr, u_int8 * msg, u_int32 msgLen);

PARAMETERS:
nbrAdr Address of neighbor that sent the message
msg URL message (opaque format for ALP)
msglen Number of bytes in msg

DESCRIPTION: This procedure is called by ALP when a URL message is
received. The procedure converts the byte stream provided by ALP after receiving

a packet into a data structure that can be easliy read out entry by entry

void urlAlpChangeNbrState(array web_router_changes, u_int8 upDown)

PARAMETERS:
web_rtr_changes Array of records with the following fields:
web_rtr Address of neighbor/web router |
distance Cost of link of neighbor/distance to web router
nbr The next hop neighbor
upDown Set to 1 if the link to the neighbor came up, set to 0 if

the link to the neighbor was taken down
DESCRIPTION: This module is called when the status of a link to a neighbor
Web router changes. It is assumed that the first entry in the table web_rir_changes
corresponds to the neighbor Web router and all the other entries correspond to the
other Web routers for which the Web router in the first entry is the chosen
neighbor. Each entry in the array is a Web router and the alp distance and the next

hop neighbor associated with it.

void urlAlpChangeNbrLinkValue(array web_rtr_changes]]);
PARAMETERS:

WO 03/023607 PCT/US02/28961

web_rtr_changes Array 20? records with the following fields:
web_rtr Address of neighbor/Web router

distance Cost of link of neighbor/distance to Web router
nbr The next hop neighbor

DESCRIPTION: This module is called when a link cost to a neighbor decreases. It
is assumed that the first eniry in the table web_rtr_changes corresponds to the
neighbor Web router and all the other entries correspond to the other Web routers
for which the Web router in the first entry is the chosen neighbor. Each entry in
the array is a Web router and the alp distance and the next hop neighbor

associated with it.

void urlAlpChangeDistance (array web_rtr_changes[]);

PARAMETERS:
web_rtr_changes Array of records with the following fields:
web_rtr Address of neighbor/Web router
distance Cost of link of neighbor/distance to Web router
nbr The next hop neighbor

DESCRIPTION: This module is called when a distance change to a destination
occurs in ALP. The input is an array of Web routers with the new distances and

new neighbors to them.

[0090] Next, the calls from URL routing module 416 to ALP module 404 are presented.

void urlAlpGetNewSeqNumber(AlpSeqgNum * seqNum);
PARAMETERS:
seqNum Sequence number to be returned

DESCRIPTION: Return a sequence number to the URL routing module.

s_int8 AlpCompareSeqNum(AlpSeqNum * snl, AlpSeqNum * sn2);

PARAMETERS:
snl Sequence number
sn2 Sequence number

DESCRIPTION: Return -1 if snl < sn2, 0 if snl = sn2, 1 if sn1 > sn2.

u_int8 urlAlpIsNbr(u_int32 nbrAdr);
PARAMETERS:
nbrAdr Address of a router running ALP

WO 03/023607 PCT/US02/28961
29
DESCRIPTION: Returns TRUE if nbrAdr is a neighbor, FALSE otherwise.

u_int32 urlAlpGetDistance(u_int32 dstAdr);
PARAMETERS:
dstAdr Address of the destination
DESCRIPTION: Returns the cost of the path to destination dstAdr. Returns
ALP_INFINITY if the destination is unreachable.

u_int32 urlAlpGetNeighbor(u_int32 dstAdr);
PARAMETERS:
dstAdr Address of the destination
DESCRIPTION: Returns the neighbor to destination dstAdr. Returns NULL if the

destination is unreachable.

void urlAlpSendUpdate(u_int8 * msg, u_int32 msglen);

PARAMETERS:
msg Buffer with opaque data
msglen Number of bytes in the message

DESCRIPTION: Broadcast the URL routing message to all the neighbors.

void urlAlpSendNbrUpdate(u_int32 nbr, u_int8 * msg, u_int32 msglen);

PARAMETERS:

nbr Neighbor Web router to which the message needs to be
sent

msg Buffer with opaque data

msglen Number of bytes in the message

DESCRIPTION: Unicast the update message to one neighbor.

[0091] The following are the calls made by the WRCP mdule 412 to the URL routing module
416.

void updateURL(array tuple] J);

PARAMETERS:
tuple is an array where each entry has the following fields
cache IP Address of the cache from which the add/delete

inidcation originates

WO 03/023607 PCT/US02/28961

port Port og ?he cache from which the add/delete inidcation
originates

upper32 First 32 bits of the Md5 hash of the URL

ttl TTL (time to live) value associated with the URL

DESCRIPTION: This function is called by the WRCP module to inform the URL

routing module that local cache objects have been added or deleted.

int findURL (u_int32 * cache, u_int32 upper32);

PARAMETERS:
cache Pointer to the cache which is closest
port Pointer to cache's port
upper32 First 32 bits of the Md5 hash of the URL

DESCRIPTION:This function is called by the WRCP module to obtain the best
cache for a URL. Returns O for a correct find and non-zero for all other cases.

When the function returns 0, the cache contains address of closest cache.

int changeCacheLoad(u_int32 cacheAdr, u_intl6 port, u_int16 load)

PARAMETERS:
cacheAdr Address of the cache from which the load inidcation
originates
port Port of cache from which the load inidcation originates
load Present load of the cache

DESCRIPTION: This function is called by WRCP to inform the Web router of

load changes in the cache.

[0092] Although not discussed in detail above, there are some “house keeping” routines that
run on a2 Web server. For example, a time to live (TTL) clearing daemon is responsible for
deleting table entries after expiration of an associated TTL. In this way, stale entries are not
kept so that only “live” information is returned to requesting clients and servers. The call from

the TTL clearing daemon to the URL routing module 416 is as folls:

void delUrlTTL(u_int32 url)
PARAMETERS:

url First 32 bits of the MD5 hash of the URL
DESCRIPTION: This procedure is called by the TTL clearing daemon when the
TTL of a URL in the database expires.

WO 03/023607 PCT/US02/28961
31
[0093] Asimplied by the above, a TTL database is maintained so that the TTL clearing

daemon can keep track of the lives of the various URLs. Calls from the URL routing module

416 to the TTL database may be made as follows:

void addUrlTTL(u_int32 url, u_int32 ttl)

PARAMETERS:
url First 32 bits of the MD35 hash of the URL
ttl Time to live value for the url

DESCRIPTION: This function is called to add a URL and its TTL to the database.

void readUrlTTL(u_int32 url, u_int32 ttl)

PARAMETERS:
url First 32 bits of the MD5 hash of the URL
ttl Time to live value for the url

DESCRIPTION: This function is called to retrieve a TTL from the database.

[0094] The final inter-process procedure to be presented involves calls from the neighbor

protocol module 410 to the URL routing module 416.

void changeCacheNeighborState (u_int32 cacheAdr, u_int16 port, u_int8

upDown,
u_int16 load);

PARAMETERS:

cacheAdr Address of the cache for which the change has taken
place

port Port being used by the cache

upDown Set to 1 if the link to the neighbor came up, set to 0 if

the link to the neighbor was taken down
load Load of cache when it comes up

DESCRIPTION: This function is called by the neighbor protocol when the link to
a local cache comes up or goes down.
[0095] Having thus described the inter-process procedures, pseudocode describing the main
Web router procedures themselves will now be presented. The following module is called on
initialization by ALP:
Procedure alpUrlInit()
begin

Initialize memory for data structures

WO 03/023607 PCT/US02/28961

32
Clean up files used for logging

end
[0096] The following module is called when an indication arrives that a local cache 406 has

added/deleted a number of URLs.

Procedure updateURL(array tuple[])
begin
for each entry (cache, port, url, ttl, type) in tuple
if type is ADD
call addURL(cache, port, url, ttl)
else |
call delURL(cache, port, url, ttl)
consolidate outgoing update
broadcast update to all neighbors
delete caches with zero counters that are not neighbors
end
[0097] The following module is called when an indication arrives that a local cache 406 has

loaded a URL.

Procedure addURL(u_int32 cache, u_intl6 port, u_int32 url, u_int32 ttl)
begin
if (cache, port) has not been reported by the neighbor protocol (not in
NT) then
continue
cache_entry ® entry for (cache, port) in CT
if url does not exist in URT
add entry (url, cache, port) to URT
addURLTTL(url, tl)
mark entry corresponding to (cache, port) in URT.local
cache_entry.counter ++
add entry UEI (cache, cache_entry.port, cache_entry.load,
cache_entry.web_rtr, () into
update
add entry UE2 (url, add, tl) into update

else

WO 03/023607 PCT/US02/28961

33
if bit corresponding to (cache, port) in URT[url].local is not

set
mark bit corresponding to (cache, port) in
URT/url].local
cache_entry2 eentry for (URT[url].p_cache,
URT{url].p_port) in CT
old_distance ® cache_entry2.load +
cache_entry2.alp_dist if (cache_entry.load < old_distance)
URT{[url].p_cache o cache
URT{[url].p_port e port
add entry UE1 (cache, cache_entry.port,
cache_entry.load ,
cache_entry.web_rtr, 0)
into update
add entry UE2 (url, add, DEF_TTL) into
update
cache_entry.counter ++
cache_entry2.counter
eecache_entry2.counter - I
end '
[0098] The following module is called when the WRQ module 408 requires the closest cache
to the identified URL.

Procedure findURL(u_int32 cache, u_intl6 port, u_int32 url)

begin
if URT(url] exists
cache @ URT{url].p_cache
port eee URT{url].p_port
return
else
return error
end

[0099] The following module is called when an indication arrives that the local cache 406 has

deleted a URL.

Procedure delURL(u_int32 cache, u_intl6 port, u_int32 url, u_int32 ttl)

WO 03/023607 PCT/US02/28961

34
begin
if (cache, port) has not been reported by the neighbor protocol (not in
NT)
then
continue
if url does not exist in URT or URT[url].local bit is not set)
continue
cache_entry o entry for (cache, port) in CT
unmark bit corresponding to (cache, port) in URT[url].local
if (URT[url].p_cache = cache)
if (URT[url].local = 0)
add entry UEI (cache_entry.cache, cache_entry.port,
cache_entry. load, cache_entry.web_rtr, 0) into
update
add entry UE2 (url, delete, DEF_TTL) into update
remove entry for url from URT
else
URT/url].p_cache e e®local cache that offers smallest
load
and has bit set in URT[url].local
URT[url].p_port eeport of local cache that offers
smallest
load and has bit set in URT[url].local
cache_entry2 eeentry corresponding to
(URT[url].p_cache, URT[url].p_port)in CT
add entry UEI(cache_entry2.cache,
cache_entry2.port, cache_entry2.load,

cache_entry2.web_rtr, 0) into
update
add entry UE2 (url, query, DEF_TTL) into update
cache_entry2.counter ++
cache_entry.counter = cache_entry.counter - 1
end
[00100] The following procedure is called by the TTL clearing daemon when the TTL of a URL

in the database expires.

WO 03/023607 PCT/US02/28961

35
Procedure delUrlTTL(x_int32 url)

begin

remove entry for url from URT

delete cache counter corresponding to url

delete caches with zero counters that are not neighbors
end

[00101] The following module is called when the status of a link to a neighbor cache changes.

Procedure changeCacheNeighborState(u_in32 cache, u_int16 port, u_int8
upDown, _intl6 load)
begin
if (upDown = UP)

add cacheAdr to NT

create a new cache_entry in CT

cache_entry.cache ® cache

cache_entry.port @ port

cache_entry.load eeload

cache_entry.web_rtr e eaddress of the web router

cache_entry.nbr eelOCAL

cache_entry.alp_dist ee0

cache_entry.counter @0

else

delete cacheAdr from NT

cache_entry eeentry corresponding to (cache, port) in CT

cache_entry.load eeINFINITY

for each url in URT

unmark bit corresponding to (cache, port) in
URT[url].local
if ((URT[url].p_cache, URT[url].p_port]) = (cache,
port))
if (URT[url]j.local = 0)
add entry UEI (cache_entry.cache,
cache_entry.port,
cache_entry.load,
cache_entry.web_rtr, 0) into

outgoing update

WO 03/023607 PCT/US02/28961

36
add entry UE2 (url, delete, DEF_TTL)

into
update
remove entry for url from URT
else
URT[url].p_cache eeaddress of
elocal
cache that offers smallest load
and has bit in URT[url].local
URT[url].p_port eepori of elocal
cache
that offers smallest load and
has bit
set in URT[url].local
cache_entry2 eeentry corresponding
to
(URT[url].p_cache,
URT[url].p_port)in CT
cache_entry2.counter ++
add entry UEI (cache_entry2.cache,
cache_entry2.port
cache_entry2.load,
cache_entry2.web_rtr, 0) into
update
add entry UE2 (url, query, DEF TTL)
into
update
delete cache entry from CT
consolidate outgoing update
broadcast update to all neighbors
end
[00102] The following module is called by WRCP module 412 when it receivesan indication

that the load on a neighbor cache has changed.

Procedure changeCachel.oad(u_int32 cache, u_int16 port, u_intl6 load)

begin

WO 03/023607 PCT/US02/28961

37
cache_entry eeentry corresponding to (cache , port) in CT

if ((cache, port) @ Ni)
return
if (cache_entry.load = load)
return
old_load eecache_entry.load
cache_entry.load eeload
if (old_load < load)
for each url in URT
if (URT[url].p_cache, URT[url].p_port) = (cache,
port))
tcache_entry @ ®entry in CTecorresponding to
elocal cache that has the smallest load
and
has bit set in URT[url].local
if (tcache_entry.cache ® URT[url].p_cache)
URT[url].p_cache
eeicache entry.cache
URT{[url].p_port
eeicache_entry.port
tcache_entry.counter ++
cache_entry.counter
eecache_entry.counter
-1
add entry UEI (tcache_entry.cache,
tcache_entry.port,
teache_entry.load,
tcache_entry.web_rtr,0)
into update
add entry UE2 (url, query, DEF_TTL)
into
update
else
add entry UE! (cache_entry.cache,
cache_eniry.port

cache_entry.load,

WO 03/023607

into

PCT/US02/28961
38
cache_entry.web_rtr, 0) into

update
add entry UE2 (url, query, DEF_TTL)

update

else /* load has decreased®/

for each url in URT

port))

update

(cache, port))

into

if ((URT[url].p_cache, URT[url].p_port) = (cache,

add entry UEI (cache_entry.cache,
cache_entry.port, cache_entry.load,
cache_entry.web_rtr, 0) into update

add entry UE2 (url, add, DEF_TTL) into

else if (URT[url].local has a bit set for

cache_entry2 eeentry corresponding to
URT[url].p_cache ,URT[url].p_port)
in CT
old_distance eecache_entry2.web_rtr +
‘ cache_entry2.load
if (old_distance > load)
URT/[url].p_cache ®®cache
URT[url].p_port eeport
cache_entry2.counter
eecache_entry2.counter - 1
cache_entry.counter
eecache entry.counter ++
add entry UEI (cache_entry.cache,
cache_entry.port,
cache_entry.load, -
cache_entry.web_rtr, 0) into
update
add entry UE2 (url, add, DEF_TTL)

WO 03/023607 PCT/US02/28961

39
update

consolidate outgoing update
broadcast update to all neighbors

delete caches with zero counters that are not neighbors

end
[00103] The following module is called when the status of a link to a neighbor Web router
changes. It is assumed that the first entry in the table web_rtr_changes corresponds to the
neighbor Web router and all the other entries correspond to the other Web routers for which the
Web router in the first entry is the chosen neighbor. Each entry in the array is a Web router and

the alp distance and the next hop neighbor associated with it.

Procedure urlAlpChangeNbrState(array web_router_changes, upDown)
begin
if (upDown = UP)
add (web_router_changes.web_rtr[0], | _cost) to NT
for each entry in web_router_changes
add entry UE3(web_router_changes[i]) into web
router

query
consolidate update and send update

toweb_router_changes[0].web_rtr
else
if (web_rtr_changes[0].web_rtr ® NI)
return
delete entry for nbr from NT
urlAlpChangeDistance(web_rtr_changes);
end

[00104] The following module is called when a link cost to a neighbor changes. It is assumed
that the first entry in the table web_rtr_changes corresponds to the neighbor Web router and all
the other entries correspond to the other Web routers for which the Web router in the first entry

is the chosen neighbor. Each entry in the array is a Web router and the alp distance and the next

hop neighbor associated with it.

Procedure urlAlpChangeNbrLinkValue(array web_rtr_changes[]);
begin

WO 03/023607 PCT/US02/28961
40
if (web_rtr_changes{0].web_rtr @ NT)

return
nbr_entry eeentry corresponding to web_rtr_changes{0].web_rtr in
NT if (nbr_entry.l_cost > web_rtr_changes[0].distance)
for each entry in web_router_changes
add entry UE3(web_router_changes[i]) into web
router
query
consolidate update and send update to web_router_changes
[0].web_rtr
nbr_entry.l_cost eeweb_ritr_changes[0].distance
urlAlpChangeDistance(web_rtr_changes);
end
[00105] The following module is called when a distance change to a destination occurs in ALP.

The input is an array of Web routers with the new distances and new neighbors to them.

Procedure urlAlpChangeDistance(array web_rtr_changes/[])
begin
for each entry in web_rtr_changes
for each cache_entry in CT
if (cache_entry.web_rtr = web_rtr_changes[i] .web_rtr)
if (cache_entry.alp_dist >
web_rtr_changes(i].distance)
cache_entry.alp_dist
eeweb rir_changes[i].distance
for each url in URT
if (URT[url].p_cache,
URT[url].p_port) = (cache_entry.cache,
cache_entry.port))
add entry
UEI(cache_entry.cache,
cache_entry.port,
cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist)

into update

WO 03/023607 PCT/US02/28961
41
add entry UE2(url, add,

DEF _TTL) into
update
else if (cache_entry.alp_dist
<web_rtr_changes[i].distance)
cache_entry.alp_dist eeweb_rtr_changes[i].
distance

current_distance ee®cache_entry.alp_dist +

cache_
entry.load
for each url in URT
if ((URT[url].p_cache,
URT[url].p_port) = (cache_entry.cache,

cache_entry.port))
closest_local_cache ®eelocal cache
that
offers smallest load and has bit set in
URT/url].local
if (closest_local_cache = null)
local_distance ee® INFINITY
else
local_distance eeload of the
closest_local_cache
if (local_distance and
current_distance
have infinite values)
cache_entry.counter
ecache_entry.counter
-1
add entry UE]
(cache_entry.cache,
cache_entry.port,
cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist)

into

WO 03/023607

cache_entry2.counter++

scache_entry.

PCT/US02/28961
42
update

add entry UE2 (url, delete,
DEF_TTL) into update
remove ur! from URT
else
if (local_distance <
current_distance)
URT/[urlj.p_cache
seaddress of
closest_local _
cache
URT[url].p_port
seporteof
closest_local_
cache

cache_entry2

eecache
entry
corresponding
to closest_

local_cache in
Ccr

cache_entry.counter

counter -1
add entry UE]

) (cache_entry2
. cache,
cache_entry
2.port,
cache_entry
2.load,

cache_entry

WO 03/023607

into update

web_rtr_changes[i].nbr)

PCT/US02/28961

43
2.web_rtr,

cache_entry
2.alp_dist into
update
add entry UE2 (url,
query,
DEF _TTL)
into

update

else
add entry UE!
(cache_entry.cache,
cache_entry.port,
cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist)
into update
add entry UE2 (url,query,
DEF_TTL)

else /* distance remained the same */

if (cache_entry.nbr U

for each url in URT
if ((URT[url].p_cache,
URT(url].p_port) =
(cache_entry.cache,
cache_entry.port))
add entry UE1
(cache_entry.
cache,
cache_entry.p
ort,
cache_entry.l

oad,

WO 03/023607 PCT/US02/28961
44
cache_entry.w

eb_rtr,
cache_entry
.alp_dist)
into update
add entry UE2 (url,
add,
DEF_TTL)
into
update
/* neighbor changed*/
if (cache_entry.nbr @ web_rtr_changes/i].nbr)
cache_entry.nbr @ web_rtr_changes[i].nbr
add entry UE3(cache_entry.web_rtr) into web
router query and send it to
cache_entry.nbr
consolidate update and broadcast it to all neighbors
remove all non-neighbor caches with counter =0
end ‘

[00106] The following module is called when an update packet arrives from a neighbor Web

router.

Procedure urlAlpRecvUpdate(nbr, update)
begin
if version number and cloud id's match
if nbris in NT
get linkcost from update
if packettype is REGULAR_UPDATE
call urlProcessUpdate(nbr, linkcost, update)
else
call urlProcessWebRouterQuery(nbr, linkcost,

update)

end
[00107] The following module is called when a Web router query arrives from a neighbor Web

router.

WO 03/023607 PCT/US02/28961
45

Procedure urlProcessWebRouterQuery(nbr, linkcost, update)
begin
for each rtr in the update
for each url in URTcache_entry eentry corresponding to
(URT[url].p_cache,URT[url]. p_port) in CT
if (cache_entry.web_rtr = rtr)
call getUrlTTL(url, 111)
add entry UEI (cache_entry.cache, cache_entry.port,
cache_entry.load, cache_entry.web_rtr,
cache_entry.alp_dist) into update
add entry UE2 (url, add,) into update
end
[00108] The following module is called when a regular update packet arrives from a neighbor
Web router.
Procedure uriProcessUpdate(nbr, linkcost, update)
begin
i=-1
while (i < number of entries in update packet)
i++
if update_entry is of type UEI
if update_entry.web_rtr is myself and update_entry.cache is

not in

+ Niadd entry UEI(update_entry.cache, update_entry.port,

INFINITY,
update_entry.web_rtr, 0) to outgoing update
for each UE2 entry
i++

url e eupdate_entry.url

if there is an entry for url in URT

cache_entry @ eentry corresponding to

(URT[url].p_cache, URT[url].p_port) in CT
add entry UEI (cache_entry.cache,

cache_entry.port,

cache_entry.load,

cache_entry.web_rtr, cache_entry.alp_dist)

WO 03/023607 PCT/US02/28961

46
into update

add entry UE2 (url, add, DEF_TTL)
into
update

continue

if update_entry.web_rir doesn't exist or has an infinite distance
in

AL P tables

read all entries besides query entries till the next UE]
and

increment i as many times as the number of UE2
entries

read

continue

cache_entry ® entry corresponding to update_entry.cache in
CcT
if cache_entry exists
if (cache_entry.nbr = nbr)
if (cache_entry.load < update_entry.load)
typechange @ @ INCREASE
else if (cache_entry.load > update_entry.load)
typechange e DECREASE
else
typechange ® @ SAME
cache_entry.load eeeupdate entry.load
if there are no following UE] entries
call
processCacheChange(cache_entry,
typechange)
/* from incorrect neighbor */
else
if (cache_entry.load O update_entry.load) and
(cache_entry.alp_dist < update_entry.alp_dist

WO 03/023607

URT

PCT/US02/28961
47
add entry UEI (cache_entry.cache,

cache_entry.port,
cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist) into
outgoing update
for each UE2 entry
i++
url eeupdate_entry.url

if there is no entry for url in

if (update_entry.flag ®
DEL)
and
(cache_entry.alp_dist <

update_entry.alp_dist)
add entry UE]
(cache_entry.
cache,
cache_entry.p
ort,
cache_entry.l
oad,
cache_entry.w
eb_rtr,
cache_entry.
alp_dist) into
outgoing
update
add entry UE2

(url,
del,

DEF_TTL) into
update

continue

WO 03/023607

update

PCT/US02/28961

48
SenderDistance

eeupdate_entry.alp
dist +
update_entry.load
cache_entry2 e entry in CT
corresponding to
(URT[url].p_cache,
URT(urlj.p_port)
currentDistance
eecache_entry.alp
_dist +
cache_entry.load
if (senderDistance >
currentDistance +
linkcost)
add entry UE1
(cache_entry.
cache,
cache_entry.p
ort,
cache_entry.l
oad,
cache_entry.w
eb_rtr,
cache_entry
.alp_dist) into

outgoing

add entry UE2 (url,
add,
DEF_TTL)
into update
continue
[*cache entry does not exist*/

else

WO 03/023607 PCT/US02/28961

49
correct_nbr

e surlAlpGetNeighbor(update_entry.web_rtr)
if (correct_nbr = nbr)
if (update_entry.load = INFINITY)
for each UE2 entry
i++
url eeupdate_entry.url

if there is an entry for url in

URT
cache_entry2 e eentry
corresponding to
(URT{url].p_cache,
URT{url].p_port) in
Ccr

add entry UEI
(cache_entry2
.cache,
cache_entry
2.port,
cache_entry
2.load,
cache_entry
2.web_rtr,
cache_
entry2.alp_dis
1)
into update
add entry UE2
(url,

add,
DEF TTL)
into update
continue

else

create a new cache_entryin CT

WO 03/023607 PCT/US02/28961

50
cache_entry.cache o

update_entry.cache

cache_entry.port e
update_entry.port

cache_entry.load
eeupdate_entry.load

cache_entry.web_rtr

®supdate_entry.web_rir
cache_entry.nbre enby

cache_entry.alp_dist ee

urlAlpGetDistance(update_entry.web_rtr)
cache_entry.counter ®e0
typechange @@ DECREASE
/* from incorrect neighbor */
else
for each UE2 entry
i++
url e ®update_entry.url
if there is no entry for url in URT
continue
senderDistance
eseupdate_entry.alp dist +
update_entry.load
cache_entry2 ® entry in CT
corresponding to
(URT[url].p_cache,
URT[url].p_port)
currentDistance
eecache entry.alp_dist +
cache_entry.load

if (senderDistance > currentDistance

linkcost)

WO 03/023607 PCT/US02/28961

! add entry UE]
(cache_entry.cache,
cache_entry.port,
cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist)
into outgoing update
add entry UE2 (url, add,
DEF_TTL)
into npdate
continue '

else if entry is of type UE2
i++
url eeupdate_entry.url
entry_distance ® ®cache_entry.alp_dist+ cache_entry.load
if url exists in URT
cache_entry2 esentry corresponding to URT[url].p_cache,
URT[url].p_port in
CcT
current;distance eecache entry2.alp dist +
cache_entry2.load
closest_local_cache eelocal cache that offers smallest
load and has bit setin URT[url].local
if there is no closest_local_cache
local_distance @ ¢INFINITY
else
local_distance eeload of the closest_local_cache
else
current_distance o ¢INFINITY
local_distance oo INFINITY
if (update_entry.flag = add or update_entry flag = query)
if (URT[entry.url] does not exist)
URT[url].p_cache ® ®update_entry.cache
URT[url].p_port ®eupdate _entry.port
call addUrITTL(update_entry.ttl)

WO 03/023607 PCT/US02/28961
52
add entry UEI (cache_entry.cache,

cache_entry.port,
cache_entry.load,
cache_entry.web_rtr, cache_entry.alp_dist)
into outgoing update
add entry UE2 (url, add,
update_entry.ttl) into
update
cache_entry.counter++
continue

else

if (cache_entry.nbr = cache_entry2.nbr)
if
(cache_entry.cache=cache_entry2.cache) ,
if (typechange = INCREASE)
if (local_distance <
current_distance)
URT/[url].p_c
ache
eecloset_loca
I
cache.cache

URT[url].p_p

ort e

closest_local_
cache
.port
cache_entry3
eecac
he
entry
corres
pond-

ing to

WO 03/023607

(cache_entry3.cache,

cache_entry3.port,

53

cache_entry3.load

into update

PCT/US02/28961

closes
I
local_
cache
in CT
cache_entry3.

count

er++

cache_entry2.
count
er
ecache_entry
2.
count
er-1

add entry UE]

cache_entry3.web_rtr, 0)

add entry UE2
(url, query, DEF_TTL
) into update
continue
else
add entry UEI

(cache_entry2.cache,

cache_entry2.port,
cache_entry2.load,

cache_entry2.web_rtr,

cache_entry2.alp_dist)

WO 03/023607 PCT/US02/28961

54
into update

add entry UE2
(url,query, DEF_TTL) into update
continue
if (typechange = DECREASE)
add entry UE]
(cache_entry2.cache,

cache_entry2.port,

cache_entry2.load,
cache_entry2.web_rtr,
cache_entry2.alp_dist) into
update
add entry UE2 (url,add,
DEF TTL)
into update
continue
else /* old neighbor switched caches */

if (local_distance < entry_distance)

URT[url].p_cache o®
closest_local_cache.cache

URT[url].p_port ee

closest_local_cach.port
cache_entry3 eecache entry

corresponding to

closest_local_cache in CT
cache_entry3.counter++
cache_entry2.counter ee

cache_entry2.counter

add entry UE]

(cache_entry3.cache,

WO 03/023607 PCT/US02/28961
55
cache_entry3.port,

cache_entry3.load,
cache_entry3.web_rtr,
0) into update
add entry UE2 (url, query,
DEF_TTL)
into update
continue
else

URT[url].p_cache o®

cache_entry.cache

URT[url].p_port e®

cache_entry.port
cache_entry.counter ++
cache_entry2.counter o®

cache_entry2.counter

add entry UE]
(cache_entry.cache,
cache_entry.port,
cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist)
into update
add entry UEZ (url,query,
DEF_TTL)
into update
continue
else /*update from other than current
nbr*/
if (entry_distance <
current_distance)
URT[url].p_cache o®

cache_entry.cache

WO 03/023607 PCT/US02/28961
56
URT[url].p_port ee

. cache_entry.port
cache_entry.counter ++
cache_entry2.counter @ e

cache_entry2.counter

add entry UE]
(cache_entry.cache,
cache_entry.port,

cache_entry.load,

cache_entry.web_rtr,
cache_entry.alp_dist)
into update

add entry UE2(url, add,

DEF_TTL)
into update

else
if (entry.flag = query)

sender_distance o®

update_entry.alp_dist+
cache_entry.load

if (sender_distance >

current_distance +
linkcost)
add entry UEI
(cache_entry2. cache,

cache_entry 2.port, cache_
entry2.load,
cache_entry2.web_ rtr,
cache_entry2. alp_dist) into
update

add entry UE2

WO 03/023607 PCT/US02/28961
57
(url,add, DEF_TTL) into

update
continue
else /* update_entry.flag = del %/
if url not in URT
continue
if (cache_entry.nbr = cache_entry2.nbr)
if (local_distance is finite)
URT[url].p_cache
eeclosest local_cache.
cache
URT[url].p_port
eeclosest_local_cach.port
cache_entry3 eecache entry
corresponding to
closest_local_cache in CT
cache_entry3.counter+-+
cache_entry2.counter
eecache_entry2.counter - 1
add entry UEI (cache_entry3.cache,
cache_entry3.port,
cache_entry3.load,
cache_entry3.web_rtr)
into update
add entry UE2 (url, query, DEF TTL)
into
update
else
cache_entry2.counter
eecache_entry2.counter - 1
remove entry corresponding to url
from
URT
add entry UE! (cache_entry2.cache,

cache_entry2.port,

WO 03/023607 PCT/US02/28961
58
cache_entry2.load,

cache_entry2.web_rtr)
into update
add entry UE2(url, del, DEF_TTL)
into
update
else
add entry UEI (cache_entry2.cache,
cache_entry2.port,
cache_entry2.load,
cache_entry2.web_rtr) into update
add entry UE2(url, add, DEF_TTL) into
update

continue

consolidate update
send update to all neighbors

remove all non-neighbor caches with counter =0in CT

end
[00109] The following module is called when a single cache update arrives.
Procedure processCacheChange(cache_entry, typechange)
begin
if (rypechange = INCREASE)
entry_distance e®cach_entry.alp dist + cache_entry.load
for each url in URT
if (URT[url].p_cache = cache_entry.cache)
closest_local_cache e elocal cache that offers smallest
load and has bit set in
URT[url].local
if there is no closest_local_cache
local_distance o INFINITY
else
local_distance eeload of the closest_local_cache

if (local_distance and entry_distance = INFINITY)

WO 03/023607 PCT/US02/28961
59
cache_entry.counter ®®cache_entry.counter -

remove entry corresponding to url from URT
add entry UEI (cache_entry2.cache,
cache_entry2.port,
cache_entry2.load,
cache_entry2.web_rtr) into update
add entry UE2(url, del, DEF_TTL) into update
continue
if (local_distance < entry_distance)
URT[url].p_cache
eeclosest_local_cache.cache

URT[url].p_port ®eclosest_local_cach.port

cache_entry3 eecache entry corresponding to
closest_local_cache in CT
cache_entry3.counter++

cache_entry.counter ee®cache_eniry.counter -

add entry UE! (cache_entry3.cache,
cache_entry3.port,
cache_entry3.load,
cache_entry3.web_rtr) into update
add entry UE2 (url, query, DEF_TTL) into
update
continue
else
add entry UEI (cache_entry.cache,
cache_entry.port, cache_entry.load,
cache_entry.web_rtr,
cache_entry.alp_dist) into
update
add entry UE2 (url,query, DEF_TTL) into
update else
for each url in URT
if (URT[url].p_cache = cache_entry.cache)

WO 03/023607 PCT/US02/28961

60
add entry UE]I (cache_entry.cache,

cache_entry.port, cache_entry.load,
cache_entry.web_rtr) into
update
add entry UE2(url, add, DEF_TTL) into update
end
[00110] Thus a scheme for enabling the discovery of the caches and servers storing information
objects distributed over computer networks, which can be implemented in hardware and/or
software, has been described. It should be appreciated that some embodiments of the present
invention make use of so-called network-layer URL (NURL) routing. This routing technique
involves mapping requested URLs to unicast addresses, which are then used as an anycast IP
address (i.e., a unicast address advertised by multiple, physically distinct points in an internet).
See, e.g., Craig Partridge, Trevor Mendez, and Walter Milliken, “Host anycasting service”,
RFC 1546, November 1993. A system and method for using uniform resource locators (URLS)
to map application layer content names to network layer anycast addresses, the aforementioned
mapping, is disclosed in commonly-owned U.S. Provisional Application No. 60/200,511,
entitled “System and Method for Using URLSs to Map Application Layer Content Names to
Network Layer Anycast Addresses”, filed April 28, 2000 by J.J. Garcia-Luna-Aceves and
Bradley R. Smith, now replaced by co-pending and commonly-owned U.S. patent Application
No. 09/844,857, entitled “System and Method for Using Uniform Resource Locators to Map
Application Layer Content Names to Network Layer Anycast Addresses”, filed April 26, 2001
by J.J. Garcia-Luna-Aceves and Bradley R. Smith, the complete disclosures of which is hereby
incorporated by reference. Furthermore, a system and method for using network layer URL
routing to locate the closest server carrying specific content (network-level routing of URLSs) is
disclosed in commonly-owned U.S. Provisional Application No. 60/200,402, entitled “System
and Method for Using Network Layer URL Routing to Locate the Closest Server Carrying
Specific Content (NURL Routing)”, filed April 28, 2000 by J.J. Garcia-Luna-Aceves and
Bradley R. Smith, now replaced by co-pending and commonly-owned U.S. Patent Application
09/844,856, entitled “System and Method for Using Network Layer Uniform Resource Locator
Routing to Locate the Closest Server Carrying Specific Content”, filed April 26, 2001 by I.J.
Garcia-Luna-Aceves and Bradley R. Smith, the complete disclosures of which is hereby
incorporated by reference.
[00111] With the route to the anycast cache server existing in the network infrastructure, a
cache server processing a cache miss would like to transfér the content from the URL IP
address. In an exemplary embodiment, in such a situation, the present invention resolves the

anycast address to the server's real unicast address (which, by definition, uniquely identifies

WO 03/023607 PCT/US02/28961

61
that server in the internet) before starting the download. In an exemplary embodiment, this is

done by using an anycast address resolution protocol (AARP), which is disclosed in commonly-
owned U.S. Provisional Application No. 60/200,403, entitled “System and Method for
Resolving Network Layer Anycast Addresses to Network Layer Unicast Addresses (AARP)”,
filed April 28, 2000 by J.J. Garcia-Luna-Aceves and Bradley R. Smith, now replaced by co-
pending and commonly-owned U.S. Patent Application No. 09/844,759, entitled “System and
Method for Resolving Network Layer Anycast Addresses to Network Layer Unicast
Addresses”, filed April 26, 2001 by J.J. Garcia-Luna-Aceves and Bradley R. Smith, the
complete disclosures of which is hereby incorporated by reference.

[00112] Thus, although the foregoing description and accompanying figures discuss and
illustrate specific embodiments, the present invention is to be measured only in terms of the

claims that follow, and their equivalents.

WO 03/023607 PCT/US02/28961

62
CLAIMS
What is claimed is:
1. A method, comprising returning, in response to a request therefore, an address of a first

server that should service a second server's request for an information object, the address of the

first server being selected according to specified performance metrics.

2. The method of claim 1 wherein the specified performance metrics comprise one or
more of average delay from the first server to the second server, average processing delays at
the first server, reliability of a path from the first server to the second server, available

bandwidth in said path, and loads on the first server.

3. The method of claim 2 wherein the first server is an optimum server for servicing the

second server’s request.

4. The method of claim 3 wherein the first server is the optimum server, because the first
server offers a lowest response time in delivering the information object, according to the

specified performance metrics.

3. The method of claim 1 wherein upon receipt of an instruction to do so, the first server

contacts an information object repository determined to store the information object.
6. The method of claim 1 wherein the first server stores a copy of the information object.

7. The method of claim 1 wherein the first server and the second server are coupled

together through a virtual network.

8. The method of claim 1 wherein the second server’s request for the information object is

referred to a first Web router.

9. The method of claim 8 wherein the first Web router is configured to map an identifier

of the information object with the address of the first server.

10. The method of claim 9 wherein the map is generated by the first Web router according
to the specified performance metrics, which comprise one or more of average delay from the
first server to the second server, average processing delays at the first server, reliability of a
path from the first server to the second server, available bandwidth in said path, and loads on

the first server.

11. The method of claim 10 wherein the map is further generated by the Web router
according to other mappings generated by other Web routers and forwarded to the first Web

router.

WO 03/023607 PCT/US02/28961
63
12, The method of claim 11 wherein the other mappings generated by the other Web

routers are forwarded to the first Web router as inter-Web router communication messages

passed between the Web routers using a reliable transmission protocol.

13. The method of claim 12 wherein the inter-Web router communication messages

conform to a Web Information Locator by Distance (WILD) protocol.

14. The method of claim 12 wherein one or more of the communication messages passed
between the Web routers further report an associated address of one of the other Web routers

co-located with an information object repository that contains the information object.

15. The method of claim 11 wherein the other mappings specify optimal associations of

information object identifiers to information object repository addresses.

16. The method of claim 9 wherein the map is based on distance information obtained
using a routing protocol that provides accurate distances from one Web router to another, the
distance information being based on one or more of the specified performance metrics.

17. The method of claim 16 wherein the routing protocol is at least one of: a diffusing
update algorithm (DUAL); a loop-free path-finding algorithm (LPA); a link-vector algorithm
(LVA); a bandwidth efficient source tree (BEST) protocol; a dynamic source tree (DST)
routing protocol; a diffusing algorithm for shortest multipaths (DASM); a multipath distance
vector algorithm (MDVA); a routing on-demand acyclic multipath (ROAM) protocol; a
multiple-path partial-topology dissemination algorithm (MPDA); a multipath loop-free routing
algorithm (MPATH); an adaptive link-state protocol (ALP); a topology broadcast protocol,
such as the one implemented in the Open Shortest Path First protocol (OSPF); a path vector
algorithm used as part of the Border Gateway Protocol (BGP); or a static table in the first Web
router specifying the next hops or paths to one or more other active Web routers.

18. The method of claim 9 wherein the first Web router executes a communication protocol
with which it determines: addresses of other Web routers participating in a virtual overlay
network with the first Web router; and optimum distances to each Web router in the virtual
overlay network.

19. The method of claim 18 wherein the first Web router further determines neighbor Web
routers that offer the optimum distances to each Web router in the virtual overlay network.

20. The method of claim 18 wherein the first Web router updates the map according to
messages received from other Web routers in the virtual overlay network.

21. The method of claim 20 wherein the map is implemented as one or more tables stored

in a computer readable medium.

WO 03/023607 PCT/US02/28961
64
22. A communication protocol, comprising one or more messages passed between Web

routers over a reliable transmission protocol used for inter-Web router communication, said
messages including information which allows said Web routers to dynamically update

mappings of information objects to server addresses based on specified performance metrics.

23. The communication protocol of claim 22 wherein the mappings are optimal mappings

of the information objects to the server addresses.

24. The communication protocol of claim 23 wherein the specified performance metrics
comprise are one or more of average delay from a server to another, an average processing
delay at a server, reliability of a path from a server to another , available bandwidth in such a

path, and loads on a server.

25. The communication protocol of claim 23 wherein said messages report updated
distances from said server addresses to another information object, said distances being based

on said specified performance metrics.

26. The communication protocol of claim 25 wherein said messages further report, for each

updated distance, an associated server.

27. The communication protocol of claim 26 wherein said messages further report, for each
updated distance, an associated address of a first Web router co-located with a first server that
is a subject of the message.

28. The communication protocol of claim 22 wherein Web routers dynamically update
mappings in response to one or more of the following inputs: addition/deletion messages from
an associated information object repository, changes in load messages from the associated
information object repository, changes in information object repository connectivity
information, URL updates from neighbor Web routers, changes in Web router neighbor
connectivity information, changes in distances to other Web Routers, and URL lookup queries.
29. The communication protocol of claim 28 wherein in response to one or more of the
inputs, Web routers take one or more of the following actions; if an input offers a better
distance to a URL than is currently maintained, change a corrsponding routing table entry
accordingly and transmit an add messge; if an input offers a worse distance than a present
routing table entry, ignore that input; if an input causes a loss of a last path, transmit a delete
message; and if an input causes a distance increase, change a corresponding routing table entry

accordingly and transmit a query.

30. A method, comprising mapping an address of a requesting server seeking an
information object to an address of an information object repositories that has a best distance to

the requesting server according to specified performance metrics.

WO 03/023607 PCT/US02/28961
65
31. The method of claim 30 wherein distance information between information object

repositories is computed according to a shortest-path first algorithm.

32. A method, comprising verifying mapping information information object and a server
by only trusting a neighbor node of a communication network that offers a shortest path to the

server.

33. The method of claim 32 wherein in the case of two or more equal distances, that

mapping information which is received is adopted.

WO 03/023607 PCT/US02/28961
Backbone 160
Network Access Provider 1 Network Access Provider N
150 150
Network Service Provider A Network Service Provider D
140 140

Local Access Provider H
130

Local Access Provider M
130

Internet Provider

Internet Provider

Internet Provider

Internet Provider

Fig. 1

Network P Network P Network P Network P
120 120 120 120
Server .
170 Client 110

WO 03/023607

2/4
|
——
—]
Web Server 212
Web Server 212
Web 204 Web 204
Router
202¢
VON 200
204 Web
Router 204
202g
206
[
_— .
— = —
Web Cache 208 -]
Wéb Cachew 208 Web Cache 208

[m
[e
Content Server 210

Fig. 2

PCT/US02/28961

=

Client 110

Web
Router
202b <0

204

204 206

Web
Router
202h

Web Cache 208

206

Web Cache 208

PCT/US02/28961

WO 03/023607
3/4
[nternasl Address allocated
Address Bpace Sache Server A by ISF
XA =] YA 208

Gache werver B

Cache Sexrver B

Xe 1= v

Weh Router

) > Kot
xS, 2
LXETEEN !““:gi

Fig. 3

WO 03/023607 PCT/US02/28961
44
Web Router 400
WILD Module
402
Mapping
WRCP Neighbor information
< ; Web Router To/From
412 Protocol 410 | | QQUeries gl query Module |<g—t—3p-
408 Requestors
VON connectivity, Shared
message Memory
encapsulation 414
and delivery
? Cache load
v + ' polling
URL Routing 416
ALP Module 404

) v

To/From neighbor Web routers

Fig. 4

Local Cache Server
406

INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/28961

A, CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GosF 9/00
USCL :709/105
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Uus. : 709/105

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
seafheHhoC COMPUTING DICTIONARY

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EAST, NPL, WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,P US 6,298,381 Bl (SHAH et al.) 02 October, 2001, col. 4-16 1-33
X | US 6,256,675 B1 (RABINOVICH) 03 July, 2001, col. 6-20 1-33
X U:S 6,052,718 A (GIFFORD) 18 April, 2000, col. 2-10 1-33
X US 5,774,668 A (CHOQUIER et al.) 30 June, 1998, col. 4-24 1-33
Y US 6,115,752 A (CHAUHAN) 05 September 2000, col. 4-7 1-33
Y US 6,205,481 B1 (HEDDAYA et al.) 20 March 2001, col. 6-14 1-33
/

l:l Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T later document published after the international filing date or priority
. date and not in conflict with the application but cited to understand
YA document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
- - . . L . "X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
w document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other . ; . .
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
upe document published prior to the international filing date but later wgm document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
01 NOVEMBER 2002 n 1 0 BEC;Z@(}?
/\) h £ /
Name and mailing address of the ISA/US Authorized officer “' ozg’@y"\ﬁ (JU\)\’O'O‘
Co lgner, of Patents and, Trademark
WA/&O: scomaabibet) (uly 1998)x Telephone No, (703) 308-7615

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

