wo 20147209292 A1 | INF T 0O 0RO A0

(43) International Publication Date
31 December 2014 (31.12.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/209292 A1l

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
GO6F 17/00 (2006.01) GO6F 17/30 (2006.01)

International Application Number:
PCT/US2013/047765

International Filing Date:
26 June 2013 (26.06.2013)

English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 11445 Compaq Center Drive
W, Houston, Texas 77070 (US).

Inventors: SIMITSIS, Alkiviadis; 1501 Page Mill Road,
GR-94304 Palo Alto (GR). WILKINSON, William K;
1501 Page Mill Road, Palo Alto, California 94304 (US).

Agent: FERGUSON, Christopher W; 3404 E Harmony
Road, Fort Collins, Colorado 80528-9599 (US).

Filing Language:

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: MODIFYING AN ANALYTIC FLOW

N

e
oy
[

7

N

8%

(57) Abstract: Described herein are techniques for modifying an analytic flow. A flow may be associated with an execution engine.
A flow graph representative of the flow may be obtained. The flow graph may be modified using a logical language. For example, a
new flow graph expressed in the logical language may be generated. A program may be generated from the moditfied flow graph.

WO 2014/209292 A1 W00V 0L 0O OE AR

Published:
— with international search report (Art. 21(3))

WO 2014/209292 PCT/US2013/047765

MODIFYING AN ANALYTIC FLOW

BACKGROUND

{86011 There are numerous execution engines used {0 process analyiic flows.
These engines may only accept input flows expressed in a high-level programming
language, such as a particular scripting language (e.g., Piglatin, Structured Query
Language (SQL)Y) or the language of a certain flow-design tool {e.g., Pentaho Data
integration (PDI) platform). Furthermore, even execution engines supporting the
same programming language or flow-design tool may provide differant
implementations of analytic operations and the like. Thus, an input flow for one
engine may be different than an input flow for another engine, even though the
flows are inlended to achieve the same resull. it can be challenging and lime-
consuming to modify analylic flows due {o these considerations. Furthermore, itis
sirnitarly difficult to have a one-size-fits-all solution for modifying analytic flows in
heterogeneous analylic environments, which often include various sxecution

angines.

BRIEF DESCRIPTION OF DRAWINGS
1806021 The following detailed description refers to the drawings, wherein:

106031 FIG. 1 llustrates a method of modifying an analytic flow, according to an

example.

WO 2014/209292 PCT/US2013/047765

166641 FIG. 2 llustrates a method of modifying a flow graph, according to an

example.
106851 FIG. 3 llustrates an example flow, according (o an example.

106061 FIG. 4 llustrates an example execution plan corresponding to the

example flow with parsing notations, according (o an example.

108071 FIG. 5 llustrates a computing system for modifying an analytic flow,

according to an example.

(66681 FIG. 6 Hllustrates a computer-readable medium for modifying an analylic

flow, according to an example.

106081 FIG. 7 llustrates experimental results oblained using the disclosed

techniques, according to an example.

DETAILED DESCRIPTION

108101 As described herein, this relates to analytic data processing engines that
apply a sequence of operations {0 one or more dataseis. This sequence of
operations is referred 1o herein as a "flow” because the analytic computation can
he modeled as a directed graph in which nodes represent operations on datasels
and arcs represent data flow between operations. The flow is typically specified in
a high-level language that is easy for people to write, read and comprehend. The
high-level language representation of given flow is referred (o hereln as a
‘program”. For example, the high-level language may be a particular scripting
language {e.q., Piglatin, Structured Query Language (8QL)) or the language of a
certain flow-design tool (e.g., Pentaho Data integration (PDI) platform). In some
casas, the analytic engine is a black box, L.e., its internal processes are hidden. In
order to modify a program intended {o be inpul into a black box execution engine,
generally an adjunct processing engine is written that is an independent software

maodule intermediary belween the execution engine and the application used to

WO 2014/209292 PCT/US2013/047765

create the program. This adjunct enging can then be used o creale a new,
modified program from the original program, where the new program has additional
features. 1o do this, the adjunct engine generally neesds to understand the
semantics of the program. Writing such an adjunct engine can be difficult because
of the numerous different execution engines in heterogensous analytic
anvironments, the engines supporting variocus languages and many having unigue
engine-specific implementations of operations. Furthermore, a program can often
he expressed in various ways to achieve the same resull. Addilionally, transiation
of the program may reguire meta-data that may not be visible outside the black box
execution engine, thus requiring inference, which is often error-prone.
(86111 Many analytic engines support an "explain plan” command that, given a
source program, returns a flow graph for that program. This flow graph can be
refarred 1o as an “execulion plan” or an “explain plan” {hereafter referred to herein
as “exscution plan”). The disclosed systems and methods leverage the execution
plan by parsing it rather than the user-specified high-level language program. This
may be a simpler task and may be more informaiive, since some physical choices
made by the analvlic engine optimizer may be available in the execution plan that
would not be available in the original source program (e.g., implementation
algorithms, cost estimates, resource ulilization). The adjunct engine may then
modify the flow graph to add functionality. The adjunct engine may then generate
a new program in a high-level language from the modified flow graph for execution
in the black box execution engine {(or some other engine). Furthermore,
optimization and decomposition may be applied, such that the flow may be
aexecuied in a more efficient fashion.
106121 According {o an example, a technigue implementing the principles
described herein can include receiving a flow associated with a first execution
engine. A flow graph representalive of the flow may be oblained. For example, an
execution plan may be requested from the first execution engine. The flow graph
may be modified using a logical language. For example, a logical flow graph
expressed in the logical language may be generated. A program may be

3

WO 2014/209292 PCT/US2013/047765

generated from the maodified flow graph for execution on an execution engine. The
exsculion enging may be the first execution engine, or i may be a different
axecution engine. Furthermore, the execution engine may be more than one
execution engine, such thal multiple programs generated. Addilional examples,
advantages, features, modiications and the like are described below with
reference to the drawings.

106131 FIG. 1 llustrates a method of modifying an analytic flow, according to an
axample. Method 100 may be performed by a computing device, system, or
computer, such as computing system 500 or computer 600. Computer-readable
instructions for implementing method 100 may be siored on a computer readable
storage meadium. These instructions as siored on the medium are referred (o

herein as “modules” and may be executed by a computer.

100141 Maeathod 100 may begin at 110, where a flow associated with a first
execution engine may be received. The flow may include implementation details
such as implementation type, resouwrces, storage paths, elc., and are specific to the
first execution engine. For example, the flow may be expressed in a high-lavel
programming language, such as a particular programming languags {e.g., SOL,
PiglLatin} or the language of a particular flow-design tool, such as the Exitract-
Transform-Load (ETL) flow-design tool PRI, depending on the type of the first

axaculion engine.

(86151 There may be more than one flow. For example, a hybrid flow may be
received, which may include multiple portions (i.e., sub-flows) directed to diffsrent
execution engines. For example, a first flow may be written in SQL and a second
portion may be written in PigLatin, Additionally, there may be differences between
axecution enginas that support the same programming language. For example, a
script for a first SQL execution engine {(e.g., HP Vertica SQL engine) may be
incompatible with {e.g., may not run properly on} a second SOL execution engine

{e.g., Oracle SQL engine).

WO 2014/209292 PCT/US2013/047765

[0016] At 120, a flow graph representative of the flow may be obtained. The flow
graph may be an execution plan oblained from the first execulion engine. For
example, the explain plan command may be used o reguest the execution plan. if
there are multiple flows, a separate execution plan may be oblained for each flow
from the flow’s respective execution engine. If the flow is expressed in a languagse
of a flow-design tool, a flow specification {e.g., expressed in XML} may be
requested from the associated execution engine. A flow graph may be generated
hased on the flow specification received from the engine.

08171 AL 130, the flow graph may be modified using a logical language. FIG. 2
iustrates a method 200 for modifying the flow graph, according {o an example.
(06181 At 210, the flow graph may be parsed into mulliple elements. For
axample, a parser can analyze the flow graph and obtain engine-specific
information for each operator or dala slore of the flow. The parser may oulput
nodes {referred to herein as “elements”) that make up the flow graph. Since the
parser is engine specific, there may be a separate parser for each engine
supported. Such parsers may be added {0 the system as a plugin.

(00181 Al 220, the parsed flow graph may be converied {o a second flow graph in
a logical language. This second flow graph is referred to herein as a “logical flow
graph”. The logical flow graph may be generated by converting the multiple
elements into logical elements represented in the logical language. Here, the
axample logical language is xLM, which is a logical language developed for
analytic flows by Hewleti-Packard Company’s HP Labs. However, other logical
languages may be used. Additionally, a diclionary may be used o perform this
conversion. The dictionary can include a mapping between the logical language
and a programming language associated with the at least one execution engine of
the first physical flow. Thus, the dictionary 224 enables translation of the engine-
specific multiple elements inte engine-agnostic logical slements, which make up
the logical flow. The dictionary and the associated conversion are described in
further detall in PCT/US2013/ 047252, filed on June 24, 2013, which is hereby

incorporated by reference.

WO 2014/209292 PCT/US2013/047765

166201 At 230, the logical flow graph may be modified. For example, various
optimizations may be performed on the logical flow graph, either in an automated
fashion or through manual manipulation in the GUL Such optimizations may not
have been possible when dealing with just the flow for various reasons, such as
because the flow was a hybrid flow, because the flow included user-defined
funciions not optimizable by the flow's execution engine, elc. Relatedly, stalistics
on the logical flow graph may be gathered. Additionally, the logical flow graph may
he displaved graphically in a graphical user interface (GUI). This can provide a
user a better understanding of the flow (compared to is original incarnation),
especially if the flow was a hybrid flow.
(06211 Furthermore, the logical flow graph may be decomposed info sub-flows to
take advantage of a particular execution snvironment. For example, the execution
envirenment may have various heterogensous execution engines that may be
leveraged o work [ogether to execute the flow in its entirety in a more efficient
mannear. A flow execulion scheduler may be employed in this regard. Similarly,
the logical flow graph may be combined with another logical flow graph associated
with ancther flow. The other flow may have been direcled to a different execution
engine and may nol have been compalible with the first execution engine.
Expressed in the logical flow graph, however, the two flows may now be
combinable using a connecior.
100221 Returning fo FiG. 1, at 140 a program may be generated from the
madified flow graph {i.e., the logical flow graph). The program may be generated
for execution on an execution engine. The execution engine may be the first
axaculion engine, or it may be a different execution engine. Additionally, t may be
mulliple execution engines, in the case that the logical flow graph was decomposed
into sub-flows. The program(s} may thus be expressed in a high-level language
appropriate for each execution engine for which it is intended.
108231 This conversion may involve generating an intermediate version of the
fogical flow graph that is engine-specific, and then generating program code from
that intermediate version. While the logical flow graph describes the main flow

&

WO 2014/209292 PCT/US2013/047765

structure, many engine-specific details may not be included during the initial
conversion 1o the logical language (e.g., xLM}. These details include paths o data
storage in a script or the coordinates or other design metadata in a flow design.
Such details may be retrieved when producing engine-specific xLM. In addition,
other xLM consiructs like the operalor type or the normal expression form that is
being used {0 represent expressions for operator parameters should be converted
into an engine-specific format. These conversions may be performed by an xLM
parser. Additionally, some engines require some additional flow meladata {e.g., a
flow-design tool may need shape, color, size, and location of the flow constructs) to
process and to use a flow. The dictionary may contain templates with default
meladata information for operator representation in different engines.

106241 The program may be finally generated by generating code from the
engine-specific second logical represeniation {engine-specific xLM}. The code
may be executable on the one or more execution engines. This conversion to
axeculable code may be accomplished using code templates. The engine-specific
xLM may be parsed by parsing each xLM element of engine-specific xLM, being
sure (o respact any dependencies each elemeni may have. in particular, code
templates may be searched for each element to find a template corresponding to
the specific operation, implementation, and engine as dictated by the xLM element.
(86251 For flows thal comprised mulliple portions {e.g., hybrid flows), the logical
flow may represent the multiple portions as connected via connector operators. For
producing execution code, depending on the chosen execulion engines and
storage repositories, the connector operators may be instantiated o appropriate
formats (2.9., a database to map-reduce connector, a script that transfers data
from repository A to repository B). The program(s) may then be oulput and
dispatched o the appropriate engines for execution.

108261 An illustralive example invelving a flow and execution plan will now be
described. FIG. 3 illusirates an example flow 300 expressed as an SQL query.
The flow 300 is shown divided into three main logical parts. These dividing lines

WO 2014/209292 PCT/US2013/047765

are candidates for adding cul points for decompaosition of this single flow into

multiple parts {or "sub-flows”).

106271 FIG. 4 llustrates an example execution plan 400 for flow 300 that may be
generated by an execution engine in response {0 an explain plan command. The
execution plan 400 is also shown divided into the same three logical paris
corresponding o flow 300. The exscution plan 400 may be parsed as follows. A
queue Q (here, a last-in-first-oul {LIFO)} queue) may be maintained for adding flow
operators as they are read from the execution plan 400. Parsing may begin at plan
400's root (indicated by “+-"}, which is followed by an operator name ("SELECT").
SELECT is added to Q3. The plan has different levels, which are indicated by the
symbol *1". Parsing may continue through the plan with every new operator being
added to Q. At each level, priority goes to the first encountered operator. New
operators are indicated in FIG. 4 with the symbol “{+->". if an operator is binary, its
children are denoled separately {e.g., (o separale ouler by inner relations in a JOIN
operator). In this case, a special symbol may be used {o denote this (2.g., here, "} |
]+ Inner ->" denoles the inner relation at a depth of 4). When the plan has been
parsed, all the elements may be dequeued from Q in reverse order. Each element

is a flow operator in the flow graph.

108281 As described previously, the adjuncl processing engine may modify a flow
by performing flow decomposition. Flow decomposition may be useful for enabling
faster execution or reducing resource contention. Possible candidate places for
splitting a flow are at different levels, when select-style operators are nested, after
expensive operations, and so on. Such points may also serve as recoveary poinis,

so that the enhanced program has improved faull tolerance.

160287 To aid in decomposition, a degree of nesting A for a flow may be
determined based on execution requirements and service level objectives, which
may be expressed as an objective function. An example objective function that
aims at reducing resource contention may take as argumenis a given flow, a

threshold for a flow’s accepiable execution window, the associated execution

8

WO 2014/209292 PCT/US2013/047765

aengine(s) for running the flow, and the system sialus {e.g., system ulilization,

pending workload).

180301 The degree of nesting A may be a concrete value {e.q., a number or
nercentage) or a more abstract value {s.g., in the range [low — unnestad’,
‘medium’, ‘high — nested’]). Using A, it can be eslimated how many flow fragments
K to produce {i.e., how many sub-flows the input flow should be decomposed into).
An example estimate may be computed as a function of the ratio of the flow size
aver A {e.g., #nodes/A). Forlarge values of A {high nesting), the number of flow
fragments kis low, and as A - =, k> . In contrast, for smaller values of A, the
flow can be decomposed more aggressively. Thus, the other exireme is as A = {,
k ~» «, which essentially means that the flow should be decomposed after every
operator {each operator comprises a single flow fragment/sub-flow).

00311 As an example, if the flow is implementad in SQL, then it can be sean as
a query {or queries). In this case, as A 2 =, the query is as nesled as possible.
For instance, for a flow consisting of two SQL statemenis that creale a table and a
view {e.g., the view reads data from the table), the flow cannat contain less than
two flow fragments. But for flow 300, the nested version is as shown in FIG. 4. On
the other hand, as A -=» 0, then the query is decomposed {0 as many fragments as
the number of its operaiors, and the fragments are conneclied to each other
through inlermediate tables. Forinstance, flow 300 could be decomposed into a
meaxdamuim of three fragments, each corresponding to one of the three main logical
parts.

(00321 Subsequently, when the degree of nesting is available, the execution plan
may be parsed using A. For example, a parse function performing the parsing may
take as an optional argument the degree of nesting. Then, at every new operator,
a cost function may be evaluated to check whether it makes sense (o add a cut
noint at that spot. Basead on the A value, a cut point may be added 1o the flow after

the operator currently being parsed. Thus, the A value may be considered o be a

WO 2014/209292 PCT/US2013/047765

knob that determines if the cost function should be more or less conservative (or

equally, aggressive).

106331 FIG. & llustrates a computing system for modifying an analyiic flow,
according to an example. Computing system 500 may include and/for be
implemented by one or more computers. For example, the computers may be
server computers, workstation computers, deskiop computers, laptops, mobile
devices, or the like, and may be part of a distributed system. The computers may

inciude one or more controllers and one or more machine-readable storage media.

106341 A controller may include a processor and a memory for implementing
machine readable instructions. The processor may include at least one central
processing unit {CPU), at least one semiconductor-based microprocessor, at least
one digital signal processor {(BSP) such as a digital image processing unil, other
hardware devices or processing elements suilable to refrieve and exscute
instruclions stored in memory, or combinations thereof. The processor can include
single or mulliple cores on a chip, mulliple cores across multiple chips, multiple
cores across multiple devices, or combinations thereof. The processor may fetch,
decode, and execule insiructions from memory (o perform various functions. As an
alternative or in addition 1o retrieving and execuling instructions, the processor may
include at least one integrated circuit (IC), other control logic, other electronic
circuils, or combinations thereot that include a number of electronic components for

performing various tasks or functions.

186351 The coniroller may include memory, such as a machine-readable storage
medium. The machine-readable storage medium may be any electronic, magnelic,
optical, or other physical storage device thal contains or stores executable
instructions. Thus, the machine-readable storage medium may comprise, for
example, various Random Access Memory (RAM), Read Only Memory (ROM),
flash memory, and combinations thereof. For example, the machine-readable
medium may include a Non-Volatile Random Access Memaory (NVRAM]), an
Elecirically Erasable Programmable Read-Only Memory (EEPROM), a storage

10

WO 2014/209292 PCT/US2013/047765

drive, a NAND flash memory, and the like. Further, the machine-readable slorage
medium can be computer-readable and non-transitory. Additionally, system 500
may include one or more machine-readable storage media separate from the one

or more controllers.

1003671 Compuling sysiem 500 may include memory 510, flow graph module 520,
parser 530, logical flow generator 540, logical flow processor 550, and code
generator 580, and may constitute or be part of an adjunct processing engine.
Each of these components may be implemented by a single computer or multiple
computers. The components may include software, one or more machine-readable
media for storing the software, and one or more processors for executing the
software. Software may be a computer program comprising machine-executable

instructions.

106371 In addition, users of computing system 500 may inferact with computing
systerm 500 through one or more other computers, which may or may not be
considerad pari of computing system 500. As an example, a user may interact with
system 500 via a computer application residing on system 500 or on ancther
compuier, such as a deskiop compulter, workstation computer, tablet computer, or
the like. The computer application can include a user interface {e.g., touch

interface, mouse, keyboard, gesture input device).

166381 Computer system 500 may perform methods 100 and 200, and variations
theraof, and components 520-5680 may be configured o perform various portions of
methods 100 and 200, and variations thereof. Addilionally, the functionality
implemented by components 520-560 may be part of a larger software platform,
system, application, or the like. For example, these componenis may be part of a

data analysis system.

1663381 In an example, memory 510 may be configurad {0 store a flow 512
associated with an execution engine. The flow may be expressed in a high-level
programming language. Flow graph module 520 may be configured to obtain a

flow graph representiative of the flow 512, Flow graph module 520 may be
11

WO 2014/209292 PCT/US2013/047765

configured o oblain the flow graph by requesting an execution plan for the flow 512
from the execution engine. Parser 530 may be configured to parse the flow graph
into multiple elements. Logical flow generator 340 may be configured o generaie
a logical flow graph expressed in a logical language {(e.g., xLM) based on the
multiple elements. Logical flow processor 550 may be configured combine the
logical flow graph with a second logical flow graph to vield a single logical flow
graph. Logical flow processor 550 may also be configured to optimize the logical
flow graph, decompose the logical flow graph into sub-flows, or present a graphical
vie of the logical flow graph. Code generator 560 may be configured (o generate a
program from the logical flow graph. The program may be expressed in a high-

level programming language for execution on one or more execulion engines.

106401 FIG. © llustrates a computer-readable medium for modifying an analylic
flow, according to an example. Computer 600 may be any of a variety of

computing devices or systems, such as described with respect 1o system 500.

10041 Computer 600 may have access {0 database 630. Database 630 may
include one or more computers, and may include ong or more controllers and
machine-readable storage mediums, as described herein. Computer 800 may be
connected to database 630 via a network. The network may be any type of
communications network, including, but not imited to, wire-based networks {e.q.,
cable), wireless networks {2.g., celiular, satellite), cellular telecommunications
network({s), and IP-based lelecommunications network({s) (e.g., Volce over Internet
Protocol networks). The network may also include traditional landline or a public

switched telephone nelwork (PSTN), or combinations of the foregoing.

108421 Processor 810 may be at least one central processing unit (CPU), at least
one semiconductor-based microprocessor, other hardware devices or processing
elements suitable to relrieve and execule inslructions stored in machine-readable
storage medium 820, or combinations thereof. Processor 610 can include single or
multiple cores on a chip, multiple cores across multiple chips, multiple cores across

mutltiple devices, or combinations thereof, Processor 610 may feich, decode, and

iz

WO 2014/209292 PCT/US2013/047765

aexecule instructions 622-628 among others, o implement various processing. As
an alternative or in addition to retrieving and execuling instructions, processor 610
may include at least one integrated circuit {1C), other control logic, other electronic
circuits, or combinations thereof that include a number of eleclronic components for
performing the functionality of instructions 622-628. Accordingly, processor 610
may be implemented across multiple processing units and instructions 622-628
may be implemented by different processing uniis in different areas of computer
800.

108431 Machine-readable storage medium 620 may be any electronic, magnetic,
optical, or other physical storage device that contains or stores executable
instructions. Thus, the maching-readable storage medium may comprise, {or
example, various Random Access Memory (RAM), Read Only Memory (ROM),
flash memory, and combinations thereof. For example, the machine-readable
medium may include a Non-Volalile Random Access Memory (NVRAM), an
Electrically Erasable Programmable Read-Only Memory (EEPROM), a storags
drive, a NAND flash memory, and the like. Further, the machine-readable slorage
medium 620 can be computer-readable and non-transitory. Machine-readable
storage medium 620 may be encoded with a series of executable instructions for

managing processing elements.

160447 The instructions 622-628 when executad by processor 610 {e.g., via one
processing element or multiple processing elements of the processor) can cause
processor 610 to perform processss, for example, methods 100 and 200, and
variations thereof. Furthermore, computer 800 may be similar {0 system 500, and

may have similar functionality and be used in similar ways, as described above.

100457 For example, obtaining instructions 822 can cause processor 610 to
obtain a flow graph representative of flow 632, Flow 832 may be associaled with a
first execution engine and may be stored in dalabase 630. LFG generation
instructions 624 can cause processor 610 to generate a logical flow graph

expressed in a logical language {(e.g., xLM) from the flow graph. Decomposition

i3

WO 2014/209292 PCT/US2013/047765

instructions 826 can cause processor 610 to decompose the logical flow graph into
multiple sub-flows. FProgram generation instructions 828 can cause procassor 610
to generate multiple programs corresponding to the sub-flows for execution on

multiple execution engines.

100467 FIGS. 7(a)-(b) Hlustrate experimental results obtained using the disclosed
techniques, according o an example. in particular, the benetfit of decomposition of
a flow using the techniques disclosed herein is illustrated by these resulls. The
axperiment consisted of running a workload consisting of 830 mixed analviic flows.
The flows were TPC-DS queries run on a paralie]l database. Ten instances of 8
total of 83 TPC-DS queries were run in a random order with MPL 8. The flow
instances are plotted on the x-axis while the corresponding execution times are
plotted on the y-axis. FIG. 7{a) lusirates shows the workload execution without
decomposing any flows. FIG. 7(b) Hlustrates the beneficial effects of
decompasilion using the disclosed techniques. In parlicular, some of the long
running flows were decomposed, which created some additional flows resulling in a
workload of 1100 flows (instead of 930 flows). Despite the increased workload in
sheer number of flows, it is clear that the execution time was significantly improved,
especially for the longer running flows from FIG. 7{a). An additional benefit was
that the resource contention of the system was improved, as there were no longer
any flows monopolizing a resource for a relatively longer period of time than the
other flows.

106477 While decomposition can be performed manually or by writing parsers for
each engine-specific programming language, the disclosed technigues may avoid
this effort by leveraging the ability of execution engines to express their programs
as execution plans in terms of datasets and operalions {explain plans). ltcan be
much simpler {0 wrile parsers for computations expressed in this form, and thus the
disclosed techniques enable adjunct processing engines that support techniques
{and oblain results) such as that shown in FIGS. 7{a)-7{b).

14

WO 2014/209292 PCT/US2013/047765

100481 In the {oregoing description, numerous details are set forth to provide an
understanding of the subject matier disclosed herein. However, implementations
may be pracliced without some or all of these details. Other implementations may
include modifications and variations from the details discussed above. ltis

intended that the appended claims cover such modifications and variations.

15

WO 2014/209292 PCT/US2013/047765

CLAIMS

What is claimed is:

1. A method for modifying an analviic flow, comprising, by a processing
system:

receiving a flow associated with a first execution engine;

obtaining a flow graph represeniative of the flow;

modifying the flow graph using a logical language; and

generaling a program from the modified flow graph for execution on an

exscution enging.

2. The method of claim 1, wherein the flow graph is an execution plan
output by the first executlion engine in response o a reguest for an execution plan

for the flow.

3. The method of claim 1, wherein the flow graph is generated based on

a flow specification corresponding to the flow.

4. The method of claim 1, wherein modifying the flow graph comprises:
parsing the flow graph; and
converting the parsed flow graph to a second flow graph in the logical

language.

5. The method of claim 4, wherein modifying the flow graph further

comprises oplimizing the second flow graph.

6. The method of claim 4,
wherein modifying the flow graph further comprises decomposing the
second flow graph into sub-flows, and
16

WO 2014/209292 PCT/US2013/047765

wherein generaiing a program from the modified flow graph comprises
generating al least a first program based on one of the sub-flows for execution on
the firsi execution engine and a second program based on another of the sub-flows

for execution on a second execution engine.

7. The method of claim 4, wherein modifying the flow graph further
comprises combining the second flow graph with af least one other flow graph

associated with anothear flow.

8. The method of claim 4, further comprising:

determining a degree of nesting for the flow prior to parsing the flow graph;
and

wherein modifying the flow graph further comprises decompaosing the

second flow graph into sub-flows based on the degree of nesting.

8. The method of claim 8, wherein the degree of nesting is determined
hased on the flow, an execution window for the flow, the first execution enging, and

staius information of g system comprising the first execution engine.

10. The method of claim 1, wherein the flow is expressed in a first high-
level language associated with the first execution engine and the program is

expressed in g second high-level language associated with the execution engine.

1. A sysiem for modifying an analytic flow, comprising:

a flow graph module o obtain a flow graph represeniative of a flow
associated with an execution engine;

a parser o parse the flow graph into multiple elements;

a logical flow generator to generate a logical flow graph expressed in a
fogical language based on the mulliple elements; and

a code generator {0 generate a program from the logical flow graph.

17

WO 2014/209292 PCT/US2013/047765

12. The system of claim 11, further comprising a logical flow processor o
at least one of oplimize the logical flow graph, decompose the logical flow graph, or
present a graphical view of the logical flow graph.

13. The system of claim 12, wherein the logical flow processoris
configured 1o combine the logical flow graph with a second logical flow graph o
vield a single logical flow graph.

14. The system of claim 11, wherein the flow graph module is configured
to obtain the flow graph by requesting an execution plan for the flow from the

axecution engine.

15. A non-transiiory compuler-readable storage medium sioring
instructions for execution by a computer for modifying an analyiic flow, the
instructions when execuied causing the computer {o:

obtain a flow graph representative of a flow associated with a first execution
engineg;

generate a logical flow graph expressed in a logical language from the flow
graph;

decompose the logical flow graph into multiple sub-flows; and

generale mulliple programs corresponding to the sub-flows for execution on

multiple execution engines.

18

PCT/US2013/047765

WO 2014/209292

K2 P, 7

p % %

7 Y, x

7% 7

ittty it .

¥ 7y =
7

2 Yy,

WO 2014/209292 PCT/US2013/047765

=
\\\\\\§
Sty
RN

3§
L.

B33 NN

;:"&'* ‘:\\‘?:i
:{»‘ .»}i.xi
o e
(AN AR

PCT/US2013/047765

WO 2014/209292

S
§ o

T
W8

%z
%7
Yl

PCT/US2013/047765

WO 2014/209292

oo
s
o

9] s
tored
prrt
s
P4
]

-

\\&

"y

[

o iden
L
e
Lt

Uy
" 05 £
; o bt o
\\\) L 0
i -
\\\\\\\\\\\
gy
IR
Z %
\V\\\\\\\\]
[
e
et
%
7
%, \
Yl
\\\\\\\\\\
%y
7%
\\\\\\\\.

bhns

PCT/US2013/047765

WO 2014/209292

VV\\\\ ; \\\\\\\\\\\\\\\\

\\u\ \.§

% W\\\\\\
\\\

\\\\\\\\\

g

\x\\\\\\\\

£
G gy,

B
7
\
\\\\
ZZ

\\\\\\\\
o,

%
\\\\\\

\\\\\\\\ e

\\\\\‘

\\ o
gy i

B
\\\k &

8
N
§

et

Rt
§.\\\\\'

<2

o
s 2

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/047765

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 17/00(2006.01)i, GO6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/00; GO6F 17/30; G06Q 10/04; GOGF 9/45

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: analytic flow, modify, flow graph, xLM, and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y WO 2012-033497 A1 (HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. et al.) 1-7,10-15
15 March 2012

See paragraphs [0057], [0070], [0072], [0079]-[0081] and [0099];
claims 1, 6-7, 9, and 12; and figure 5.

A 8-9

Y US 2013-0097592 Al (SIMITSIS, ALKIVIADIS et al.) 18 April 2013 1-7,10-15
See paragraphs [00401-[0041], [0043], [0091], [0121], and [0132]-[0133];
claims 1 and 13-14; and figures 1 and 5.

A DAYAL, UMESHWAR et al., "Data Integration Flows for Business Intelligence," 1-15
In: Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, 24-26 March 2009

See sections 1 and 4-5.

A US 2004-0088689 A1 (HAMMES, JEFFREY) 06 May 2004 1-15
See paragraphs [0070]-[0079]; claim 1; and figure 2.

A US 2013-0096967 A1l (SIMITSIS, ALKIVIADIS, et al.) 18 April 2013 1-15
See paragraphs [0033]-[0036] and figures 1-2.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
31 March 2014 (31,03 2014) 31 March 2014 (31.03.2014)
Name and mailing address of the [ISA/KR Authorized officer

International Application Division
+ Korean Intellectual Property Office NH :
g

189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701, 0.4 Myong
Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8528
Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/047765

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2012-033497 Al 15/03/2012 CN 103299294 A 11/09/2013
EP 2614449 Al 17/07/2013
US 2013-0179394 Al 11/07/2013

US 2013-0097592 Al 18/04/2013 None

US 2004-0088689 Al 06/05/2004 AU 2003-279772 Al 07/06/2004
CA 2498871 Al 21/05/2004
EP 1556759 Al 27/07/2005
EP 1556759 A4 09/04/2008
JP 2006-505056 A 09/02/2006
US 7299458 B2 20/11/2007
WO 2004-042568 Al 21/05/2004

US 2013-0096967 Al 18/04/2013 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

