wo 2011/131400 A1]I} 0O R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 October 2011 (27.10.2011)

2P

-

e
v

(10) International Publication Number

WO 2011/131400 A1

(51

International Patent Classification:

GOGF 9/50 (2006.01)

eay)

(22)

(25)
(26)

(30) Priority Data:

12/766,282
(1)

Filing Language:

Publication Language:

23 April 2010 (23.04.2010)

Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-

72

HO04L 9/32 (2006.01) (75)

International Application Number:

PCT/EP2011/052992

International Filing Date:

1 March 2011 (01.03.2011)
English
English

74
Us

62y

TION [US/US]; New Orchard Road, Armonk, New York

10504 (US).

(1)
LIMITED

Applicant (for MG only): IBM UNITED KINGDOM
[GB/GB];

PO Box 41, North Harbour,

Portsmouth Hampshire PO6 3AU (GB).

Inventors; and

Inventors/Applicants (for US only): CARDONA, Omar
[US/US]; IBM Corporation, 905-5B017, 11501 Burnet
Road, Austin, Texas 78758 (US). OCHS, Matthew,
Ryan [US/US]; IBM Corporation, 905-8G019, 11501
Burnet Road, Austin, Texas 78758 (US). CUNNING-
HAM, James, Brian [US/US]; IBM Corporation, M/d
9551, 11501 Burnet Road, Austin, Texas 78758 (US).
SHARMA, Rakesh [IN/US]; IBM Corporation, M/D
9551, 11501 Burnet Road, Austin, Texas 78758 (US).

Agent: WILLIAMS, Julian, David; IBM United King-
dom Limited, Intellectual Property Law, Hursley Park,
Winchester Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

[Continued on next page]

(54) Title: RESOURCE AFFINITY VIA DYNAMICALLY ADDING OR REMOVING QUEUE PAIRS FOR NETWORK
ADAPTERS WITH RECEIVE SIDE SCALING (RSS) SOFTWARE

(57) Abstract: A mechanism is provided for providing resource
affinity for multi-queue network adapters via dynamic reconfigura-

tion. A device driver allocates an initial queue pair within a memory.

The device driver determines whether workload of the data process-
ing system has risen above a predetermined high threshold. Respon-
sive to the workload rising above the predetermined high threshold,
the device driver allocates and initializes an additional queue pair in

ENABLE TRANSMIT TUPLE
o HASHING TO THE
ALLOCATED QUEUE PAR

{) /j FIG. 5
ALLOCATE A SINGLE QUEUE
PAIR WITHIN A MEMORY 502
START NETWORK ADAﬂ\ s
E——
MONITOR A WORKLOAD (ﬂx TN 516
THE OPERATING SYSTEM ™\.505 ,/%RKL(;‘:S . ALLENI NO
. BELOWLOW -~
T e "~ JHRESHOLD?-"
s T ¢
" WORKLOAD RISEN . NO YES
~._ ABOVEHIGH -~ e 518
- THRESHOLD 7. e e
=2 ONLY ONE QUEUE PAIR >
YES - REMAINING2
ALLOCATE AND INITIALIZE NO
AN ADDITIONAL QUEUE PAIR Yoo
N TOE NEMELE PAR 10 REPROGRAM RSS‘L\
— | MECHANISM FOR DELETION 520
REPROGRAM RSS =
e N T e
P INSERTION QUEUE PAR [Ms520

o o HAS e 52

- WORKLOAD TO THE ™~

*JDENTIFIED QUEUE PAIR.~
T QUIESCED?,

“[YES

REMOVE THE IDENTIFIED

QUEUE PAR 526

the memory. The device driver programs a receive side scaling (RSS)
mechanism in a network adapter to allow for dynamic insertion of an
additional processing engine associated with the additional queue
pair. The device driver enables transmit tuple hashing to the addi-
tional queue pair.

WO 2011/131400 A1 I 0000)00 00 O RO

84)

NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

RESOURCE AFFINITY BY DYNAMICALLY ADDING OR REMOVING QUEUE PAIRS FOR NETWORK
ADAPTERS WITH RECEIVE SIDE SCALING (RSS8) SOFTWARE

BACKGROUND

The present application relates generally to an improved data processing apparatus and
method and more specifically to mechanisms for providing resource affinity for multi-queue

network adapters via dynamic reconfiguration.

As Ethernet media speeds continue to increase, there is a greater need to use more system
resources to achieve theoretical maximum performance at a lowest possible latency. System
resources, in terms of Ethernet adapter requirements, involve a large physical memory
footprint and corresponding direct memory access input/output memory mapping resources
due to the need for a large number of transmit/receive descriptors and buffers. A 10Gbps
Ethernet driver typically consumes approximately 150 to 300MB of physical system

memory and direct memory access input/output memory per adapter.

Under traditional driver models, a device driver allocates transmit/receive resources to an
amount that would permit the adapter to achieve its theoretical maximum performance.
However, if the workload or network traffic is such that the maximum performance limits
are not required, then the driver is consuming more resources than needed, which is a waste
of system resources. Furthermore, this model does not have the capability to efficiently

handle varying workloads.

SUMMARY

In one illustrative embodiment, a method, in a data processing system, is provided for
providing resource affinity for multi-queue network adapters via dynamic reconfiguration.
The illustrative embodiment allocates an initial queue pair within a memory. The illustrative
embodiment determines whether workload of the data processing system has risen above a
predetermined high threshold. The illustrative embodiment allocates and initializes an
additional queue pair in the memory in response to the workload rising above the

predetermined high threshold. The illustrative embodiment programs a receive side scaling

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

(RSS) mechanism in a network adapter to allow for dynamic insertion of an additional
processing engine associated with the additional queue pair. The illustrative embodiment

enables transmit tuple hashing to the additional queue pair.

In another illustrative embodiments, a computer program product comprising a computer
uscable or readable medium having a computer readable program is provided. The computer
readable program, when executed on a computing device, causes the computing device to
perform various ones, and combinations of, the operations outlined above with regard to the

method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus is provided. The
system/apparatus may comprise one or more processors and a memory coupled to the one or
more processors. The memory may comprise instructions which, when executed by the one
or more processors, cause the one or more processors to perform various ones, and
combinations of, the operations outlined above with regard to the method illustrative

embodiment.

These and other features and advantages of the present invention will be described in, or will
become apparent to those of ordinary skill in the art in view of, the following detailed

description of the example embodiments of the present invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and further objectives and advantages
thereof, will best be understood by reference to the following detailed description of
illustrative embodiments when read in conjunction with the accompanying drawings,

wherein:

Figure 1 depicts a pictorial representation of an example distributed data processing system

in which aspects of the illustrative embodiments may be implemented;

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

Figure 2 depicts a block diagram of a data processing system with which aspects of the

illustrative embodiments may advantageously be utilized;

Figure 3 depicts a block diagram of an exemplary logically partitioned platform in which the

illustrative embodiments may be implemented;

Figure 4 depicts an exemplary implementation of a mechanism that provides resource
affinity for multi-queue network adapters via dynamic reconfiguration in accordance with an

illustrative embodiment; and

Figure 5 provides a flowchart outlining example operations of providing resource affinity for
multi-queue network adapters via dynamic reconfiguration in accordance with an illustrative

embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide a mechanism that provides resource affinity for active
memory sharing (AMS) and central processing unit (CPU) utilization via dynamic
reconfiguration of the underlying hardware to meet the needs of varying workloads with no
interruption in performance or service. Modern adapters may provide multiple packet queue
pairs (QPs) for maximum performance. These adapters may be able to perform parallel
network data processing via the use of multiple transmit/receive queues (QPs) per interface,
which is an essential feature for high transaction workloads and achieving higher line speeds
with small packet sizes. The ingress or receive traffic may be tuple hashed by the adapter to
the appropriate QP and associated interrupt for operating system processing. The egress or
transmit traffic may be tuple hashed by the operating system (OS) driver for delivery to the
adapter. Adapters and OS drivers typically allocate multiple QPs with sufficient descriptors
and buffers to achieve maximum performance, normally two to four QPs for an average
memory footprint of approximately 250MB per adapter. Each QP may have an associated
receive interrupt, thus if multiple QPs are in use and the traffic is low, there is an additional
CPU utilization overhead due to increased interrupt dispatch, which could easily be handled

by a single QP. This problem is increasingly of interest to performance teams, as analysis of

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

known adapters show that multiple QPs have a negative affect on performance for most
normal use cases but are essential in achieving the theoretical maximum performance for

certain high-stress and high-transaction workloads.

Thus, the illustrative embodiments may be utilized in many different types of data
processing environments including a distributed data processing environment, a single data
processing device, or the like. In order to provide a context for the description of the
specific elements and functionality of the illustrative embodiments, Figures 1-3 are provided
hereafter as example environments in which aspects of the illustrative embodiments may be
implemented. While the description following Figures 1-3 will focus primarily on a single
data processing device implementation of a mechanism that provides resource affinity for
multi-queue network adapters via dynamic reconfiguration, this is only an example and is
not intended to state or imply any limitation with regard to the features of the present
invention. To the contrary, the illustrative embodiments are intended to include distributed
data processing environments and embodiments in which resource affinity may be provided

for multi-queue network adapters via dynamic reconfiguration.

With reference now to the figures and in particular with reference to Figures 1-3, example
diagrams of data processing environments are provided in which illustrative embodiments of
the present invention may be implemented. It should be appreciated that Figures 1-3 are
only examples and are not intended to assert or imply any limitation with regard to the
environments in which aspects or embodiments of the present invention may be
implemented. Many modifications to the depicted environments may be made without

departing from the spirit and scope of the present invention.

With reference now to the figures, Figure 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the illustrative embodiments may be
implemented. Distributed data processing system 100 may include a network of computers
in which aspects of the illustrative embodiments may be implemented. The distributed data
processing system 100 contains at least one network 102, which is the medium used to

provide communication links between various devices and computers connected together

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

within distributed data processing system 100. The network 102 may include connections,

such as wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 are connected to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 are also connected to network 102.
These clients 110, 112, and 114 may be, for example, personal computers, network
computers, or the like. In the depicted example, server 104 provides data, such as boot files,
operating system images, and applications to the clients 110, 112, and 114. Clients 110, 112,
and 114 are clients to server 104 in the depicted example. Distributed data processing

system 100 may include additional servers, clients, and other devices not shown.

In the depicted example, distributed data processing system 100 is the Internet with network
102 representing a worldwide collection of networks and gateways that use the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one
another. At the heart of the Internet is a backbone of high-speed data communication lines
between major nodes or host computers, consisting of thousands of commercial,
governmental, educational and other computer systems that route data and messages. Of
course, the distributed data processing system 100 may also be implemented to include a
number of different types of networks, such as for example, an intranet, a local area network
(LAN), a wide area network (WAN), or the like. As stated above, Figure 1 is intended as an
example, not as an architectural limitation for different embodiments of the present
invention, and therefore, the particular elements shown in Figure 1 should not be considered
limiting with regard to the environments in which the illustrative embodiments of the present

invention may be implemented.

In the illustrative embodiments, a computer architecture is implemented as a combination of
hardware and software. The software part of the computer architecture may be referred to as
microcode or millicode. The combination of hardware and software creates an instruction
set and system architecture that the rest of the computer’s software operates on, such as
Basic Input/Output System (BIOS), Virtual Machine Monitors (VMM), Hypervisors,
applications, etc. The computer architecture created by the initial combination is immutable

to the computer software (BIOS, etc), except through defined interfaces which may be few.

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

Referring now to Figure 2, there is depicted a block diagram of a data processing system
with which aspects of the illustrative embodiments may advantageously be utilized. As
shown, data processing system 200 includes processor units 211a-211n. Each of processor
units 211a-211n includes a processor and a cache memory. For example, processor unit
211a contains processor 212a and cache memory 213a, and processor unit 211n contains

processor 212n and cache memory 213n.

Processor units 211a-211n are connected to main bus 215. Main bus 215 supports system
planar 220 that contains processor units 211a-211n and memory cards 223. System planar
220 also contains data switch 221 and memory controller/ cache 222. Memory
controller/cache 222 supports memory cards 223 that include local memory 216 having

multiple dual in-line memory modules (DIMMs).

Data switch 221 connects to bus bridge 217 and bus bridge 218 located within native I/O
(NIO) planar 224. As shown, bus bridge 218 connects to peripheral components
interconnect (PCI) bridges 225 and 226 via system bus 219. PCI bridge 225 connects to a
variety of I/O devices via PCI bus 228. As shown, hard disk 236 may be connected to PCI
bus 228 via small computer system interface (SCSI) host adapter 230. Graphics adapter 231
may be directly or indirectly connected to PCI bus 228. PCI bridge 226 provides
connections for external data streams through network adapter 234 and adapter card slots

235a-235n via PCI bus 227.

Industry standard architecture (ISA) bus 229 connects to PCI bus 228 via ISA bridge 232.
ISA bridge 232 provides interconnection capabilities through NIO controller 233 having
serial connections Serial 1 and Serial 2. A floppy drive connection, keyboard connection,
and mouse connection are provided by NIO controller 233 to allow data processing system
200 to accept data input from a user via a corresponding input device. In addition, non-
volatile RAM (NVRAM) 240, connected to ISA bus 229, provides a non-volatile memory
for preserving certain types of data from system disruptions or system failures, such as
power supply problems. System firmware 241 is also connected to ISA bus 229 for

implementing the initial Basic Input/Output System (BIOS) functions. Service processor

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

244 connects to ISA bus 229 to provide functionality for system diagnostics or system

servicing.

The operating system (OS) is stored on hard disk 236, which may also provide storage for
additional application software for execution by a data processing system. NVRAM 240 is
used to store system variables and error information for field replaceable unit (FRU)
isolation. During system startup, the bootstrap program loads the operating system and
initiates execution of the operating system. To load the operating system, the bootstrap
program first locates an operating system kernel image on hard disk 236, loads the OS kernel
image into memory, and jumps to an initial address provided by the operating system kernel.
Typically, the operating system is loaded into random-access memory (RAM) within the
data processing system. Once loaded and initialized, the operating system controls the
execution of programs and may provide services such as resource allocation, scheduling,

input/output control, and data management.

The illustrative embodiment may be embodied in a variety of data processing systems
utilizing a number of different hardware configurations and software such as bootstrap
programs and operating systems. The data processing system 200 may be, for example, a
stand-alone system or part of a network such as a local-area network (LAN) or a wide-area
network (WAN). As stated above, Figure 2 is intended as an example, not as an
architectural limitation for different embodiments of the present invention, and therefore, the
particular elements shown in Figure 2 should not be considered limiting with regard to the
environments in which the illustrative embodiments of the present invention may be

implemented.

With reference now to Figure 3, a block diagram of an exemplary logically partitioned
platform is depicted in which the illustrative embodiments may be implemented. The
hardware in logically partitioned platform 300 may be implemented, for example, using the

hardware of data processing system 200 in Figure 2.

Logically partitioned platform 300 includes partitioned hardware 330, operating systems
302, 304, 306, 308, and virtual machine monitor 310. Operating systems 302, 304, 306, and

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

308 may be multiple copies of a single operating system or multiple heterogeneous operating
systems simultaneously run on logically partitioned platform 300. These operating systems
may be implemented, for example, using z/OS, which is designed to interface with a
virtualization mechanism, such as partition management firmware, ¢.g., a hypervisor. z/OS
is used only as an example in these illustrative embodiments. Of course, other types of
operating systems, such as 0S/400, AIX®, and Linux®, may be used depending on the
particular implementation. Operating systems 302, 304, 306, and 308 are located in logical
partitions 303, 305, 307, and 309, respectively.

Hypervisor software is an example of software that may be used to implement platform (in
this example, virtual machine monitor 310) and is available from International Business
Machines Corporation. Firmware is "software" stored in a memory chip that holds its
content without electrical power, such as, for example, a read-only memory (ROM), a
programmable ROM (PROM), an erasable programmable ROM (EPROM), and an
electrically erasable programmable ROM (EEPROM).

Logically partitioned platform 300 may also make use of IBM®’s PowerVM™ Active
Memory' ™ Sharing, which is an IBM® PowerVM ™ advanced memory virtualization
technology that provides system memory virtualization capabilities to IBM Power Systems,
allowing multiple logical partitions to share a common pool of physical memory. The
physical memory of IBM Power Systems” may be assigned to multiple logical partitions
either in a dedicated or shared mode. A system administrator has the capability to assign
some physical memory to a logical partition and some physical memory to a pool that is
shared by other logical partitions. A single partition may have either dedicated or shared
memory. Active Memory' ™ Sharing may be exploited to increase memory utilization on the
system either by decreasing the system memory requirement or by allowing the creation of

additional logical partitions on an existing system.

Logical partitions 303, 305, 307, and 309 also include partition firmware loader 311, 313,
315, and 317. Partition firmware loader 311, 313, 315, and 317 may be implemented using
IPL or initial boot strap code, IEEE-1275 Standard Open Firmware, and runtime abstraction

software (RTAS), which is available from International Business Machines Corporation.

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

When logical partitions 303, 305, 307, and 309 are instantiated, a copy of the boot strap code
is loaded into logical partitions 303, 305, 307, and 309 by virtual machine monitor 310.
Thereafter, control is transferred to the boot strap code with the boot strap code then loading
the open firmware and RTAS. The processors associated or assigned to logical partitions
303, 305, 307, and 309 are then dispatched to the logical partition's memory to execute the

logical partition firmware.

Partitioned hardware 330 includes a plurality of processors 332-338, a plurality of system
memory units 340-346, a plurality of input/output (I/O) adapters 348-362, and storage unit
370. Each of the processors 332-338, memory units 340-346, NVRAM storage 398, and 1/0
adapters 348-362 may be assigned to one of multiple logical partitions 303, 305, 307, and
309 within logically partitioned platform 300, each of which corresponds to one of operating

systems 302, 304, 306, and 308.

Virtual machine monitor 310 performs a number of functions and services for logical
partitions 303, 305, 307, and 309 to generate and enforce the partitioning of logical
partitioned platform 300. Virtual machine monitor 310 is a firmware implemented virtual
machine identical to the underlying hardware. Thus, virtual machine monitor 310 allows the
simultaneous execution of independent OS images 302, 304, 306, and 308 by virtualizing all

the hardware resources of logical partitioned platform 300.

Service processor 390 may be used to provide various services, such as processing of
platform errors in logical partitions 303, 305, 307, and 309. Service processor 390 may also
act as a service agent to report errors back to a vendor, such as International Business
Machines Corporation. Operations of the different logical partitions may be controlled
through a hardware system console 380. Hardware system console 380 is a separate data
processing system from which a system administrator may perform various functions

including reallocation of resources to different logical partitions.

The illustrative embodiments provide for an operating system (OS) driver to initially allocate
only a single queue pair (QP), i.e. a transmit/receive pair, with slightly above the minimum

required resources to achieve normal operation. As the traffic flow or workload increases

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

10

beyond predetermined thresholds, the OS driver dynamically allocates additional QPs as
needed. As the QPs are added to the running OS driver and made available to an adapter,
the traffic is hashed in both ingress or receive and egress or transmit paths to more central
processing units (CPUs), effectively scaling in performance and CPU/memory resource
usage. Since the performance scaling is achieved via additional QPs rather than a static
descriptor count, system resources may be reduced when no longer needed. As the traffic
flow and workload drops below an established minimum threshold, the OS driver may
remove QPs and drop back down to minimal resource utilization for normal operation. This
cycle repeats itself when the workload or traffic increases. Hence, the illustrative
embodiments effectively achieve dynamic reconfiguration to tune for performance, while

providing CPU utilization and active memory sharing affinity.

Figure 4 is an example block diagram illustrating the main operational components and their
interactions in accordance with one illustrative embodiment. The elements shown in Figure
4 may be implemented in hardware, software, or any combination of hardware and software.
In one illustrative embodiment, the elements of Figure 4 are implemented as software

executing on one or more processors of one or more data processing devices or systems.

Figure 4 depicts an exemplary implementation of a mechanism that provides resource
affinity for multi-queue network adapters via dynamic reconfiguration in accordance with an
illustrative embodiment. Data processing system 400 comprises device driver 402 within
operating system 404. Device driver 402 provides one or more queue pairs 406a-406n in
memory 408 for use by application 410 and network adapter 412. While the illustrative
embodiment only illustrates one device driver 402, one application 410, and one network
adapter 412, one of ordinary skill in the art may recognize that data processing system 400
may comprise a plurality of device drivers, a plurality of applications, and a plurality of

network adapters within data processing system 400.

When operating system 404 initializes, operating system 404 configures and initializes
device driver 402. Devices driver 402 then allocates an initial queue pair 406a, which may
comprise a number of receive descriptors/buffers and a number of transmit

descriptors/buffers, within memory 408. Device driver 402 then starts network adapter 412

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

11

so that traffic may be transmitted to network adapter 412. During operation, when only
queue pair 406a is initialized, device driver 402 receives traffic that is to be transmitted to
network adapter 412 and sends the traffic onto network adapter 412 for delivery. Network
adapter 412 then sends the transmit traffic onto a device, such as server 416, server 418,
client 420, client 422, or the like, via network 424. Conversely, when network adapter 412
recelves traffic that is to be transmitted to device driver 402 from a device, such as server
416, server 418, client 420, client 422, or the like, via network 424, network adapter 412
raises an interrupt for processing by operating system 404 and the traffic is sent to device
driver 402. Each of queue pairs 406a and 406b-406n, which may be further allocated as

described below, have its own associated receive interrupt.

After device driver 402 allocates and instantiates queue pair 406a, device driver 402
continuously monitors a workload of operating system 404 through data flow and resource
availability. Device driver 402 may monitor parameters such as transmit/receive bytes per
second, a number of flow control frames being sent and received by network adapter 412, a
number of DMA overruns detected by network adapter 412, a number of transmit timeout
events detected by device driver 402, a number of receive packets processed by device driver
402 per interrupt, a number of transmit packets on a software queue, or the like. When
device driver 402 detects an insufficient resource condition through the workload
monitoring, such as through a predetermined high threshold being exceeded, device driver
402 may dynamically allocate and initialize an additional one of queue pairs 406b-406n.
Device driver 402 then programs receive side scaling (RSS) mechanism 414 within network
adapter 412 to allow for dynamic insertion of an additional processing engine associated
with queue pair 406a and the additional one of queue pairs 406b-406n. Device driver 402
then enables transmit tuple hashing to queue pair 406a and the additional one of queue pairs
406b-406n. Receive tuple hashing and processing by network adapter 412 automatically
enables through the programming of RSS mechanism 414. Device driver 402 continues to
add ones of queue pairs 406b-406n, if not already allocated and initialized, as workload
requires, until all available ones of queue pairs 406b-406n are consumed or until queue pairs
406a-406n exceed a number of central processing units in data processing system 400.
Device Driver 402 also reprograms RSS mechanism 414 in network adapter 412 to allow for

dynamic insertion of an additional processing engine each time a new one of queue pairs

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

12

406b-406n is added, as well as enables transmit tuple hashing to the new one of queue pairs

406b-406n.

When device driver 402 recognizes a decrease in workload, such as through the workload
falling below a predetermined low threshold, device driver 402 may dynamically reprogram
RSS mechanism 414 in network adapter 412 to allow for deletion of an allocated one of
queue pairs 406a-406n. Device driver 402 then disables transmit tuple hashing to the deleted
one of queue pairs 406a-406n. Once the deleted one of queue pairs 406a-406n quiesces,
device driver 402 removes the deleted one of queue pairs 406a-406n thereby freeing up the
memory used by the deleted one of queue pairs 406a-406n. As with the enable of receive
tuple hashing in network adapter 412, receive tuple hashing and processing by network

adapter 412 automatically disables through the reprogramming of RSS mechanism 414.

Thus, the illustrative embodiments provide a mechanism that provides resource affinity for
active memory sharing (AMS) and central processing unit (CPU) utilization via dynamic
reconfiguration of the underlying hardware to meet the needs of varying workloads with no
interruption in performance or service. As traffic flow or workload increases beyond
predetermined thresholds, the device driver dynamically allocates additional queue pairs as
needed. As the traffic flow and workload drops below a predetermined minimum threshold,
the device driver may remove queue pairs and drop back down to minimal resource
utilization for normal operation. This cycle repeats itself when the workload or traffic

increases and decreases.

As will be appreciated by one skilled in the art, the present invention may be embodied as a
system, method, or computer program product. Accordingly, aspects of the present
invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

2% ¢

“circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in any one or more computer readable

medium(s) having computer usable program code embodied thercon.

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

13

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable medium would include the
following: an electrical connection having one or more wires, a portable computer diskette, a
hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CDROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible medium that can contain or store a
program for use by or in connection with an instruction execution system, apparatus, or

device.

A computer readable signal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in a baseband or as part of a carrier
wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer
readable signal medium may be any computer readable medium that is not a computer
readable storage medium and that can communicate, propagate, or transport a program for

use by or in connection with an instruction execution system, apparatus, or device.

Computer code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, radio

frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oriented programming language such as Java™ Smalltalk™, C++, or the like, and
conventional procedural programming languages, such as the "C" programming language or

similar programming languages. The program code may execute entirely on the user’s

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

14

computer, partly on the user’s computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user’s computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described below with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to the illustrative embodiments of the invention. It will be understood that each
block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor
of the computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or

blocks.

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices
to function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions that implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus, or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

15

Referring now to Figure 5, this figure provides a flowchart outlining example operations of
providing resource affinity for multi-queue network adapters via dynamic reconfiguration in
accordance with an illustrative embodiment. As the operation begins, a configured and
initialized device driver allocates an initial queue pair within a memory (step 502). The
device driver then starts the network adapter so that traffic may be transmitted to the network

adapter (step 504).

After the device driver allocates and instantiates the queue pair, the device driver
continuously monitors a workload of the operating system through data flow and resource
availability (step 506). The device driver may monitor parameters such as transmit/receive
bytes per second, a number of flow control frames being sent and received by the network
adapter, a number of DMA overruns detected by the network adapter, a number of transmit
timeout events detected by the device driver, a number of receive packets processed by the
device driver per interrupt, a number of transmit packets on a software queue, or the like.
The device driver then determines whether a predetermined high threshold has been
exceeded that indicates an insufficient resource condition through the workload monitoring
(step 508). If at step 508 the workload has risen above the predetermined high threshold,
then the device driver dynamically allocates and initializes an additional queue pair in the
memory (step 510). The device driver then programs/reprograms the RSS mechanism in the
network adapter to allow for dynamic insertion of an additional processing engine (step 512)
and the device driver enables transmit tuple hashing to the newly allocated queue pair (step

514), with the operation returning to step 506 thereafter.

If at step 508 the workload fails to have risen above the predetermined high threshold, the
device driver determines whether the workload has fallen below a predetermined low
threshold (step 516). If at step 516 the device driver determines that the workload has not
fallen below the predetermined low threshold, then the operation returns to step 506. If at
step 516 the device driver determines that the workload has fallen below the predetermined
low threshold, then the device driver determines if there is only one queue pair remaining to
be allocated (step 518). If at step 518 the device driver determines that there is only one
queue pair remaining, then the operation returns to step 506. If at step 518 the device driver

determines that there are more than one queue pair remaining, then the device driver may

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

16

dynamically reprogram the RSS mechanism in the network adapter to allow for deletion of
an allocated queue pair (step 520). The device driver then disables transmit tuple hashing to
an identified queue pair (step 522). The device driver then determines whether workload to
the identified queue pair has quiesced (step 524). If at step 524 the device driver determines
that the workload to the identified queue pair fails to have quiesced, then the operation
returns to step 524. If at step 524 the device driver determines that the workload to the
identified queue pair has quiesced, the device driver removes the identified queue pair from
memory (step 526) thereby freeing up the memory used by the identified queue pair. The

operation then returns to step 506.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

Thus, the illustrative embodiments provide mechanisms for providing resource affinity for
active memory sharing (AMS) and central processing unit (CPU) utilization via dynamic
reconfiguration of the underlying hardware to meet the needs of varying workloads with no
interruption in performance or service. As traffic flow or workload increases beyond
predetermined thresholds, the device driver dynamically allocates additional queue pairs as
needed. As the traffic flow and workload drops below a predetermined minimum threshold,

the device driver may remove queue pairs and drop back down to minimal resource

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

17

utilization for normal operation. This cycle repeats itself when the workload or traffic

increases and decreases.

As noted above, it should be appreciated that the illustrative embodiments may take the form
of an entirely hardware embodiment, an entirely software embodiment or an embodiment
containing both hardware and software elements. In one example embodiment, the
mechanisms of the illustrative embodiments are implemented in software or program code,

which includes but is not limited to firmware, resident software, microcode, etc.

A data processing system suitable for storing and/or executing program code will include at
least one processor coupled directly or indirectly to memory elements through a system bus.
The memory elements can include local memory employed during actual execution of the
program code, bulk storage, and cache memories which provide temporary storage of at least
some program code in order to reduce the number of times code must be retrieved from bulk

storage during execution.

Input/output or I/O devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening I/O
controllers. Network adapters may also be coupled to the system to enable the data
processing system to become coupled to other data processing systems or remote printers or
storage devices through intervening private or public networks. Modems, cable modems and

Ethernet cards are just a few of the currently available types of network adapters.

The description of the present invention has been presented for purposes of illustration and
description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art. The embodiment was chosen and described in order to best explain the principles of
the invention, the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with various modifications as are suited

to the particular use contemplated.

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

18

CLAIMS

1. A method, in a data processing system, for providing resource affinity for multi-
queue network adapters via dynamic reconfiguration, the method comprising:

allocating, by a device driver in the data processing system, an initial queue pair
within a memory;

determining, by the device driver, whether workload of the data processing system
has risen above a predetermined high threshold;

responsive to the workload rising above the predetermined high threshold, allocating
and initializing, by the device driver, an additional queue pair in the memory;

programming, by the device driver, a receive side scaling (RSS) mechanism in a
network adapter to allow for dynamic insertion of an additional processing engine associated
with the additional queue pair; and

enabling, by the device driver, transmit tuple hashing to the additional queue pair.

2. The method of claim 1, further comprising;:
repeating, by the device driver, the allocating and initializing, programming, and
enabling steps each time the workload of the data processing system rises above the

predetermined high threshold.

3. The method of claim 1, wherein programming the receive side scaling (RSS)
mechanism in the network adapter to allow for dynamic insertion of the additional
processing engine associated with the additional queue pair comprises:

enabling, by the device driver, transmit tuple hashing to the initial queue pair.

4. The method of claim 1, wherein determining whether the workload of the data
processing system has risen above the predetermined high threshold is performed by
monitoring, by the device driver, the workload of the data processing system through data

flow and resource availability.

5. The method of claim 4, wherein the device driver monitors at least one parameter

associated with the workload and wherein the at least one parameter is at least one of

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

19

transmit/receive bytes per second, a number of flow control frames being sent and received
by the network adapter, a number of DMA overruns detected by the network adapter, a
number of transmit timeout events detected by the device driver, a number of receive packets
processed by the device driver per interrupt, or a number of transmit packets on a software

queue.

6. The method of claim 1, further comprising:

determining, by the device driver, whether the workload has fallen below a
predetermined low threshold;

responsive to the workload falling below the predetermined low threshold,
determining, by the device driver, whether there is only one queue pair remaining allocated
in the memory;

responsive to more than one queue pair remaining allocated in the memory,
reprogramming, by the device driver, the RSS mechanism in the network adapter to allow
for deletion of an allocated queue pair;

disabling, by the device driver, transmit tuple hashing to an identified queue pair;

determining, by the device driver, whether the workload to the identified queue pair
has quiesced; and

responsive to the workload to the identified queue pair quiescing, removing, by the
device driver, the identified queue pair from memory, thereby freeing up memory used by

the identified queue pair.

7. The method of claim 6, further comprising;:

responsive to the workload to the identified queue pair failing to quiesce, waiting, by
the device driver, for the workload to the identified queue pair to quiesce before removing
the identified queue pair from memory, thereby freeing up memory used by the identified

queue pair.

8. A computer program product comprising a computer readable storage medium
having a computer readable program stored therein, wherein the computer readable program,
when executed on a computing device, causes the computing device to:

allocate an initial queue pair within a memory;

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

20

determine whether workload of the data processing system has risen above a
predetermined high threshold;

responsive to the workload rising above the predetermined high threshold, allocate
and initialize an additional queue pair in the memory;

program a receive side scaling (RSS) mechanism in a network adapter to allow for
dynamic insertion of an additional processing engine associated with the additional queue
pair; and

enable transmit tuple hashing to the additional queue pair.

9. The computer program product of claim 8, wherein the computer readable program
further causes the computing device to:

repeat the computer readable program to allocate and initialize, program, and enable
cach time the workload of the data processing system rises above the predetermined high

threshold.

10. The computer program product of claim 8, wherein the computer readable program
to program the receive side scaling (RSS) mechanism in the network adapter to allow for
dynamic insertion of the additional processing engine associated with the additional queue
pair further causes the computing device to:

enable transmit tuple hashing to the initial queue pair.

11. The computer program product of claim 8, wherein the computer readable program
to determine whether the workload of the data processing system has risen above the
predetermined high threshold is performed by computer readable program that further causes
the computing device to monitor the workload of the data processing system through data

flow and resource availability.

12. The computer program product of claim 11, wherein the computer readable program
further causes the computing device to monitor at least one parameter associated with the
workload and wherein the at least one parameter is at least one of transmit/receive bytes per
second, a number of flow control frames being sent and received by the network adapter, a

number of DMA overruns detected by the network adapter, a number of transmit timeout

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

21

events detected by the device driver, a number of receive packets processed by the device

driver per interrupt, or a number of transmit packets on a software queue.

13. The computer program product of claim 8, wherein the computer readable program
further causes the computing device to:

determine whether the workload has fallen below a predetermined low threshold;

responsive to the workload falling below the predetermined low threshold, determine
whether there is only one queue pair remaining allocated in the memory;

responsive to more than one queue pair remaining allocated in the memory,
reprogram the RSS mechanism in the network adapter to allow for deletion of an allocated
queue pair;

disable transmit tuple hashing to an identified queue pair;

determine whether the workload to the identified queue pair has quiesced; and

responsive to the workload to the identified queue pair quiescing, remove the
identified queue pair from memory, thereby freeing up memory used by the identified queue

pair.

14. The computer program product of claim 13, wherein the computer readable program
further causes the computing device to:

responsive to the workload to the identified queue pair failing to quiesce, wait for the
workload to the identified queue pair to quiesce before removing the identified queue pair

from memory, thereby freeing up memory used by the identified queue pair.

15. An apparatus, comprising:

a processor; and

a memory coupled to the processor, wherein the memory comprises instructions
which, when executed by the processor, cause the processor to:

allocate an initial queue pair within a memory;

determine whether workload of the data processing system has risen above a
predetermined high threshold;

responsive to the workload rising above the predetermined high threshold, allocate

and initialize an additional queue pair in the memory;

10

15

20

25

30

WO 2011/131400 PCT/EP2011/052992

22

program a receive side scaling (RSS) mechanism in a network adapter to allow for
dynamic insertion of an additional processing engine associated with the additional queue
pair; and

enable transmit tuple hashing to the additional queue pair.

16. The apparatus of claim 15, wherein the instructions further cause the processor to:
repeat the computer readable program to allocate and initialize, program, and enable
cach time the workload of the data processing system rises above the predetermined high

threshold.

17. The apparatus of claim 15, wherein the instructions to program the receive side
scaling (RSS) mechanism in the network adapter to allow for dynamic insertion of the
additional processing engine associated with the additional queue pair further cause the
processor to:

enable transmit tuple hashing to the initial queue pair.

18. The apparatus of claim 15, wherein the instructions to determine whether the
workload of the data processing system has risen above the predetermined high threshold is
performed by instructions that further cause the processor to monitor the workload of the

data processing system through data flow and resource availability.

19. The apparatus of claim 18, wherein the instructions further causes the processor to
monitor at least one parameter associated with the workload and wherein the at least one
parameter is at least one of transmit/receive bytes per second, a number of flow control
frames being sent and received by the network adapter, a number of DMA overruns detected
by the network adapter, a number of transmit timeout events detected by the device driver, a
number of receive packets processed by the device driver per interrupt, or a number of

transmit packets on a software queue.

20. The apparatus of claim 15, wherein the instructions further cause the processor to:

determine whether the workload has fallen below a predetermined low threshold;

10

15

WO 2011/131400 PCT/EP2011/052992

23

responsive to the workload falling below the predetermined low threshold, determine
whether there is only one queue pair remaining allocated in the memory;

responsive to more than one queue pair remaining allocated in the memory,
reprogram the RSS mechanism in the network adapter to allow for deletion of an allocated
queue pair;

disable transmit tuple hashing to an identified queue pair;

determine whether the workload to the identified queue pair has quiesced; and

responsive to the workload to the identified queue pair quiescing, remove the
identified queue pair from memory, thereby freeing up memory used by the identified queue

pair.

21. The apparatus of claim 20, wherein the instructions further cause the processor to:
responsive to the workload to the identified queue pair failing to quiesce, wait for the
workload to the identified queue pair to quiesce before removing the identified queue pair

from memory, thereby freeing up memory used by the identified queue pair.

WO 2011/131400 PCT/EP2011/052992

176

110

3= PR

CLIEN

l,r112

CLIENT

104 12

]

SERVER

106

114

Y= WAAARAS

CLIENT

WO 2011/131400 PCT/EP2011/052992

2/5
200
21a \\ FIG. 2 2%1!1
s19a PROCESSORUNIT 943, oton PROCESSORUNIT 543
PROCESSOR CACHE PROCESSOR CACHE
215
- BUS L -
220 23
L/22\1 .. 57| MEMORY CARD ~218
: SYSTEM PLANAR : -m
; L/[?ATA MEMORY CONTROLLEQI\J . | fLocAL
: : MEMORY
i | SWITCH CACHE s ©
P 230 T § 236
P 218 4 : T
: 1~ !
T BUS | | SCSIHOST i—{ HARD DISK
5 v | BUS ADAPTER E
« || BRIDGE BRIDGE j —
i g — 24077
N — [GRAPHICS s |
51 1 228 || ADAPTER || NVRAM ;
Q| i\ va 241
o i 21 5o £~
o 219 PCI ~5° || SYSTEM ;
; Va BRIDGE FIRMWARE i
5 — [ISABRIDGE ;
! 225 ¥V 244 _
5 234 229 = i
: 228 L v]| SERVICE =1
§ ! A [NETWORK PROCESSOR | &1
: PCI — ;
§ SRIDGE ADAPTER | i
g Y y NIO CONTROLLER |
§ - SLoT T ||
: w o > 233 o
3 227 e, 2% d 2
i V7 S8 3 &
E o 28
§ SLOT x §
224 :
: [y !
V7l NIO PLANAR 235n i

WO 2011/131400 PCT/EP2011/052992
3/5
303 305 307 FIG. 3 309
LOGICAL LOGICAL LOGICAL LOGICAL
PARTITION PARTITION PARTITION PARTITION
302 304 306 308
t../j L/\ L/]
OPERATING OPERATING OPERATING OPERATING
SYSTEM SYSTEM SYSTEM SYSTEM
311 313 315 317
(_) (\J (_) (\J
FIRMWARE FIRMWARE FIRMWARE FIRMWARE
LOADER LOADER LOADER LOADER
310
A\
VIRTUAL MACHINE MONITOR
332 334 336
SN N N
10 0
PROCESSOR | | PROCESSOR | | PROCESSOR | | PROCESSOR | | ana7er | | ADAPTER
390 7 2 354
L\ 3 \(-J/'\ 39L8/\ 35L/\ N\
SERVICE 1o)
PROCESSOR | | STORAGE NVRAM ADAPTER | | ADAPTER
340 342 344 346 356 358
L)\ L\ "\ (U Ly L
) T
MEMORY MEMORY MEMORY MEMORY | | soapTer | | ADAPTER
360 362
"\ "\
110 o
PARTITIONED HARDWARE ADAPTER | [ADAPTER
3o 380
A ()
300 HARDWARE
LOGICALLY SYSTEM
PARTITIONED CONSOLE

PLATFORM

WO 2011/131400 PCT/EP2011/052992

4/5
FIG. 4
DATA PROCESSING SYSTEM
[\ 400
OPERATING SYSTEM | \-4p4
APPLICATION
I 410
DEVICEDRIVER |~ |] MEMORY
\ QPs
I 402 5 406n
ADAPTER |#—»{ 406a 4000
412-""]
RSS M_414 \
] 408

)

CLIENT

422

SERVER CLIEN

WO 2011/131400 PCT/EP2011/052992
5/5
| BEGIN FIG. 5
ALLOCATE A SINGLE QUEUE
PAIR WITHIN A MEMORY
START NETWORK ADAPTER
VV‘ .
MONITOR A WORKLOAD OF T T 516
" HAS f
THE OPERATIN -
0 TING SYSTEM ~ WORKLOAD FALLEN ™. . NO
{ < . BELOWLOW T "
T 508 "~ THRESHOLD?~
s T ves
" WORKLOAD RISEN ~™~._NO l
™. ABOVEHIGH -~ I 518
“JHRESHOLD?2.-" - T LYES
ONLY ONE QUEUE PAIR oo
l YES ~REMAINING2.—~
ALLOCATE AND INITIALIZE l NO
AN ADR}'TT'SQ?ALE%ER‘#E PAIR REPROGRAM RSS
‘ MECHANISM FOR DELETION | \~52¢
EAEEER;{%EA# ?ngz DISABLE TRANSMIT TUPLE
INSERTION HASHING TO IDENTIFIED =,
I QUEUE PAIR
ENABLE TRANSMIT TUPLE
- HASHING TO THE o ag J 524
ALLOCATED QUEUE PAIR NO_\ORKLOAD TO THE)
~IDENTIFIED QUEUE PAR -
QUIESCED’? -

I YES

REMOVE THE IDENTIFIED

QUEUE PAIR 526

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/052992

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50 HO4L9/32
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

figures 1A-3D

figures 1-7

X US 7 448 044 Bl (RUST STEPHEN T [US] ET
AL) 4 November 2008 (2008-11-04)

1-3,6-9,
12-17,
20,21

Y column 1, Tine 6 - column 3, line 67 4,5,10,
column 4, 1ine 49 - column 14, Tine 51

11,18,19

Y US 2008/181245 A1 (BASSO CLAUDE [US] ET 4,5,10,
AL) 31 July 2008 (2008-07-31)
paragraphs [0001] - [0041]
paragraphs [0051] - [0111]

11,18,19

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of ancther
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m%r.llts, rs{uch combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

3 May 2011

Date of mailing of the international search report

16/05/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Noll, Joachim

Form PCT/ISA/210 (second sheet) (April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/052992

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Matthew J. Koop: "HIGH-PERFORMANCE
MULTI-TRANSPORT MPI DESIGN FOR ULTRA-SCALE
INFINIBAND CLUSTERS",

2009, XP002630816,

Retrieved from the Internet:
URL:http://proquest.umi.com/pqdlink?Ver=18&
Exp=03-29-2016&FMT=78&DID=18874568318RQT=30
9Rattempt=18&cfc=1

[retrieved on 2011-03-30]

pages 1-5

pages 140-143

pages 165-167

A "Infiniband Architecture Release 1.0,
Volume 1, General Specifications",
INFINIBANDTM ARCHITECTURE SPECIFICATION,
XX, XX,

24 October 2000 (2000-10-24), pages 1-880,
XP002214159,

pages 459-472

1,8,15

1-21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2011/052992
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7448044 Bl 04-11-2008 NONE
US 2008181245 Al 31-07-2008 WO 2008092773 Al 07-08-2008
KR 20090094256 A 04-09-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

