Office de la Proprieté Canadian CA 2425045 C 2013/01/15

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 425 045
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2003/04/08 (51) CLInt./Int.Cl. GO6F 77/30(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2004/10/08 (72) Inventeurs/Inventors:

HUTCHISON, GRANT L., CA,
NOBLES, ACIE E., JR., US;
ZENG, PUCHENG (PATRICK), CA

(73) Proprietaire/Owner:
SAP AG, DE

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(45) Date de délivrance/lssue Date: 2013/01/15

(54) Titre : METHODE ET SYSTEME D'EXECUTION DINTERROGATIONS DE BASE DE DONNEES
(54) Title: METHOD AND SYSTEM FOR EXECUTING A DATABASE QUERY

216

TERMINAL INTERFACE

217

211

z19
CHIENT
APPLIGATION
2&7

}
218 ™ |

g A s m e —— — — — — — o mwm BF s B

INITIALIZATION
MODULE

e el Gl NN NN ey eun e S @A e -

SQL.
COMPILER/
INTERPRETER

022

et il B AR A e W R e o e e Y W e o D S B S eeh s g e e e B G R MR ot e . Y e g — — g p— —

(57) Abrégée/Abstract:
For a database management system Installed in a data processing system, the database management system for managing a
database having partitions for storing table data based on a partitioning schema, in which each partition has an associated partition

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

CA 2425045 C 2013/01/15

anen 2 425 045
13) C

(57) Abrege(suite)/Abstract(continued):

identifiler, and In which the database has database catalog information associated therewith, a method for executing a query
against the database Is disclosed. The method includes identifying a partition identifier in accordance with the partitioning schema,
selecting the partition identifier based on the contents of the query and the database catalog information, and executing the query

against the identified partition. The method improves the execution of queries while minimizing the consumption of network
resources.

10

CA 02425045 2003-04-08

METHOD AND SYSTEM FOR EXECUTING A DATABASE QUERY
ABSTRACT

For a database management system installed in a data processing system, the
database management system for managing a database having partitions for storing table data
based on a partitioning schema, in which each partition has an associated partition identifier, and
in which the database has database catalog information associated therewith, a method for
executing a query against the database is disclosed. The method includes identifying a partition
1dentifier in accordance with the partitioning schema, selecting the partition identifier based on the
contents of the query and the database catalog information, and executing the query against the
identified partition. The method improves the execution of queries while minimizing the

consumption of network resources.

CA9-2002-0088

10

15

20

23

CA 02425045 2003-04-08

METHOD AND SYSTEM FOR EXECUTING A DATABASE QUERY

Kield of the Invention

The present invention generally relates to database management systems; and more particularly,
the present invention relates to a method and system for directing a database management system

to executing a database query against a partitioned database.

Background of the Invention

With the proliferation of large transactional systems has come the need to rapidly access and store
large volumes of database information. The need for efficient management of large volumes of
information is further exacerbated by the exponential growth of the Internet and the plurality of

end-users accessing data stored in large databases (an example of which is data stored in the World

Wide Web).

Due to their ease of scalability and reduced processing overhead, databases are preferably
implemented based on the relational database architecture. In a relational database, data and
relationships are represented by a collection of tables in which each table is associated with a
unique name or unique identifier. A row in a table represents the relationship among a set of data
stored in the table. The storage representation of a row is called a record, and the storage
representation of a column is called a field. Data is translated into a sequence of bytes and is then

stored at the intersection of a row and a column of a table.

As the size of the stored data increases, the table is divided into partitions. In a multicomputer
structure having an array of processors adapted to operate with shared memory systems, each
partition of the table may be independently stored in non-contiguous memory locations thereby
allowing pipelining and bulk parallel processing of the database information. Table partitions are

managed mdependently by the PRDBMS but the table data access remains unaffected.

Several known schemas exist for distributing data across partitions in memory systems. These
partitioning schemas (also known as strategies) are tightly coupled with the physical

implementation of the data model for the database system. One popular partitioning scheme uses a

CA9-2002-0088 1

10

15

20

29

CA 02425045 2003-04-08

randomizing hashing function to horizontally or vertically partition the contents of a database (or
of the table) across different memory systems. The database or the table may also be partitioned
based on information not stored in the database, such information may include — for example - the
site where the data was inserted, the user who inserted the data, and/or the application used to

insert the data into the database.

Regardless of the known partitioning scheme used, large databases storing vast amounts of
information present a challenge for efficient access and management of data located across many

partitions.

Known PRDBMSs manage data that has been distributed across multiple partitions associated
with database(s) and communicate this data to the end users. PRDBMSs consist of a collection of
executable programs that enables users to access, modify, store or retrieve data associated with the
database. Over the years, the Structured Query Language (SQL) interface — initially developed by
IBM™ - has evolved to become the de facto database query language for accessing and modifying
data stored in relational databases. The SQL interface facilitates database queries by building an
index file which is associated with the stored data (in addition to storing the data in a data file
related to the database). Database applications may access the entire contents of the database by
submitting standard SQL query statements to the PRDBMS, and 1n turn, the PRDBMS compiles

and executes those SQL queries against the database.

To efficiently access databases containing massive amounts of data, the PRDBMS must be work
with many different types of SQL query statements (such as SELECT, INSERT, UPDATE,
DELETE, etc). To access data stored in partitioned relational databases, the PRDBMS must
establish both a physical and a logical connection to the database partition where that data resides.
The PRDBMS typically uses a database name and a server port to establish the physical
connection to the database partition. To establish a logical connection, the PRDBMS resorts to
using an index which 1s an ordered set of references to the records and fields in the table of that
database. The index provides a direct path to the stored data through pointers that have been
ordered based on keys associated with the index. A key is one of the fields of the record or one of

the columns of a row. The keys may be organized into a partition map by a mapping function such

as a hash function.
CA9-2002-0088 2

10

15

20

20

CA 02425045 2003-04-08

To retrieve and access data contained within a particular partition, the PRDBMS PRDBMS uses
the supplied query predicates within an SQL statement to determine the optimal data access
strategy. However, this process may become inefficient when managing massive amounts of
stored data. Furthermore, large amounts of data typically must be first split before the sphit data
can be loaded at desired database partition(s). This is commonly achieved by an application utility
program provided by the PRDBMS, such as an Autoloader utility program provided by the
IBM™ DB2™ database environment. The AutoLoader utility uses a hashing algorithm to split
data into as many output sockets as there are database partitions. This utility then loads the output
sockets across a set of database partitions. Data splitting may become overwhelming for utility

programs when dealing massive quantities ot data.

Based on the foregoing, it is appreciated that data loading and access 1n PRDBMSs consumes a
considerable amount of CPU, network, memory, and storage resources. Network resources can
become a significant component of the overall SQL query statement processing costs for the
PRDBMS. Although data can be managed in a parallel fashion, each partition in a partitioned
database environment still requires a SQL query statement processing agent commonly referred to
as the coordinator for executing an SQL query statement. Additional communication costs are
incurred when the required data is not collocated with this coordinator. Network resources can be
climinated from SQL statement processing when the required data is collocated with the
coordinator. Minimizing network resources may be a critical factor for scaling high volume

transactional processing systems.

Another shortcoming especially encountered in legacy PRDBMSs 1s the lack of any optimization
while executing database queries. High-level SQL queries are generally non-procedural in nature.
When a query is presented to a legacy PRDBMS system, the query indicates what type of action to
perform as opposed to how to go about performing the type of action (as set forth in the SQL
query statement). Accordingly, data accessing in large partitioned databases may become

unmanageable.

Accordingly, a solution that addresses, at least in part, this and other shortcomings is desired.

CA9-2002-0088 3

10

15

20

25

CA 02425045 2003-04-08

Summary

The present invention provides, for a database management system installed in a data processing
system, in which the database management system manages a database having partitions for
storing table data based on a partitioning schema, in which each partition has an associated
partition identifier, in which the database has database catalog information associated therewith, a
method for executing a query against the database which improves the execution of queries while

minimizing the consumption of network resources.

In a first aspect, the present invention provides, for a database management system installed 1n a
data processing system, the database management system for managing a database having
partitions for storing table data based on a partitioning schema, each partition having an associated
partition identifier, the database having database catalog information associated therewith, a
method for executing a query against the database, including identifying a partition identifier in
accordance with the partitioning schema, selecting the partition identifier based on the contents of
the query and the database catalog information, and executing the query against the identified

partition.

In another aspect, the present invention provides a database management system, the database
management system for managing a database having partitions for storing table data based on a
partitioning schema, each partition having an associated partition identifier, the database having
database catalog information associated therewith, the database management system for executing
a query against the database, the database management system including means for i1dentitying a
partition identifier in accordance with the partitioning schema, means for selecting the partition
identifier based on the contents of the query and the database catalog information, and means for

executing the query against the 1dentified partition.

In yet another aspect, the present invention provides a computer program product having a
computer readable medium tangibly embodying computer executable code for directing a database
management system, the database management system for managing a database having partitions
for storing table data based on a partitioning schema, each partition having an associated partition

identifier, the database having database catalog information associated therewith, the database

CA9-2002-0088 4

10

15

20

25

CA 02425045 2003-04-08

management system for executing a query against the database, the computer program product
including code for identifying a partition identifier in accordance with the partitioning schema,
code for selecting the partition identifier based on the contents of the query and the database

catalog information, and code for executing the query against the identified partition.

Other aspects and features of the present invention will become apparent to those ordinarily skilled
in the art upon review of the following description of specific embodiments of the invention in

conjunction with the accompanying figures.

Brief Description of the Drawings

A better understanding of these and other embodiments of the present invention can be obtained

with reference to the following drawings which show, by way of example, embodiments of the

present invention, in which:

Fig. 1 is a schematic diagram of an exemplary data processing network in which the present

invention may be practiced,;

Fig. 2 is a block diagram of a data processing system at a processing node of the Fig. 1 data
processing network that implements the PRDBMS according to a preferred embodiment of the

present invention;

Fig. 3 is a flow diagram that illustrates the operating steps performed by the initialization module

of the data processing system of Fig. 2;

Fig. 4 1s a flow diagram that illustrates the operating steps performed by the partition router

module of the data processing system of Fig. 2; and

Fig. 5 is a block diagram of the data processing system of Fig. 2 wherein the data manager module

of the PRDBMS has persistent connections with database partitions according to another preferred

embodiment of the present invention.

CA9-2002-0088 5

10

15

20

25

CA 02425045 2003-04-08

Detailed Description of the Preferred Embodiments

The embodiments of the present invention provide a method, a data processing system, a computer
program product, and/or an article for implementing a database management system which
manages a database having partitions for storing table data based on a partitioning schema, in
which each partition has an associated partition identifier and the database has a database catalog

information indicating data organization in the database.

It will also be appreciated, by those skilled in the art, that the computer program product includes a
computer readable medium having computer executable code for directing a data processing
system to implement the method. The computer program product can also be called a computer-
readable memory, in which the memory can be a CD, floppy disk or hard drive or any sort of
memory device usable by a data processing system. It will also be appreciated, by those skilled 1n
the art, that a data processing system may be configured to operate the method (either by use of
computer executable code residing in a medium or by use of dedicated hardware modules, also
generally or generically known as mechanisms or means, which may operate 1n an equivalent

manner to the code which 1s well known 1n the art).

The present invention is now described with reference to accompanying drawings, wherein like
elements are designated by like reference numerals throughout the drawings. Although the
embodiments of the present invention are primarily presented in the context ot the IBM™ DB2™
database systems, they may be implemented in any number of other database management

systems.

Reference is now made to Fig. 1 which conceptually illustrates an exemplary data processing
network 100 adaptable to the present invention and in which the present invention may be
practiced. The data processing network 100 of Fig. 1 includes a communication network 102
having a number of interconnected processing nodes 104a-104n. Each processing node 104a-104n
comprises at least a processing unit 106a-106n, an operating main memory 107a-107n such as
random access memory (RAM) or read only memory (ROM), and a storage device 108a-108n
such as a disk drive for storing data such as table data. The storage devices 108a-108n may also

comprise, for each processing unit 106a-106n, respective private external storage (not shown).

CA9-2002-0088 6

10

15

20

25

CA 02425045 2010-01-11

In a partitioned relational database environment, respective partitions 110a-110n of a database are

stored in the storage devices 108a-108n. As a result, table data is distributed and stored across

multiple proccssing nodes 104a-104n in partitions 110a-110n or a subset thereof by known

techniques. A database catalog 112 maintains a record of the partitions 110a-110n in which table
data is located in a partition map. The database catalog 112 1s created by known methods when a
partition 110a-110n is initialized and remains constantly updated and active until the processing
node 104n-104a is shut down. In the preferred embodiments of the present invention, the catalog

112 is accessible at all processing nodes 104a-104n of the data processing network 100.

Each processing unit 106a-106n in the data processing network 100 performs database-related
access and management transactions (such as SQL statements) by exccuting instructions stored in
its operating main memory 107a-107n. Without limitation, the processing units 104a-104n may
comprise instructions executing on one or more computer systems, respective processor units of a

multi-processor system, servers, or separatc computer systems.

User interaction generally occurs through one processing node 104a-104n, known as the
coordinator node for that user or client application 114a-114n. Any proccssing node 104a-104n
can be used as a coordinator node. The coordinator node is a per processing nodc 104a-104n and
can be choscn at different processing nodes 104a-104n for different database transactions. This
means that the term coordinator node is relative per processing node 104a-104n and can bc any
node. Typically, a client application 114a-114n running on a processing unit 106a-106n of the
coordinator node serves as an interface to a user at that coordinator node for communicating the
instructions to the main operating memory 107a-107n, the storage devices 108a-108n, or the
privatc cxternal storages. In this fashion, the instructions necessary for performing various
database search and retrieval functions can be embodied n a compuler program product'

executable by the processing units 104a-104n.

Referring now to Fig. 2, there is shown a computer environment at a node 104a-104n of Fig. 1 in
accordance with a preferred embodiment of the present invention. In the computer environment of
Fig. 2, a data processing system 200 at the node accesses partitions 210a-210n, in which tablc data
is stored. A user of the data processing system 200 uses a standard terminal interface 216, such as

one of the interfaces known as Windows® 2000, OS/.'i”, Unix®, Linux® or the like to interface with
CA8-2002-0088 ' 7

10

15

20

CA 02425045 2010-01-11

an 1/0 device 217 such as a kcyboard, a pointing device, or a display. The I/O device 217 allows

the user to communicate electrical signals representing commands for performing various database
transactions against the partitions 210a-210n. These search and retrieval transactions arc generally
referred to as queries. In the presently described preferred embodiment of the invention, these
queries conform to the SQL standard and invoke functions performed by a PRDBMS software. In
the preferred embodiment of the present invention, the PRDBMS software comprises the DB2”
offered by the TBM® corporation for the Windows® 2000, 08/2%, Unix® or Linux* operating
systems. Such software generally resides in the storage devices, the main operating memory or the

private external storages (not shown) of the data proccssing system 200.

At the heart of the data processing system 200 of Fig. 2 is a PRDBMS module 220. The
PRDBMS module 220 typically includes several submodules, such as a SQL compiler/interpreter
222 tor communicating a SQL query 219 from a client application 218, a partition router 224, and
a data manager 226 having a number of agents 230a-230n corresponding to partitions 210a-210n

respectively.

The coordinator agent can be chosen amongst any of the agents 230a-230n and is responsible for
processing a databasc transaction (unit of work) for a particular SQL instruction 219 from the
client application 218. The coordinator agent 2303-23011. is usually chosen on a partition 210a-
210n having the first available port for establishing a physical connection. Any database partition

210a-210n ¢an act as a coordinator agent. The coordinator agent 210a-210n may also bc by
default located in a specific partition 210a-210n. The coordinator runs on the same databasc

partition as the database application 218, or in the case of a remotc application (note shown), the

partition 210a-210n to which that remote application is connected.

The partition routcr 224 may be implemented as a softwarc cntity and comprises an iniliahzation
module 228, a partition router function FNpartitioning() 232, as well as a database catalog cache
234 tor the partitions 210a-210n.

As a first step, the SQI. statement 219 including 4 target table name and partition key valuc for the
desired data is sent to the SQL compiler/interpreter 222 that parses the SQL statement 219 1nto
executable instructions passcd to the partition router 224. The partition router 224 is responsible

CA9-2002-0088 8

10

15

20

25

CA 02425045 2003-04-08

for automatically routing and executing the SQL statements for the appropriate database partition
210a-210n to access or locate desired data. The selection of which database partition 210a-210n
wherein the desired table data resides is based on the following parameters: (1) the contents of the
SQL statement; (2) the database catalog information contained in the catalog cache 212; and (3)

the partition router function 232.

Caching a subset of the database catalog 212 within the partition router 232 1s an efficient way for
providing the requisite database catalog information on-the-fly. The database catalog 212
typically includes a set of partition maps wherein the partitions 210a-210n corresponding to all
table data is stored. For instance, data for table t1 may be located in partitions 210a and 210b.
Accordingly, in a partition map there is contained information that can be used to determine in
which partition 210a-210n table data for table t1 can be located. When accessing table t1 data, the
initialization module 228 initializes the catalog 212, and builds and loads a subset of the catalog
212 into the catalog cache 234 prior to issuing any SQL statements for the PRDBMS using the
partition router 234. By caching the subset of the database catalog 212, the partition router 234
can reduce network resource requirements. The SQL statement and accompanying key value can

then be used to determine the most appropriate coordinator agent 230N to process the SQL query.

As with most known caching techniques, the catalog cache 234 needs to be refreshed when the
database catalog information is modified. Accordingly, the initialization module 228 may be run
when a new partition map is defined or new or existing tables are associated with partition maps.
In a preferred embodiment of the present invention, the initialization module 228 further loads into
the catalog cache 234 other partitioning parameters such as the name of the partition 210a-210n,
the path for the processing node of the partition 210a-210n, or other database idiosyncrasies or a
description of the partition 210a-210n which may enhance the performance of the PRDBMS
module 220.

Fig. 3 is a flow diagram that illustrates the operating steps performed by the initialization module
228 of Fig. 2 in accordance with the preferred embodiment of the present invention. The first step
corresponds to building a subset of the catalog 212 (shbwn in Fig. 2), the subset identifying the
table name and the partition 210N (shown in Fig. 2) storing the table data [Step S300]. The subset

is then loaded 1nto the catalog cache 234 (shown in Fig. 2) [Step S302].
CA9-2002-0088 9

10

15

20

25

CA 02425045 2003-04-08

Referring back to Fig. 2, once the appropriate subset of the partition map from the catalog cache
212 has been loaded in the catalog cache 234, the FNpartitioning() 232 interrogates the catalog
cache 234 in an attempt to determine the subset that corresponds to the target table. Using the
partition key value and the subset, the FNpartitioning() 232 returns an identitier Npartition

corresponding to the partition 210N wherein the desired data is located as shown 1n the equation

below.
Npartition = FNpartitioning(SQL statement) Sl

The partition router function 232 can be implemented based on the internal application program
interface (API) provided by a specific RDBMS schema for implementing the partitioned database
architecture. A technique commonly employed in the art for partitioning PRDBMS systems s
hashing. In the hashing partitioning schema, a hash function is used to determine which partition
210N contains the target data for a given database. The hash function is automatically applied
when data are inserted or updated. In order to maintain data location independence, the hashing
algorithm used by the PRDBMS module 220 is usually exposed using RDBMS specitic APL.
Advantageously, the partition router function FNpartitioning() 224 can be implemented based on
application program interface (API) in the appropriate programming language as known by a

person skilled in the art.

Once the partition 210N containing the data table is identified, the partition identifier Npartition
and the interpreted (parsed) SQL statement 227 are passed to the data manager 226. At this stage,
the data manager 226 initializes the agent 230N corresponding to the Npartition for the query
establishes a physical connection with the agent 230N. The agent 230N interrogates the
corresponding partition 210N to retrieve or access the desired data. The data 211 1s then routed to

the database application 218 by way of the agent 230N.

Fig. 4 shows the sequence of steps performed by the partition router 224 of Fig. 2. The partition
router 224 awaits the initialization module 228 to load a subset of the catalog 212 into the catalog
cache 234 [Step S400]. If the subset has been loaded in the catalog cache 234, the partition router
224 reads the table name and the partition key [Step S402] then locates the subset corresponding to
the table name [Step S404]. From the located subset and the SQL statement, the partition router

CA9-2002-0088 10

10

15

20

CA 02425045 2003-04-08

function FNpartitioning() 232 identifies the Npartition for the partition 210N where the desired
data resides [Step S406]. The Npartition and the SQL query 227 are then passed to the data
manager 226 [Step 408] for data retrieval or access from the target partition 210N.

Based on the foregoing, it can be appreciated, the total processing cost (tc) comprising the number
of resource (processing unit, memory or network) accesses required by the SQL query Sl as

defined below:

SELECT cl, ¢2,c3 S2
FROM tl
WHERE cl = "abc’

can be summarized as follows:
(tc) Total Cost of application query processing =

(a0) Invoke FNpartitioning(SQL Statement) to obtain Npartition (processing unit access

+ memory access)

(a) + Connection to coordinator node partition, Npartition (processing unit access)

(b) + Coordinator node initialization (processing unit access + memory access)

(c) + Submit SQL statement to agent (processing unit access + network access)

(d) + Consolidate all data for the SQL statement to the coordinator node (processing

unit access + network access)

(e) + Retrieve data from the partition (processing unit access + memory access

storage device access)

(g) + Return data to application (network access)

CA9-2002-0088 11

10

19

20

29

CA 02425045 2003-04-08

It will be appreciated that the partition router 224 can eliminate the processing costs associated
with extra steps of (d) directing the query to the appropriate partition and (f) transferring data from
data partition to coordinator typically encountered in the prior systems. Since the cost associated
with step (ao) for the present invention 1s much less than the cost of steps (d) and (), the response

time can be improved.

Referring now to Fig. 5, there 1s shown a data processing system 500 similar to data processing
system 200 of Fig. 2, except that the data manager 526 of Fig. 5 further includes a pool of

persistent physical connections 531a-531n with partitions 510a-510n.

The data manager 526 of Fig. 5 serves to further optimizes the SQL statement processing. The
data manager 526 is typically a utility program that provides cross-partition connectivity with
partitions 510a-510n. The data manager 526 may be implemented as an API by known

techniques. In the DB2™ environment, data manager 526 may be implemented by the JDBC™
Data Access API.

The data processing system 500 performs the following sequence of steps to process a database
query 519. As a preliminary step, the initialization module 528 builds a subset of the catalog 512
and loads this subset into the catalog cache 534. Once the subset has been loaded, the
FNpartitioning 532 uses the table name from the query statement 519 to determine the subset
corresponding to the table name in the catalog cache 534. Based on the subset corresponding to
the table name in the catalog cache 534 and the SQL query 519, the FNpartitioning 532 resolves a
connection reference corresponding to partition Npartition associated with the database query 519.
The data manager 526 directly connects to any one or combination of the partitions 510a-510n
where the desired data is located and retrieves the desired data via the corresponding persistent
connections 531a-531n. Once the requisite data 511 1s retrieved, it i1s directly routed to the
database application by way of the persistent connections 531a-531n. Since the cost of finding an
available physical connection from the pool is less than the cost of establishing a new connection,

the overall system response time is improved.

The present invention may be embodied in other specific forms without departing from the spirit

or essential characteristics thereof. Certain adaptations and modifications of the invention will be

CA9-2002-0088 12

10

15

CA 02425045 2010-01-11

obvious to those skilled in the art. For instance, the PRDBMS module 224 as shown in Fig. 2 may
be integrated 1n the chient application 218 shown in Fig. 2. Similarly, although the preferred
embodiments described hercin rclate to a PRDBMS, the undetlying method of the present
invention may be equally applicable to a partitioned database system. Therefore, the presently
discussed ermbodiments are considered to be illustrative and not restrictive, the scope of the
invention being indicated by the appended claims rather than the foregoing description, and all

changes which come within the meaning and range of cquivalency of the claims are therefore

intended to be embraced therein.

Furthermore, the foregoing detailed description of the embodiments of the present invention does
not limit the implementation of the invention to any particular computer programming language.
The present invention may be implemented in any computer programming language provided that
the OS (Operating System) provides the facilities that may support the requirements of the present
invention. Embodiments of the present invention may be implemented in the C or C++, COBOL,
FORTRAN, Java™ or REXX computer programming language (or other computer programming
languages 1n conjunction with C/C++). Any limitations presented would be a result of a particular
type of opcrating system, computer programming language, data processing system, or database

management system, and would not be a limitation of the present invention.

CA2-2002-0088 13

10

15

20

23

CA 02425045 2010-01-11

The embodiments of the invention in which an exclusive property or privilege is claimed

are defined as follows:

1. A mcthod for executing a query against a database to retrieve dcsired data from a
database table, wherein the database includes a plurality of partitions coupled by a network
for storing different portions of said database table based on a partitioning schema, each
partition contained within a corresponding network processing node and associated with a
partition identifier, and a databasc catalog accessiblce to cach of said processing nodes and
mcluding information indicating data organization in said databasc, whercin said database
catalog information includes partition maps associating table data with said networked
partitions, and wherein a plurality of agent modules of at least one of said network
processing nodes are each associated with a corresponding networked partition to establish
a physical connection with, execute said query against and retrieve said desired data from
that networked partition, the method comprising:

(a) providing a client query, including a table name of said database table containing
sald desired data and a partition key value, for said database at a network processing node
m accordance with a user request to retrieve said desired data and retrieving information
within said database catalog and storing the retrieved information in a catalog cache of said
network processing node, whercin said retrieved information includes information
identifying said table name and at Icast onc networked partition containing said database
table whercin step (a) further includes:

butlding a subset of thc databasc catalog; and storing the subset of the
database catalog in the catalog cache;

(b) analyzing the partition key value of the client query and partition map
information retrieved from the catalog cache pertaining to said database table with said
table name and containing said desired data to determine a specific partition from among
said plurality of networked partitions containing the database table portion with the desired
data satisfying said clicnt query and identifying a partition identifier associated with the

specific partition; and

CA9-2002-0088 14

10

15

20

25

30

CA 02425045 2010-01-11

(¢) executing the client query apainst said specific partition by determining said
associated agent module for said specific partition based on said partition identifier and
directing said determined agent module to execute said client query against, and retrieve

sald desired data satistying said chient query from, said specific partition.

2. The method of claim 1, wherein step (b) further includes:
(b.1) resolving the partition identifier.

3. The method ot claim 1, wherein step (¢) further includes:
(c.1) forwarding the retrieved data to a clicnt application requesting table data.

4, A database management system for executing a query against a database to retricve
desired data from a database table, wherein the database includes a plurality of partitions
coupled by a network for storing different portions of said database table based
on a partitioning schema, each partition contained within a corresponding network
processing node and associated with a partition identifier, and a databasc catalog accessible
to each of said processing nodes and including information indicating data organization in
smd database, wherein said database catalog information includes partition maps
associating table data with said networked partitions, the system comprising:

a data processing system of at least one of said network processing nodes to retrieve
desired data from said database table, each said data processing system including:

a client module to provide a user query, including a table name of said
database table containing said desired data and a partition key value, for said database in
accordance with a user request to retrieve said desired data;

a schema-lookup module to retrieve information within said database
catalog and storc the retrieved information in a catalog cache of said nctwork processing
node, wherein said retrieved information includes information identifying said table name
and at least one networked partition containing said databasc table, and wherein the
schema-lookup module includes:

a build-cache module to build a subset of the database catalog; and

CA9-2002-0088 15

"

10

15

20

23

CA 02425045 2010-01-11

a store-cache module to store the subset of the database catalog in the

catalog cache;
a partition-router module to analyze the partition key value of the user query
and partition map information retricved from the catalog cache pertaining to said databasc

table with said table name and containing said desired data to determine specific partition

from among said plurality of networked partitions containing the database table portion
with the desired data satisfying said user query and identifying a partition identifier
associated with the specific partition; and

a data-manager module to execute the uscr quecry against said specific
partition and including:

a plurality of agent modules each associated with a corresponding
networked partition to establish a physical connection with, execute said user query against
and retrieve said desired data from that networked partition; and

a query module to determine said associated agent module for said
specthe partition based on said partition identifier and to direct said determined agent

module to retrieve said desired data satistying said user query from said specific partition.

S The system of claim 4, wherein the partition-router module includes:

a connection module to resolve the partition identifier.

6. The system of claim 4, wherein the partition-router module includes:
a client-coordinator module to forward the retrieved data to said client module

requesting table data.

7. A program product apparatus having a computer readable medium with computer
program logic recorded thereon for executing a query against a database to retrieve desired

data from a database table, wherein the database includes a plurality of partitions coupled
by a network for storing diffcrent portions of said database table based on a partitioning
schema, each partition contained within a corresponding network processing node and

associated with a partition identifier, and a database catalog accessible to each of said

CA9-2002-0088 16

10

15

20

23

CA 02425045 2010-01-11

processing nodes and including information indicating data organization in sald database,
wherein said database catalog information includes partition maps associating table data
with said networked partitions, said program product apparatus comprising:

a client module for at least one of said network processing nodes to provide a user
query, including a table name of said database table containing said desired data and a
partthon key value, for said database in accordance with a user request to retrieve said
dcsired data;

a schema-lookup module for said at least one network processing node to retrieve
mnformation within said database catalog and store the retrieved information 1n a catalog
cache of said network processing node, wherein said retrieved information includes
information identifying said table name and at least one networked partition containing said
database table, and wherein the schema-lookup module includes:

a build-cache module to build a subset of thc database catalog; and

a storc-cache module to store the subset of the database catalog in the

catalog cache;

a partition-router module for said at lcast onc network processing node to analyze
the partition key value of the user query and partition map information retrieved from the
catalog cache pertaining to said database tahle with said table name and containing said
desircd data to determine a specific partition from among said plurabty of networked
partitions contatning the database table portion with the desired data satisfying said user
qucry and identifying a partition identificr associated with the specific partition; and

a data-manager module to execﬁtc the user query against said specific partition
and including:

a plurality of agent modules each associated with a corresponding networked
partition to establish a physical conncction with, execute said user query against and
retrieve said destired data from that networked partition; and

a qucry module to determine said associated agent module for said specific
partition based on said partition identifier and to direct said determined agent module to

retrieve said desired data satisfying said user query from said specific partition.

CA9-2002-0088 17

CA 02425045 2011-05-27

8. The program product of claim 7, wherein the partition-router module includes:

a connection module to resolve the partition identifier.
9. The program product of claim 7, wherein the partition-router module includes:

a client-coordinator module to forward the retrieved data to said client module

requesting table data.

CA9-2002-0088 18

CA 02425045 2003-04-08

de Alebhs wd' ee AN TT wL.RAYS R o

P
v e Ay At

o~

.« . . ® . . R . - e . . .
L . o® LS s » = . e . . . cw e L me e os . . “ ee
PELRP PR LA P B e B LLL T VR R AL N e = ik A dh T v e LA IS AN

. .
Al
A N v

'
LA

.
“r eV
LN P

[AMOWIW NIVIN

NOWILYVYd

INDOTVLYD

NOLLVYOIddV §
LNITS

LINA ONISS300dd

UgLi

cll

Uug01

LA}

upii

ugo1

UpOl

0l MHOMILIN

NOLLI LYY

actil

INDOIVWIYD ¢

il

480}

| Avowaw nivw |

GVl -

401 Evll

| NOILYOilddY |
5 ANAND .

1INA ONISSIOON GO0t

- Q¥01

m NOLLILNVd

0Ll

BNDOTVLYD
I AR

€801

AHOWIN Nivil

eL0l

| NOILVOi{ldd¥
| AN

LINM ONISSIDONJ Q01

.;...mvow

N W T TR

AT IR L i

CA 02425045 2010-01-11

Lie

A%

ugiz

NOLE

Q0Le

20LZ

D0TIYLYD-

i
-
v
v
=
v
e

U NOLLLLYYd

_ N NOLLLLY Y

¢ NOLLLLYd

| i
I NCLLILYV | -
JOVRIALNI TYNIWEAL

| ¥

¥ec

NOE?

Q0EC

BQES

— — s — — A — ——— e e e R P S e s B M g vamy T alE SR v A e - — — —— N MER e —— p— W G e e

AL

Y31 3UJYILNI

A3 NANOD
108

NOLLYZIFIVLLING

: “ NOLLY A \ddY
: : LNSAD
e J

B e s s A b p— iV N = w—

Z LN3OV u
. “ _ 112
} LNIOY

827 ¥3OVYNYW Y1YCQ

'tl""l mil B e A b sl gy e e gy D N W B ol RN e e

002 sS40

gl

N - - o Sme e
PEe o e . I : . .

~ - P - - - a sw v s Y ca® e = - N - - . N - - . N — — .
Vi - P . . Ly . s et o, [RN TR OO SR P D N L TG . P .
TN F VR RS S S U S D P ST Y VU [T PP ..'-.mn-'-fi‘iuwmw-u-ot--h:-sl-h‘-lt-ﬁa-hm?{-m\ﬁ..-.‘ b B 4 57 A KA A S e k-2 15 : A

. Voo e,
,*\&-.OMMALuL I.ln'lp0~ Y e R N .‘LAA‘_A,...*

- Y oee ' : .. : . . l“ -. - N : N ' ' N : s ' : : . ’
e e }. TeoeT T, YT A T N R et e, . . . ' -
e R B T A L TEY L T R A s S OO IR R)
t

.
.
>
.
<«
: :
'
’
S 302 "
-
.
'
.
*
'
~
Al
-~ A
-
.
.
>
.
'
.
'
.
'
'
.
b N ey g e St ana T AT emmm s N TR Al T T I T T et ST A T R R TR TR N A TS A A L L NN AT S YA N LR R SO T R NIRRT A G et T T e s et @ DRSS T 3T e TR WY T ez Tt AN G T s S e AT st s s S S s e s e ey &

. m e e e oe—y A%, Yoy

B e Sl o S L T

e CA 02425045 2003-04-08 o

%

START

S400

WAIT FOR THE INITIALIZATION
MODULE TO BUILD SUBSET OF
CATALOG

IF SUBSET NOT READY

S402

READ TABLE NAME OF
QUERY

S404

LOCATE PARTITION MAP
CORRESPONDING TO THE TABLE
FROM THE PARTITION MAP

S406

USING THE QUERY STATEMENT |
AND THE KEYVALUE, IDENTIFY N |

- 5408

| RETURN N TO
| DATA MANAGER

,p:n'.."_::,'._'..':.‘] T R DO L TS IO L P '-_:..":”"'-'.E'".‘-'.:." . .':-,l,-_ T R L LY C R ::".,-_:.,...’7:‘,::-_'.' ; g e ey N Ry R b Bl ek Bmemt e N o E o
LA A S AV el 1/ At 2 o et gt W;Ek;-.u\.\ Ry R A AN A G A ﬁ%mau'.ﬂ"adgw»ﬁ.n ul’a...s»--a-m;{m:.‘.a.vw..\:x;'-.{nz.J'«-.:-u;.'-z:m . SPRY RO R BORDSTLSUUPI. TRIUE ¥ RV LIRS VR PPRTS PRI SRR P PR T LRI PR A S IPTRRIE RN T-TRETT PE T SPRAGIAL Y - HE R PR UL

e Nty
- dadutA gt dl % ., e

it
. AATavad L

S R
. /tna.‘b‘.“ﬁn "

Ja

. . '
I -
MY - .
(OO TR S .,

N . .‘...
PN RN AL |

P v o . .o ey 0 . .

. P . ', . . -~ .
- " LA ., T

PRI PN R U CREAT Y R Y -LI.I [} .4\- . "nh"v.l,- D PERS A

..
B S e L S

Lo e K H :
[T TCLRR I A IR A R AN

-, CA 02425045 2003-04-08 .

Ve

e,
a'lliv e haniade.

. ' . :. l: . : : "..' - : .'.. .
et R PR T o e e D .
Ve ara s vue i e e A A b et M L A A e AT

>
vela NS

-, .
- \. *
.

a s .y
FTRLIP7 W PSR

' « {
. '
RSN 'k"w"l\'r--'

. e ‘e
! : v
R L TR RO NN

ey gy

' awrn

UgLs

NOLS

qo0i¢g

EQLS

PeS

8¢Y

O0O1IVLVO |

Wl wyyn Aplry wmwwm wernh RS Wle Whe e

U NOLLILYVd

Loy ikl

N NOILILAVd

N1ES

NPT ST DN AT S b e de

¢ NOILILYMVYd

pre———
Bty -
; .
oW % © w or ue O W o
.
.

AL Al werew w— R W

i NOLLLLYIVd
. eLes

A Sl @ il wh oy § Y-

e ML S S S ———— ——— - ——

JOV4NILINI TYNINNIL |

'

ey ey NPYN VM WL Gema B AR e A gy - o e mal s s b s e Gl ey P YW e T ee LAe RAAs A B Adem s AFAY 4G
(3
’

by iy AN vt veem weires SRR SRR WEREER WREER CAERL —m Wl w— . vy Dl BB ddemn el v v— — —— —— pp— W PPTTS PETR WL T ——mpmed AwBw v s R SRR Benlidn M— v— —

‘ JHOVYD ©01VY1VYD

(NOLLILY V)V

3 1NAGON
NOILYZITYLLINI

NTE WRA LW Al taA-

U INJOV

N INJOV

ALy Ayt YR YR ML e

¢ INJOV

} ANJOV

925 H3IOVNVIN V1iVd

024 SWaQ¥d

DL Sr————— ol W . AW ™ sl

ey At v w—— w— w— w—— Srbule. whieh WS W T AWRA AN AN Al gy gt

¢
n
m
!
w
_
_
_
|

[T TIdINOD
10S

S——— PPV UG — — — — UL) S iy ——

3 1L3H4HS3LNI

6LG

winks evk e wess e, AL A kA hEn B B SR R AL vy v e srwesd BEERA Pl A B AR sveee v s—

Gbwbgbrgry

NOILLVOIlddV

LN3ITO

23

SHHER AT A RIS VAN P Aaas.. A

009 Ssda

218

211

Py

CLIENT
APPLICATION

— R e vhen e W Al B i S By g - -h‘-'—~--*—w-‘

219

227

INITIALIZATION
WODULE

~— AR e sl el B SN ey eun e D W1 e

FAPARTITION)

SQL
COMPILER/

| INTERPRETER

: CATALOGO CACHE ‘

Bt vl BB M o T R e o A Y W e S B D B R ek e e e e e B il A S oyt ey Y g — — g p— —

dr wih am e e gyy wnb G oy — .
.

— 2M

210N

212

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - abstract drawing

