发明名称
自行车用曲柄轴承组件

摘要
在将轴支承部件螺纹拧入地固定在吊架部上的自行车曲柄轴承组件中，很容易进行滚动体的接触状态的调整。底托架(55)是在两端内周面上形成有内螺纹部(29a、29b)的吊架部(29)上可自由旋转地安装有曲柄轴(54)、该曲柄轴(54)在两端安装有左右一对曲柄(52、51)的组装体，备有：左右一对轴承壳体(60、61)；左右一对轴承(63、64)；及锁定螺母(70)。轴承壳体(60、61)是具有与内螺纹部(29a、29b)螺纹结合的外螺纹部(60c、61c)以及配置在内螺纹部(29a、29b)的轴向外侧的轴承容纳部(60a、61a)的部件。轴承(63、64)是分别容纳在轴承容纳部(60a、61a)中的轴承。锁定螺母(70)是安装在内螺纹部(29a)上的螺母。
1. 一种自行车用曲柄轴承组装体，在设置在自行车车架上且两端内周面上形成有第1及第2内螺纹部的吊架部上，可自由旋转地安装有曲柄轴，该曲柄轴在两端安装有左右一对外曲柄，其特征在于，包括：

第1轴支承部件，具有形成在外周面上并与所述第1内螺纹部螺纹结合的第1外螺纹部、以及设置于内周面上的第1轴承容纳部；

第2轴支承部件，具有形成在外周面上并与所述第2内螺纹部螺纹结合的第2外螺纹部、以及设置于内周面上的第2轴承容纳部；

第1及第2轴承，分别容纳在所述第1及第2轴承容纳部内，向轴向内侧的移动受到所述第1及第2轴支承部件的限制，向轴向外侧的移动受到所述曲柄轴的限制；

至少一个锁定螺母，安装在所述第1及第2外螺纹部的至少某一个上。

2. 一种自行车用曲柄轴承组装体，在设置在自行车车架上且两端内周面上形成有第1及第2内螺纹部的吊架部上，可自由旋转地安装有曲柄轴，该曲柄轴在两端安装有左右一对外曲柄，其特征在于，包括：

第1轴支承部件，具有形成在外周面上并与所述第1内螺纹部螺纹结合的第1外螺纹部、以及设置于内周面上的第1轴承容纳部；

第2轴支承部件，具有形成在外周面上并与所述第2内螺纹部螺纹结合的第2外螺纹部、以及设置于内周面上的第2轴承容纳部；

第1及第2轴承，分别容纳在所述第1及第2轴承容纳部内，向轴向内侧的移动受到所述第1及第2轴支承部件的限制，向轴向外侧的移动受到所述左右一对外曲柄的限制；

至少一个锁定螺母，安装在所述第1及第2外螺纹部的至少某一个上。

3. 根据权利要求1或2记载的自行车用曲柄轴承组装体，其特征是，所述第1及第2轴承容纳部分别设置在所述第1及第2外螺纹部的内周部。

4. 根据权利要求1或2记载的自行车用曲柄轴承组装体，其特征是，所述第1及第2轴承容纳部分别设置在所述第1及第2外螺纹部的轴向外侧。

5. 根据权利要求1、3或4记载的自行车用曲柄轴承组装体，其
特征是，所述第1及第2轴承是具有所述外圈、内圈、以及配置在所述两圈之间的滚动部件的滚动轴承，
所述曲柄轴限制所述内圈向轴向外侧的移动，所述第1及第2轴支承部件限制所述外圈向轴向内侧的移动。

6. 根据权利要求2～4任一记载的自行车用曲柄轴承组合体，其特征是，所述第1及第2轴承是具有所述外圈、内圈、以及配置在所述两圈之间的滚动部件的滚动轴承，
所述左右一对曲柄限制所述内圈向轴向外侧的移动，所述第1及第2轴支承部件限制所述外圈向轴向内侧的移动。

7. 根据权利要求4～6任一记载的自行车用曲柄轴承组合体，其特征是，所述第1及第2轴承容纳部的直径大于所述第1及第2外螺纹部，配置在所述吊架部的轴向外侧。

8. 根据权利要求2～7任一记载的自行车用曲柄轴承组合体，其特征是，所述右曲柄以不能旋转的方式铰接固定在所述曲柄轴的右端，
所述锁定螺母安装在所述第1及第2外螺纹部中的配置有所述左曲柄一侧的外螺纹部上。

9. 根据权利要求1～8任一记载的自行车用曲柄轴承组合体，其特征是，还包括连接部件，其将所述第1及第2轴支承部件同轴地连接，所述曲柄轴可穿过连接部件的内部。
自行车用曲柄轴承组装体

技术领域

本发明涉及一种轴承组装体，特别是关于自行车用曲柄轴承组装体，该自行车用曲柄轴承组装体在设于自行车车架且两端内周面上形成有第 1 及第 2 内螺纹部的吊架部上可自由旋拧地安装有曲柄轴，上述曲柄轴在两端安装有左右一对曲柄。

背景技术

在自行车吊架部上，安装有称作底托架的曲柄轴承组装体（参照例如专利文献 1）。以往的曲柄轴承组装体包括：具有第 1 及第 2 轴承容纳部，分别螺纹拧入吊架部的两端的第 1 及第 2 轴承部件；以及容纳在第 1 及第 2 轴承部件中的第 1 及第 2 轴承。曲柄轴可自由旋拧地支承两个轴承上。在曲柄轴的两端，不能旋拧地安装有左右曲柄。

以往的曲柄轴承组装体，右侧齿轮曲柄通过铆接一体地固定在曲柄轴的右端。第 1 及第 2 轴承的内圈通过左右曲柄的内侧端部夹持，配置成可通过左右曲柄进行推压的形式。通过曲柄轴左端外周面上形成的细齿，将左曲柄不能旋拧地安装在曲柄轴上，而且，通过螺合到左端内周面上的固定螺栓，将左曲柄固定在曲柄轴上。用固定螺栓将左曲柄固定到曲柄轴上时，左右曲柄与第 1 及第 2 轴承的内圈轴向外侧面接触，向轴向内侧推压内圈。通过该推压力的加减，调整滚动体接触状态，消除轴向松动。另外，在左曲柄的曲柄轴安装部分，沿径向形成有狭缝，在通过固定螺栓进行左曲柄的固定之后，利用两个安装螺栓使该狭缝的宽度变窄，借此，可进一步牢固地将左曲柄固定到曲柄轴上。

专利文献 1：特开 2004-249770 号公报

在上述以往的结构中，利用固定左曲柄的固定螺栓，通过左曲柄推压轴承的内圈，可调整轴承滚动体的接触状态，将左曲柄固定到曲柄轴上，之后，利用安装螺栓使狭缝宽度变窄，借此，可更牢固地将左曲柄固定到曲柄轴上。因此，在左曲柄固定之后，再次调整滚动体接触状态的情况下，必须松开安装螺栓，转动固定螺栓进行调整，结果，滚动体接触状态的再调整很繁琐。
发明内容

本发明的课题是，在轴支承部件螺纹拧入并固定到吊架部上的自行车用曲柄轴承组装体中，可以容易地进行滚动体接触状态的调整。

发明1的自行车用曲柄轴承组装体，在设置在自行车车架上且两端内周面上形成有第1及第2内螺纹部的吊架部上，可自由旋转地安装有曲柄轴，该曲柄轴在两端安装有左右一对曲柄，包括：第1轴支承部件、第2轴支承部件、第1及第2轴承以及锁定螺母。第1轴支承部件是具有形成在外周面上并与第1内螺纹部螺纹结合的第1外螺纹部，以及设置于内周面上的第1轴承容纳部的部件。第2轴支承部件是具有形成在外周面上并与第2内螺纹部螺纹结合的第2外螺纹部，以及设置于内周面上的第2轴承容纳部的部件。第1及第2轴承是分别容纳在第1及第2轴承容纳部内的轴承，是向轴向外侧的移动由曲柄轴限制，向轴向内侧的移动由第1及第2轴支承部件限制的轴承。锁定螺母是安装在第1及第2外螺纹部的某一个上的至少一个螺母。

根据该曲柄轴承组装体，在吊架部的第1及第2内螺纹部上，螺纹结合有第1及第2轴支承部件的第1及第2外螺纹部，第1及第2轴支承部件安装在吊架部上。该轴支承部件向吊架部上安装时，预先将锁定螺母安装在至少任一个外螺纹部上。而且，安装曲柄轴，进一步，将左右一对曲柄安装在曲柄轴的两端时，可借助于曲柄轴限制轴承向轴向外侧的移动，并且，可利用两个轴支承部件限制轴承向轴向内侧的移动。在这种状态下，在松动方向上转动第1及第2轴支承部件中的安装有锁定螺母一侧的轴支承部件时，可在轴向外侧向曲柄轴推压安装在这里的轴承，调整滚动体接触状态。并且，在调整结束时，通过锁定螺母进行轴支承部件的转动阻止，使轴支承部件的轴向位置不会发生错位。在这种结构中，通过设置锁定螺母，可在轴支承部件的轴向任何位置进行固定，因此，能利用轴支承部件进行滚动体接触状态的调整。结果，不需要通过曲柄调整滚动体接触状态，很容易进行滚动体接触状态的调整。

发明2的自行车用曲柄轴承组装体，在设置在自行车车架上且两端内周面上形成有第1及第2内螺纹部的吊架部上，可自由旋转地安装有曲柄轴，该曲柄轴在两端安装有左右一对曲柄，包括：第1轴支
承部件、第 2 轴支承部件、第 1 及第 2 轴承以及锁定螺母。第 1 轴支承部件是具有形成在外周面上并与第 1 内螺纹部螺纹结合的第 1 外螺纹部，以及设置于内周面上第 1 轴承容纳部的部件。第 2 轴支承部件是具有形成在外周面上并与第 2 内螺纹部螺纹结合的第 2 外螺纹部，以及设置于内周面上的第 2 轴承容纳部的部件。第 1 及第 2 轴承是分别容纳在第 1 及第 2 轴承容纳部内的轴承，而且是通过左右一对曲柄限制其向轴向外侧的移动，通过第 1 及第 2 轴支承部件限制其向轴向内侧的移动的轴承。锁定螺母是安装在第 1 及第 2 外螺纹部的至少某一个上的至少一个螺母。

根据该曲柄轴承组件体，在吊架部的第 1 及第 2 内螺纹部上，螺纹结合有第 1 及第 2 轴支承部件第 1 及第 2 外螺纹部，第 1 及第 2 轴支承部件安装在吊架部上。该轴支承部件向吊架部上安装时，预先将锁定螺母安装在至少任一个外螺纹部上。而且，安装曲柄轴，进一步，将左右一对曲柄安装在曲柄轴的两端部上时，可借助于左右一对曲柄限制轴承向轴向外侧的移动，并且，可利用两个轴支承部件限制轴承向轴向内侧的移动。在这种状态下，在松动方向上转动第 1 及第 2 轴支承部件中的安装有锁定螺母一侧的轴支承部件时，可在轴向外侧向曲柄轴推压安装在这里的轴承，调整滚动体接触状态。并且，在调整结束时，通过锁定螺母进行轴支承部件的转动阻止，使轴支承部件的轴向位置不会发生错位。在这种结构中，通过设置锁定螺母，可在轴支承部件的轴向任意位置进行固定，因此，能利用轴支承部件进行滚动体接触状态的调整。结果，不需要通过曲柄调整滚动体接触状态，很容易进行滚动体接触状态的调整。

发明 3 的自行车用曲柄轴承组件体，在发明 1 或 2 记载的组件体中，第 1 及第 2 轴承容纳部分别设置在第 1 及第 2 外螺纹部的内周侧。在这种情况下，由于第 1 及第 2 轴承容纳部与第 1 及第 2 外螺纹部分别配置成在轴向至少一部分重合的形式，因此，能够实现曲柄轴承组件体的紧凑化及轻量化。

发明 4 的自行车用曲柄轴承组件体，在发明 1 或 2 记载的组件体中，第 1 及第 2 轴承容纳部分别配置在第 1 及第 2 外螺纹部的轴向外侧。在这种情况下，由于轴承配置在外螺纹部的轴向外侧，因此，加长了轴承之间的距离，同时缩短了曲柄到轴承的距离，提高了曲柄
轴的刚性。

发明 5 的自行车用曲柄轴承组件，在发明 1、3 或 4 记载的组件中，第 1 及第 2 轴承是具有外圈、内圈及配置在两圈之间的滚动部件的滚动轴承，曲柄轴限制内圈向轴向外侧的移动，第 1 及第 2 轴承部件限制外圈向轴向内侧的移动。在这种情况下，由于通过曲柄轴限制内圈，通过轴支撑部件限制外圈，因此，将限制部分设置成不会从外周面突出的形式，从而在将轴支撑部件安装在吊架部上之后，可以安装曲柄轴。

发明 6 的自行车用曲柄轴承组件，在发明 2～4 任一项记载的组件中，第 1 及第 2 轴承是具有外圈、内圈及配置在两圈之间的滚动部件的滚动轴承，左右一对曲柄限制内圈向轴向外侧的移动，第 1 及第 2 轴支承部件限制外圈向轴向内侧的移动。在这种情况下，由于通过最后安装的左右一对曲柄的任何一个限制内圈，因此，不用通过曲柄轴限制内圈，在将轴支撑部件安装在吊架部上之后，可以安装曲柄轴。

发明 7 的自行车用曲柄轴承组件，在发明 4～6 任一记载的组件中，第 1 及第 2 轴承容纳部的直径大于第 1 及第 2 外螺纹部，配置在吊架部的轴向外侧。在这种情况下，由于轴承配置在在吊架部的轴向外侧，因此能进一步加长轴承之间的距离，并扩大曲柄轴的外径，进一步提高了曲柄轴的刚性。

发明 8 的自行车用曲柄轴承组件，在发明 2～7 任一记载的组件中，右曲柄以不能旋转的方式铆接固定在曲柄轴的右端，锁定螺母安装在第 1 及第 2 外螺纹部中的配置有左曲柄一侧的外螺纹部上。在这种情况下，由于不是在配置有链轮等直径比较大的部件的右曲柄侧，而是在左曲柄侧配置锁定螺母，因此，很容易转动锁定螺母或轴支承部件。进而，更容易调整滚动体接触状态。

发明 9 的自行车用曲柄轴承组件，在发明 1～8 任一记载的组件中，还包括连接部件，其将第 1 及第 2 轴支承部件同芯地连接，曲柄轴可穿过连接部件的内部。在这种情况下，通过将两个轴支承部件连接起来，借助于连接部件对曲柄轴从一个轴支承部件向另一个轴支承部件导向。因此，很容易进行曲柄轴的安装。

根据本发明，由于设置有锁定螺母，所以，可在轴支承部件的轴
向任意位置进行固定，可用轴支承部件进行滚动体接触状态的调整。结果，不需要通过由柄调整滚动体接触状态，很容易进行滚动体接触状态的调整。

附图说明

图 1 是采用本发明第 1 实施方式的自行车的侧视图。
图 2 是曲柄轴组装体的剖视图。
图 3 是曲柄轴组装体的左侧局部剖视图。
图 4 是卸下固定螺栓的状态下的曲柄轴安装部分的左曲柄的局部放大图。

图 5 是锁定螺母的主视图。
图 6 是第 2 实施方式的相当于图 2 的图。
图 7 是第 3 实施方式的相当于图 2 的图。

具体实施方式

<第 1 实施方式>

在图 1 中，采用本发明一实施方式的自行车，是带有例如下弯型车把部 14 的公路车 10。公路车 10 备有构成车体骨架的菱形车架 11。车架 11 具有车架体 12 及前叉 13。前叉 13 可围绕斜纵轴自由旋转地支撑在车架体 12 的前部，下部分成两叉。另外，公路车 10 具有：连接在前叉 13 上的车把部 14；安装在车架体 12 的下部，将脚踏力变换成驱动力的驱动部 15；可自由旋转地支撑在前叉 13 的下端的前轮 16；可自由旋转地中承在车架体 12 的后部的后轮 17；以及前后制动装置 18、19。

车架体 12 具有三角形状的前三角 20 和配置在前三角 20 的后方的后三角 21。前三角 20 包括：配置在横向方向的上管 25；朝前向上地配置在上管 25 的下方的下管 26；将上管 25 与下管 26 的前端接合的头管 27；以及将上管 25 与下管 26 的后端接合并朝斜上方延伸的立管 28。在立管 28 上，上下位置可调节地固定有车座支柱 33。车座支柱 33 固定有车座 32。在立管 28 与下管 26 的接合部，形成简状吊架部 29（图 2）。后三角 21 包括：前端与立管 28 接合，分成两叉朝斜下方延伸的车座撑杆（后叉）30；以及从立管 28 的下端分成两叉并朝后方延伸，与车座撑杆 30 的后端接合的链条撑杆 31。

在前叉 13 的上部，上下可移动地固定有构成车把部 14 的车把轴
杆35。在车把轴杆35上端固定有沿左右延伸且两端弯曲的车把杆36。在车把杆36的两端安装有带变速功能的制动杆38。

驱动部15包括：设置在吊架部29上的曲柄部41；不能转动地安装在后轮17的自由轮毂上的小齿轮部43；架设在曲柄部41与小齿轮部43之间的链条44；变速用的前拨链器45及后拨链器46。前拨链器45具有链条44可穿过的链条导向件45a。

曲柄部41如图2所示，包括：具有可自由旋转地支承在车架11的吊架部29上的曲柄轴54的曲柄轴组件50，通过铰接一体地固定在曲柄轴54的右端，前端安装有踏板53（图1）的右曲柄51；可自由装卸地固定在曲柄轴54的左端的左曲柄52。

曲柄轴组件50如图2所示，具有曲柄轴54及安装在吊架部29上、支承曲柄轴54使其自由旋转的底托架（本申请发明实施方式的曲柄轴组件体的一例）55。

曲柄轴54是例如铬钼钢等具有高刚性的合金制成的中空管状部件。在曲柄轴54的左端内周面上，为了固定左曲柄52，形成固定螺栓59可螺纹拧入的内螺纹部54a。另外，在曲柄轴54的左端外周面上，如图3及图4所示，形成不能转动地连接着左曲柄52用的细齿54b。

底托架55如图2所示，具有：从吊架部29的两端螺纹拧入的左右轴承壳体（第1及第2轴支承部件的一例子）60、61；将左右轴承壳体60、61同轴连接的筒状连结部件62；安装在左右轴承壳体60、61上的左右轴承63、64；安装在左右轴承63、64的内圆与曲柄轴54之间的左右盖部件65、66；以及与左侧轴承壳体60螺纹结合的螺母70。

左右轴承壳体60、61是带台阶的筒状部件，分别具有用于容纳各轴承63、64的轴承容纳部60a、61a；以及与轴承容纳部60a、61a并列配置的、不能转动地安装在吊架部29的端部上的安装部60b、61b。轴承容纳部60a、61a配置在安装部60b、61b的轴向外侧，其直径大于安装部60b、61b的直径。吊架部29在左右两端内周面上设置有内螺纹部29a、29b，安装部60b、61b具有与内螺纹部29a、29b螺纹结合的外螺纹部60c、61c。通常，为了防止曲柄旋转引起的松动，左侧内螺纹部29a是右旋螺纹，右侧内螺纹部是左旋螺纹。因此，与之螺纹结合的外螺纹部60c是右旋螺纹，外螺纹部61c是左旋螺纹。
连结部件62是具有使曲柄轴54可穿过内径的筒状部件，两端内周面嵌合在左右轴承壳体60、61的安装部60b、61b的内周面上。在连结部件62与轴承壳体60、61的连接部分上安装有0形环68、69。轴承63、64是球轴承或滚子轴承等滚动轴承，具有：内圈63a、64a；外圈63b、64b；以及配置在内圈63a、64a与外圈63b、64b之间的球体或滚子等滚动部件63c、64c。轴承63、64配置成：通过盖部件65、66，借助于左右曲柄52、51限制内圈63a、64a的分别向轴向外侧（轴承63是图2左侧，轴承64是图2右侧）的移动，并借助于轴承壳体60、61限制外圈63b、64b的各自向轴向内侧（轴承63是图2右侧，轴承64是图2左侧）的移动。轴承63、64是在内圈63a、64a与外圈63b、64b之间装有密封件的密封轴承，预先封闭有润滑脂。借此，可以省去润滑用的维护。于是，通过在吊架部29的轴向外侧配置轴承63、64，可扩大曲柄轴54的轴径，即使将曲柄轴54做成中空形状以谋求轻量化，也能维持曲柄轴54的高强度及刚性。

盖部件65、66是覆盖轴承壳体60、61的外侧端面的类似硬质合成树脂制的部件，在由左右曲柄52、51与轴承63、64的内圈63a、64a夹持的状态下配置着。

锁定螺母70如图5所示，是扁平的正十二边形形状的螺母，具有卡止工具的12边的工具卡止部70a、与外螺纹部60c螺纹结合的内螺纹部70b。锁定螺母70借助于吊架部29的内螺纹部29a，通过双螺母作用，对轴承壳体60进行止转，设置用于将轴承壳体60固定在轴向任意位置上。通过安装锁定螺母70，可用轴承壳体60进行滚动体接触状态的调整。

右曲柄51是可安装链轮71、72的齿轮曲柄，包括：具有由圆形空间构成且不能转动地安装在曲柄轴54的右端的卡合凹部78的曲柄连结部75；前端可安装大小两个从曲柄连结部75呈放射状延伸的链轮71、72的5个臂部76；以及固定在曲柄轴54的右端，前端上形成有踏板安装孔77a的右曲柄臂部77。右曲柄51的曲柄连结部75的轴向内侧端面75a，可通过盖部件66推压轴承64的内圈64a。

左曲柄52如图2～图4所示，具有中空结构的左曲柄臂部85，左曲柄臂部85的前端形成有踏板53可拧入的踏板安装孔85a。左曲柄52在中心设有不能转动地连接到曲柄轴54上的连结孔52a。
上形成有与细齿 54b 咬合且以在规定旋转相位不能旋转的方式地连接到曲柄轴 54 用的细齿 52b。左曲柄 52 的轴向向内侧端面 52c，可通过盖部件 65 推压轴承 63 的内圆 63a。左曲柄 52 通过螺纹拧入曲柄轴 54 的内螺纹部 54a 中的固定螺栓 59 而固定在曲柄轴 54 上，并且，通过固定螺栓 59 的螺纹拧入，可将轴承 63、64 与左右曲柄 52、51 一起向内侧推压。借此，可调整轴承 63、64 的滚动体接触状态。此外，在左曲柄 52 的安装到曲柄轴 54 上的连结孔 52a 中形成有沿径向延伸的狭缝 52d。通过横截狭缝 52d 地配制的安装螺栓 67a、67b，可使狭缝 52d 的狭缝宽度变窄。通过将两个安装螺栓 67a、67b 拧紧，可牢固地将左曲柄 52 固定在曲柄轴 54 上。这两个安装螺栓 67a、67b 是例如内六角螺栓，头部从不同方向插入。

这样构成的曲柄轴组件 50 安装到吊架部 29 上时，最初在左右轴承壳体 60、61 上预先安装轴承 63、64 及盖部件 65、66。另外，在任何一个轴承壳体 60、61 中安装连结部件 62。另外，将锁定螺母 70 安装在轴承壳体 60 的外螺纹部 60c 上。在该状态下，将轴承壳体 60、61 螺纹拧入吊架部 29 的内螺纹部 29a、29b 中。这时，以预定范围的扭矩拧入轴承壳体 61 拧入到深处，使轴承容纳部 61a 与吊架部 29 的端面接触。在夹持锁定螺母 70 的状态下，以预定范围的扭矩将轴承壳体 60 向纵深螺纹拧入到吊架部 29 中。然后，以与吊架部 29 接触的方式转动锁定螺母 70 进行锁定。借此，可阻止左侧轴承壳体 60 的转动，螺纹不会松动，可固定轴向位置。

接着，将一体地固定着曲柄轴 54 的右曲柄 51 从轴承壳体 61 侧插入。然后，以与右曲柄 51 相差 180 度的不同的旋转相位，在从左侧轴承壳体 60 突出的曲柄轴 54 的前端安装安装左曲柄 52。此外，如图 4 所示，另外，在细齿 52b、54b 上形成例如一个圆周方向的长度比其他部分长的特别的凹凸部 52f、54f，以便将右曲柄 51 与左曲柄 52 配置在 180 度的旋转相位上。因此，通过使特别的凹凸部 52f、54f 卡合，可将两个曲柄 52、51 配置在 180 度的旋转相位上。

在这种状态下，将固定螺栓 59 安装在曲柄轴 54 上，将左曲柄 52 固定在曲柄轴 54 上，这时，拧入固定螺栓 59 时，曲柄轴 54 向图 2 左侧移动，左右曲柄 52、51 的内侧端面 52c、52a 通过盖部件 65、66 将轴承 63、64 的内圆 63a、64a 向内侧推压。左曲柄 52 安装的同时，调
整该预压量进行消除曲柄轴 54 的左右松动的滚动体接触状态的调整。结束滚动体接触状态的调整时，紧固左曲柄 52 的安装螺栓 67a、67b，可牢固地将左曲柄 52 固定曲柄轴 54 上。

在这种状态下，结束初期的滚动体接触状态的调整，但是，乘车时，滚动体接触状态的调整会逐渐受到损坏，发生轴向晃动。有需要进行滚动体接触状态的再调整的情况，这时，暂时松动锁定螺母 70，因此，轴承壳体 60 的止转被解除，轴承壳体 60 可以朝松动方向转动。当轴承壳体 60 朝松动方向转动时，左侧的轴承壳体 60 将轴承 63 的外圈 63b 向轴向内侧（图 3 左侧）推压。因而，减少了轴承 63、64 的松动，进行滚动体接触状态的再调整。于是，在消除晃动并且转动变成平滑的状态时，转动锁定螺母 70，向吊架部 29 的端面拧入锁定螺母 70。借此，可阻止轴承壳体 60 的转动，使轴承壳体 60 的轴向位置不发生错位。

在这种结构中，通过设置锁定螺母 70，可在轴承壳体 60 的轴向任意位置进行固定，因而，可防止轴承壳体 60 进行滚动体接触状态的调整。结果，不需要用曲柄调整滚动体接触状态，很容易进行滚动体接触状态的调整。

〈第 2 实施方式〉

在第 1 实施方式中，轴承 63、64 的内圈 63a、64a 通过左右一对曲柄 52、51 限制向轴向外侧的移动。另一方面，在第 2 实施方式中，如图 6 所示，轴承 163、164 的内圈 163a、164a 通过曲柄轴 154 限制向轴向外侧的移动。

在图 6 中，第 2 实施方式与第 1 实施方式相比，驱动部的曲柄部 141 的构成不同。因此，曲柄部 141 以外的说明省略。曲柄部 141 包括：具有可旋转地支承在吊架部 29 上的曲柄轴 154 的曲柄轴组件 150；可自由装卸地固定在曲柄轴 154 的右端，前端安装有踏板 53（图 1）的右曲柄 151；可自由装卸地固定在曲柄轴 154 的左端，前端安装有踏板 53（图 1）的左曲柄 152。

曲柄轴组件 150 具有：曲柄轴 154，以及安装在吊架部 29 上、支承曲柄轴 154 使其可自由旋转的底托架（本发明实施方式的曲柄轴承组件的一例）155。

曲柄轴 154 是例如铝合金制成的实心或中空的轴部件。在曲柄轴
54 的两端，为了能转动地固定左右曲柄 152、151，形成固定螺栓 159 可螺纹拧入的内螺纹部 154a（仅左侧图示）。另外，在曲柄轴 54 的两端外周面上，形成有能在卡止部 154b（仅右侧图示），该旋转卡止部 154b 具有不能转动地连结左右曲柄 152、151 用的前端渐细的锥状的 4 个平面。

底托架 155 具有：从吊架部 29 的两端螺纹拧入的左右轴承壳体（第 1 及第 2 轴支承部件的一例子）160、161；将左右轴承壳体 160、161 同芯连结的筒状连结部件 162；设置在左右轴承壳体 160、161 上的左右轴承 163、164；以及与左侧轴承壳体 160 螺纹结合的锁紧螺母 70。

左右轴承壳体 160、161 是带台阶的筒状部件，分别具有：在内侧形成构成轴承 163、164 的外圆 163b、164b 的弯曲的球面支承面的轴承容纳部 160a、161a；与轴承容纳部 160a、161a 并列配置的、不能转动地安装在吊架部 29 的端部的安装部 160b、161b。轴承容纳部 160a、161a 配置在轴轴承部 160b、161b 的轴向外侧，其直径大于安装部 160b、161b 的直径。吊架部 29 在左右两端内周面上设置有内螺纹部 29a、29b，安装部 160b、161b 具有与内螺纹部 29a、29b 螺纹结合的外螺纹部 160c、161c。通常，为了防止曲柄旋转引起的松动，左侧内螺纹部 29a 是右旋螺纹，右侧内螺纹部是左旋螺纹。因此，与之螺纹结合的外螺纹部 160c 是右旋螺纹，外螺纹部 161c 是左旋螺纹。

连结部件 162 与第 1 实施方式的构成相同，其说明省略。另外，虽然与第 1 实施方式相同，但是，也可以不设置连结部件 162。

轴承 163、164 是滚珠轴承等滚动轴承，具有：内圆 163a、164a；与轴承容纳部 160、61 一体形成的外圆 163b、164b；以及配置在内圆 163a、164a 与外圆 163b、164b 之间的球体等滚动部件 163c、164c。

左侧轴承 163 的内圆 163a 在记载了向轴向外侧的移动的状态下可自由装卸地安装在曲柄轴 154 上。具体地，在曲柄轴 154 的内圆安装部分上，在外周面的对置的两个部位上，从轴部分的左端部起形成数字 7 字状的卡止槽 154c（在图 6 中仅示出了 1 个）。另外，在内圆 163a 的内周面上，形成与卡止槽 154c 卡合的一对卡止突起 163d（在图 6 中仅示出了 1 个）。在卡止突起 163d 与卡止槽 154c 卡止的状态下，从轴部分的左端安装内圆 163a，仅稍微向轴向右侧移动、转动，并进一步向轴向左侧移动。借此，可在限制内圆 163a 向轴向左侧移动的状
态下，将内圈 163a 安装在曲柄轴 154 上。另外，右侧轴承 164 的内圆
164a，通过例如压入或粘接或焊接等适当的固定方法，与曲柄轴 154
成一体或固定在曲柄轴 154 上。另外，也可以在曲柄轴 154 的内圆安
装部分的右侧，设置有大直径的对接部，从左侧安装环状的内圈 164a，
限制内圈 164a 的向轴向右侧的移动。再者，外圈 163b、164b 如上文
所述，在轴承容纳部 160a、161a 的内周面上由球支承面构成。因此，
轴承 163、164 通过曲柄轴 154，限制内圈 163a、164a 的各自的向轴
向外侧（轴承 163 是图 6 左侧、轴承 164 是图 6 右侧）的移动，通过
轴承壳体 160、161 限制外圈 163b、164b 的各自的向轴向内侧（轴承
163 是图 6 右侧、轴承 164 是图 6 左侧）的移动。于是，通过在吊架部
29 的轴向外侧配置轴承 163、164，可扩大曲柄轴 54 的轴径，即使曲
柄轴 54 用铝合金以谋求轻量化，也能维持曲柄轴 54 的高强度及刚性。

锁定螺母 70 与如图 5 所示的锁定螺母具有同样的形状，因此，其
详细说明省略，但是，其具有与工具卡止的工具卡止部。和与外螺纹
部 160c 螺纹结合的内螺纹部。锁定螺母 70 借助于吊架部 29 的内螺纹
部 29a，通过双螺母作用，对轴承壳体 160 进行止转，设置用于可在轴
承壳体 160 的轴向任意位置进行固定。通过安装锁定螺母 70，可用轴
承壳体 160 进行滚动体接触状态的调整。

右曲柄 151 包括：具有由圆形空间构成、可自由装脚且不能转动
地连接到曲柄轴 154 的右端的矩形锥状连结孔 178 的曲柄连接部 175；
前端可安装大小两个从曲柄连接部 175 呈放射状延伸的链轮 71、72 的
5 个臂部 176；以及固定在曲柄轴 154 的右端，前端上形成有踏板安装
孔 177a 的右曲柄臂部 177。

左曲柄 152，具有中空结构的左曲柄臂部 185，左曲柄臂部 185 的
前端形成有踏板 53 可拧入的踏板安装孔 185a。左曲柄 152 在中心设
有可自由装脚且不能转动地连接到曲柄轴 154 上的矩形锥状连结孔
152a。连结孔 152a 与旋转卡止部 154b 相卡合。左曲柄 152 通过螺纹
拧入曲柄轴 154 的内螺纹部 154a 中的固定螺栓 159 而固定在曲柄轴
154 上。

将这样构成的曲柄轴组合体 150 安装到吊架部 29 上时，最初在左
右轴承壳体 160、161 上预先安装轴承 163、164 的滚动部件 163c、
164c。滚动部件 163c 通过未图示的保持部件沿圆周方向隔开间隔地保
持着。另外，在任何一个轴承壳体 160、161 中安装连结部件 162。另外，将锁定螺母 70 安装在轴承壳体 160 的外螺纹部 160c 上。在该状态下，将轴承壳体 160、161 以预定范围的扭矩螺纹拧入吊架部 29 的内螺纹部 29a、29b。这时，锁定螺母 70 及轴承壳体 160 拧入到可最接近吊架部 29 的位置。从轴承壳体 161 侧插入曲柄轴 154。接着，在从左侧轴承壳体 160 突出的曲柄轴 154 的前端，将轴承 163 的内圈 163a 按照上述顺序安装在曲柄轴 154 上。结束内圈 163a 的安装时，朝松动方向转动轴承壳体 160，进行滚动体接触状态的调整。安装内圈 163a 时，有必要将内圆 163a 稍向轴向左侧移动。因此，在进行滚动体接触状态的调整时，首先，与内圆 163a 向左侧移动相对应地，需要朝松动方向转动轴承壳体 160，使之向轴向左侧移动，使滚动部件 163c 与内圆 163a 接触。接着，滚动部件 163c 与内圈 163a 接触，结束滚动体接触状态的调整时，将锁定螺母 70 向吊架部 29 的端面螺纹拧入，可阻止轴承壳体 160 的转动，使其不会在轴向上错位。最后，通过固定螺栓 159，以 180 度的不同的旋转相位，安装左右的右曲柄 52、51。

在这种状态下，结束初期的滚动体接触状态的调整。但是，乘自行车时，滚动体接触状态的调整会逐渐受到损坏，发生轴向晃动。需要进行滚动体接触状态的再调整的情况，这时，暂时松动锁定螺母 70，因此，轴承壳体 160 的止转被解除，使轴承壳体 160 可以朝松动方向转动。当轴承壳体 160 朝松动方向转动时，轴承壳体 160 将轴承 163 的外圈 163b 向轴向外侧（图 6 左侧）推压。因而，减少了轴承 163、164 的松动，可进行滚动体接触状态的再调整。于是，在消除晃动并且旋转变成平滑的状态时，转动锁定螺母 70，向吊架部 29 的端面拧入。借此，可阻止轴承壳体 160 的转动，使轴承壳体 160 的轴向位置不发生错位。

即使是在这种结构中，通过设置锁定螺母 70，可在轴承壳体 160 的轴向任意位置进行固定，因而，可用轴承壳体 160 进行滚动体接触状态的调整。结果，不需要用曲柄调整滚动体接触状态，很容易进行滚动体接触状态的调整。

＜第 3 实施方式＞

在上述第 1 及第 2 实施方式中，轴承壳体的轴承容纳部配置在吊架部的轴向外侧，轴承容纳部与外螺纹部沿轴向并列配置。在第 3 实
施方式中，如图7所示，轴承容纳部260a与具有外螺纹部260c的安装部260b在轴向上一部分重合地配置着。

在图7中，第3实施方式与第1及第2实施方式相比，驱动部的曲柄部241不同。因此，曲柄部241以外的说明省略。曲柄部241包括：具有可自由旋转地支承在吊架部29上的曲柄轴254的曲柄轴组装体250；可自由装配地固定在曲柄轴254的右端，前端安装有踏板53（图1）的右曲柄251；可自由装配地固定在曲柄轴254的左端，前端安装有踏板53（图1）的左曲柄252。

曲柄轴250如图7所示，包括：具有可自由旋转地支承在吊架部29上的曲柄轴254的曲柄轴组装体250；通过铆接一体地固定在曲柄轴254的右端，前端安装有踏板53（图1）的右曲柄251；可自由装配地固定在曲柄轴254的左端的左曲柄252。

曲柄轴组装体250，具有：曲柄轴254，以及安装在吊架部29且可自由旋转地支承曲柄轴254的底托架（本发明实施方式的曲柄轴承组装体的一例）255。

曲柄轴254是例如铬钼钢等具有高刚性的合金制成的轴部件。在曲柄轴254的左端内周面上，为了固定左曲柄252，形成固定螺栓259的螺纹拧入的内螺纹部254a。另外，在曲柄轴254的左端外周面上，形成用于不能转动地连结左曲柄252的细齿254b。

底托架255具有：从吊架部29的两端螺纹拧入的左右轴承壳体（第1及第2支承部件的一例）260、261；将左右轴承壳体260、261同芯连接的筒状连接部件262；安装在左右轴承壳体260、261上的左右轴承263、264；安装在左右轴承263、264的内圆与曲柄轴254之间的左右盖部件265、266以及与左侧轴承壳体260螺纹结合的锁定螺母70。

左右轴承壳体260、261是带缘部的筒状部件，分别具有设置在内周面上的、用于容纳各轴承263、264的轴承容纳部260a、261a；形成于外周面上的、不能转动地安装在吊架部29的端部上的安装部260b、261b；以及缘部260d、261d。安装部260b、261b在轴承容纳部260a、261a的外周侧形成在外周面上。吊架部29与第1实施方式同样，在左右两端内周面上具有内螺纹部29a、29b，安装部260b、261b具有与内螺纹部29a、29b螺纹结合的外螺纹部260c、261c。通常，
为了防止曲柄旋转引起的松动，左侧内螺纹部 29a 是右旋螺纹，右侧内螺纹部是左旋螺纹。因此，与之螺纹结合的外螺纹部 260c 是右旋螺纹，外螺纹部 261c 是左旋螺纹。缘部 261d 与吊架部 29 的右端面接触地配置。缘部 260d、261d 的外周面形成为可与工具卡止的形状。

连接部件 262 及盖部件 265、266 仅仅是大小与第 1 实施方式不同，而结构相同，因此，其说明省略。

轴承 263、264 仅仅是直径与第 1 实施方式不同，结构相同，是球轴承或滚子轴承等滚动轴承，具有：内圈 263a、264a；外圈 263b、264b；以及放置在内圈 263a、264a 与外圈 263b、264b 之间的球体或滚子等滚动部件 263c、264c。

锁定螺母（锁紧螺母）70 与第 1 实施方式同样，是例如扁平的正方形形状的螺母。

右曲柄 251 是可安装链轮 71、72 的齿轮曲柄，包括：具有由圆形空间构成且不能转动地安装在曲柄轴 54 的右端的卡合凸部 78 的曲柄连接部 75；前端可安装大小两个从曲柄连接部 75 呈放射状延伸的链轮 71、72 的 5 个臂部 76；以及固定在曲柄轴 54 的右端，前端上形成有踏板安装孔 77a 的右曲柄臂部 77。右曲柄 51 的连接部 75 的轴向内侧端面 75a，可通过盖部件 66 推压轴承 64 的内圈 64a。

左右曲柄 252、251 由于与第 1 实施方式的构成相同，因此，其说明省略。另外，在图 7 中，对于在这里没有说明的部件，用在图 2 中加上 200 的符号进行表示。这些符号涉及的部位与第 1 实施方式的构成相同。

这样构成的曲柄轴组装体 250 安装到吊架部 29 上时，最初在左右轴承壳体 260、261 上预先安装轴承 263、264 及盖部件 265、266。另外，在任何一个轴承壳体 260、261 中安装连接部件 262。另外，将锁定螺母 70 安装在轴承壳体 260 的外螺纹部 260c 上。在该状态下，将轴承壳体 260、261 螺纹拧入吊架部 29 的内螺纹部 29a、29b 上。这时，以预定范围的扭力将轴承壳体 261 拧入到深处，使该轴承壳体 261 与吊架部 29 的端面接触。在夹持锁定螺母 70 的状态下，以预定范围的扭力将轴承壳体 260 纵深地螺纹拧入到吊架部 29 中。然后，以与吊架部 29 接触的方式转动锁定螺母 70 进行锁定。借此，可阻止左右轴承壳体 260 的转动，螺纹不会松动，可固定轴向位置。
接着，将一体地固定着曲柄轴 254 的右曲柄 251 从轴承壳体 261 侧插入。然后，在从左侧轴承壳体 260 突出的曲柄轴 254 的前端，以与右曲柄 251 相差 180 度的不同位的旋转相位，安装左曲柄 252。

在这种状态下，将固定螺栓 259 安装在曲柄轴 254 上，将左曲柄 252 固定在曲柄轴 254 上。这时，拧入固定螺栓 259 时，曲柄轴 254 向图 7 左侧移动，左右曲柄 252、251 的内侧端面 252c、275a 直接靠在盖部件 265、266 将轴承 263、264 的内圈 263a、264a 向内推压。左曲柄 252 安装的同时，调整该推压量进行消除曲柄轴 254 的左右松动的滚动体接触状态的调整。结束滚动体接触状态的调整时，拧紧左曲柄 252 的安装螺栓 267a、267b，可牢固地将左曲柄 252 固定在曲柄轴 254 上。

在这种状态下，结束初期的滚动体接触状态的调整。滚动体接触状态的再调整与第 1 实施方式同样，暂时将锁定螺母 70 松动的，借此，轴承壳体 260 的止转被解除，轴承壳体 260 可以朝松动方向转动。当轴承壳体 260 朝松动方向转动时，左侧的轴承壳体 260 将轴承 263 的外圈 263b 向轴向外侧推压。因而，减少了轴承 263、264 的松动，可进行滚动体接触状态的再调整。于是，在消除晃动并且转动变成平滑的状态时，转动锁定螺母 70，向吊架部 29 的端面拧入锁定螺母 70。借此，可阻止轴承壳体 260 的转动，使轴承壳体 260 的轴向位置不发生错位。

在这种结构中，轴承容纳部 260a、261a 与外螺纹部 260c、261c 分别在轴向上一部分重合地配置着，因此，可在吊架部 29 内，以最大限度的轴承间距配置轴承 263、264，可缩短轴承相距左右曲柄 252、251 的距离。结果，在将轴承配置在吊架部 29 内的情况下，可提高曲柄轴 254 的刚性。

<其他实施方式>

（a）在上述第 1 及第 3 实施方式中，虽然最初的滚动体接触状态的调整与曲柄的安装同时进行，但是，也可以用轴承壳体进行最初的滚动体接触状态的调整。

（b）在上述第 1 实施方式中，虽然以公路车用曲柄轴组装体为例进行了说明，但是，本发明的曲柄轴组装体适用于所有形式的自行车和包括电动助力自行车在内的电动自行车。
(c) 在上述第 2 实施方式中，虽然采用了右曲柄 151 相对曲柄轴 154 可自由地装卸的结构，但是，与第 1 及第 2 实施方式同样，也可以通过铆接、粘接、焊接等适当的固定方式将右曲柄 151 固定在曲柄轴 154 的右端。

(d) 在上述第 1 及第 3 实施方式中，虽然左右曲柄通过盖部件限制轴承，但是，也可以采用左右曲柄直接限制轴承的结构。

(e) 在上述第 2 实施方式中，虽然用具有锥状的 4 个平面的旋转卡止部阻止曲柄的旋转，但是，也可以用细齿等进行止转。

(f) 在上述第 2 实施方式中，虽然没有图示用于密封轴承的盖部件等，但是也可以设置盖部件。
图 5
图 7