
(12) STANDARD PATENT (11) Application No. AU 2013295686 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Lock free streaming of executable code data

(51) International Patent Classification(s)
G06F 9/30 (2006.01) G06F 9/38 (2006.0 1)

(21) Application No: 2013295686 (22) Date of Filing: 2013.07.26

(87) WIPO No: WO14/018812

(30) Priority Data

(31) Number (32) Date (33) Country
13/560,216 2012.07.27 US

(43) Publication Date: 2014.01.30
(44) Accepted Journal Date: 2018.04.19

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Reierson, Kristofer

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 6253309 B1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2014/018812 Al
30 January 2014 (30.01.2014) W I P0 I P CT

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
G06F 9/30 (2006.01) G06F 9/38 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,

PCT/US2013/052153 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

26 July 2013 (26.07.2013) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every

(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,

13/560,216 27 July 2012 (27.07.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(71) Applicant: MICROSOFT CORPORATION [US/US]; TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
One Microsoft Way, Redmond, Washington 98052-6399 EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(72) Inventor: REIERSON, Kristofer; c/o Microsoft Corpora- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

tion, LCA - International Patents, One Microsoft Way, KM, ML, MR, NE, SN, TD, TG).

Redmond, Washington 98052-6399 (US). Declarations under Rule 4.17:

(81) Designated States (unless otherwise indicated, for every - as to applicant's entitlement to apply for and be granted a
kind of national protection available): AE, AG, AL, AM, patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: LOCK FREE STREAMING OF EXECUTABLE CODE DATA

(57) Abstract: A disassembler receives instructions
and disassembles them into a plurality of separate op

DATA PAGE OPERATING codes. The disassembler creates a table identifying
SYSTEM boundaries between each opcode. Each opcode is writ

EXCEPTION ten to memory in an opcode-by-opcode manner by
atomically writing standard blocks of memory. Debug
break point opcodes are appended to opcode to create
a full block of memory when needed. The block of
memory may be thirty-two or sixty-four bits long, for

SYTEI example. Long opcodes may overlap two or more
memory blocks. Debug break point opcodes may be

--- appended to a second portion of the long opcode to

DISASSEMBLER create a full block of memory. A stream fault intercept
or identifies when a requested data page is not avail

206 able and retrieving the data page.
STREAM FAULT

UN RTEN PAGE
INTO ERER

FIG. 2

LOCK FREE STREAMING OF EXECUTABLE CODE DATA

BACKGROUND

[0001] A race condition occurs when commands to read and write data are received at the

same time. This can also happen, for example, when a thread is executing a packet of

5 executable data from memory at the same time that a write thread is delivering the data to

the memory. The result may be a computer crash, program shutdown, reading/writing

errors, or other problems. In one solution, the executing thread may be suspended while

waiting for the writing thread to provide the data. However, suspending a thread can

cause performance problems for related processes. For example, dozens or hundreds of

10 threads may be running for a process in which only one or a few threads access the data,

but all of the threads may have to be suspended to wait for the data delivery every time a

stream fault occurs.

[0001A] It is desired to provide a computer-implemented method, a computer system, and

a computer-readable storage medium that alleviate one or more difficulties of the prior art,

15 or to at least provide a useful alternative.

SUMMARY

[0001B] In accordance with some embodiments of the present invention, there is provided

a computer-implemented method, comprising:

receiving instructions comprising a plurality of opcodes, each opcode comprising

20 one or more bytes of data;

disassembling the instructions into separate opcodes;

creating a table identifying the boundaries between each opcode;

appending debug break point opcodes to an opcode to create a full standard block

of memory; and

25 writing each opcode to memory in an opcode-by-opcode manner by atomically

writing standard blocks of memory.

[0001C] In accordance with some embodiments of the present invention, there is provided

a computer system, comprising:

30 a processor;

system memory;

-1-

one or more computer-readable storage media having stored thereon computer

executable instructions that, when executed by the one or more processors, causes the

processors to perform a method for streaming of executable code, the processor operating

to:

5 receive instructions comprising a plurality of opcodes, each opcode comprising one

or more bytes of data;

disassembling the instructions into separate opcodes;

creating a table identifying the boundaries between each opcode;

writing each opcode to memory in an opcode-by-opcode manner by atomically

10 writing standard blocks of memory; and

append debug break point opcodes to an opcode to create a full standard block of

memory.

[0001D] In accordance with some embodiments of the present invention, there is provided

15 a computer-readable storage medium that excludes propagated signals, said computer

readable storage medium storing computer-executable instructions that when executed by

at least one processor cause the at least one processor to perform a method for streaming

executable code data, the method comprising:

receiving a fault indicating that a data page is not available;

20 requesting instructions including the data page;

receiving the instructions from a remote source, the instructions comprising a

plurality of opcodes, each opcode comprising one or more bytes of data;

disassembling the instructions into separate opcodes;

creating a table identifying the boundaries between each opcode;

25 identifying when a long opcode will overlap two or more standard blocks of

memory;

writing each opcode to memory in an opcode-by-opcode manner by atomically

writing standard blocks of memory;

writing a second portion of the long opcode to a second memory block; and

30 writing a first portion of the long opcode to a first memory block.

[0002] This Summary is provided to introduce a selection of concepts in a simplified form

that are further described below in the Detailed Description. This Summary is not intended

-1A-

to identify key features or essential features of the claimed subject matter, nor is it

intended to be used to limit the scope of the claimed subject matter.

[0003] Embodiments allow executable code to be delivered in a lock-free manner by

disassembling it and ordering the writes to the memory page. This allows the executable

5 code to remain in a consistent state throughout the delivery of streaming data. Because the

memory is in a consistent state, other threads may continue to execute while the byte-code

is written into memory. This allows for greater scalability and performance.

[0004] Further embodiments enable streaming of executable code data in user mode,

without suspending the entire process or using a kernel mode component.

10 DRAWINGS

[0005] Some embodiments of the present invention are hereinafter described, by way of

example only, with reference to the accompanying drawings, wherein:

[0006] FIGURES 1A-D illustrate the ordering of the memory writes over time according

to one embodiment.

-1B-

WO 2014/018812 PCT/US2013/052153

[00071 FIGURE 2 illustrates a system for streaming lock-free executable code data

according to one embodiment.

[00081 FIGURE 3 is a flowchart of a process or method for streaming executable code

data according to one embodiment.

5 [00091 FIGURE 4 illustrates an example of a suitable computing and networking

environment to provide lock free streaming of executable code data.

DETAILED DESCRIPTION

[00101 The lock-free solution described herein takes advantage of two features of a

modern processor. First, the processor provides an atomic thirty-two bit or sixty-four bit

10 memory access write. This guarantees that the processor will see all thirty-two bits or

sixty-four bits in memory. Second, the processor has a one-byte debug break exception

operation code (opcode). This debug break opcode allows the processor to retry reading

and executing opcodes from the memory without causing a calling thread to fail.

[00111 In one embodiment, code is disassembled in memory before the instructions are

15 made available to a processor. This disassembly allows for creation of an ordered list of

memory writes consisting of a number of separate thirty-two bit or sixty-four bit writes.

This disassembly and analysis can be performed either on a client or on a server.

Performing this operation on the client saves network transmissions at the cost of

increased processor cycles, while performing the operation on the server means larger

20 network transmissions but requires less processor operation at the client node.

[00121 When the memory page is allocated, the entire page is written with one-byte

exception codes. A stream fault handler keeps a list of pages and locations that have been

written to or that are invalid.

[00131 The opcodes are written to memory using the disassembled thirty-two bit or sixty

25 four bit blocks starting at the end of the page. Alternately, the assembly tree can be

analyzed to identify leaf opcodes, which are opcodes that are called by other opcodes. The

leaf opcodes may be identified by a traversal of the opcode execution call graph. These

leaf opcodes may be written to memory first.

[00141 For opcodes that are thirty-two bits or smaller (or sixty-four bit or smaller in other

30 embodiments), the entire opcode is written to memory so that the processor will execute

the instruction successfully. If the opcode is larger than thirty-two bits (or larger than

sixty-four bits in other embodiments), then the "end" of the opcode is written first. By

writing the end of the opcode first, if the processor executes the instruction while the

opcode is still being written, then the processor will execute the debug break opcode first.

-2-

WO 2014/018812 PCT/US2013/052153

This allows the stream fault handler to finish writing the opcode and so that the processor

can retry the opcode. If the thirty-two bit (or sixty-four bit) write straddles more than one

opcode, then a debug break opcode is written to allow retry. If the thirty-two bit (or sixty

four bit) write has already been written, then the previous value is written in which case

5 the opcode remains valid.

[00151 By writing the disassembled opcodes spaced by debug breaks, the processor will

encounter either an invalid debug breakpoint or valid executable code. If the application

executes an invalid debug breakpoint, then a stream fault interceptor as described herein

will intercept the exception before it is delivered to the application. The stream fault

10 interceptor waits until the memory is valid and then retries the opcode. The stream fault

interceptor can use the table of pages and written opcodes to differentiate between a

breakpoint that occurs as a part of stream faulting, which must be retried, or one used by a

debugger or the application, which must be passed back to the application. In the case of

valid executable code, the application executes code successfully. As a result, the stream

15 fault handler does not need to suspend all of the threads in the process when delivering the

results of a stream fault.

[00161 FIGURES 1A-D illustrate the ordering of the memory writes over time according

to one embodiment. Program code used in this example comprises the instructions: OxAB

OxE9 OxOO OxFE 0x70 Ox8 A disassembler breaks this code into the following

20 opcodes:

(1): OxAB

(2): OxE9 OxOO OxFE 0x70 0x08

(3):

The first opcode is one byte long, the second opcode is five bytes long, and additional

25 opcodes of various lengths are identified in a similar manner.

[00171 Memory 101 comprises a number of thirty-two bit blocks 102-104. In other

embodiments, the memory blocks may be sixty-four bits or some other size. FIGURE 1A

illustrates an original state in which all of memory 101 is filled with one byte debug break

point opcodes OxCC. If a thread reads instructions from memory 101 at this time, the

30 debug break point opcode will cause the stream handler to attempt to load code to memory

101 and then the thread will retry reading code.

[00181 In FIGURE 1B, the first opcode OxAB has been written to thirty-two bit block

102b. The first, one-byte opcode OxAB is written into memory 101 with an atomic write

that replaces the first OxCC. The write operation needs to write thirty-two bits of data.

-3-

WO 2014/018812 PCT/US2013/052153

Because the instruction has been disassembled before writing to memory, the write

operation tracks what bytes are being written and knows to fill the remaining twenty-four

bits of block 102b with OxCC to fill up the entire thirty-two bit block. If the processor

executes the first instruction OxAB, it will succeed. However, if the processor attempts to

5 execute the second instruction at this time, the debug break point OxCC will be read and a

stream fault retry mechanism will take over.

[00191 The stream fault handler now needs to write the second opcode (i.e., OxE9 xO

OxFE OX70 0x08). The stream fault handler knows the previous instruction (OxAB) was

written and knows how blocks 102b- 1 04b were written. The stream fault handler also

10 knows how long the next opcode is and how it needs to be written to memory 101. In

particular, the stream fault handler knows that the second, five-byte opcode will be written

to blocks 102b and 103b after opcode OxAB. The stream fault handler also determines that

the second opcode will not fit into the remaining space in a single thirty-two bit block

102b. Therefore, the second opcode must be divided between memory blocks 102b and

15 103b.

[00201 As illustrated in FIGURE IC, the second portion of the opcode (i.e., Ox70 0x08) is

written to block 103c - padded with debug break points xO to fill thirty-two bits

before writing the first portion of the opcode. By writing the second portion of the opcode

first, if the processor executes the opcode after the OxAB block, then the processor will

20 incur a debug fault (OxCC) and will not attempt to execute garbage.

[00211 After the second portion of the opcode is written to block 103c, then the first

potion (i.e., OxE9 xO OxFE) can be written to memory 101. As illustrated in FIGURE

ID, this first portion is written with the first opcode OxAB in the position that it was

previously assigned in block 102d. At this time, the processor will be able to successfully

25 execute both instructions. This process of writing instructions to memory 101 may be

applied opcode-by-opcode until the entire page is resident.

[00221 FIGURE 2 illustrates a system for streaming lock-free executable code data

according to one embodiment. An application running on operating system 201 attempts

to read a data page 202 from memory. When a non-resident page of executable memory is

30 called, this triggers operating system exception 203, which notifies the operating system

201 that this call failed. Operating system 201 sends a read-failure return code to stream

fault interceptor 204 before the application sees the fault. Stream fault interceptor 204

looks up the page in its database and determines that it needs to retrieve the page. Stream

fault interceptor 204 makes a network call to get the page from network server 205, for

-4-

WO 2014/018812 PCT/US2013/052153

example, and changes the memory access of the page so that it can write the data to data

page 202.

[00231 In existing systems, stream fault interceptor 204 would need to suspend the process

that requested the data. If the process is not suspended, then another thread could execute

5 data on page 202 as it was being written into memory and the process would crash when it

attempted to execute partial data. After the page 202 was written to memory, then the

process could be resumed with stream fault interceptor changing the operating system

exception to "success" and the application continuing to execute.

[00241 In existing systems, this step of suspending the entire process is necessary because

10 changing access to data page 202 and writing data to it cannot be accomplished in a single

step. This means that two threads in the process cannot be executing when you are

servicing a stream fault.

[00251 The existing systems are improved herein by adding disassembler 206 and

written/unwritten page tracker 207. Disassembler 206 is responsible for taking the

15 returned byte-code and disassembling it. Disassembler 206 returns a list of offsets that

contain the boundaries of each opcode. As noted in the example of FIGURE 1, each

opcode may be one or more bytes long. Written/unwritten page tracker 207 contains the

list of offsets generated by the disassembler 206 as well as a list of those offsets that have

been committed.

20 [00261 The process does not need to be suspended when using disassembler 206 and

written/unwritten page tracker 207. Instead, after the requested code is returned to stream

fault interceptor 204 from the server 205, the disassembler is called to generate the offset

map. The offset map is then stored by the stream fault interceptor 204, which begins

writing opcodes to data page 202 in an opcode-by-opcode manner as described above.

25 The stream fault interceptor 204 consults this offset map to determine the boundary of

each opcode. The stream fault interceptor 204 may write the opcodes to data page 202 in

any appropriate order starting with either the beginning or the end of the list of opcodes.

[00271 If any contention occurs, such as if the processor executes a partially filled

instruction, then the operating system fault mechanism 203 will be triggered. This will

30 cause the stream fault interceptor 204 to be invoked by operating system 201. The stream

fault interceptor 204 consults written/unwritten page tracker 207 and either writes the

opcode itself to data page 202 or waits until another thread finishes writing the data.

Stream fault interceptor 204 then retries the exception.

-5-

WO 2014/018812 PCT/US2013/052153

[00281 FIGURE 3 is a flowchart of a process or method for streaming executable code

data according to one embodiment. In step 301, a processor receives instructions

comprising a plurality of opcodes. Each of the opcodes may comprise one or more bytes

of data. In step 302, a disassembler is used to disassemble the instructions into separate

5 opcodes. In step 303, a table is created that identifies the boundaries between each

opcode. The table may be stored in a written/unwritten page tracker, for example. In step

304, each opcode is written to memory in an opcode-by-opcode manner by atomically

writing standard blocks of memory. The opcodes may be written to memory by a stream

fault interceptor, for example.

10 [00291 In some embodiments, debug break point opcodes may be written to all memory

locations to initialize the memory. When the opcodes are written to memory, debug break

point opcodes may be appended to the opcode to create a full standard block of memory.

The standard block of memory may be thirty-two bits or sixty-four bits long, for example.

[00301 When a long opcode will overlap two or more standard blocks of memory, then it

15 may be divided into two portions. The second portion of the long opcode is written to a

second memory block, and then the first portion of the long opcode is written to a first

memory block. Writing the long opcode in this manner will ensure that a debug break

point will be encountered if a memory location is read before the entire opcode is written.

Debug break point opcodes may be appended to the second portion of the long opcode to

20 create a full standard block of memory. A previous opcode may be written along with the

first portion of the long opcode to the first memory block.

[00311 It will be understood that steps 301-305 of the process illustrated in FIGURE 3

may be executed simultaneously and/or sequentially. It will be further understood that

each step may be performed in any order and may be performed once or repetitiously.

25 [00321 FIGURE 4 illustrates an example of a suitable computing and networking

environment 400 on which the examples of FIGURES 1-3 may be implemented to provide

lock free streaming of executable code data. The computing system environment 400 is

only one example of a suitable computing environment and is not intended to suggest any

limitation as to the scope of use or functionality of the invention. The invention is

30 operational with numerous other general purpose or special purpose computing system

environments or configurations. Examples of well-known computing systems,

environments, and/or configurations that may be suitable for use with the invention

include, but are not limited to: personal computers, server computers, hand-held or laptop

devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top

-6-

WO 2014/018812 PCT/US2013/052153

boxes, programmable consumer electronics, network PCs, minicomputers, mainframe

computers, distributed computing environments that include any of the above systems or

devices, and the like.

[00331 The invention may be described in the general context of computer-executable

5 instructions, such as program modules, being executed by a computer. Generally, program

modules include routines, programs, objects, components, data structures, and so forth,

which perform particular tasks or implement particular abstract data types. The invention

may also be practiced in distributed computing environments where tasks are performed

by remote processing devices that are linked through a communications network. In a

10 distributed computing environment, program modules may be located in local and/or

remote computer storage media including memory storage devices.

[00341 With reference to FIGURE 4, an exemplary system for implementing various

aspects of the invention may include a general purpose computing device in the form of a

computer 400. Components may include, but are not limited to, various hardware

15 components, such as processing unit 401, data storage 402, such as a system memory, and

system bus 403 that couples various system components including the data storage 402 to

the processing unit 401. The system bus 403 may be any of several types of bus structures

including a memory bus or memory controller, a peripheral bus, and a local bus using any

of a variety of bus architectures. By way of example, and not limitation, such architectures

20 include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA)

bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local

bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.

[00351 The computer 400 typically includes a variety of computer-readable media 404.

Computer-readable media 404 may be any available media that can be accessed by the

25 computer 400 and includes both volatile and nonvolatile media, and removable and non

removable media, but excludes propagated signals. By way of example, and not

limitation, computer-readable media 404 may comprise computer storage media and

communication media. Computer storage media includes volatile and nonvolatile,

removable and non-removable media implemented in any method or technology for

30 storage of information such as computer-readable instructions, data structures, program

modules or other data. Computer storage media includes, but is not limited to, RAM,

ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile

disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic

disk storage or other magnetic storage devices, or any other medium which can be used to

-7-

WO 2014/018812 PCT/US2013/052153

store the desired information and which can accessed by the computer 400.

Communication media typically embodies computer-readable instructions, data structures,

program modules or other data in a modulated data signal such as a carrier wave or other

transport mechanism and includes any information delivery media. The term "modulated

5 data signal" means a signal that has one or more of its characteristics set or changed in

such a manner as to encode information in the signal. By way of example, and not

limitation, communication media includes wired media such as a wired network or direct

wired connection, and wireless media such as acoustic, RF, infrared and other wireless

media. Combinations of the any of the above may also be included within the scope of

10 computer-readable media. Computer-readable media may be embodied as a computer

program product, such as software stored on computer storage media.

[00361 The data storage or system memory 402 includes computer storage media in the

form of volatile and/or nonvolatile memory such as read only memory (ROM) and random

access memory (RAM). Memory 402 or computer readable media 404 may be used to

15 store data pages, opcode boundary lists, opcodes, and the like. A basic input/output

system (BIOS), containing the basic routines that help to transfer information between

elements within computer 400, such as during start-up, is typically stored in ROM. RAM

typically contains data and/or program modules that are immediately accessible to and/or

presently being operated on by processing unit 401. By way of example, and not

20 limitation, data storage 402 holds an operating system, application programs, and other

program modules and program data. An operating system running on processing unit 402

may support functions such as operating system exception 203, stream fault interceptor

204, disassembler 206, and/or written/unwritten page tracker 207 (FIGURE 2).

[00371 Data storage 402 may also include other removable/non-removable,

25 volatile/nonvolatile computer storage media. By way of example only, data storage 402

may be a hard disk drive that reads from or writes to non-removable, nonvolatile magnetic

media, a magnetic disk drive that reads from or writes to a removable, nonvolatile

magnetic disk, and an optical disk drive that reads from or writes to a removable,

nonvolatile optical disk such as a CD ROM or other optical media. Other removable/non

30 removable, volatile/nonvolatile computer storage media that can be used in the exemplary

operating environment include, but are not limited to, magnetic tape cassettes, flash

memory cards, digital versatile disks, digital video tape, solid state RAM, solid state

ROM, and the like. The drives and their associated computer storage media, described

-8-

WO 2014/018812 PCT/US2013/052153

above and illustrated in FIGURE 4, provide storage of computer-readable instructions,

data structures, program modules and other data for the computer 400.

[00381 A user may enter commands and information through a user interface 405 or other

input devices such as a tablet, electronic digitizer, a microphone, keyboard, and/or

5 pointing device, commonly referred to as mouse, trackball or touch pad. Other input

devices may include a joystick, game pad, satellite dish, scanner, or the like. Additionally,

voice inputs, gesture inputs using hands or fingers, or other natural user interface (NUI)

may also be used with the appropriate input devices, such as a microphone, camera, tablet,

touch pad, glove, or other sensor. These and other input devices are often connected to the

10 processing unit 401 through a user input interface 405 that is coupled to the system bus

403, but may be connected by other interface and bus structures, such as a parallel port,

game port or a universal serial bus (USB). A monitor 406 or other type of display device is

also connected to the system bus 403 via an interface, such as a video interface. The

monitor 406 may also be integrated with a touch-screen panel or the like. Note that the

15 monitor and/or touch screen panel can be physically coupled to a housing in which the

computing device 400 is incorporated, such as in a tablet-type personal computer. In

addition, computers such as the computing device 400 may also include other peripheral

output devices such as speakers and printer, which may be connected through an output

peripheral interface or the like.

20 [00391 The computer 400 may operate in a networked or cloud-computing environment

using logical connections 407 to one or more remote devices, such as a remote computer.

The remote computer may be a personal computer, a server, a router, a network PC, a peer

device or other common network node, and typically includes many or all of the elements

described above relative to the computer 400. The logical connections depicted in

25 FIGURE 4 include one or more local area networks (LAN) and one or more wide area

networks (WAN), but may also include other networks. Such networking environments

are commonplace in offices, enterprise-wide computer networks, intranets and the

Internet.

[00401 When used in a networked or cloud-computing environment, the computer 400

30 may be connected to a public or private network through a network interface or adapter

407. Network interface 407 may provide a connection to a remote device, such as a

network server 205 (FIGURE 2). In some embodiments, a modem or other means for

establishing communications over the network. The modem, which may be internal or

external, may be connected to the system bus 403 via the network interface 407 or other

-9-

appropriate mechanism. A wireless networking component such as comprising an

interface and antenna may be coupled through a suitable device such as an access point or

peer computer to a network. In a networked environment, program modules depicted

relative to the computer 400, or portions thereof, may be stored in the remote memory

5 storage device. It may be appreciated that the network connections shown are exemplary

and other means of establishing a communications link between the computers may be

used.

[0041] Although the subject matter has been described in language specific to structural

features and/or methodological acts, it is to be understood that the subject matter defined

10 in the appended claims is not necessarily limited to the specific features or acts described

above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

[0042] Throughout this specification and claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" and "comprising", will

15 be understood to imply the inclusion of a stated integer or step or group of integers or

steps but not the exclusion of any other integer or step or group of integers or steps.

[0043] The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

20 information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

-10-

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method, comprising:

receiving instructions comprising a plurality of opcodes, each opcode comprising

one or more bytes of data;

5 disassembling the instructions into separate opcodes;

creating a table identifying the boundaries between each opcode;

appending debug break point opcodes to an opcode to create a full standard block

of memory; and

writing each opcode to memory in an opcode-by-opcode manner by atomically

10 writing standard blocks of memory.

2. The computer-implemented method of claim 1, further comprising: writing debug

break point opcodes to all memory locations to initialize the memory.

15 3. The computer-implemented method of claim 1, wherein the standard block of

memory is thirty-two bits or sixty-four bits long.

4. The computer-implemented method of claim 1, further comprising: identifying

when a long opcode will overlap two or more standard blocks of memory; writing a

20 second portion of the long opcode to a second memory block; and writing a first portion of

the long opcode to a first memory block.

5. The computer-implemented method of claim 4, further comprising: appending

debug break point opcodes to the second portion of the long opcode to create a full

25 standard block of memory.

6. The computer-implemented method of claim 5, further comprising: writing a

previous opcode and the first portion of the long opcode to the first memory block.

30 7. A computer system, comprising:

a processor;

system memory;

-11-

one or more computer-readable storage media having stored thereon computer

executable instructions that, when executed by the one or more processors, causes the

processors to perform a method for streaming of executable code, the processor operating

to:

5 receive instructions comprising a plurality of opcodes, each opcode comprising one

or more bytes of data;

disassembling the instructions into separate opcodes;

creating a table identifying the boundaries between each opcode;

writing each opcode to memory in an opcode-by-opcode manner by atomically

10 writing standard blocks of memory; and

append debug break point opcodes to an opcode to create a full standard block of

memory.

8. The computer system of claim 7, the processor further operating to: writing debug

15 break point opcodes to all memory locations to initialize the memory.

9. The computer system of claim 7, wherein the standard block of memory is thirty

two bits or sixty-four bits long.

20 10. The computer system of claim 7, the processor further operating to: identify when

a long opcode will overlap two or more standard blocks of memory; write a second portion

of the long opcode to a second memory block; and write a first portion of the long opcode

to a first memory block.

25 11. The computer system of claim 10, the processor further operating to: append debug

break point opcodes to the second portion of the long opcode in to create a full standard

block of memory.

12. The computer system of claim 10, the processor further operating to: write a

30 previous opcode and the first portion of the long opcode to the first memory block.

13. The computer system of claim 7, further comprising: a stream fault interceptor

operating to identify when a requested data page is not available; and retrieving the data

page from a remote source.

-12-

14. The computer system of claim 7, further comprising: a disassembler operating to

disassemble the instructions into separate opcodes.

5 15. The computer system of claim 7, further comprising: a page tracker maintaining

the table that identifies the boundaries between each opcode.

16. A computer-readable storage medium that excludes propagated signals, said

computer-readable storage medium storing computer-executable instructions that when

10 executed by at least one processor cause the at least one processor to perform a method for

streaming executable code data, the method comprising:

receiving a fault indicating that a data page is not available;

requesting instructions including the data page;

receiving the instructions from a remote source, the instructions comprising a

15 plurality of opcodes, each opcode comprising one or more bytes of data;

disassembling the instructions into separate opcodes;

creating a table identifying the boundaries between each opcode;

identifying when a long opcode will overlap two or more standard blocks of

memory;

20 writing each opcode to memory in an opcode-by-opcode manner by atomically

writing standard blocks of memory;

writing a second portion of the long opcode to a second memory block; and

writing a first portion of the long opcode to a first memory block.

25 17. The computer-readable storage medium of claim 16, wherein the method further

comprises: appending debug break point opcodes to an opcode to create a full standard

block of memory.

18. The computer-readable storage medium of claim 16, wherein the standard block of

30 memory is thirty-two bits or sixty-four bits long.

-13-

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

