

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2009212367 B2

(54) Title
Composition for sustained release delivery of proteins or peptides

(51) International Patent Classification(s)
A61K 9/50 (2006.01) **A61K 47/30** (2006.01)
A61K 38/00 (2006.01)

(21) Application No: 2009212367 (22) Date of Filing: 2009.02.05

(87) WIPO No: WO09/100216

(30) Priority Data

(31) Number (32) Date (33) Country
61/065,179 **2008.02.08** **US**

(43) Publication Date: 2009.08.13
(44) Accepted Journal Date: 2013.08.01

(71) Applicant(s)
QPS LLC

(72) Inventor(s)
Guarino, Andrew;Li, Yuhua;Chien, Benjamin

(74) Agent / Attorney
Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001

(56) Related Art
US2006/0025328

WO 2009/100216 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)	
(19) World Intellectual Property Organization International Bureau	
(43) International Publication Date 13 August 2009 (13.08.2009)	
(10) International Publication Number WO 2009/100216 A1	
<hr/>	
(51) International Patent Classification: <i>A61K 9/50</i> (2006.01) <i>A61K 47/30</i> (2006.01) <i>A61K 38/00</i> (2006.01)	(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(21) International Application Number: PCT/US2009/033217	(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 5 February 2009 (05.02.2009)	Published:
(25) Filing Language: English	— with international search report (Art. 21(3))
(26) Publication Language: English	
(30) Priority Data: 61/065,179 8 February 2008 (08.02.2008) US	
(71) Applicant (for all designated States except US): QPS LLC [US/US]; Three Innovation Way, Suite 240, Newark, DE 19711 (US).	
(72) Inventors; and	
(75) Inventors/Applicants (for US only): LI, Yuhua [US/US]; 124 Miners Lane, Newark, DE 19713 (US). GUARINO, Andrew [US/US]; 14 N Valley Stream Circle, Newark, DE 19702 (US). CHIEN, Benjamin [US/US]; 158 Drummond Farms, Newark, DE 19711 (US).	
(74) Agent: CHENG, Kent ; Cohen Pontani Lieberman & Pavan LLP, 551 Fifth Avenue, New York, NY 10176 (US).	

(54) Title: COMPOSITION FOR SUSTAINED RELEASE DELIVERY OF PROTEINS OR PEPTIDES

(57) Abstract: The present invention provides a novel liquid composition suitable for *in-situ* formation of a depot system to deliver a protein or peptide in a controlled manner. The composition of the present invention comprises: (a) a hydrophobic non-polymeric carrier material; (b) a water miscible biocompatible organic solvent that dissolves the hydrophobic non-polymeric material; (c) a protein or peptide covalently conjugated with one or more formulation performance-enhancing compounds. The present invention also provides a method of manufacturing and use of the composition thereof.

5 **COMPOSITION FOR SUSTAINED RELEASE DELIVERY OF PROTEINS OR
 PEPTIDES**

1. **Field of the Invention**

[0001] This invention relates to the field of sustained release delivery of proteins or peptides and to compositions and methods useful for sustained release delivery of proteins or peptides that are covalently modified and formulated with a hydrophobic, non-polymeric carrier material.

BACKGROUND OF THE INVENTION

15 [0002] Hydrophobic, non-polymeric materials, particularly, highly viscous, non-polymeric liquid materials have been described as biodegradable systems for controlled release delivery of bioactive compounds (Smith and Tipton, *Pharmaceutical Research*, 13(9), S300, 1996). The 20 hydrophobic non-polymeric material is generally substantially insoluble in water. The hydrophobic non-polymeric material can be a highly viscous liquid that has a viscosity of at least 5,000 cP at 37° C and does not crystallize neat under ambient or physiological 25 conditions. When such material is mixed with a small amount of plasticizing solvent, the mixture has a much lower viscosity than that of the non-polymeric liquid material alone. This low viscosity solution can be easily formulated with a bioactive compound and the resulting low 30 viscosity liquid formulation can be readily administered to the body of a subject to form a highly viscous depot *in-situ*.

5 [0003] Representative examples of such *in-situ* forming depot systems containing the hydrophobic, non-polymeric liquid carrier materials are disclosed in the U.S. Pat. Nos. 5,747,058; 5,968,542; 6,051,558; and 6,992,065. The compositions described in these patents comprise a

10 hydrophobic, highly viscous, non-polymeric liquid material such as sucrose acetate isobutyrate (SAIB), a water soluble or miscible organic solvent, and a bioactive substance. Such a composition can be easily prepared and administered to the body of a subject in the form of a low

15 viscosity solution. Once in the body, the solvent dissipates or diffuses into the surrounding tissues, which leads to the precipitation or coagulation of the non-polymeric materials to form a highly viscous gel, semi-solid, or solid depot that encapsulates the bioactive

20 substances. Then the bioactive substance is released via dissolution, diffusion, and/or degradation of the depot.

[0004] However, due to the hydrophobic nature of the non-polymeric carrier material, many bioactive agents, especially hydrophilic peptides and proteins with their

25 charged and polar characteristics, may not be compatible with the non-polymeric carrier material, resulting in an unstable liquid formulation. It has been found that the composition comprising a hydrophobic non-polymeric liquid material, a peptide, and an organic solvent undergoes

30 phase separation when it is allowed to stand for a short period of time at ambient condition. In addition, the proteins or peptides, due to their nucleophilic nature, may interact or react with the non-polymeric carrier materials in solution/suspension of an organic solvent.

5 The interactions/reactions will result in the expedited degradation of the non-polymeric carrier material and can also alter the proteins or peptides chemically. The instability of the carrier material and the protein or peptide in the formulation prohibits the preparation of a suitable composition

0 with a reasonable period of time for storage and the use of the formulation to form a consistent depot upon administration to achieve desired release characteristics. Furthermore, a burst release is the typical characteristic of this type of liquid formulation. The uncontrollable initial burst may not be

5 desirable, especially for the proteins or peptides having a narrow therapeutic index. Although some polymeric additives were disclosed to modulate the release rate in such formulations, the results obtained were not entirely satisfactory.

0 [0006] Therefore, there is a need for a composition that solves these problems and that is useful in the sustained release delivery of a therapeutically effective amount of proteins or peptides over a long period of time.

[0006a] It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

SUMMARY OF THE INVENTION

30 [0006b] In one aspect, the invention provides a composition for sustained release of a protein or peptide, comprising:


(a) a hydrophobic non-polymeric carrier material;

(b) a water miscible pharmaceutically acceptable solvent;

and

3a

5 (c) a protein or peptide covalently conjugated with one or
more amphiphilic molecule(s) having the following
general structures:

wherein L is a lipophilic moiety optionally selected from

10 C4-36-alkyl, C4-36-alkenyl, C4-36-alkadienyl, tocopherol and
steroidal residues, wherein S is a linker selected from an ester
group, amide group, secondary or tertiary amine group, carbamate
group, sulfonate group, sulfate group, phosphate group,
phosphonate group, or ether group, wherein m ranges from 1 to
15 1000, and wherein (c) maintains the stability of the composition
by preventing phase separation.

[0007] The present invention relates to a novel liquid
composition suitable for *in-situ* formation of a depot system to
deliver a protein or peptide in a controlled, sustained manner.

20 The composition of the present invention may comprise: (a) a
hydrophobic non-polymeric carrier material; (b) a water miscible
biocompatible organic solvent that dissolves the hydrophobic
non-polymeric material and lowers the viscosity of the
composition significantly to facilitate the ease of

5 preparation and administration; and (c) a protein or peptide covalently conjugated with one or more formulation performance-enhancing compound(s). Wherein the non-polymeric material is substantially insoluble in water and may be a highly viscous liquid that has a viscosity of at 10 least 5,000cP at 37°C and does not crystallize neat under ambient or physiological conditions. The composition of the present invention further comprises optionally an additive to achieve desired release characteristics. The present invention also provides a method of manufacturing 15 and use of the composition thereof.

[0008] Accordingly, the protein or peptide is preferably covalently conjugated with a formulation performance-enhancing compound that stabilizes the protein or peptide, increases the compatibility with non-polymeric carrier 20 material, and improves the release profile of the protein or peptide. A suitable formulation performance-enhancing compound is either hydrophilic, lipophilic, or amphiphilic. The compound may be a small molecule or a polymer. The suitable formulation performance-enhancing 25 compound is conjugated to a protein or peptide through a degradable or non-degradable bond. The resulting conjugate preferably retains some or all of the native biological activities of the unmodified protein or peptide.

[0009] Then the conjugated protein or peptide is mixed 30 with or dispersed in the hydrophobic, non-polymeric carrier materials. Alternatively, the hydrophobic, non-polymeric carrier material is preferably mixed with a water soluble or miscible solvent such as N-methyl-2-pyrrolidone (NMP) or ethanol to form a low viscosity

5 solution. Then this low viscosity solution is used to dissolve or suspend the conjugated protein or peptide to form a homogeneous solution or uniform suspension. Typically, such formulation containing an unconjugated protein or peptide or its simple salt, such as acetate 10 salt, undergoes rapid phase separation. However, it has been surprisingly discovered that the conjugation of proteins or peptides with formulation performance-enhancing compound of the present invention through covalent bonding can prevent the phase separation to 15 maintain the physical stability of the formulation. In addition, typically the uncomplexed protein or peptide or its simple salt such as acetate salt is susceptible to chemical degradation during formulation process and subsequent storage. It has also been found that such 20 chemical degradation can be prevented or minimized by covalent conjugation of the protein or peptide with the formulation performance-enhancing compound of the present invention. The enhanced chemical and physical stabilities of the composition of the present invention will allow one 25 to develop a stable product with a desired characteristics and a reasonable storage shelf life.

[0010] When the liquid composition of the present invention is brought in contact with an aqueous environment, such as biological fluids in the body of a 30 subject, the water soluble or miscible solvent dissipates or diffuses into the surrounding aqueous or biological fluids. Simultaneously, the water insoluble, non-polymeric carrier material precipitates or coagulates to form a highly viscous gel, semi-solid, or solid depot that

5 traps or encapsulates the protein or peptide. Due to the rapid diffusion of the solvent, typically a high initial burst release of the protein or peptide is observed during the depot formation process. However, it has been unexpectedly found that the conjugation of proteins or
10 peptides with formulation performance-enhancing compound through covalent bonding, dramatically reduces the burst effect and improves the overall release profile of the protein or peptide relative to the formulation containing unconjugated protein or peptide. Once the depot is formed,
15 the protein or peptide is released from the non-polymeric matrix by dissolution, diffusion and/or degradation of the non-polymeric carrier material.

[0011] According to the present invention, the composition optionally includes additives that modify the composition
20 to achieve a desired release profile for the protein or peptide. The additives include, but are not limited to, burst effect reducing materials, release rate modulating agents, pH modifiers, antioxidants, solubilization agents and the like. The additives can be polymeric or non-
25 polymeric materials including biodegradable or non-biodegradable polymers, carbohydrates or carbohydrate derivatives, organic or inorganic compounds.

[0012] The composition of the present invention may be a viscous or non-viscous liquid, or gel that may be
30 administered using a syringe or similar devices. The composition can be administered by injection subcutaneously, intramuscularly, intraperitoneally, or intradermally to form a depot *in-situ*. The compositions can also be administered orally or topically. When

5 administered to the body of a subject, the controlled release of the protein or peptide can be sustained for a desired period of time depending upon the make up of the composition. With the proper selections of the non-polymeric carrier material and other excipients, the duration of the sustained release of the
10 protein or peptide can be controlled over a period of time from several days, to weeks, to one year.

[0013] Other features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be
5 understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless
10 otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

[0014] Figure 1 shows the pictures taken after the formulations
25 stood at room temperature for 24 h.

[0015] Figure 2. shows the *in vitro* release of octreotide from SAIB/NMP formulations containing (a) OCT-Ac; (b) PAL-PEG-BA-OCT

5 DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

[0016] The present invention is related to the surprising discovery that the covalent modification of a protein or peptide with a formulation performance-enhancing compound enables the preparation of a stable formulation of the 10 protein or peptide in hydrophobic, non-polymeric materials, prevents or minimizes the degradation/reaction of the protein or peptide during formulation process and subsequently storage, and improves the sustained release profile of the protein or peptide. The surprising 15 discovery leads to the development of desired compositions suitable for *in-situ* formation of a depot system to deliver proteins or peptides in a sustained and controlled manner.

[0017] The present invention provides a composition 20 comprising: (a) a hydrophobic, non-polymeric carrier material; (b) a water miscible pharmaceutically acceptable solvent; and (c) a protein or peptide covalently conjugated with one or more formulation performance-enhancing compound(s). The composition of the present 25 invention optionally further comprises an additive to achieve desired release characteristics. The present invention also provides a method of manufacturing and use of the composition thereof.

[0018] The hydrophobic, non-polymeric material is used as 30 a carrier to control the sustained release of the proteins or peptides. Numerous pharmaceutically acceptable non-polymeric materials are available to a person in the art to produce suitable pharmaceutical compositions that can be used for sustained release delivery of various proteins

5 or peptides. Representative examples of patents relating to hydrophobic, non-polymeric delivery systems and the preparation include U.S. Pat. Nos. 5,736,152; 5,888,533; 6,120,789; 5,968,542; and 5,747,058, which are incorporated herein entirely by reference.

10 [0019] Suitable non-polymeric carrier materials include, but are not limited to, cholesteryl esters such as cholesteryl stearate; C16-C32 mono-, di- and triacylglycerides such as glyceryl monooleate, glyceryl monolinoleate, glyceryl monolaurate, glyceryl

15 monodocosanoate, glyceryl monomyristate, glyceryl monodicenoate, glyceryl dipalmitate, glyceryl didocosanoate, glyceryl dimyristate, glyceryl didecanoate, glyceryl tridocosanoate, glyceryl trimyristate, glyceryl tridecanoate, glycerol tristearate and mixtures thereof;

20 sucrose fatty acid esters such as sucrose distearate and sucrose palmitate; sorbitan fatty acid esters such as sorbitan monostearate, sorbitan monopalmitate and sorbitan tristearate; esters of fatty alcohols and fatty acids such as cetyl palmitate and cetearyl palmitate; phospholipids

25 including phosphatidylcholine (lecithin), phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and lysoderivatives thereof; sphingosine and derivatives thereof; spingomyelins such as stearyl, palmitoyl, and tricosanyl spingomyelins;

30 ceramides such as stearyl and palmitoyl ceramides; glycosphingolipids; and combinations and mixtures thereof.

[0020] Preferred non-polymeric carrier materials are those that have low crystallinity, non-polar characteristics, and are hydrophobic. More preferably, the non-polymeric

5 carrier material is a viscous liquid. The non-polymeric liquid material is preferably hydrophobic, substantially water insoluble and has a viscosity of at least 5,000 cP at 37°C that does not crystallize neat under ambient or physiological conditions. As used herein, the term

10 "hydrophobic or water-insoluble" refers to the solubility of a material in water at 25°C is less than one percent by weight. The term "non-polymeric" refers to esters or mixed esters having essentially no repeating units in the acid moiety used to form the esters. The acid moiety used

15 to form the ester or mixed esters may include a small number of repeating units (*i.e.*, oligomers) such as dimers, trimers, tetramers, and pentamers. Generally, the repeating units in acid moiety should be less than five.

[0021] Particularly, the hydrophobic, non-polymeric

20 carrier materials can be one or more of non-polymeric esters or mixed esters. The esters are typically formed from a polyol having less than 20 hydroxyl groups that are esterified with carboxylic acids. Suitable polyols include monofunctional and multifunctional alcohols having

25 from 2 to 24 carbons, sugar alcohols, monosaccharides, disaccharides, oligosaccharides, and polyether alcohols. More specifically, the polyols may be dodecanol, hexanediol, glycerol, mannitol, sorbitol, glucose, fructose, sucrose, inositol, polyglycerol, polyethylene

30 glycol, polypropylene glycol, poly(ethylene-co-propylene) glycol, polyvinyl alcohol, and the like.

[0022] The carboxylic acids used to form the hydrophobic non-polymeric carrier materials include organic acids having more than two carbons, such as fatty acids. These

5 carboxylic acids may be saturated, unsaturated, aromatic (aryl or arylalkyl) and linear or branched in structure. These carboxylic acids may also have one or more hydroxyl groups or other groups such as halo, nitro and the like. More specifically, these carboxylic acids include acetic
10 acid, propionic acid, butyric acid, isobutyric acid, valeric acid, lipoic acid, hexanoic acid, heptanoic acid, oleic acid, palmitic acid, stearic acid, myristic acid, benzoic acid, glycolic acid, lactic acid, α -hydroxycaproic acid, octanoic acid, decanoic acid,
15 dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, and other fatty acids.

[0023] The hydrophobic, non-polymeric carrier material is preferably biodegradable without the generation of any
20 non-biocompatible or toxic metabolites. When the hydrophobic, non-polymeric carrier material is mixed with a water miscible solvent, a solution with significant lower viscosity can be obtained. The low viscosity of the solution can be readily combined with a protein or peptide
25 to prepare the composition of the present invention. The low viscosity also allows the composition to be easily administered to the body of a subject. The ratio of the hydrophobic, non-polymeric carrier material to solvent can be easily adjusted to obtain a desired viscosity.

30 [0024] In a preferred embodiment, sucrose acetate isobutyrate (SAIB) is used as a hydrophobic, non-polymeric carrier material. The SAIB is a mixed ester of sucrose esterified with two acetate and six isobutyrate groups. The ester is completely non-crystalline and has a

5 viscosity of over 100,000 cP at 30°C. The viscosity of the ester can be dramatically decreased by slightly increasing the temperature or adding solvents. The SAIB is commercially available from Eastman Chemical Company, USA and may be synthesized following the procedures described

10 in U.S. Pat. No 2,931,802. In one embodiment, the SAIB can be heated and mixed with a protein or peptide covalently conjugated with at least one formulation performance-enhancing compound to prepare a suspension.

Alternatively, the SAIB can be mixed with a large number

15 of biocompatible solvents to result in a low viscosity solution that can be easily formulated with a protein or peptide to obtain an injectable solution or suspension.

[0025] Suitable solvents for optional use in the composition of the present invention are biocompatible and

20 water soluble or miscible to dispersible. The solvents have a solubility of at least 1%, preferably have a solubility of at least 3%, more preferably have a solubility of at least 7% by weight in water at 25°C. When combined with the hydrophobic, non-polymeric carrier

25 material, the solvents can dramatically reduce the viscosity of the mixture relative to the non-polymeric carrier material alone. Such lower viscosity liquid composition can be further formulated with a protein or peptide for sustained release delivery. Examples of the

30 suitable solvents, without limitation, include acetone, benzyl alcohol, butylene glycol, caprolactam, caprolactone, dimethylsulfoxide (DMSO), ethanol, ethyl acetate, ethyl lactate, glycerol, glycerol formal, glycofurool (tetraglycol), N-methyl-2-pyrrolidone (NMP),

5 polyethylene glycol, PEG-300, PEG-400, methoxy polyethylene glycol, mPEG-350, alkoxy polyethylene glycol, propylene carbonate, 2-pyrrolidone, triacetin, triethyl citrate, and combinations thereof.

[0026] As used herein, peptides are short polymers formed 10 from the linking, in a defined order, of α -amino acids. The link between one amino acid residue and the next is known as an amide bond or a peptide bond. Proteins are polypeptide molecules (or consist of multiple polypeptide subunits). The distinction is that peptides are short and 15 polypeptides/proteins are long. As used herein, peptides, polypeptides, and proteins are used interchangeably and represent the same type of molecules.

[0027] The suitable bioactive proteins or peptides of the present invention include any proteins or peptides that 20 have at least one functional group that can be covalently modified and retain some or all of their biological activities. The proteins or peptides of the present invention include, but are not limited to, oxytocin, vasopressin, adrenocorticotrophic hormone (ACTH), epidermal 25 growth factor (EGF), platelet-derived growth factor (PDGF), prolactin, luteinising hormone, luteinizing hormone releasing hormone (LHRH), LHRH agonists, LHRH antagonists, growth hormones (including human, porcine, and bovine), growth hormone releasing factor, insulin, 30 insulin-like growth factors (IGF-I, IGF-II), erythropoietin (including all proteins with erythropoietic activity), somatostatins, glucagon, interleukin, interferon- α , interferon- β , interferon- γ , gastrin, tetragastrin, pentagastrin, urogastrone, secretin,

5 calcitonin, enkephalins, endorphins, angiotensins, thyrotropin releasing hormone (TRH), tumor necrosis factor (TNF), parathyroid hormone (PTH), nerve growth factor (NGF), granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF),
10 macrophage-colony stimulating factor (M-CSF), heparinase, vascular endothelial growth factor (VEG-F), bone morphogenic protein (BMP), hANP, glucagon-like peptide (GLP-1, GLP-2), exenatide (exendin-3, exendin-4, etc.), peptide YY (PYY), renin, bradykinin, bacitracins,
15 polymyxins, colistins, tyrocidine, gramicidins, cyclosporins (which includes synthetic analogues and pharmacologically active fragments thereof), enzymes, cytokines, antibodies, vaccines, antibiotics, glycoproteins, follicle stimulating hormone, kyotorphin,
20 taftsin, thymopoietin, thymosin, thymostimulin, thymic humoral factor, serum thymic factor, colony stimulating factors, motilin, bombesin, dinorphin, neurotensin, cerulein, urokinase, kallikrein, substance P analogues and antagonists, angiotensin II, blood coagulation factor VII
25 and IX, lysozyme, gramicidines, melanocyte stimulating hormone, thyroid hormone releasing hormone, thyroid stimulating hormone, pancreozymin, cholecystokinin, human placental lactogen, thrombopoietin (TPO), human chorionic gonadotrophin, protein synthesis stimulating peptide,
30 gastric inhibitory peptide, vasoactive intestinal peptide, platelet derived growth factor, and synthetic analogues and modifications and pharmacologically-active fragments thereof.

5 [0028] In a preferred aspect, the protein or peptide is covalently conjugated with a formulation performance-enhancing compound. The covalently conjugated protein or peptide retains some or all the biological activities and enhances the formulation performance of the parent agent.

10 The "formulation performance-enhancing compound" as used herein is one that can be covalently conjugated to the protein or peptide and the resulting conjugate substantially retains at least some of the biological activities of the protein or peptide. The conjugated

15 protein or peptide is easier to formulate with the non-polymeric carrier materials and the resulting formulation is more uniform and stable relative to that obtained using non-conjugated protein or peptide. The conjugation enhances the physico-chemical stability and improves the

20 release profile of the protein or peptide from the delivery systems comprising the hydrophobic, non-polymeric carrier materials. The covalent modification of the protein or peptide may also lead to extended *in vivo* disposition half-life, reduced antigenicity and

25 immunogenicity, resistance to proteolysis, improved bioavailability, as well as reduced toxicity.

[0029] As used herein, the term "formulation performance-enhancing compound" refers to any molecules after covalent conjugations that improve the formulation performance of

30 the protein or peptide in the non-polymeric carrier material of the present invention. The compound may be hydrophilic, lipophilic, or amphiphilic. The compound may be a small molecule or a polymer. The criterion for the formulation performance-enhancing compound is to retain

5 some or all the biological activities of the protein or peptide after covalent modification and to improve the performance characteristics when formulated with the non-polymeric carrier material of the present invention. The conjugation of the formulation performance-enhancing

10 compound of the present invention with protein or peptide retains at least 10% of the original biological activity of the protein or peptide, preferably at least 25% of the original biological activity of the protein or peptide, more preferably at least 50% of the original biological

15 activity of the protein or peptide. The conjugation of the formulation performance-enhancing compound of the present invention with protein or peptide improves the physical and chemical stabilities of the formulation, while reducing the initial burst release.

20 [0030] In a preferred embodiment, the formulation performance-enhancing compound refers to any hydrophilic polymers. The hydrophilic polymers are water-soluble and can be a linear or branched polymer. Representative examples, but are not limited to, include polyethylene

25 glycol, polypropylene glycol, polyvinylpyrrolidone, polysaccharides, sugar, and the like. Preferably, the molecular weight of the polymer ranges from about 200 daltons to about 50,000 daltons. Hydrophilic polymers for use in the present invention typically have at least one

30 reactive group that can be used to covalently conjugate to the protein or peptide of interest through amino, carboxyl, sulfhydryl, phosphate or hydroxyl functional groups. Various methods of conjugations and pegylations are disclosed in the prior art (U.S. Pat. Nos. 4,179,337;

5 5,446,090; 5,880,255; and 6,113,906; M.J. Roberts, M.D. Bentley and J.M. Harris, *Chemistry for peptide and protein PEGylation*, Advanced Drug Delivery Reviews, 2002, 54 (4), 459-476. F.M. Veronese, *Peptide and protein PEGylation: a review of problems and solutions*, Biomaterials, 2001, 22, 10 405-417). The entire contents of these patents, publications and references cited therein are incorporated by reference herein.

[0031] In another preferred embodiment, the formulation performance-enhancing compound is a hydrophobic or 15 lipophilic molecule. Typically, the lipophilic molecules have a solubility in water at 20°C less than 1% by weight. The suitable lipophilic formulation performance-enhancing compound is preferably selected from C₄₋₃₆-alkyl, C₄₋₃₆-alkenyl, C₄₋₃₆-alkadienyl, tocopherol and steroid residues. The terms "C₄₋₃₆-alkyl", "C₄₋₃₆-alkenyl" and "C₄₋₃₆-alkadienyl" are intended to cover straight chain and 20 branched, preferably straight chain, saturated, monounsaturated and di-unsaturated hydrocarbon of 4-36 carbon atoms. Preferably, the lipophilic molecules have 25 high affinity to the cell membrane and can interact with plasma proteins such as albumin to extend the *in vivo* half-life of the modified protein or peptide relative to the unmodified protein or peptide. More specifically, the lipophilic formulation performance-enhancing compound is a 30 saturated or unsaturated hydrocarbyl or carboxylic acyl radical having at least 4 carbon atoms. The carboxylic acyl radical may be caproyl, lauryl, palmitoyl, stearoyl, oleyl, eicosanoyl, and docsanoyl. The hydrocarbyl may be hexyl, dodecyl, and octadecyl.

5 [0032] In yet another preferred embodiment, the formulation performance-enhancing compound includes any amphiphilic molecules. The term "amphiphilic" refers to any molecules having both lipophilic and hydrophilic characteristics and soluble in both water and lipophilic

10 solvents. The amphiphilic molecules used in the present invention are composed of lipophilic and hydrophilic moieties. The lipophilic moieties are preferably natural fatty acids or alkyl chains as those described above. The hydrophilic moieties are selected from polyethylene

15 glycol, polypropylene glycol, copolymer of ethyleneglycol and propyleneglycol, polyvinylpyrrolidone, polysaccharides, sugar, and the like. The hydrophilic moieties are preferably polyethylene glycol (PEG) having less than 1000 ethylene glycol units. The size and

20 composition of the lipophilic moieties and the hydrophilic moieties may be adjusted to obtain desired amphiphilicity.

[0033] The covalent conjugation of a formulation performance-enhancing compound to a protein or peptide may lead to an improved therapeutic effect compared with the native protein or peptide. The conjugation can typically be done by reaction of a functional group such as an amine group in a bioactive molecule with an acid or other reactive groups in a formulation performance-enhancing compound. Alternatively, the conjugation between a protein

25 or peptide and a formulation performance-enhancing compound is accomplished through an additional moiety such as a bridge, spacer, or linkage moiety, which can be degradable or non-degradable. Representative examples are

30 disclosed in the prior art [e.g., Japanese patent

5 application 1,254,699; U.S. Pat. No. 5,693,609, WO95/07931, U.S. Pat. No. 5,750,497, and WO96/29342. See also, Hashimoto, M., et al., *Pharmaceutical Research*, 6:171-176 (1989), and Lindsay, D. G., et al., *Biochemical J.*, 121:737-745 (1971)]. Further examples of acylated 10 peptides are found in WO98/08871, WO98/08872, and WO99/43708. The contents of these patents, publications and references cited therein are incorporated entirely by reference herein.

[0034] In one embodiment of the present invention, 15 palmitic acid was activated with N-hydroxysuccinimide and then reacted with amine groups on octreotide, an octapeptide, to form a conjugate through an amide linker between the palmityl lipophilic moiety and the peptide. There are two primary amine groups on octreotide. Both 20 amine groups could be conjugated simultaneously or only one amine group could be selectively conjugated by adjusting the reaction conditions followed by separation.

[0035] In another embodiment, decanal, a lipophilic compound with an aldehyde end group, was reacted with the 25 amine groups on octreotide to form a conjugate through a secondary amine linkage. Both amine groups could be conjugated simultaneously or only one amine group could be conjugated by adjusting the reaction conditions followed by separation.

[0036] In a further embodiment, palmitic acid was conjugated to lysozyme through its six amine groups at several ratios. When the ratio of palmitic acid to lysozyme is smaller than 6, the conjugation sites on 30

5 lysozyme may be random depending upon the reactivity of each amine group.

[0037] According to the present invention, a lipophilic moiety may be first covalently coupled to a hydrophilic moiety to form an amphiphilic molecule. The amphiphilic 10 molecules of the present invention may have one or more suitable functional groups, or may be modified to have one or more suitable functional groups for covalent coupling to a peptide or protein. Suitable functional groups are selected from hydroxyl group, amino group (primary amino 15 group or secondary amino group), thiol group, carboxyl group, aldehyde group, isocynato group, sulfonic acid group, sulfuric acid group, phosphoric acid group, phosphonic acid group, allylic halide group, benzylic halide group, substituted benzylic halide group, and 20 oxiranyl group.

[0038] A protein or peptide may be directly or indirectly coupled with one or more amphiphilic moieties through an ester group, amide group, secondary or tertiary amine group, carbamate group, sulfonate group, sulfate group, 25 phosphate group, phosphonate group, or ether group.

[0039] Preferably, a protein or peptide is covalently conjugated to one or more amphiphilic molecules comprising (a) a hydrophilic moiety and (b) a lipophilic moiety, wherein the balanced hydrophilic and lipophilic 30 characteristics of the amphiphilic molecule impart the conjugate with suitable solubility in biological fluid or aqueous solution.

[0040] More preferably, a protein or peptide is covalently conjugated to one or more amphiphilic molecules

5 comprising (a) a linear polyethylene glycol moiety and (b) a lipophilic moiety, wherein the protein or peptide, the polyethylene glycol and the lipophilic moiety are conformationally arranged to have the lipophilic moiety exteriorly available for interaction with lipophilic
10 environment or cell membranes. Such amphiphilically modified protein or peptide has an enhanced chemical resistance to the reaction with the non-polymeric carrier material both *in vitro* and *in vivo*, relative to the unconjugated protein or peptide.

15 [0041] Preferably, the amphiphilic molecule has the following general structure:

wherein L is the lipophilic moiety preferably selected from C₄₋₃₆-alkyl, C₄₋₃₆-alkenyl, C₄₋₃₅-alkadienyl, 20 tocopherol and steroidal residues, and wherein S is a linker selected from a group of an ester group, amide group, secondary or tertiary amine group, carbamate group, sulfonate group, sulfate group, phosphate group, phosphonate group, or ether group, and wherein m ranges from 1 to 1000. Polyethylene glycol (PEG)-lipid conjugates, such as 1,2-Distearoyl-*sn*-Glycero-3-Phosphoethanolamine-N-[Carboxy(Polyethylene Glycol)], 1,2-Distearoyl-*sn*-Glycero-3-Phosphoethanolamine-N-[Maleimide(Polyethylene Glycol)], 1,2-Distearoyl-*sn*-Glycero-3-Phosphoethanolamine-N-[PDP(Polyethylene Glycol)], 1,2-Distearoyl-*sn*-Glycero-3-Phosphoethanolamine-N-[Amino(Polyethylene Glycol)], and the like may also be conjugated with proteins or peptides.

5 [0042] In one embodiment, an alkyl group of 16 carbons was covalently coupled to a polyethylene glycol molecule through an ether linkage. The resulting amphiphilic molecule has one hydroxyl group which can be activated or derivatized to react with suitable functional groups on 10 proteins or peptides. In one embodiment of the present invention, the amphiphilic molecule was derivatized to have an aldehyde end group. Then the amphiphilic molecule was covalently conjugated to octreotide through the reaction with amine groups on octreotide followed by 15 reduction reaction with NaCNBH₃. Both amine groups on octreotide could be conjugated simultaneously or only one amine group could be selectively conjugated by adjusting the reaction conditions followed by separation. The conjugate was formed through a secondary amine that does 20 not change the charge characteristics of the unconjugated octreotide. This property may be useful to retain the activity of the protein or peptide.

[0043] In another embodiment, the amphiphilic molecule monopalmitoyl poly(ethylene glycol) (Mn ~1124) was 25 activated with 4-nitrophenyl chloroformate. Then the amphiphilic molecule was covalently conjugated to octreotide through the reaction with amine groups on octreotide. Both amine groups on octreotide could be conjugated simultaneously or only one amine group could be 30 selectively conjugated by adjusting the reaction conditions followed by separation.

[0044] According to the present invention, proteins or peptides covalently modified with one or more formulation performance-enhancing compounds include, for example,

5 pharmaceutically acceptable salts and complexes of the modified protein or peptide. The modification can be at one or more sites on the protein or peptide. Such proteins
- or peptides also include, for example, site-specifically modified proteins or peptides and mixtures of mono-site
10 and multiple-site modified proteins or peptides.

[0045] A "pharmaceutically acceptable salt" means a salt formed between any one or more of the charged groups in a protein or peptide and any one or more pharmaceutically acceptable, non-toxic cations or anions. Organic and
15 inorganic salts include, for example, those prepared from acids such as hydrochloric, sulfuric, sulfonic, tartaric, fumaric, hydrobromic, glycolic, citric, maleic, phosphoric, succinic, acetic, nitric, benzoic, ascorbic, *p*-toluenesulfonic, benzenesulfonic, naphthalenesulfonic,
20 propionic, carbonic, and the like, or for example, ammonium, sodium, potassium, calcium, or magnesium.

[0046] According to the present invention, the composition optionally includes additives that modify the composition to achieve desired release profile for the protein or
25 peptide. The additives may be included to modulate release rate and stabilize the protein or peptide. Suitable additives can be any polymeric or non-polymeric materials including biodegradable or non-biodegradable polymers, carbohydrates or carbohydrate derivatives,
30 organic or inorganic compounds. The additives can act as, for example, antioxidants, pH stabilizers, anti-irritants, dispersing agents, bulking agents, binders, and the like.
[0047] Some suitable additives are described in U.S. Pat. No. 5,747,058 that is incorporated herein entirely by

5 reference. Preferably, the suitable additives are biocompatible and/or biodegradable polymers. Such polymers include, but are not limited to, polylactides, polyglycolides, polycaprolactones, polyanhydrides, polyamines, polyurethanes, polyesteramides, 10 polyorthoesters, polydioxanones, polyacetals, polyketals, polycarbonates, polyphosphoesters, polyoxaesters, polyorthocarbonates, polyphosphazenes, succinates, poly(malic acid), poly(amino acids), polyvinylpyrrolidone, polyethylene glycol, polyhydroxycellulose, chitin, 15 chitosan, hyaluronic acid and copolymers, terpolymers and mixtures thereof.

[0048] According to the present invention, the composition optionally includes reducing agents, antioxidants, and free radical scavengers to stabilize the composition.

20 Examples are, but are not limited to, cysteine or methionine, *d*-alpha tocopherol acetate, *dl*-alpha tocopherol, ascorbyl palmitate, butylated hydroxyanidole, butylated hydroxyanisole, butylatedhydroxyquinone, butylhydroxyanisol, hydroxycomarin, butylated 25 hydroxytoluene, cephalin, ethyl gallate, propyl gallate, octyl gallate, lauryl gallate, propylhydroxybenzoate, trihydroxybutyrophene, dimethylphenol, ditertbutylphenol, vitamin E, and lecithin.

[0049] Accordingly, the composition of the present 30 invention comprises a hydrophobic, non-polymeric carrier material, an optional pharmaceutically acceptable organic solvent, a protein or peptide covalently conjugated with a formulation performance-enhancing compound, and optionally an additive.

5 [0050] The composition of the present invention provides a viscous gel or solid depot for the controlled and sustained release of the protein or peptide when implanted. The controlled release can be sustained for a desired period of time dependent upon the make-up of the
10 composition. With the proper selection of the non-polymeric carrier material and other components, the period of sustained release can be controlled to a desired period of time from a few days to several months.

[0051] In a preferred method of preparing and
15 administering the composition of the present invention, the protein or peptide is covalently modified with a formulation performance-enhancing compound. The molar ratio of the protein or peptide to formulation performance-enhancing compound in the conjugate will vary,
20 for example, from 1:1 to 1:10 according to the nature of the protein or peptide. The covalently conjugated protein or peptide may be combined with the hydrophobic, non-polymeric carrier material and optional pharmaceutically acceptable solvent and other optional additives as a
25 single-phase formulation suitable for shelf storage for a reasonable period of time.

[0052] In another preferred preparation for the composition of the present invention, both the covalently conjugated protein or peptide and the remaining components
30 of the composition may be separately packaged in different containers (*i.e.*, syringes). The contents of the containers may be combined with the remaining components of the composition immediately prior to administration to an implant site in the body of a subject.

5 [0053] According to the present invention, the composition preferably is a uniform solution or homogeneous suspension. The maintenance of the uniformity of the formulation prior to administration is critical to obtain consistent depot system for controlled release delivery of

10 bioactive substances. Practically, the uniformity of the formulation has to be maintained for at least one hour to allow reproducible preparation of the formulation and formation of the depot system *in situ*. The uniformity as used herein is determined by measuring the ratio or

15 distribution the protein or peptide in the top portion and bottom portion of the formulation in a 5 ml glass test tube. If the ratio equals to 1.0, the formulation has a perfect uniformity. If the ratio is smaller than 1.0, it indicates that phase separation occurs. Preferably, the

20 composition maintains a uniformity of 0.9 for at least one hour, more preferably the composition maintains a uniformity of 0.9 for at least 24 hours, most preferably the composition maintains a uniformity of 0.9 for at least 7 days.

25 [0054] According to the present invention, the composition contains from about 10% to about 99.5% of the hydrophobic, non-polymeric material, preferably between 25% and 95% by weight relative to the total weight of the composition. The composition also includes about 0% to about 50% of a

30 pharmaceutically acceptable solvent, about 0.1% to about 40% of a protein or peptide. The composition further contains about 1% to about 25% of an additive.

[0055] In a preferred embodiment, sucrose acetate isobutyrate (SAIB) is used as the hydrophobic, non-

5 polymeric carrier material and NMP is selected as the solvent. The peptide or protein is selected from a group consisting of octreotide, or glycagon like peptide-1 (GLP-1). The protein or peptide is preferably conjugated with an amphiphilic molecule. The resulting conjugate can be
10 combined with the SAIB/NMP solution to form a sustained delivery formulation.

[0056] According to the present invention, the composition described herein can be administered to the body of a subject where sustained release delivery of a protein or
15 peptide is desired. As used herein, the term "subject" is intended to include warm-blooded animals, preferably mammals, most preferably humans.

[0057] As used herein, the term "administered" is intended to refer to dispensing, delivering or applying a
20 composition (e.g., pharmaceutical formulation) to a subject by any suitable route for delivery of the composition to the desired location in the subject. The composition can be administered to a subject topically, by injection subcutaneously, intramuscularly,
25 intraperitoneally, or intradermally, and by oral, rectal, vaginal, or nasal administration to provide the desired dosage of a protein or peptide based on the known parameters for treatment of the various diseases with the proteins or peptides.

30 [0058] The term "controlled, sustained release delivery", as used herein, includes, for example, continual delivery of a protein or peptide *in vivo* over a period of time following administration, preferably at least several days to weeks or months. Controlled, sustained release delivery

5 of the protein or peptide can be demonstrated, for example, by the continued therapeutic effect of the agent over time (e.g., for octreotide, sustained delivery of the peptide can be demonstrated by continued IGF-1 suppression over time). Alternatively, sustained delivery of the
10 octreotide may be demonstrated by detecting the presence of the peptide *in vivo* over time.

[0059] In this application, the various embodiments set forth in the claims for the instant liquid pharmaceutical compositions are also envisioned, *mutatis mutandis*, for
15 the instant methods for forming such compositions and the instant methods for forming implants.

EXAMPLES:

[0060] The following examples illustrate the compositions
20 and methods of the present invention and are not meant to limit the invention in any manner. The following examples should be merely interpreted to teach how to make the useful drug delivery systems according to the present invention.

25

Example 1. Preparation of Palmitoyl-Octreotide (PAL-OCT)

[0061] 50 mg of octreotide acetate was dissolved in 1 mL of anhydrous DMSO containing 100 μ L triethylamine (TEA).
30 40.2 mg of palmitic acid N-hydroxysuccinimide ester (Mw 353.50) was dissolved in 3 mL anhydrous DMSO and added to the peptide solution. The reaction was allowed to proceed for 3 hours at room temperature. The mixture was poured into diethylether to precipitate palmitoylated octreotide.

5 The precipitate was washed with diethylether twice and then dried under vacuum. The resulting acylated peptide was in the form of a white powder.

Example 2. Preparation of Palmitoyl-Octreotide (PAL-OCT)

[0062] 50 mg of octreotide acetate was dissolved in 1000 μ L of anhydrous DMSO containing 100 μ L TEA. 17.1 mg of palmitic acid N-hydroxysuccinimide ester (Mw 353.50) was dissolved in 3 mL anhydrous DMSO and added by direct injection to the peptide solution. The reaction was allowed to proceed overnight at room temperature. The mixture was poured into diethylether to precipitate palmitoylated octreotide. The precipitate was washed with diethylether twice and then dried under vacuum. The resulting acylated peptide was in the form of white powder.

Example 3. Preparation of Decanal-Octreotide (DCL-OCT)

[0063] 50 mg of octreotide was dissolved in 2 mL of 20 mM sodium cyanoborohydride (Mw 62.84, NaCNBH₃) (2.51 mg) solution in 0.1 M acetate buffer at pH 5. 13.7 mg of Decanal (Mw 156.27) (OCT:DCL = 1:2) was added by direct injection to the peptide solution. The reaction was allowed to proceed overnight at 4 °C. The mixture was separated by centrifugation. The precipitated DCL-OCT was freeze-dried.

Example 4. Preparation of Palmitoyl-Lysozyme (PAL-Lyz, 3:1)

5 [0064] 302 mg of Lysozyme (Mw 14,500) was dissolved in 1000 μ L of anhydrous DMSO containing 200 μ L TEA. 18.25 mg of Palmitic acid N-hydroxysuccinimide ester (Mw 353.50) was dissolved in 3 mL anhydrous DMSO and added by direct injection to the protein solution. The reaction was
10 allowed to proceed for overnight at RT. The PAL-Lyz was precipitated in diethylether and the final product was freeze-dried after removing the organic solvent.

Example 6. Preparation of Palmitoyl-Lysozyme (PAL-Lyz, 15 5:1)

[0065] 50 mg of lysozyme (Mw 14,500) was dissolved in water and pH was adjusted to 9.58. The solution was freeze-dried. Then the dried powder was dissolved in 3 mL DMSO. Then 322 μ L of 20 mg/mL solution of palmitic acid 20 N-hydroxysuccinimide ester (Mw 353.50) in anhydrous DMSO was added by direct injection to the protein solution. The reaction was allowed to proceed overnight at 4 °C. The PAL-Lyz was precipitated in diethylether and the final product was freeze-dried after removing the organic solvent.

25

Example 7. Preparation of Palmitoyl-Lysozyme (PAL-Lyz, 13:1)

[0066] 50 mg of lysozyme (Mw 14,500) was dissolved in water and pH was adjusted to 9.58. The solution was 30 freeze-dried. Then the dried powder was dissolved in 3 mL DMSO. Then 799 μ L of 20 mg/mL solution of palmitic acid N-hydroxysuccinimide ester (Mw 353.50) in anhydrous DMSO was added by direct injection to the protein solution. The reaction was allowed to proceed overnight at 4 °C. The PAL-

5 Lyz was precipitated in diethylether and the final product was freeze-dried after removing the organic solvent.

Example 8. Preparation of Palmitoyl-Lysozyme (PAL-Lyz)

[0067] Lysozyme is added to PAL-NHS in PBS (pH 8.0) 10 containing 2% deoxycholate (DOC). The mixture is incubated at 37 °C for 6 hours. The mixture is centrifuged to remove the unreacted PAL-NHS. The product is dialyzed against PBS containing 0.15% DOC for 48 h (PAL-NHS:Lysozyme=15:1).

15

Example 9. Preparation of Monopalmityl Poly(ethylene glycol)-Butyraldehyde, Diethyl Acetal.

[0068] A mixture of monopalmityl poly(ethylene glycol) (average Mn ~1124) (5.0 g, 4.45 mmoles) and toluene (75 20 mL) was azeotropically dried by distilling off toluene under reduced pressure. The dried monopalmityl poly(ethylene glycol), was dissolved in anhydrous toluene (50 mL) to which was added a 20% (w/w) solution of potassium *tert*-butoxide in THF (4.0 ml, 6.6 mmoles) and 4-chlorobutyraldehyde diethyl acetal (0.96 g, 5.3 mmoles, MW 25 180.67). The mixture was stirred at 100-105 °C overnight under an argon atmosphere. After cooling to room temperature, the mixture was filtered and added to 150 ml ethyl ether at 0-5 °C. The precipitated product was 30 filtered off and dried under reduced pressure.

[0069] Example 10. Conjugation of Octreotide at N-terminal Amine Group with Monopalmityl Poly(ethylene glycol) (PAL-PEG-BA-OCT)

5 [0070] In a typical preparation, 201.6 mg of monopalmityl poly(ethylene glycol)-butyraldehyde, diethyl acetal (PAL-PEG-BADA) was dissolved in 10 mL of 0.1 M phosphoric acid (pH 2.1) and the resulting solution was heated at 50 °C for 1 h then cooled to room temperature. The pH of the
10 solution was adjusted to 5.5 with 1 N NaOH and the resulting solution was added to a solution of 195.3 mg of octreotide in 3.5 mL of 0.1 M sodium phosphate buffer (pH 5.5). After 1 h, 18.9 mg of NaCNBH₃ was added to have a concentration of 20 mM. The reaction was continued
15 overnight at room temperature. Then the reaction mixture was either dialyzed with a membrane having a MW cutoff of 2000 daltons or loaded on a preparative HPLC with a C-18 column. The purified conjugated octreotide was primarily a single compound with one primary amine (lysine), and one
20 secondary amine (N-terminal).

[0071] Example 11. Preparation and *in vitro* characterization of formulations containing octreotide

[0072] Octreotide acetate (OCT-Ac) and octreotide
25 conjugate (PAL-PEG-BA-OCT) powders were dissolved in NMP. Then the solutions containing various forms of octreotide were thoroughly mixed with SAIB solution in NMP (90% w/w). The octreotide content was about 6% for all formulations as shown in Table 1.

5 Table 1. Formulations containing octreotide

Formulation	Peptides (mg)	SAIB (mg)	NMP (mg)	Peptide Content (%)
OCT- Ac/SAIB/NMP	65.9	653.5	281.8	6%
PAL-PEG-BA-OCT /SAIB/NMP	103.9	500.9	263.	6%

[0073] The formulations as prepared above were allowed to stand at room temperature (~22° C). At predefined time points, the appearance of the formulations was recorded 10 and an aliquot of each of both the supernatant and bottom composition was collected and analyzed by HPLC for octreotide content. The physical stability of the formulations was determined by direct observation or using the ratio of the content of the octreotide in the 15 supernatant to that in the bottom composition. If the ratio equals to 1.0, the formulation is uniform and stable. If the ratio is smaller than 1.0, that indicates that phase separation occurs.

[0074] When the OCT-Ac was combined with SAIB/NMP 20 solution, phase separation occurred immediately. Chunky solid precipitates were observed and an inhomogeneous formulation was obtained. The chunky aggregates were precipitated to form a yellow sticky phase at the bottom over time. This inhomogeneous formulation will block 25 needles and is not suitable for injection. When PAL-PEG-BA-OCT was combined with SAIB/NMP solution, a clear solution was obtained and suitable for injection.

[0075] Figure 1 shows the pictures taken after the formulations stood at room temperature for 24 h. An

5 apparent phase separation occurred for the formulations containing OCT-Ac, but not for the one containing PAL-PEG-BA-OCT. As shown in Table 2, the concentration of the octreotide in the bottom phase was about 20 folds of that of the octreotide in the upper phase after two days.

10 This ratio decreased to less than 0.03 after 5 days. Surprisingly, no phase separation was observed for the formulation containing PAL-PEG-BA-OCT. In addition, slightly more NMP was observed for the formulations containing OCT-Ac in the bottom phase.

15

Table 2: The ratio of the octreotide and NMP in the top phase to those in the bottom phase after stood at room temperature for two days

Formulation	OCT Ratio Top/Bottom	NMP Ratio Top/Bottom
OCT-Ac/SAIB/NMP	0.05	0.93
PAL-PEG-BA-OCT /SAIB/NMP	1.00	1.00

20 [0076] In addition, it was found that octreotide was not stable in the formulation containing OCT-Ac. As shown in Table 3, the generation of the impurities of the octreotide occurred as soon as the components were combined. After two hours, about 4% of the octreotide was 25 degraded or reacted. More than half of the octreotide in the supernatant and more than 20% of the octreotide in the bottom phase were degraded after 7 days, indicating that the system is not suitable for the sustained delivery of the peptide. However, it was unexpectedly found that 30 little or no degradation of the octreotide was detected

5 from the formulations containing PAL-PEG-BA-OCT even after three months at room temperature (Table 3). No phase separation was observed in the formulations containing PAL-PEG-BA-OCT.

10 Table 3: Purity of the octreotide in formulations at room temperature over time

TIME (day)	OCT-Ac/SAIB/NMP	PAL-PEG-BA-OCT /SAIB/NMP
0.08	96.1	100
1	90.8	99.9
2	71.9	ND
5	48.7	ND
7	41.0	99.8
112	33.9	100

Example 12. *In vitro* release of octreotide from various formulations

15

[0077] Formulations were prepared by mixing octreotide acetate (OCT-Ac) and octreotide conjugate (PAL-PEG-BA-OCT) powders with SAIB solution in NMP (90% w/w). The octreotide content was about 6% in each formulation as 20 shown in Table 4.

5

Table 4. Formulations containing octreotide

Formulation	Peptides (mg)	SAIB/NMP (mg)	Peptide Content (%)
OCT-Ac/SAIB/NMP	68.5	970.7	6%
PAL-PEG-BA-OCT /SAIB/NMP	113.8	834.2	6%

[0078] Due to the physical instability of the formulation containing OCT-Ac, the *in vitro* release was investigated immediately after the preparation of the formulations. An 10 aliquot of the suspension was used for the *in vitro* release. About 0.1 mL of each formulation containing octreotide was injected into 3 mL of releasing buffer (PBS 7.4, containing 0.1% sodium azide) in a 4 mL glass vial. The vials were incubated at 37°C and sampled at various 15 time points. At each time point, 2 mL of release medium was removed and 2 mL of fresh release medium added. The collected samples were analyzed for peptide concentration and integrity by HPLC using an YMC-Pack ODS-120A column. Triplicate samples were used for each formulation.

20 [0079] As shown in Figure 2, the release of OCT from formulation containing OCT-Ac showed a very high initial burst release. More than 60% of the octreotide was released within 24 hours and more than 90% of the octreotide was released after two weeks. However, 25 surprisingly, the release of OCT from formulations containing PAL-PEG-BA-OCT did not show much initial burst release. Less than 5% of the octreotide was released within 24 hours from formulation containing PAL-PEG-BA-OCT followed by a gradual release over time.

5 Example 13. Preparation of Polyethylene Glycol Conjugated GM-CSF

[0080] GM-CSF can be covalently conjugated to polyethylene glycol (PEG) as follows: 100 mg of GM-CSF is dissolved in 10 ml pH 7.5 phosphate buffer, at room 10 temperature. 100 mg tresyl-monomethoxy-polyethylene glycol (MW=5000 daltons) is then added, and the mixture stirred for 1 hour. The unreacted GM-CSF and pegylated GM-CSF fractions are isolated from unreacted tresyl-monomethoxy-polyethylene glycol by gel chromatography. The pegylated 15 GM-CSF is then dialyzed into 100 mM Tris buffer and adjusted to a concentration of 50 mg/ml.

Example 14. Preparation of Polyethylene Glycol-Conjugated Human Insulin (PEG-Insulin)

20 [0081] Human insulin was covalently modified with polyethylene glycol as follows: 116 mg of recombinant human insulin is dissolved in 4 mL anhydrous DMSO containing 200 uL TEA. 1 g of mPEG(5000)-SPA is dissolved in 10 mL anhydrous DMSO and added to the insulin solution 25 by direct injection. The reaction proceeds overnight (>10 hours) at room temperature or until >90% of the protein is pegylated. The unreacted PEG and pegylated insulin are isolated by precipitation twice from ether. The final product is analyzed by RP-HPLC.

30 Example 15. Preparation of Pegylated Lysozyme (PEG-Lyz)

[0082] Lysozyme solution (0.4% w/v, 5 mL) in borate buffer (20 mM, pH 9.0) was cooled down to 4°C. 209 mg MPEG-SS (MW 2000, 11 molar excess) was slowly added to the protein solution. The reaction was allowed to proceed at

5 4°C overnight with an end to end rotation, and stopped by the addition of 10 molar excess glycine. The reaction mixture was dialyzed using 3500 Dalton pore size membrane against the DI water. The dialyzed sample was lyophilized in water without any addition of additives and stored at -20°C.

10 [0083] The invention is not limited by the embodiments described above which are presented merely as examples and can be modified in various ways within the scope of protection defined by the appended patent claims.

[0084] Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.

[0084a] In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

5 CLAIMS

1. A composition for sustained release of a protein or peptide, comprising:

- (d) a hydrophobic non-polymeric carrier material;
- (e) a water miscible pharmaceutically acceptable solvent; and
- (f) a protein or peptide covalently conjugated with one or more amphiphilic molecule(s) having the following general structures:

5 wherein L is a lipophilic moiety optionally selected from C4-36-alkyl, C4-36-alkenyl, C4-36-alkadienyl, tocopherol and steroid residues, wherein S is a linker selected from an ester group, amide group, secondary or tertiary amine group, carbamate group, sulfonate group, sulfate group, phosphate group, phosphonate group, or ether group, wherein m ranges from 1 to 1000, and wherein (c) maintains the stability of the composition by preventing phase separation.

2. The composition of claim 1, wherein the hydrophobic, non-polymeric carrier material has low crystallinity and non-polar 25 characteristics.

3. The composition of claim 1, wherein the hydrophobic, non-polymeric carrier material is a liquid that has a viscosity of at least 5,000cP at 37°C that does not crystallize neat under ambient or physiological conditions.

30 4. The composition of claim 1, wherein the hydrophobic, non-polymeric carrier material comprises one or more of non-polymeric esters or mixed esters.

5. The composition of claim 1, wherein the hydrophobic, non-polymeric carrier material is formed from polyol comprising less than 20 hydroxyl groups that are esterified with carboxylic acids.

5 6. The composition of claim 5, wherein the carboxylic acids comprise organic acids comprising more than two carbons, optionally fatty acids.

7. The composition of claim 1, wherein the hydrophobic, non-polymeric carrier material is sucrose acetate isobutyrate
10 (SAIB).

8. The composition of any one of claims 1 to 7, wherein the pharmaceutically acceptable solvent has a miscibility of at least 1% by weight in water at 25°C.

15 9. The composition of any one of claims 1 to 8, wherein the pharmaceutically acceptable solvent is selected from the group consisting of benzyl alcohol, caprolactam, caprolactone, dimethylsulfoxide (DMSO), ethanol, ethyl lactate, glycerol, glycerol formal, glycofurool (tetraglycol), N-methyl-2-pyrrolidone (NMP), polyethylene glycol, PEG-300, PEG-400, methoxy polyethylene glycol, mPEG-350, alkoxy polyethylene glycol, propylene carbonate, triacetin, triethyl citrate, and combinations thereof.

25 10. The composition of any one of claims 1 to 9, wherein the protein or peptide is selected from the group consisting of oxytocin, vasopressin, adrenocorticotrophic hormone (ACTH),

epidermal growth factor (EGF), platelet-derived growth factor (PDGF), prolactin, luteinising hormone, luteinizing hormone releasing hormone (LHRH), LHRH agonists, LHRH antagonists, growth hormones (including human, porcine, and bovine), growth hormone releasing factor, insulin, insulin-like growth factors (IGF-I, IGF-II), erythropoietin (including all proteins with erythropoietic activity), somatostatins, glucagon, interleukin, interferon- α , interferon- β , interferon- γ , gastrin, tetragastrin, pentagastrin, urogastrone, secretin, calcitonin, enkephalins, 10 endorphins, angiotensins, thyrotropin releasing hormone (TRH), tumor necrosis factor (TNF), parathyroid hormone (PTH), nerve growth factor (NGF), granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), macrophage-colony stimulating factor (M-CSF), heparinase, 15 vascular endothelial growth factor (VEG-F), bone morphogenic protein (BMP), hANP, glucagon-like peptide (GLP-1, GLP-2), exenatide (exendin-3, exendin-4, etc.), peptide YY (PYY), renin, bradykinin, bacitracins, polymyxins, colistins, tyrocidine, gramicidins, cyclosporins (which includes synthetic analogues 20 and pharmacologically active fragments thereof), enzymes, cytokines, antibodies, vaccines, antibiotics, glycoproteins, follicle stimulating hormone, kyotorphin, taftsin, thymopoietin, thymosin, thymostimulin, thymic humoral factor, serum thymic factor, colony stimulating factors, motilin, bombesin, 25 dinorphin, neurotensin, cerulein, urokinase, kallikrein, substance P analogues and antagonists, angiotensin II, blood coagulation factor VII and IX, lysozyme, gramicidines, melanocyte stimulating hormone, thyroid hormone releasing hormone, thyroid stimulating hormone, pancreozymin, 30 cholecystokinin, human placental lactogen, thrombopoietin (TPO), human chorionic gonadotrophin, protein synthesis stimulating

peptide, gastric inhibitory peptide, vasoactive intestinal peptide, platelet derived growth factor, and synthetic analogues and modifications and pharmacologically-active fragments and pharmaceutically acceptable salts thereof.

5

11. The composition of any one of claims 1 to 10, wherein the lipophilic moieties of the amphiphilic molecule include lauroyl, palmitoyl, stearoyl, oleyl, eicosanoyl, and docosanoyl.

10 12. The composition of any one of claims 1 to 11, wherein the one or more amphiphilic molecules comprise (a) a linear polyethylene glycol moiety and (b) the lipophilic moiety, wherein the protein or peptide, the linear polyethylene glycol and the lipophilic moiety are conformationally arranged to have 15 the lipophilic moiety exteriorly available for interaction with a lipophilic environment or a cell membrane.

13. The composition of any one of claims 1 to 12, wherein the molar ratio of the protein or peptide to the amphiphilic 20 molecule in the conjugate varies from 1:1 to 1:10 according to the nature of the protein or peptide.

14. The composition of claim 1, wherein the hydrophobic non-polymeric carrier material is sucrose acetate isobutyrate 25 (SAIB), and wherein the pharmaceutically acceptable solvent is N-methyl-2-pyrrolidone (NMP).

15. The composition according to any one of claims 1 to 14, wherein the protein or peptide is selected from the group 30 consisting of octreotide or glucagon like peptide-1 (GLP-1).

16. The composition of claim 1, substantially as hereinbefore described with reference to the examples and figures.

1/2

OCTAc PAL-PEG-OCT

Figure 1. The pictures taken after the formulations stood at room temperature for 24 h.

2/2

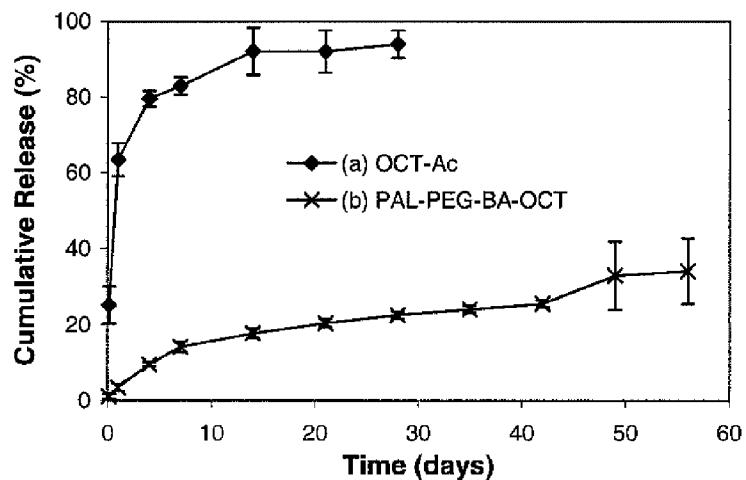


Figure 2. *In vitro* release of octreotide from SAIB/NMP formulations containing
(a) OCT-Ac and (b) PAL-PEG-BA-OCT