WO 2006/005655 A1 |0 |00 000 000 O 0 O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

72
(19) World Intellectual Property Organization f 57"’ | [)

528 | 0000 0 O

International Bureau

(43) International Publication Date
19 January 2006 (19.01.2006)

(10) International Publication Number

WO 2006/005655 Al

(51) International Patent Classification : GOOF 9/44
(21) International Application Number:
PCT/EP2005/052632

(22) International Filing Date: 8 June 2005 (08.06.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/889,777 13 July 2004 (13.07.2004) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41 North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): POLOZOFF, Alexan-
dre [US/US]; 1500 West Chestnut, Chicago, Illinois 60622
(US).

Agent: WILLIAMS, Julian, David; IBM United King-
dom Limited, Intellectual Property Law, Hursley Park,
Winchester Hampshire SO21 2JN (GB).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: APPLICATION SPLITTING FOR NETWORK EDGE COMPUTING

r—

\
Mobile
Personal Phone
Computer 110
108 PDA
= B
4
114 Y,
120 116
WAN ~ 101
Application f
130
e

(57) Abstract: Application splitting
for network edge computing including
identifying an application split point;

identifying a split type for the application
split point; splitting the application into
subcomponents in accordance with the split
type; and moving a subcomponent to an
edge network. Identifying an application
split point may include identifying a class of
the application that calls an EJB. Identifying
an application split point may include
identifying a class of the application that
updates an enterprise database. Identifying an
application split point may include identifying
a class of the application that calls a JCA
function. Identifying a split type for the
application split point may include identifying
a silo split type for the application split point.
Identifying a split type for the application
split point may include identifying an EJB
split type for the application split point.

Clients
126

Edge
Network
106

Enterprise
Servers

124

WO 2006/005655 A1 I} A0VOH0 A YO0 0 000

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — with international search report

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, For two-letter codes and other abbreviations, refer to the "Guid-
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

WO 2006/005655 PCT/EP2005/052632

[001]

[002]

[003]

[004]

[005]

Description
APPLICATION SPLITTING FOR NETWORK EDGE

COMPUTING
Technical Field

The field of the invention is data processing, or, more specifically, methods,
systems, and products for application splitting for network edge computing.
Background Art

The Internet and the World Wide Web operate primarily in a client-server model for
data communications. The content being transferred is increasingly complex, and
clients are increasingly diverse. It is becoming more and more difficult to efficiently
deliver complex, varied content to increasingly diverse client devices. The increased
demand results in more and more new devices, new servers, new clients to handle each
new type of data.

In the conceptual client-server model, the client requests information from the
server, and the server sends information back in the format requested by the client.
This content delivery system was once considered ideal since one need only
concentrate on processing at the “ends.” However, reality has demanded more, and in
response new services have emerged. Caches near the client and on edge-delivery
points make operations faster and lighten the network load. Gateways (such as those
for wireless devices) help diverse giioups of clients connect. Content Delivery
Networks (CDNs) better organize the vast array of Internet content for the client. All
these services have grown independently of one another, however, making extensions
and new services vendor-specific and hard to manage. With the evolution of diverse
client devices, content providers are forced to offer data in every necessary format for
every device, personal data assistants (PDAs), personal computers (PCs), cell phones,
laptop computers, e-book readers, and others. Servers are forced to handle differences
between the formats available and the formats the client can accept.

The network edge architecture provides a means to address the complexities that
have grown for “in the network™ services. The term “network edge” is usually used to
describe a physical or network boundary of an entity in the Internet. For example,
network edges could be the set of access points of an Internet Service Provider (“ISP”)
or the intranet of an enterprise network. “Network edge” can also mean a distinguished
point of content delivery, such as the boundary of a country, a point at which it is
useful to translate data into an appropriate language or format. The network edge is the
point where content processing can occur in the path of content delivery.

The network edge architecture is a collection of technologies for performing part of

WO 2006/005655 PCT/EP2005/052632

[006]

[007]

[008]

[009]

the content delivery processes for transferring data between clients and servers. Its ar-
chitecture is a unified approach to developing software and hardware for performing
content delivery functions. Network edge architecture allows for operations such as
data transcoding. Content providers can offer data in a single, standard format
regardless of the type of client device, and network edge architecture makes it easier to
provide a format for the presentation suited to the device. For example, a content
provider may store content in a single format, regardless of the type of client device
that may request the content, and the network edge technology may reformat the
content for the receiving device. A rule-based service running on an edge server or an
edge network makes the appropriate data transformations based on standardized
protocols for various devices.

Consider an example of a movie delivery. With network edge technology,
consumers see the movie in the format appropriate to their devices and their personal
tastes. The content provider no longer has to worry about the device on which the
movie will be viewed, because the burden of data transformation is removed from
content providers and servers. Instead, data transformation is consolidated at the
network edge.

In the traditional client/server architecture, customer information and client device
interfaces must be managed on the client device or on the content server. That is, the
customer is required to re-enter data, and the server is required to cope with client
diversity issues, whether the client device is a cell phone, a PDA, a laptop, a personal
computer, and so on.

The transfer and reformulation of content from provider to client happens in several
steps. A client’s request is amended, that is, personalized, in accordance with known
information retained in the server with additional needed data being entered from the
client. For example, the client may be using a cell phone to access the World Wide
Web or an email service. This requires that the server send back only content ap-
propriate to that cell phone interface and progress through voice menus or keyboard
menus to obtain customer specifics. In the network edge architecture, an edge server
amends the client's request to specify the appropriate cell phone interface. Then the
edge server communicates with content servers to fill in customer data, thereby
simplifying customer interaction. Then the edge server amends the request to the
content servers to obtain data that is then reformulated by the edge serve to fit the
client's device. The appropriate content is then downloaded to the client device in a
manner suitable for the client device.

The network edge server resides between the client and the content servers and
serves as an agent for both the customer and the content provider. When the client

sends out a request for content, a network edge server amends the request, typically

WO 2006/005655 PCT/EP2005/052632

{010}

[011]

[012]

[013]

based on a set of predefined rules, according to the customer’s information. The edge
server then sends the amended request on to the content server, possibly with some
exchange to the content server as indicated previously. The content server is relieved
of the burden of amending the request or reformulating the content. Any trans-
formation of content that is needed will happen at the network edge server using
standard protocols. In this way, network edge architecture simplifies the information
required from the content provider to address different formats needed for different
devices.

Network edge architecture represents a growing shift from the traditional client-
server model to a more efficient client-edge-server model. When content-level services
are performed at the network edge, content providers can offer personalized, scalable
services. With network edge architecture, the edge plays a role that is currently forced
on both client and server. Application software that was installed entirely on a content
server or an application server in the traditional client-server architecture now may be
deployed to the an edge network. In addition, application software that was installed
entirely on a content server or an application server in the traditional client-server ar-
chitecture now may be split, and in many cases, must be split, between the content
server and the edge. It would be useful to have automated tools to identify how an ap-
plication should be prepared for deployment to the edge and how to split the ap-
plication if necessary.

Disclosure of Invention

Methods, systems, and computer program products are provided for application
splitting for network edge computing. Embodiments include identifying an application
split point; identifying a split type for the application split point; splitting the ap-
plication into subcomponents in accordance with the split type; and moving a sub-
component to an edge network. Many embodiments include determining that the ap-
plication considered with the data it administers is too large to fit on the edge network.

In typical embodiments, splitting the application includes splitting the application in
dependence upon user preferences. In many embodiments, identifying an application
split point includes identifying a class of the application that calls an EIB. In many em-
bodiments, identifying an application split point includes identifying a class of the ap-
plication that updates an enterprise database. In many embodiments, identifying an ap-
plication split point includes identifying a class of the application that calls a JCA
function.

In many embodiments, identifying a split type for the application split point
includes identifying a silo split type for the application split point. In typical em-
bodiments, identifying a split type for the application split point includes identifying an

WO 2006/005655 PCT/EP2005/052632

[014]

[015]

[016]

[017]

[018]

[019]

EJB split type for the application split point. In many embodiments, identifying a split
type for the application split point includes identifying a facade split type for the ap-
plication split point.

In some embodiments, the application split point includes a class in a calling
hierarchy that calls an EJB; and the split type includes an EJB split type. In some such
embodiments, splitting the application into subcomponents in accordance with the split
type includes splitting the classes in the calling hierarchy into a client RMI module and
a server RMI module; and moving a subcomponent to an edge network includes
moving the client RMI module to the edge network.

In some embodiments, the application split point includes a class in a calling
hierarchy that calls an EJB and the split type includes an EJB split type. In some such
embodiments, splitting the application into subcomponents in accordance with the split
type includes splitting the classes in the calling hierarchy into a client web services
module and a server web services module; and moving a subcomponent to an edge
network includes moving the client web services module to the edge network.

In some embodiments, the application split point includes a class in a calling
hierarchy that updates an enterprise database and the split type includes a silo split
type. In some such embodiments, splitting the application into subcomponents in
accordance with the split type includes aggregating as one subcomponent all the
classes in the calling hierarchy into a silo module; and moving a subcomponent to an
edge network includes*moving the silo module to the edge network. -

In some embodiments, the application split point includes a class in a calling
hierarchy that calls an EJB and calls an HTTP function and the split type includes a
silo split type. In some such embodiments, splitting the application into sub-
components in accordance with the split type includes aggregating as one sub-
component all the classes in the calling hierarchy into a silo module; and moving a
subcomponent to an edge network includes moving the silo module to the edge
network.

In some embodiments, the application split point includes a class in a calling
hierarchy that calls a JCA function and calls an HTTP function and the split type
includes a silo split type. In some such embodiments, splitting the application into sub-
components in accordance with the split type includes aggregating as one sub-
component all the classes in the calling hierarchy into a silo module; and moving a
subcomponent to an edge network includes moving the silo module to the edge
network.

In some embodiments, the application split point includes a class in a calling
hierarchy that is listed more than once as a potential split point and the split type
includes a facade split type. In some such embodiments, splitting the application into

WO 2006/005655 PCT/EP2005/052632

[020]

[021]

[022]

[023]

[024]

[025]

[026]

[027]

[028]

subcomponents in accordance with the split type includes splitting the classes in the
calling hierarchy into a client web services module and a server web services module;
and moving a subcomponent to an edge network includes moving the client web
services module to the edge network.

Viewed from a first aspect the present invention provides a method for application
splitting for network edge computing, the method comprising: identifying an ap-
plication split point; identifying a split type for the application split point; splitting the
application into subcomponents in accordance with the split type; and moving a sub-
component to an edge network.

Preferably, the present invention provides a method wherein identifying an ap-
plication split point further comprises identifying a class of the application that calls an
EJB.

Preferably, the present invention provides a method wherein identifying an ap-
plication split point further comprises identifying a class of the application that updates
an enterprise database.

Preferably, the present invention provides a method wherein identifying an ap-
plication split point further comprises identifying a class of the application that calls a
JCA function.

Preferably, the present invention provides a method wherein identifying a split type
for the application split point further comprises identifying a silo split type for the ap-
plication split point. -

Preferably, the present invention provides a method wherein identifying a split type
for the application split point further comprises identifying an EJB split type for the ap-
plication split point.

Preferably, the present invention provides a method wherein identifying a split type
for the application split point further comprises identifying a facade split type for the
application split point.

Preferably, the present invention provides a method wherein: the application split
point comprises a class in a calling hierarchy that calls an EJB; the split type comprises
an EJB split type; splitting the application into subcomponents in accordance with the
split type further comprises splitting the classes in the calling hierarchy into a client
RMI module and a server RMI module; and moving a subcomponent to an edge
network further comprises moving the client RMI module to the edge network.

Preferably, the present invention provides a method wherein: the application split
point comprises a class in a calling hierarchy that calls an EIB; the split type comprises
an BJB split type; splitting the application into subcomponents in accordance with the
split type further comprises splitting the classes in the calling hierarchy into a client
web services module and a server web services module; and moving a subcomponent

WO 2006/005655 PCT/EP2005/052632

[029]

[030]

[031]}

[032]

[033]

[034]

to an edge network further comprises moving the client web services module to the
edge network.

Preferably, the present invention provides a method wherein: the application split
point comprises a class in a calling hierarchy that updates an enterprise database; the
split type comprises a silo split type; splitting the application into subcomponents in
accordance with the split type) further comprises aggregating as one subcomponent all
the classes in the calling hierarchy into a silo module; and moving a subcomponent to
an edge network further comprises moving the silo module to the edge network.

Preferably, the present invention provides a method wherein: the application split
point comprises a class in a calling hierarchy that calls an EJB and calls an HTTP
function; the split type comprises a silo split type; splitting the application into sub-
components in accordance with the split type further comprises aggregating as one
subcomponent all the classes in the calling hierarchy into a silo module; and moving a
subcomponent to an edge network further comprises moving the silo module to the
edge network.

Preferably, the present invention provides a method wherein: the application split
point comprises a class in a calling hierarchy that calls a JCA function and calls an
HTTP function; the split type comprises a silo split type; splitting the application into
subcomponents in accordance with the split type further comprises aggregating as one
subcomponent all the classes in the calling hierarchy into a silo module; and moving a
subcomponent:to an edge network further comprises moving the silo module torthe
edge network.

Preferably, the present invention provides a method wherein: the application split
point comprises a class in a calling hierarchy that is listed more than once as a potential
split point; the split type comprises a fagade split type; splitting the application into
subcomponents in accordance with the split type further comprises splitting the classes
in the calling hierarchy into a client web services module and a server web services
module; and moving a subcomponent to an edge network further comprises moving the
client web services module to the edge network.

Viewed from a second aspect the present invention provides a system for ap-
plication splitting for network edge computing, the system comprising: means for
identifying an application split point; means for identifying a split type for the ap-
plication split point; means for splitting the application into subcomponents in
accordance with the split type; and means for moving a subcomponent to an edge
network.

Preferably, the present invention provides a system wherein means for identifying
an application split point further comprises means for identifying a class of the ap-
plication that calls an EJB.

WO 2006/005655 PCT/EP2005/052632

[035]

[036]

[037]

(038]

[039]

[040]

[041]

[042]
[043]
[044]
[045]

[046]

Preferably, the present invention provides a system wherein means for identifying
an application split point further comprises means for identifying a class of the ap-
plication that updates an enterprise database.

Preferably, the present invention provides a system wherein means for identifying
an application split point further comprises means for identifying a class of the ap-
plication that calls a JCA function.

Preferably, the present invention provides a system wherein means for identifying a
split type for the application split point further comprises means for identifying a silo
split type for the application split point.

Preferably, the present invention provides a system wherein means for identifying a
split type for the application split point further comprises means for identifying an EJB
split type for the application split point.

Preferably, the present invention provides a system wherein means for identifying a
split type for the application split point further comprises means for identifying a
facade split type for the application split point.

Preferably, the present invention provides a system wherein: the application split
point comprises a class in a calling hierarchy that calls an EJB; the split type comprises
an EJB split type; means for splitting the application into subcomponents in
accordance with the split type further comprises means for splitting the classes in the
calling hierarchy into a client RMI module and a server RMI module; and means for
moving a subcomponent to an edge network further comprises means for movingthe
client RMI module to the edge network.

Viewed from a third aspect the present invention provides a computer program
product loadable into the internal memory of a digital computer, comprising software
code portions for performing, when said product is run on a computer, to carry out the
invention as described above.

Brief Description of the Drawings

Embodiments of the invention are described below in detail, by way of example
only, with reference to the accompanying drawings in which:

Figure 1 sets forth a system diagram of an exemplary system forapplication splitting
for network edge computingaccording to embodiments of the present invention;

Figure 2 sets forth a block diagram illustrating an exemplary software development
system;

Figure 3 sets forth a flow chart illustrating an exemplary method for application
splitting for network edge computing;

Figure 4 sets forth a flow chart illustrating an exemplary method for identifying an
application split point;

WO 2006/005655 PCT/EP2005/052632

[047]

[048]

[049]

[050]

[051]

[052]

[053]

[054]

[055]

Figure 5 sets forth a flow chart illustrating exemplary methods for identifying a split
type for an application split point;

Figure 6 sets forth a flow chart illustrating an exemplary method for application
splitting for network edge computing for the EJB split type;

Figure 7 sets forth a flow chart illustrating another exemplary method for ap-
plication splitting for network edge computing for the EJB split type;

Figure 8 sets forth a flow chart illustrating an exemplary method for application
splitting for network edge for the silo split type;

Figure 9 sets forth a flow chart illustrating another exemplary method for ap-
plication splitting for network edge computing for the silo split type;

Figure 10 sets forth a flow chart illustrating another exemplary method for ap-
plication splitting for network edge computing for the silo split type;

Figure 11 sets forth a flow chart illustrating an exemplary method for application
splitting for network edge for the facade split type.

Mode for the Invention

The present invention is described to a large extent in this specification in terms of
methods for application splitting for network edge computing. Persons skilled in the
art, however, will recognize that any computer system that includes suitable
programming means for operating in accordance with the disclosed methods also falls
well within the scope of the present invention. Suitable programming means include
any means for directifif a computer system to execute the steps of the method of the ™
invention, including for example, systems comprised of processing units and
arithmetic-logic circuits coupled to computer memory, which systems have the
capability of storing in computer memory, which computer memory includes
electronic circuits configured to store data and program instructions, programmed steps
of the method of the invention for execution by a processing unit.

The invention also may be embodied in a computer program product, such as a
diskette or other recording medium, for use with any suitable data processing system.
Embodiments of a computer program product may be implemented by use of any
recording medium for machine-readable information, including magnetic media,
optical media, or other suitable media. Persons skilled in the art will immediately
recognize that any computer system having suitable programming means will be
capable of executing the steps of the method of the invention as embodied in a
program product. Persons skilled in the art will recognize immediately that, although
most of the exemplary embodiments described in this specification are oriented to
software installed and executing on computer hardware, nevertheless, alternative em-
bodiments implemented as firmware or as hardware are well within the scope of the

WO 2006/005655 PCT/EP2005/052632

[056]
[057]

[058]

[059]

[060]

[061]

present invention.

Application Splitting For Network Edge Computing

Methods, systems, and products are described for application splitting for network
edge computing with reference to the accompanying drawings, beginning with Figure
1. Figure 1 sets forth a system diagram of an exemplary system for application splitting
for network edge computing according to embodiments of the present invention. The
system of Figure 1 includes several exemplary client devices (126) connected through
wide area network (101) to several edge server configured as an edge network (106).
The edge servers are in turn connected through local area network (103) to several ap-
plication and content servers represented as enterprise servers (124).

The clients (126) in the example of Figure 1 include a personal computer (108)
connected to wide area network (101) through wireline connection (120), a wireless,
network-enabled personal digital assistant (“PDA”) (112) connected to wide area
network (101) through wireless connection (114), and mobile telephone (110)
connected to wide area network (101) through wireless connection (116).

The system of Figure 1 includes an application program (130) that is under de-
velopment on development system (129) for splitting into two modules, an edge
module (134) for installation on the edge network (106) and an enterprise module
(132) for installation on the enterprise network (124). Development system (129) is a

computer having a software development environment such as the J. ava_ Software De-

* velopment Kit (“SDK”) and also having analysis modules andra splitter (128) that

operate generally by identifying application split points, identifying split types for the
application split points, splitting applications into subcomponents in accordance with
the split types, and moving some subcomponents to an edge network.

For further explanation, Figure 2 sets forth a block diagram illustrating an
exemplary software development system that operates generally by identifying ap-
plication split points, identifying split types for the application split points, splitting ap-
plications into subcomponents in accordance with the split types, and moving some
subcomponents to an edge network. The exemplary system of Figure 2 includes a
JDBCTM analysis module (202) that operates generally to identify application split
points as classes that call Java DataBase Connectivity (“JDBC”) functions to update
enterprise databases. Such calls to JDBC functions may be represented, for example, as
calls to Java member methods named ‘executeUpdate’ or ‘executelnsert.’

The exemplary system of Figure 2 also includes an EJ BTM analysis module (204)
that operates generally to identify application split points as classes that call Enterprise
Java Beans (“EJBs”). Classes that call EJBs may be identified, for example, as classes
that construct session EJBs using calls to the EJB Properties() constructor, the Ini-

tialContext() constructor, and so on.

WO 2006/005655 PCT/EP2005/052632

[062]

[063]

[064]

[065]

10

The exemplary system of Figure 2 also includes a JCATM analysis module (206) that
operates generally to identify application split points as classes that call Java
Connector Architecture (“JCAs”) functions. Classes that call JCAs functions may be
identified, for example, as classes using calls to the JCA ConnectionFactory(), the cre-
ateInteraction() method, the Interaction.execute() method, and so on.

In the example of Figure 2, the analytic modules (202, 204, and 206) identify split
points as a list of potential split point. For each split point so identified, the split type
analysis module (208) identifies a split type. The split type analysis module operates
generally to identify an EJB split type for split points that are classes that call EIB
functions. The split type analysis module operates to identify a Silo split type for split
points that are classes that update enterprise databases through, for example JDBC
calls. The split type analysis module operates to identify a Silo split type for split
points that are classes that make HTTP calls. The split type analysis module operates
to identify a facade split type for split points that are classes identified more than once
by the analytic modules (202, 204, and 206) as potential split points.

The exemplary system of Figure 2 includes a splitter (210), a software module that
generally carries out the work of creating subcomponents of the application (130) by
splitting the application at the identified split points in accordance with the split type
for each split point. For EJB split type, splitter (210) may split application (130) into a
client RMITM (“Java Remote Method Invocation”) module and a server RMI module,
move the client RMI module to an edge network as an EJB edge module:(216), and
move the server RMI module to an enterprise network as an EJB enterprise module
(218). Alternatively for the EJB split type, splitter (210) may split application (130)
into a client web services module and a server web services module, move the client
web services module to an edge network as an EJB edge module (216), and move the
server web services module to an enterprise network as an EJB enterprise module
(218). Similarly, for the facade split type, splitter (210) may split application (130) into
a client web services module and a server web services module, move the client web
services module to an edge network as a facade edge module (212), and move the
server web services module to an enterprise network as a fagade enterprise module
(214). For the silo split type, splitter (210) may aggregate as one subcomponent all the
classes in the calling hierarchy into a silo module (220). The splitter (210) may move
the silo module (220) to an edge network or to an enterprise network.

For further explanation, Figure 3 sets forth a flow chart illustrating an exemplary
method for application splitting for network edge computing that includes identifying
(302) an application split point (310). Figure 4 sets forth a flow chart illustrating an
exemplary method for identifying an application split point. In the example of Figure 4
identifying an application split point is carried out by identifying (402) a class of the

WO 2006/005655 PCT/EP2005/052632

[066]

[067]

[068]

[069]

11

application that calls an EJB. As noted above, a class that calls an EJB can be
identified by its use of EJB member methods such as calls to the EJB Properties()
constructor, the InitialContext() constructor, and so on. In the method of Figure 4,
identifying an application split point also can be carried out by identifying (404) a class
of the application that updates an enterprise database through, for example, calls to
JDBC methods such as ‘executeUpdate’ or ‘executelnsert.” In the method of Figure 4,
identifying an application split point can be carried out by identifying (405) a class of
the application that calls a JCA function. Classes that call JCA functions may be
identified, for example, as classes using calls to the JCA ConnectionFactory(), the cre-
ateInteraction() method, the Interaction.execute() method, and so on.

Again with reference to Figure 3: The method of Figure 3 also includes identifying
(304) a split type (312) for the application split point. Figure 5 sets forth a flow chart
illustrating exemplary methods for identifying a split type for an application split point.
In the example of Figure 5, identifying a split type for the application split point
includes identifying a silo split type (504) for the application split point. In the
example of Figure 5, identifying a silo split type (504) for the application split point
can be carried out by identifying (502), from a list of potential split points (406) and
the application (130), classes in the application that call an HTTP function and
recording (506) the calling hierarchy of the identified class. Examples of HTTP
functions include Java member methods in HTTPRequest classes, HTTPResponse
classes:zand HTTPSession classes.

In the example of Figure 3, identifying a silo split type can also be carried out by
identifying (514), from a list of potential split points (406) and the application (130),a
class that updates an enterprise database. A class that updates an enterprise database
may be identified, for example, by calls to JDBC member methods such as
‘executeUpdate” and ‘executelnsert.” In the method of Figure 5, identifying a split type
for the application split point includes identifying (508) an EJB split type (510) for the
application split point. In the method of Figure 5, identifying an EJB split type can be
carried out by identifying (508), from a list of potential split points (406) and from the
application (130) source code, a class that calls an EJB, indicated, for example, by calls
to the EJB Properties() constructor, the InitialContext() constructor, and so on.

In the method of Figure 5, identifying a split type for the application split point
includes identifying a fagade split type (514) for the application split point. In the
method of Figure 5, identify;ing a facade split type (514) for the application split point
can be carried out by identifying (512), from a list of potential split points, a class that
is listed more than once as a potential split point.

The method of Figure 5 also includes assigning (518) all remaining unassigned
classes on the list of potential split points to the silo split type (504). That is, in

WO 2006/005655 PCT/EP2005/052632

[070]

[071]

[072]

12

scanning through the classes listed as potential split points, a split type analysis module
such as the one shown at reference (208) on Figure 2, assigns the split type ‘silo’ to
each split point that is not already identified as an EJB split type or a facade split type.

Some embodiments according to the present invention implement all three kinds of
splits: silo splits, facade splits, and EJB splits. In such embodiments, a split point that
calls HTTP functions or updates an enterprise database and also calls EJBs or is listed
more than once as a potential split point may be classified as a silo split type and an
EJB split type or a facade split type. That is, one split point may be assigned more than
one split type. In order to avoid conflicts among the split types, such embodiments may
advantageously permit only one split type per split point, implemented by deleting
(516) from the silo split type (504) any split point that is also identified as an EJB split
type (510) or a facade split type (514).

Again with reference to Figure 3: The method of Figure 3 also includes splitting
(306) the application into subcomponents (314) in accordance with the split type and
moving (308) a subcomponent to an edge network (106). For EJB split type, the
method of Figure 3 includes splitting the application (130) into a client RMITM (“Java
Remote Method Invocation”) module and a server RMI module, and moving the client
RMI module to an edge network, and moving the server RMI module to an enterprise
network. Alternatively for the EJB split type, the method of Figure 3 includes splitting
the application (130) into a client web services module and a server web services
module, moving the client web services module to an edge-network, and moving the
server web services module to an enterprise network. Similarly, for the facade split
type, the method of Figure 3 includes splitting the application (130) into a client web
services module and a server web services module, moving the client web services
module to an edge network, and moving the server web services module to an
enterprise network. For the silo split type, the method of Figure 3 includes aggregating
as one subcomponent all the classes in the calling hierarchy into a silo module and
moving the silo module to an edge network or to an enterprise network.

In the method of Figure 3 splitting (306) the application includes splitting the ap-
plication in dependence upon user preferences (303). Examples of such user

preferences include:

. no split — if entire application and its database will fit on the edge network
. identify and split by silo split types only

. identify and split by facade split types only

. identify and split by EJB split types only

. identify all split types, but split by silo only

. identify all split types, but split by fagade only

. identify all split types, but split by EIJB only

WO 2006/005655 PCT/EP2005/052632

[073]

[074]

[075]

[076]

13

identify all split types, and split by priority: silo/facade/EJB

The first exemplary user preference recites “no split — if entire application and its
database will fit on the edge network.” In such an example if the entire application and
its database will fit on the edge network, the application is not split and the entire ap-
plication is moved to the edge network. The method of Figure 3 therefore also includes
determining whether the application considered with the data it administers is too large
to fit on the edge network. One way of determining whether the application considered
with the data it administers is too large to fit on the edge network is carried out by
comparing the available data storage capacity of edge network and the data storage re-
quirement for the application and the data in the databases administered by the ap-
plication.

The user preferences listed above (“identify all split types, and split by priority:
silo/facade/EJB™) means that if more than one split type is present, the application is
split in dependence upon priority of present split types, in this case silo split types are
preferred to fagade split types and fagade split types are preferred to EJB split types.
That is, if all split types are present, split by silo only. If only fagade and EJB split
types are present, split by facade only. If only EJB split types are present, split by EJB.

Splitting (306) the application into subcomponents (314) in accordance with the
split type also advantageously includes a check (not shown) that each class to be
included a subcomponent is serializable. Most Java classes are serializable — unless, for
example;a member method takes a native data type, such as a character or integer, for
example, among its call parameters. Checking that each class in a subcomponent is se-
rializable, therefore, may be carried out by scanning the application source code of
references to native data types, reporting the discover of such native data types, and
converting them to Java classes and references to Java objects.

In addition, splitting (306) the application into subcomponents (314) in accordance
with the split type also may advantageously include glue insertion. That is, a sub-
component to be moved to an edge network may include data to be maintained
statefully across multiple request/response exchanges. Such stateful data may be
maintained in a Java HTTPSession object, for example. When application functionality
is split between the edge network and the enterprise network, the stateful data may
usefully be maintained on both the edge server and the enterprise server. The software
used to communicate the stateful data from an edge module to a corresponding
enterprise module is referred to as ‘glue.” In typical embodiments of the present
invention, splitting (306) the application into subcomponents (314) in accordance with
the split type also advantageously includes checking for the presence of classes that
maintain such stateful data, such as classes containing HTTPSession objects or

references to HTTPSession objects, for example, and inserting one or more glue

WO 2006/005655 PCT/EP2005/052632

[077]

{078}

[079]

[080]

14

classes and calls to glue classes to assure that the stateful data is made available as
needed in both the edge module and its related enterprise modules.

For further explanation, Figure 6 sets forth a flow chart illustrating an exemplary
method for application splitting for network edge computing for the EJB split type.
That is, in the example of Figure 6, the application split point (310) is identified as a
class in a calling hierarchy that calls an EJB and the split type (312) is identified as an
EJB split type. In the method of Figure 6, splitting (306) the application into sub-
components (314) in accordance with the split type is carried out by splitting the
classes in the calling hierarchy into a client RMI module (602) and a server RMI
module (604). In the method of Figure 6, moving (308) a subcomponent to an edge
network is carried out by moving the client RMI module (602) to the edge network
(106).

For further explanation, Figure 7 sets forth a flow chart illustrating another
exemplary method for application splitting for network edge computing for the EJB
split type. That is, the application split point (310) is identified as a class in a calling
hierarchy that calls an EJB, and the split type (312) is identified as an EJB split type. In
the method of Figure 7, splitting (306) the application (130) into subcomponents (314)
in accordance with the split type (312) is carried out by splitting the classes in the
calling hierarchy into a client web services module (702) and a server web services
module (704). In the method of Figure 7, moving (308) a subcomponent to an edge
network (106) is carried out by moving the client web services (702) module terthe
edge network (106).

For further explanation, Figure 8 sets forth a flow chart illustrating an exemplary
method for application splitting for network edge for the silo split type. In the example
of Figure 8, the application split point (310) is identified as a class in a calling
hierarchy that updates an enterprise database, and the split type (312) is identified as a
silo split type. In the method of Figure 8, splitting (306) the application (130) into sub-
components (314) in accordance with the split type (312) is carried out by aggregating
as one subcomponent all the classes in the calling hierarchy into a silo module (802).
In the method of Figure 8, moving (308) a subcomponent to an edge network (106) is
carried out by moving the silo module (802) to the edge network (106).

For further explanation, Figure 9 sets forth a flow chart illustrating another
exemplary method for application splitting for network edge computing for the silo
split type. In the example of Figure 9, the application split point (310) is identified as a
class in a calling hierarchy that calls an EJB and calls an HTTP function and the split
type (312) is identified as a silo split type. In the method of Figure 9, splitting (306) the
application (130) into subcomponents (314) in accordance with the split type is carried
out by aggregating as one subcomponent all the classes in the calling hierarchy into a

WO 2006/005655 PCT/EP2005/052632

[081]

[082]

[083]

15

silo module (802). In the method of Figure 9, moving (308) a subcomponent to an edge
network (106) is carried out by moving the silo module (802) to the edge network
(106).

For further explanation, Figure 10 sets forth a flow chart illustrating another
exemplary method for application splitting for network edge computing for the silo
split type. In the example of Figure 10, the application split point (310) is identified as
a class in a calling hierarchy that calls a JCA function and calls an HTTP function, and
the split type (312) is identified as a silo split type. In the example of Figure 10,
splitting (306) the application (130) into subcomponents (314) in accordance with the
split type (312) is carried out by aggregating as one subcomponent all the classes in the
calling hierarchy into a silo module (802). In the example of Figure 10, moving (308) a
subcomponent to an edge network (106) is carried out by moving the silo module (802)
to the edge network (106).

For further explanation, Figure 11 sets forth a flow chart illustrating an exemplary
method for application splitting for network edge for the fagade split type. In the
example of Figure 11, the application split point (310) is identified as a class in a
calling hierarchy that is listed more than once as a potential split point, and the split
type (312) is identified as a facade split type. In the method of Figure 11, splitting
(306) the application (130) into subcomponents (314) in accordance with the split type
(312) is carried out by splitting the classes in the calling hierarchy into a client web
services module (702) andra server web services module (704). In the method of
Figure 11, moving (308) a subcomponent to an edge network (106) is carried out by
moving the client web services module (702) to the edge network (106).

It will be understood from the foregoing description that modifications and changes
may be made in various embodiments of the present invention without departing from
its true spirit. The descriptions in this specification are for purposes of illustration only
and are not to be construed in a limiting sense. The scope of the present invention is
limited only by the language of the following claims.

WO 2006/005655 PCT/EP2005/052632

[001]

[002]

[003]

[004]

[005}

[006]

[007]

{008]

[009]

[010]

16

Claims

1. A method for application splitting for network edge computing, the method
comprising: identifying an application split point; identifying a split type for the
application split point; splitting the application into subcomponents in
accordance with the split type; and moving a subcomponent to an edge network.
2. A method as claimed in claim 1 wherein identifying an application split point £
urther comprises identifying a class of the application that calls an EJB.

3. A method as claimed in claim 1 wherein identifying an application split point
further comprises identifying a class of the application that updates an enterprise
database.

4. A method as claimed in claim 1 wherein identifying an application split point
further comprises identifying a class of the application that calls a JCA function.
5. A method as claimed in claim 1 wherein identifying a split type for the ap-
plication split point further comprises identifying a silo split type for the ap-
plication split point.

6. A method as claimed in claim 1 wherein identifying a split type for the ap-
plication split point further comprises identifying an EJB split type for the ap-
plication split point.

7. A method as claimed in claim 1 wherein identifying a split type for the ap-
plication split point further comprises identifying a fagade split type for the ap-
plication split point.

8. A method as claimed in claim 1 wherein: the application split point comprises
a class in a calling hierarchy that calls an EJB; the split type comprises an EJB
split type; splitting the application into subcomponents in accordance with the
split type further comprises splitting the classes in the calling hierarchy into a
client RMI module and a server RMI module; and moving a subcomponent to an
edge network further comprises moving the client RMI module to the edge
network.

9. A method as claimed in claim 1 wherein: the application split point comprises
a class in a calling hierarchy that calls an EJB; the split type comprises an EJB
split type; splitting the application into subcomponents in accordance with the
split type further comprises splitting the classes in the calling hierarchy into a
client web services module and a server web services module; and moving a sub-
component to an edge network further comprises moving the client web services
module to the edge network.

10. A method as claimed in claim 1 wherein: the application split point
comprises a class in a calling hierarchy that updates an enterprise database; the

WO 2006/005655 PCT/EP2005/052632

[011]

(012]

[013]

[014]

[015]

[016]

[017]

17

split type comprises a silo split type; splitting the application into subcomponents
in accordance with the split type) further comprises aggregating as one sub-
component all the classes in the calling hierarchy into a silo module; and moving
a subcomponent to an edge network further comprises moving the silo module to
the edge network.

11. A method as claimed in claim 1 wherein: the application split point
comprises a class in a calling hierarchy that calls an EJB and calls an HTTP
function; the split type comprises a silo split type; splitting the application into
subcomponents in accordance with the split type further comprises aggregating
as one subcomponent all the classes in the calling hierarchy into a silo module;
and moving a subcomponent to an edge network further comprises moving the
silo module to the edge network.

12. A method as claimed in claim 1 wherein: the application split point
comprises a class in a calling hierarchy that calls a JCA function and calls an
HTTP function; the split type comprises a silo split type; splitting the application
into subcomponents in accordance with the split type further comprises ag-
gregating as one subcomponent all the classes in the calling hierarchy into a silo
module; and moving a subcomponent to an edge network further comprises
moving the silo module to the edge network.

13. A method as claimed in claim 1 wherein: the application split point

=+ comprises a class in a calling hierarchy that is listed more than"once as a

potential split point; the split type comprises a facade split type; splitting the ap-
plication into subcomponents in accordance with the split type further comprises
splitting the classes in the calling hierarchy into a client web services module and
a server web services module; and moving a subcomponent to an edge network
further comprises moving the client web services module to the edge network.
14. A system for application splitting for network edge computing, the system
comprising: means for identifying an application split point; means for
identifying a split type for the application split point; means for splitting the ap-
plication into subcomponents in accordance with the split type; and means for
moving a subcomponent to an edge network.

15. A system as claimed in claim 14 wherein means for identifying an ap-
plication split point further comprises means for identifying a class of the ap-
plication that calls an EJB.

16. A system as claimed in claim 14 wherein means for identifying an ap-
plication split point further comprises means for identifying a class of the ap-
plication that updates an enterprise database.

17. A system as claimed in claim 14 wherein means for identifying an ap-

WO 2006/005655 PCT/EP2005/052632

[018]

[019]

[020]

[021]

[022]

18

plication split point further comprises means for identifying a class of the ap-
plication that calls a JCA function.

18. A system as claimed in claim 14 wherein means for identifying a split type
for the application split point further comprises means for identifying a silo split
type for the application split point.

19. A system as claimed in claim 14 wherein means for identifying a split type
for the application split point further comprises means for identifying an EJB
split type for the application split point.

20. A system as claimed in claim 14 wherein means for identifying a split type
for the application split point further comprises means for identifying a facade
split type for the application split point.

- 21. A system as claimed in claim 14 wherein: the application split point

comprises a class in a calling hierarchy that calls an EIB; the split type comprises
an EJB split type; means for splitting the application into subcomponents in
accordance with the split type further comprises means for splitting the classes in
the calling hierarchy into a client RMI module and a server RMI module; and
means for moving a subcomponent to an edge network further comprises means
for moving the client RMI module to the edge network.

22. A computer program product loadable into the internal memory of a digital
computer, comprising software code portions for performing, when said product
is run on a computer, to carry out the invention of claims 1 to 13.

WO 2006/005655 PCT/EP2005/052632

111
[Fig.]
Mobile 7
Phone
Personal
Computer 110 Cli
108 PDA ients
D 112 126
114 W,

—

[

(]
[yt
(-
o

|

WAN ~ 101
Application [
130 Bige
Analysis 1 - D aoe i D Network.
Modules P 106
& Splitter
~ Edge

12 = Enterprise
2 Enterprise D ees l:l Servers
Module | ==b 12

FIG. 1

WO 2006/005655

2/11
[Fig.]
Application
130
JDBC EIB JCA Split Type
Analysis Analysis Analysis Analysis
202 204 206 208
Splitter ~ 210
Fagade Edge EIB Edge Silo Module
Module Module 220
212 216
Fagade ETB
Enterprise Enterprise
Module Module
214 218

FIG. 2

PCT/EP2005/052632

WO 2006/005655

3/11

Identify Application
Split Point .

302

3

Identify Split Type Application
304] 130

Split Type
312
User Split Application Into
Preferences Subcomponents fe
303 306

Move A Subcomponent

To An Edge Network ey

308

Edge

[e

FIG.3

PCT/EP2005/052632

WO 2006/005655 PCT/EP2005/052632
4/11

Identify Class That
Calls EJB
i 402

y
Identify Class That Potential
Application Calls Enterprise Split Points
130 Da‘t‘_aéasc 406

Identify Class That
| Calls JCA Function
" 405

FI1G. 4

PCT/EP2005/052632

WO 2006/005655
5/11
[Fig.]
Application
130
A4
Potential Identify Classes that Record Calling
Split Points Call HTTP Function - Hierarchy
406 502 506
A Jr
Identify Class That Silo
| Updates Enterprise Split Type
- Database 504
" 514
Identify Class That Delete
— Calls ETB From
508 Silo
316
v 7'y
Identify Class
Listed More Than
»{ Once as Potential
Split Point
312
|3
Assign Remaining,
.} Classes to Silo Split
" Type
s18
FIG.5

WO 2006/005655

Identify Application
Split Point

6/11

[Fig.]

302

Split Point ~ 310
Class That Calls an ETB

Identify Split Type

304 B

Split Type ~ 312
EJB Split Type
!

Split Application Into
Subcomponents

A

306

, Application
130

Server RMI
Module)
Subcomponents

Client RMI
Module
602

{

Move A Subcomponent To An Edge
Network ~ 308

Move Client RMI Module To An
Edge Network

Edge

Network
. | [N

PCT/EP2005/052632

WO 2006/005655 PCT/EP2005/052632
7/11

Identify Application
Split Point
302

b

Split Point ~ 310
Class That Calls an EJB

Identify Split Type
304

} Application
130 ;
Split Type ~ 312 / =

F s

EJB Split Type

Split Application Into
Subcomponents
306

A

Client Web
Services
Module

s Subcomponents
1 314

¥

Move A Subcomponent To An Edge Edge

Network ~ 308 == D Network

: - 106
Move Client Web Services Module —

To An Edge Network

FI1G. 7

WO 2006/005655 PCT/EP2005/052632
8/11

[Fig.]

Identify Application
Split Point
302

¥
Split Point ~ 310

Class That Updates Enterprise
Database

Identify Split Type
304 <

l Application
‘ 130
Split Type ~ 312
Silo Split Type

]

Split Application Into
Subcomponents <
306

Subcomponents
314

Move A Subcomponent To An Edge Edge

Network ~ 308 Network
_. [1|
Move Silo Module To An Edge

Network

FIG. 8

WO 2006/005655

Identify Application
Split Point >

9/11

[Fig.]

302

Split Point ~ 310
Class That Calls EJB and
HTTP Function

Identify Split Type

304 N

Split Type ~312
Silo Split Type
Split Application Into
Subcomponents

’ Application
130

-~

306

Silo
Module

Subcomponents

314

Move A Subcomponent To An Edge
Network ~ 308

Move Silo Module To An Edge
Network

Edge

Network
_.l [J|1e

FIG. 9

PCT/EP2005/052632

WO 2006/005655

Identify Application

10/11

[Fig.]

Split Point «
302

Split Point ~ 310

Class That Calls JCA and
HTTP Function

]

Identify Split Type
304

Split Type~ 312
Silo Split Type
Split Application Into
Subcomponents <

‘ Application
130

2306

Silo
Module
802
Subcomponents
T 314

Move A Subcomponent To An Edge
Network ~ 308

Move Silo Module To An Edge
Netwark

FIG. 10

PCT/EP2005/052632

WO 2006/005655

Identify Application
Split Point

1111

[Fig.]

A

302

Split Point ~ 310

Class Listed More Than Once as a
Potential Split Point

Identify Split Type

304

Split Type ~ 312
Facade Split Type

Split Application Into

Application
130

A

Subcomponents
306

Client Web
Services

Server Wci')
Services Module,

Module 704

102 - Subcompaonents

] 314
Move A Subcomponent To An Edge Edge

Network ~ 308 Network
| I
Move Client Web Services Module
To An Edge Network

FIG. 11

PCT/EP2005/052632

INTERNATIONAL SEARCH REPORT

Intern. i Application No

PCT/EP2005/052632

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X TATSUBORI M ET AL: "A bytecode translator 1-22

for distributed execution of "legacy" Java

software"

ECOOP 2001 - OBJECT-ORIENTED PROGRAMMING.
15TH EUROPEAN CONFERENCE. PROCEEDINGS
(LECTURE NOTES IN COMPUTER SCIENCE
VOL.2072) SPRINGER-VERLAG BERLIN, GERMANY,
2001, pages 236-255, XP002340595

ISBN: 3-540-42206-4

page 237, line b - Tine 41

page 243, Tine 20 - page 244, line 26

_____ o

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : . . o
P g *T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or afterthe international *X* document of particular relevance; the claimed invention
filing date cannot be considered nove! or cannot be considered to

L doc#n;‘e‘nt whié:rtl may tlglrohw ?‘oubti Ion prior(ijtyt clafim(s) |:)r involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

*O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art
later than the priority date claimed '&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
15 August 2005 30/08/2005
Name and mailing address of the ISA Authotized officer

European Patent Cffice, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s J
Fax: (+31-70) 340-3016 Carciofi, A

Fom PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter! al Application No

PCT/EP2005/052632

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WO 95/04968 A (FORTE SOFTWARE, ‘INC)) 1-22
16 February 1995 (1995-02-16)

page 7, 1ine 12 - Tine 23 o
page 10, line 7 - page- 11, .1ine 13
page 12, line 6 - line 9

.page 14, line 24 - page 15, line 2
page 28, line 18 ~ line 22

page 30, line 19 ~ 1ine 32

page 31, line 27_=.1line 32

A TILEVICH E ET AL: "Aspectizing 1-22
server-side distribution”

AUTOMATED SOFTWARE--ENGINEERING, 2003.
PROCEEDINGS. 18TH IEEE INTERNATIONAL
CONFERENCE ON 6~10 OCT. 2003, PISCATAWAY,
NJ, USA,IEEE, 6 October 2003 (2003-10-06),
pages 130-141, XP010662943

ISBN: 0-7695-2035-9

abstract; figure 3

page 133, right-hand column, line 44 -
page 134, left-hand column, Tine 7

page 134, left-hand column, Tine 31 - last
1ine

page 135, left-hand column, Tine 7 - page
136, Teft-hand column, line 18

A PO-HAO CHANG ET AL: "An adaptive 1-22

programming framework for web
applications”

APPLICATIONS AND THE INTERNET, 2004.
PROCEEDINGS. 2004 INTERNATIONAL SYMPOSIUM
ON TOKYO, JAPAN 26-30 JAN. 2004, LOS
ALAMITOS, CA, USA,IEEE COMPUT. SOC, US,

26 January 2004 (2004-01-26), XP010682145
ISBN: 0-7695-2068-5

page 1, right-hand column, 1ine 8 — Tine
30; figures 2,3

page 4, left~hand column, line 45 -
right-hand column, line 3

page 5, left-hand column, line 4 - line 12
A GAMMA E ET AL: "Design Patterns: Elements 5,7,10,
of Reusable Object-Oriented Software" 13,18,20
DESIGN PATTERNS. ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE,

September 1999 (1999-09), pages 81-136,
XP002207989

the whole document

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

. . Interr’al Application No
ormation on patent family members PCT EP2005/052632
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9504968 A 16-02-1995 AU 681433 B2 28-08-1997
AU - 7480494 A 28-02-1995
CA 2168762 Al 16-02-1995
DE 69428809 D1 29-11-2001"
EP 0746816 Al 11-12-1996
JP 9501783 T 18-02-1997
JP . 35641039 B2 . 07-07-2004
Wo 9504968 Al 16-02-1995

us 5457797 A 10-10-1995

Form FCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

