发明名称

连接器及将连接器与配合的连接器相连的方法

摘要

本发明的目的在于改进连接器的连接检测功能。本发明公开了一种连接器，包括能够至少部分容纳至少一个端子接头的外壳，以及至少一个检测件，该检测件与外壳以这样的方式组装，以能够在待用位置和检测位置之间移动，且如果该外壳与配合的外壳正确连接，则允许该检测件从该待用位置移动至该检测位置，而在该外壳与该配合的外壳部分连接的状态下，将防止该检测件移向该检测位置，其中，该检测件形成有至少一个开口，且当该检测件位于该待用位置处和检测位置处时，通过该开口看到不同的背景色。另外，本发明还公开了一种将连接器与配合的连接器相连的方法。
1. 一种连接器，包括：
能够至少部分容纳至少一个端子接头（40;121）的外壳（10;120），以及
至少一个检测件（60;133），该检测件与该外壳（10;120）以这样的方式组装，以能够在
待用位置（SP）和检测位置（DP）之间移动，且如果该外壳（10;120）与配合的外壳（90;110）
正确连接，则允许该检测件从该待用位置（SP）移动至该检测位置（DP），而在该外壳（10;
120）与该配合的外壳（90;110）部分连接的状态下，则防止该检测件移向该检测位置（DP），
其中，该检测件（60;133）形成有至少一个开口（69;169），且该检测件（60;133）位于
该待用位置（SP）处和检测位置（DP）处时，通过该开口（69;169）看到不同的背景色，
其中，当该检测件（60;133）位于该待用位置（SP）处时，能够通过该开口（69;169）看到
该检测件（60;133）的对应部分（64;136），当该检测件（60;133）位于该检测位置（DP）时，
能够通过该开口（69;169）看到该外壳（10;120）的对应部分（24;127）。
2. 如权利要求1所述的连接器，其中：
该外壳（10;120）包括至少一个锁定臂（12;127），用于保持与该配合的外壳（90;110）
的连接状态，以及
当该检测件（60;133）设置在该检测位置（DP）处时，能够通过该开口（69;169）看到该
锁定臂（12;127）的对应部分（24;127）。
3. 如权利要求1所述的连接器，其中：
该检测件（60;133）处于第一颜色，该外壳（10;120）处于不同于该第一颜色的第二颜色。
4. 一种将连接器与配合的连接器相连的方法，包括步骤：
设置能够至少部分容纳至少一个端子接头（40;121）的外壳（10;120），
设置配合的外壳（90;110），
对至少一个检测件（60;133）与该外壳（10;120）以这样的方式进行组装，以能够在待用
位置（SP）和检测位置（DP）之间移动，且如果该外壳（10;120）与配合的外壳（90;110）正确
连接，则允许该检测件从该待用位置（SP）移动至检测位置（DP），而在该外壳（10;120）与该配合的
外壳（90;110）部分相连的状态下，则防止该检测件移向该检测位置（DP），
在该外壳（10;120）与配合的外壳（90;110）相连之后，通过利用形成在该检测件（60;
133）中的至少一个开口（69;169）而确定能够看到的背景色，从而对该连接进行核实，其中，
当该检测件（60;133）位于该待用位置（SP）和检测位置（DP）时，通过该开口（69;169）
而看到的背景色不同，
其中，当该检测件（60;133）位于该待用位置（SP）处时，通过该开口（69;169）看到该
检测件（60;133）的对应部分（64;136），当该检测件（60;133）位于该检测位置（DP）处时，
通过该开口（69;169）看到该外壳（10;120）的对应部分（24;127）。
5. 如权利要求4所述的方法，还包括步骤：通过至少一个锁定臂（12;127）保持与该
配合的外壳（90;110）的连接状态，
其中，当该检测件（60;133）位于该检测位置（DP）处时，通过该开口（69;169）看到该
锁定臂（12;127）的对应部分（24;127）。
连接器及将连接器与配合的连接器相连的方法

【0001】本申请是申请日为2008年8月1日、申请号为200810144785.4、发明名称为“连接器、连接器组件以及连接方法”的中国专利申请的分案申请。

技术领域
【0002】本发明涉及一种连接器以及将连接器与配合的连接器相连的方法。

背景技术
【0003】现有公知具有连接检测功能的连接器。例如日本未审专利公开No. 2004-63090中公开了这样一种连接器，其中，凹性外壳设置有锁定臂，检测件安装在该锁定臂上。该检测件能够相对于凹性外壳在待用位置和检测位置之间移动，且在紫外与配合壳体的连接过程中，利用移动防止装置将检测件保持在待用位置处，以及当外壳与配合外壳正确连接时，检测件脱离运动防止装置，以允许移至检测位置。因此，能够基于检测件是否能够移动而检测两个外壳的连接状态。
【0004】在上述情况下，通过看到检测件的位置或听到检测件位于检测位置时发出的锁定声而确定检测件到达检测位置。然而，还存在无法清楚确定检测件的位置或由于被操作现场的噪音所掩盖而无法听到锁定声的情况。因此，就有可能忘记移动检测件，从而损害连接器的连接检测功能。
【0005】日本未审专利公开No. 2006-253073中公开了一种具有连接检测功能的连接器。该连接器设置有包括锁定突出的第一外壳，能够与第一外壳相连包括锁定臂的第二外壳，设置在第二外壳中且能够沿着基本平行于两个外壳的连接方向而在初始位置和检测位置之间滑动的连接检测件，以及沿从连接检测件朝检测位置的方向延伸的悬臂形弹性件。
【0006】在连接检测件位于初始位置的情况下，弹性件与锁定臂以如此方式接触，以防止连接检测件滑动至检测位置，并且弹性件与锁定臂接合，以能够与锁定臂一同移位。在连接外壳的过程中，锁定臂通过与锁定突出相干涉而沿着与两个外壳的连接方向相交的方向发生弹性变形。当两个外壳正确连接时，锁定臂穿过锁定突出，且弹性回复与与锁定突出相接合，以防止两个外壳的分离，且弹性件通过与锁定突出的干涉而与锁定臂脱离。这样，允许连接检测件滑动至检测位置。
【0007】在上述连接器中，如果外力施加至连接检测件，以在两个外壳尚未正确连接的状态下朝检测位置移动连接检测件，则弹性件发生弹性变形，以对其基端和与锁定臂相接合的锁定部分之间的区域进行弯曲。此时，如果弹性件过度弹性变形，则由于其弹性回复力而从锁定臂脱离，从而即使两个外壳尚未连接，连接检测件也滑动至检测位置。

发明内容
【0008】本发明针对上述情况而提出，其目的在于提高连接功能的整面操作性。
【0009】本发明的该目的通过独立权利要求的特征而得以解决。本发明的优选实施例是从
属权利要求的主题。
[0010] 根据本发明，提供一种连接器，包括：
[0011] 能够与配合的外壳相连的外壳，该外壳包括至少一个锁定臂，
[0012] 至少一个连接检测件，该连接检测件设置在该外壳内或设置在该外壳上，且能够沿着基本平行于该外壳与该配合的外壳的连接方向的方向在初始位置和检测位置之间滑动，以及
[0013] 从该连接检测件沿着朝向该检测位置的方向延伸的弹性件，
[0014] 其中：
[0015] 该弹性件与该锁定臂相接触，以防止该连接检测件朝向该检测位置的滑动，且该弹性件与该锁定臂相接合，以在连接检测件位于初始位置的状态下能够与该锁定臂一同移位，
[0016] 通过在该外壳与配合的外壳的连接过程中与该配合的外壳的锁定突出相干涉，从而该锁定臂沿着与该两个外壳的连接方向相交的方向弹性变形，
[0017] 当该两个外壳正确连接时，锁定臂穿过该锁定突出，且至少部分弹性回复，从而以这样的方式与该锁定突出相接合，以防止该两个外壳的分离，且该弹性件通过与该锁定突出的干涉而从该锁定臂脱离，从而允许该连接检测件朝向该检测位置的移动。
[0018] 因此，在两个外壳尚未连接的状态下，防止连接检测件从初始位置移动至检测位置，从而提高综合操作性。
[0019] 在两个外壳尚未连接的状态下，如果外力作用至连接检测件，以将其移向检测位置，弹性件卷曲或弯曲并且变形，弹性件在从锁定臂脱离之前与限制部分相接触，以防止弹性件的任何进一步卷曲变形。因此，能够防止由于弹性件的卷曲变形而造成弹性件从锁定臂脱离。因而，在两个外壳尚未连接的状态下，能够防止连接检测件从初始位置移动至检测位置。
[0020] 根据本发明的优选实施例，设置有限制部分，以在连接检测件位于该初始位置的状态下，且弹性件与该锁定臂相接合的情况下，防止弹性件朝相对于该锁定部分的一侧发生过度弯曲变形。
[0021] 优选地，在从弹性件的基端至与该锁定臂相接合的锁闭部分的弹性件的能够弯曲区域内，该限制部分形成在对应于该弹性件的至少长度方向中间部分的范围内。
[0022] 在从弹性件的基端至与该锁定臂相接合的锁闭部分的可弯曲区域内，当弹性件弯曲时，弹性件的长度方向中间部分发生最大位移。就此而言，在本发明中，限制部分形成在对应于弹性件的长度方向中间部分的范围内。因此，能够有效防止弹性件的过度弯曲变形。
[0023] 更优选地，在该弹性件的整个长度内，该限制部分形成在不对称于该弹性件的延伸端的区域范围内。
[0024] 在两个外壳正确连接且连接检测件位于初始位置的状态下，与锁定突出相干涉的弹性件倾斜其姿势，且移位以靠近限制部分。此时，弹性件的移位量在其延伸端处最大。就此而言，在本发明中，限制部分形成在除弹性件的的延伸端之外的范围内。因此，不可能由于弹性件的延伸端与限制部分的干涉而妨碍弹性件的移位。
[0025] 仍然更优选地，弓形或锥形接触部分在与该弹性件的延伸基本相同的侧部处形成于该限制部分的端缘处。
当弹性件移位以靠近限制部分时，弹性件的延伸端在与该弹性件的延伸端基本相同的侧部处与形成在限制部分的端缘处的接触部分相接触。如果该接触部分为类似于刀刃的角形，则可形成接触部分和弹性件。就此类而言，在本发明中，接触部分为弓形或锥形，从而能够防止接触部分和弹性件的变形。

更优选地，该限制部分与该连接检测件整体或一体形成。

由于限制部分形成在作为弹性件形成基部的连接检测件上，因此不可能破坏弹性件和限制部分的位置关系。

最优选地，该连接检测件包括位于该弹性件的相对侧处的成对侧壁，以及

该限制部分以成不同于 0° 或 180° 的角度，优选基本成直角的方式与该成对的侧壁、优选与其边缘部分相连，且成形为连接该对侧壁。

由于限制部分与成对侧壁的边缘部分基本成直角相连，且形成为连接该对侧壁，因此与限制部分呈单向延伸的单个板形成的情况相比，限制部分的挠曲强度更高。因此，能够可靠地限制弹性件的弯曲变形。

根据本发明，还提供一种连接器组件，包括根据本发明或其优选实施例所述的连接器以及能够与之相连的配合连接器。

根据本发明的优选实施例，提供一种连接器组件，包括：

包括锁定突出的第一外壳，

能够与第一外壳相连且包括锁定臂的第二外壳，

连接检测件，其设置在第二外壳中，且能够在初始位置和检测位置之间沿基本平行于两个外壳的连接方向的方向滑动，以及

延伸朝向检测位置的方向从连接检测件延伸的悬臂形弹性件，

其中：

弹性件与锁定臂相接触，以防止连接检测件朝检测位置的滑动，弹性件与锁定臂相接合，从而在连接检测件位于初始位置的状态下，能够与锁定臂一同移位，

在两个外壳的连接过程中，通过与锁定突出的干涉，锁定臂在与两个外壳的连接方向相交的方向上弹性变形，

当两个外壳正确连接时，锁定臂穿过锁定突出，且弹性回复，从而以这种方式与锁定突出相接合，从而防止两个外壳的分离，弹性件通过与锁定突出的干涉而从锁定臂脱离，从而允许连接检测件朝检测位置的滑动，以及

设置限制部分，以在连接检测件位于初始位置的状态下，且在弹性件与锁定臂相接合的情况下，防止弹性件朝锁定突出的相对侧的过度弯曲变形。

如果外力施加至连接检测件，以将其朝检测位置移动，弹性件在两个外壳尚未连接的状态下弯曲和变形，则弹性件在从锁定臂脱离之前与限制部分相接触，以防止弹性件的任何进一步弯曲变形。因此，能够防止由于弹性件的弯曲形而造成弹性件从锁定臂脱离。因而，在两个外壳尚未连接的状态下，能够防止连接检测件从初始位置至检测位置的移动。

优选地，在弹性件的从其基端至与锁定臂相接合的锁闭部分的可弯曲区域内，限制部分形成在对应于弹性件的至少长度方向中间部分的范围内。

在弹性件的从其基端至与锁定臂相接合的锁闭部分的可弯曲区域内，当弹性件弯
曲时，弹性件的长度方向中间部分发生最大移位。就此而言，在本发明中，限制部分形成在对应于弹性件的长度方向中间部分的范围内。因此，能够有效防止弹性件的过度弯曲变形。

[0046] 更优选地，在该弹性件的整个长度内，该限制部分形成在不对应于该弹性件的延伸端的区域范围内。

[0047] 在两个外壳正确连接且连接检测件位于初始位置的状态下，与锁定突出相干涉的弹性件倾斜其姿势，且移位以靠近限制部分。此时，弹性件的移位量在其延伸端处最大。就此而言，在本发明中，限制部分形成在除弹性件的延伸端之外的范围内。因此，不可能由于弹性件的延伸端与限制部分的干扰而妨碍弹性件的移位。

[0048] 仍然更优选地，弓形或锥形接触部分在与该弹性件的延伸基本相同的侧部处形成于该限制部分的端缘处。

[0049] 当弹性件移位以靠近限制部分时，弹性件的延伸端在与该弹性件的延伸端基本相同的侧部处与形成在限制部分的端缘处的接触部分相接触。如果该接触部分为类似于刀刃的角形，则可形成接触部分和弹性件。就此而言，在本发明中，接触部分为弓形或锥形，从而能够防止接触部分与弹性件的变形。

[0050] 更优选地，该限制部分与该连接检测件形成一体或一体形成。

[0051] 由于限制部分形成在作为弹性件形成基部的连接检测件上，因此不可能破坏弹性件和限制部分的位置关系。

[0052] 最优选地，该连接检测件包括位于该弹性件的相对侧处的成对侧壁，以及

[0053] 该限制部分以成直角的方式与该成对侧壁部分相连，且形成为连接该对侧壁。

[0054] 由于限制部分与成对侧壁的边缘部分基本成直角相连，且形成为连接该对侧壁，因此与限制部分呈单向延伸的单个板形成的情况相比，限制部分的挠曲强度更高。因此，能够可靠地限制弹性件的弯曲变形。

[0055] 根据本发明，提供一种尤其是根据本发明上述特征或其优选实施例所述的连接器，包括：

[0056] 能够至少部分容纳至少一个端子接头的外壳，以及

[0057] 至少一个检测件，该检测件与或待与该外壳以这样的方式组装，以能够在待用位置（第一位置）和检测位置（第二位置）之间移动，且如果该外壳与配合的外壳正确连接，

则允许该检测件从该待用位置移动至该检测位置，而在该外壳与该配合的外壳部分连接的状态下，则防止该检测件移动到该检测位置，

[0058] 其中，该检测件形成有至少一个开口和以及背景色，当该检测件位于该待用位置处和检测位置处于时，通过该开口能够看到不同的背景色。

[0059] 由于当检测件从待用位置移动至检测位置时，通过开口看到或检测到的背景色不同，因此能够清楚地确认检测件到达检测位置。从而，能够防止忘记移动或操作检测件。因此，提高了连接器的连接检测功能的可靠性。

[0060] 根据本发明的优选实施例，当该检测件位于该待用位置处时，能够通过该开口看到或检测到该检测件的对应部分，当该检测件位于该检测位置时，能够通过该开口看到或检测到该外壳的对应部分。

[0061] 由于位于该待用位置处时，能够通过该开口看到或检测到该检测件的对应部分，
因此在待用位置处，开口中的颜色与开口周围部分的颜色相同。因此，操作者能够通过这样的事实而得知检测件到达检测位置；通过开口看到或检测到的背景色变化不同于周围部分的颜色，且不需要记忆背景色。因此，错误确定的可能性更小。

优选地，该外壳包括锁定臂，用于保持与该配合的外壳的连接状态，以及
当该检测件设置在该检测位置处时，能够通过该开口看到或能够看到或检测到该锁定臂的对应部分。

由于在检测位置处通过该开口看到该锁定臂的对应部分，因此也能够确定锁定臂的对应部分的情况。

最优选地，该检测件处于第一颜色，该外壳处于不同于该第一颜色的第二颜色。

由于检测件为第一颜色，外壳为第二颜色，因此无须仅对通过开口看到的对应部分与周围部分进行颜色区分，因此生产更为容易。

根据本发明，还提供一种连接器组件，包括本发明或其优选实施例所述连接器以及能够与之相连的配合的连接器。

根据本发明，还提供一种将连接器，尤其是根据本发明或其优选实施例所述的连接器与配合的连接器相连的方法，包括步骤：
设置能够至少部分容纳至少一个端子接头的外壳，
设置配合的外壳，
对至少一个检测件与该外壳以这样的方式进行组合，以能够在待用位置和检测位置之间移动，且如果该外壳与配合的外壳正确连接，则允许从该待用位置移动至检测位置，而在该外壳与该配合的外壳部分相连的状态下，防止移向该检测位置。

在该外壳与配合的外壳相连之后，通过确定利用形成在该检测件中的至少一个开口而能够看到的背景色，从而对该连接进行核实，其中，当该检测件位于该待用位置和检测位置时通过该开口而看到的背景色不同。

根据本发明的优选实施例，当该检测件处于该待用位置处时，通过该开口看到该检测件的对应部分，当该检测件位于该检测位置处时，通过该开口看到该外壳的对应部分。

优选地，所述方法还包括步骤：通过至少一个锁定臂而保持与该配合的外壳的连接状态，
其中，当该检测件位于该检测位置处时，通过该开口看到该锁定臂的对应部分。

附图说明

在阅读后述对优选实施例的详细说明以及附图后，便能够更为清楚地理解本发明的这些和其它目的、特征和优点。应当理解的是，尽管分别描述实施例，但其单个特征可以结合至其它实施例。

图 1 为示出了本发明第一实施例中两个外壳相连之前的状态的局部剖视图；
图 2 为示出了两个外壳连接过程的状态的局部剖视图；
图 3 为示出了两个外壳正确连接以将检测件带至检测位置的状态的局部剖视图；
图 4 为示出了检测件相对于锁定臂保持在待用位置状态下的平面图；
图 5 为示出了检测件相对于锁定臂保持在检测位置状态下的平面图；
图 6 为示出了检测件相对于锁定臂保持在检测位置状态下的前视图；
图 7 为检测件的前视图；
图 8 为检测件的仰视图；
图 9 为外壳的前视图；
图 10 为外壳的平面图；
图 11 为示出了第二实施例中弹性件的过度弯曲变形被限制部分限制的状态垂直剖视图；
图 12 为具有位于起始位置处连接检测件的第二外壳的垂直剖视图；
图 13 为示出了两个外壳的连接过程的垂直剖视图；
图 14 为示出了两个外壳正确连接且连接检测件处于起始位置处的状态的垂直剖视图；
图 15 为示出了两个外壳正确连接且连接检测件处于检测位置的状态下的垂直剖视图；
图 16 为示出了连接检测件保持在起始位置的状态的水平剖视图；
图 17 为第二外壳的平面图；
图 18 为示出了连接检测件从第二外壳分离的状态的平面图；
图 19 为示出了连接检测件从第二外壳分离的状态的前视图；
图 20 为连接检测件的仰视图，以及
图 21 为连接检测件的前视图。
附图标记列表
10 外壳
12 锁定臂
22 臂部
24 上板（外壳的对应部分）
60 检测件
64 检测主体（检测件的对应部分）
68 通孔
69 窗部（开口）
90 配合外壳
110 第一外壳
113 锁定突出
120 第二外壳
124 锁定臂
133 连接检测件
134 侧壁
137 弹性件
138 限制部分
141 锁闭部分
143 触摸部分
145 接触部分
具体实施方式

【0119】第一实施例
【0120】参看图 1-10 对本发明的第一优选实施例进行说明。该实施例的连接器设置有外壳 10、一个或多个阴性端子接头 40 以及检测件 60，其中，外壳 10 能够与配合的外壳 90 相连，且检测件 60 能够相对于外壳 10 在待用位置 SP（或第一位置）和检测位置 DP（或第二位置）之间移动。在上述说明中，两个外壳 10,90 的待连接侧称为关于向前和后向方向的前侧。

【0121】阳性外壳 90 例如由合成树脂制成，且包括能够至少部分容纳一个或多个阳性端子接头 50 的端子容纳部分 91，以及从端子容纳部分 91（优选其前表面）或在端子容纳部分 91（优选其前表面）上向前突出的管状接收器 92。能够至少部分容纳相应的阳性端子接头 50 的一个或多个空腔 93 形成在端子容纳部分 91 中。在接收器 92 中，相应的阳性端子接头 50 的一个或多个突片 51 布置为从空腔 93 的前表面基本向前突出，释放件 94 从接收器 92 的后壁向前突出。锁定部分 95 从接收器 92 的横向（上）表面或在接收器 92 的横向（上）表面上突出。用于保持一个或多个阳性端子接头 50 的保持器 96 至少部分安装在端子容纳部分 91 中。该保持器 96 包括用于对阳性端子接头 50 的相应部分（优选盒部）52 进行锁定的一个或多个端子锁闭部分 97，以及用于咬合或接合与阳性端子接头 50 相连的电线 55 的绝缘涂层的（优选基本锡齿形或尖形）突出 98。阳性端子接头 50 利用优选通过切除和弯曲而形成在（盒形）部分 52 中的锁定杆 54 与空腔 94 的内壁的接合而主要保持在空腔 93 中。可选地或另外地，阳性端子接头 50 可以通过设置在其其上的端锁闭部分（未示出）而保持在相应的空腔 93 中。

【0122】外壳 10 例如由合成树脂制成，且包括；外壳主体 11（优选基本呈平坦块状）、设置在外壳主体 11 的横向（上）表面上或横向（上）表面处的至少一个锁定臂 12、以及至少部分围绕外壳主体 11 的装配部分 13，如图 9 所示。能够至少部分容纳一个或多个相应的阴性端子接头 40 的一个或多个、例如三个空腔 14 成排布置在外壳主体 11 中、优选横向成排布置在外壳主体 11 中。如图 10 所示，用于检测的一个或多个、优选成对的横向（左和/或右）接收部分 15 从外壳主体 11 的后端突出。此与外壳主体 11 的外部或横向（上）表面和一个或多个相应空腔 14 连通的连通空间 16 贯穿外壳主体 11（优选其后端部分），电线保持件 17 被或能够被至少部分装配或插入该连通空间 16 中。如图 1 所示，电线保持件 17 包括用于咬入或接合电线 41 的绝缘涂层的（优选为基本锡齿形或尖形）突出 18，且通过突出 18 的该咬入或接合作用而限制电线 41 基本在向前和后向方向上的移动。

【0123】用于短路端子 42 的容纳腔 19 如此形成在外壳主体 11（优选其前表面）中，从而与至少两个彼此相邻的空腔 14 连通。容纳腔 19 还优选在装配部分 13 的侧表面内形成开口，短路端子 42 能够通过侧表面内的该开口而安装。短路端子 42 横向或从下方与或能够与至少部分容纳在至少两个空腔 14 中的相应的阴性端子接头 40 接触，以短路这两个或更多端子接头 40（参看图 1），优选地，直至完成两个外壳 10,90 的连接操作。在两个外壳 10,90 正确连接的情况下，短路端子 42 优选被接收器 92 的释放件 94 向下挤压（或远离两个或多更多端子接头 40），以将该两个或多更多端子接头 40 从短路状态释放（参看图 3）。

【0124】锁定臂 12 例如从外壳主体 11 的外（上）表面上竖立或突出的一个或多个，优选
成对的横向（左和 / 或右）支腿部分 21；从（优选两个）支腿部分 21 的上端基本向前和 / 或向后（优选向前和向后）延申的一个或多个，优选成对的横向（左和 / 或右）臂部 22；优选联结两个臂部 22 的底端边缘的下板 23；优选联结两个臂部 22 的上端边缘的（优选基本呈矩形板形式的）上板 24；以及优选联结臂部 22 的前端的锁定主体 25，且锁定臂 12 能够以（优选两个）支腿部分 21 作为支撑点，像秋千一样向上和向下（或者与两个连接器外壳 10.90 的连接方向相交的方法）枢轴移位（能够弹性移位）。下板 23 在向前和向后方向上的形成区域优选位于从锁定主体 25 后方的位置至锁定部分 22 的后端的范围内，且下板或上板 24 布置在臂部 22 的后端处。下板或上板 24 以及内板或下板 23 优选为薄板，且基本水平布置在不同的水平位置或径向位置。在上板 24 和下板 23 之间以及两个臂部 22 之间限定有安装空间 26。检测件 60 的（后述）检测主体 64 能够至少部分插入该安装空间中。

基本在向前和向后方向（处于自由状态下的锁定臂 12 的长度方向）延申的一个或多个，优选成对的横向（左和 / 或右）导向肋 27 设置为在臂部 22 的（优选基本相对）横向边缘处或附近突出，一个或多个，优选成对的横向（左和 / 或右）保持突出 28 设置为在下表面的（优选基本相对）横向边缘处突出。导向肋 27 的下表面以及保持突出 28 的上表面整体或一体连接。

装配部分 13 包括在锁定臂 12 的（优选基本相对）侧部上或侧部处竖立或突出的一个或多个，优选成对的横向（左和 / 或右）侧壁 31。装配部分 13优选还包括联结相对侧壁 31 的上边缘的前端的联结壁 32。

包括锁定臂 12 的外壳 10 的外表面优选整体处于第二颜色，具体而言处于诸如黄色这样的亮色调，且其整体外观在组装检测件 60 之前看起来均匀地处于诸如黄色这样的亮色调。

每个阴性端子接头 40 基本在向前和向后方向为窄长形，其中，前部（优选其基本前半部）用作（优选基本管形或盒形）连接部分 43，后部（优选其基本后半部）用作电线连接部分（优选包括呈至少一个开口筒形状的电线卷曲部分 44）。锁定杆 45 优选通过切除或弯曲而形成在连接部分 43 上或连接部分 43 内。从插入侧、优选基本从后侧至少部分插入空腔 14 中的阴性端子接头 40 通过锁定杆 45 与空腔 14 的内壁的弹性接合面保持在空腔 14 内。可选地或另外地，阴性端子接头 40 可通过设置在其或其上的锁闭部分保持在空腔 14 中。

检测件 60 例如由合成树脂制成，且包括：位于后端处或附近的（优选基本块形）可操作部分 61、从可操作部分 61 的（优选基本相对）端部基本向前延伸的一个或多个，优选成对的横向（左和 / 或右）悬臂形导向臂 62、联结（优选两个）导向臂 62 的上端边缘的覆盖部分 63，以及悬臂形检测主体 64，该悬臂形检测主体 64 位于覆盖部分 63 下方或向内于覆盖部分 63，且与导向臂 62 相邻（优选位于两个导向臂 62 之间），并且从可操作部分 61 基本向前延伸，如图 8 所示。如图 7 所示，一个或多个导向凹槽 65 由此形成在（优选两个）导向臂 62 的内表面中，以沿向前和向后方向延伸。导向凹槽 65 如此布置，从而其开口向内朝向。一个或多个、优选成对的横向（左和 / 或右）保持突出 66 设置在位于导向凹槽 65 下方的（优选两个）导向臂 62 的内表面上。

如图 4 所示，覆盖部分 63 优选基本呈至少部分覆盖外壳主体 11 的一部分（优选基本后半部）的平板形式，且包括：从其前端边缘向前突出的一个或多个、优选成对的横向
说明书

(左和/或右)接触件67。一个或多个、优选成对的横向（左和/或右）通孔68形成在靠近覆盖部分63的（优选基本对称）横向边缘的位置处。覆盖部分63的（优选两个）通孔68优选基本为在向前和向后方向上较长或伸长的矩形孔，且在组装前的隔离状态下，能够通过（优选两个）通孔68看到对应的保持突出66。覆盖部分63还在后端边缘附近于宽度方向中间位置（优选基本为宽度方向中央位置）处形成有（优选单个）窗口69（对应于优选的“开口”）。覆盖部分63的窗口69优选为环形孔，具体而言为圆孔。当检测件60处于组装前的状态，或是处于待用状态（待用位置SP）时，能够通过窗口69看到检测件60的一部分，具体而言为检测主体64的上表面。当检测件60处于检测位置DP处时，能够通过窗口69看到外壳10的一部分，具体而言为上板24的上表面。

[0131] 检查主体64优选基本呈在向前和向后方向上窄长的板形，且能够向上和向下弹性变形，向下或向前突出的接触突出71设置在其前端处或附近。检测主体64的前端部分比其基端部分（与可操作部分66相连）更厚，从而使能够使前端部分顺利变形和/或增加基端部分的强度。可操作部分61的底端位于检测主体64的下表面的略下方，可操作部分61的底端的前端边缘构成一个或多个连接检测部分72。

[0132] 检测件60的外表面优选整体处于不同于第二颜色的第一颜色，具体为诸如蓝色这样的暗色调，从而在与锁定臂12组装之前，其整个外观看起来均匀地处于第一颜色（蓝色）中。

[0133] 这样的检测件60优选基本从后侧与锁定臂12（意思等同于“与外壳10”）组装，随着检测件60的组装，检测主体64至少部分进入安装空间26。在该组装过程中，一个或多个导向肋27和一个或多个导向凹槽65相接合，从而检测件60相对于锁定臂12向前滑动，导向臂62由于保持突出28,66的干涉而基本在宽度方向上向外弹性变形。其后，当检测件60相对于锁定臂12在待用位置SP处组装时，检测件60的保持突出66从前端与锁定臂12的保持突出28相接合，从而保持检测件60，和/或接触突出71从后侧与锁定主体25相接合，从而防止检测件60的进一步向前移动。通过这些接合作用，检测件60保持在待用位置SP处。此时，检测主体64保持在上板24和下板23之间，和/或至少部分位于左和右臂22之间，上板24至少部分保持在检测主体64和覆盖部分63之间，从而检测件60与锁定臂12相接合，以优选基本象秋千一样能够移动。位于覆盖部分63的下表面和检测主体64的上表面之间的空间用作用于上板24的滑动空间39，其尺寸优选设定为基本等于或略大于上板24的厚度。当可操作部分61向下挤压时，锁定臂12和检测件60能够在解锁方向上移动。

[0134] 接下来，对该实施例的功能进行说明。

[0135] 检测件60相对于锁定臂12被保持或位于待用位置SP处。在此状态下，如图1和4所示，可操作部分61比外壳主体11的后表面更向后突出，且当从上方观察检测件60时，通过通孔68能够看到或检测到臂部22的上表面，通过窗口69能够看到或检测到检测主体64的下表面。由于检测件60整体处于第一颜色（优选蓝色），因此在此情况下，通过窗口69看到的背景色优选与窗口69的周缘部分均为相同的蓝色（蓝色）。另一方面，通过通孔68看到的背景色与外壳主体11的颜色均为第二颜色（优选黄色），且即使检测件60连续移动时也保持为第二颜色（黄色）。

[0136] 当外壳10与配合外壳90相连时，配合外壳90的接收器92至少部分插入外壳主
体11和装配部分13之间。在该连接过程中，锁定臂12的锁定主体25移动到配合外壳90的锁定部分95上，如图2所示，从而，锁定臂12和检测件60移位以向上或向外朝前侧倾斜延伸，且检测件60的连接检测部分72向内或向下移位，以面向用于外壳主体11从后侧检测的接收部15。这里，如果两个外壳10、90的连接操作以非完成的方式（例如完成一半）的方式而结束，则即使试图朝检测位置DP（优选向前）移动检测件60，连接检测部分72与用于检测的接收部15相接触，以防止检测件60的向前移动。由于接触突出71与锁定主体25保持接合，从而由此（优选）防止检测件60的向前移动。

[0137] 当两个外壳10、90正确连接时，锁定主体25穿过锁定部分95，从而使锁定臂12通过其弹性回复力朝其自由状态返回或返回至其自由状态，以使锁定主体25与锁定部分95相接合。通过这种接合作用，两个外壳10、90不可分离地被保持。当接触突出71的下表面基本与锁定部分95的上表面相接触，从而，检测主体64相对于锁定臂12向上或向外出弹性变形。而且，检测件60的可操作部分61与锁定臂12一同向上或向外移位，从而使连接检测部分72从用于检测的接收部分15脱离。从而，接触突出71和锁定主体25脱离，允许检测件60朝检测位置DP移动或移动至检测位置DP。在此状态下，由于检测件60相对于锁定臂12的位置持续为待用位置SP，因此通过窗部69看到的背景色保持为第二颜色（黄色）。

[0138] 其后，检测件60相对于锁定臂12朝检测位置DP滑动或移动。在该滑动或移动过程中，接触突出71穿过锁定部分95和锁定主体25，从而检测主体64至少部分弹性回复。在该（滑动）移动结束时，接触突出71从前侧与锁定主体25相接合，如图6所示。然后，（两个）接触件67的前端从后侧与联结壁32相接触，以防止检测件60的任何进一步向前移动。以此方式，检测件60保持在检测位置DP处，同时优选防止相对锁定臂12的向前和向后移动，如图3和5所示。而且，（两个）导向臂62的前端部分在联结壁32的下方滑动，以与联结壁32的下表面相接触，从而使防止检测件60以及锁定臂12的向上（解锁方向）移位。因此，锁定主体25与锁定部分95可靠地保持接合，以双重锁定两个外壳10、90位于检测位置DP的检测件60的后端以及外壳主体11的末端优选沿向前和向后方向基本对齐在相同位置处。

[0139] 在检测件60从待用位置SP至检测位置DP的移动过程中，锁定臂12的上板24位于检测主体64和覆盖部分63之间的滑动空间39中相对于检测件60相对后侧移位，且优选就在检测件60到达检测位置DP之前逐渐出现在窗部69中。随着检测件60到达检测位置DP，上板24逐渐出现在整个窗部69中。因此，如果操作者在该状态下观察窗部69的内部，则通过窗部69看到上板24（外壳10）的第二颜色（黄色）。

[0140] 另一方面，如果检测件60保持在待用位置SP处，则上板24位于窗部69之前，并不对对应于窗部69，从而，利用滑动空间39，通过窗部69仅能够看到检测主体64的上表面，通过窗部69看到的背景色与窗部69的周缘部分为相同的第一颜色（蓝色）。因此，如果通过窗部69看到背景色未发生改变，则能够判断检测件60并未移动，在此状态下，检测件60再次推至检测位置DP。

[0141] 如上所述，该实施例具有如下效果。

[0142] 当检测件60从待用位置SP移动至检测位置DP时，通过窗部69看到的背景色为不同于待用位置SP处看到的颜色，从而，能够清楚地（优选通过视觉）检测检测件60到达
检测位置 DP。因此，能够防止忘记移动检测件 60，从而能够提高连接器的连接检测功能的可靠性。

[0143] 在此情况下，由于在待用位置 SP 处通过窗部 69 看到检测件 60 自身，因此窗部 69 中的颜色（检测主体 64 的上表面颜色）和窗部 69 之外的颜色（覆盖部分 63 的上表面颜色）能够为相同的颜色（例如蓝色）。因此，操作者无需记住在待用位置 SP 和检测位置 DP 处通过窗部 69 看到的背景色，且能够通过不同于窗部 69 的周边部分的颜色（该实施例中为黄色）出现在窗部 69 中这个事实来判断检测件 60 到达检测位置 DP。因此，降低了操作者错误判定的可能性，且能够进一步提高了连接检测功能的可靠性。

[0144] 由于在检测位置 DP 处通过窗部 69 看到锁定臂 12 的检测主体 64，因此还能够确认诸如检测主体 64 的不完善状态这种情况，从而还能够改进锁定臂 12 的质量。

[0145] 进一步，由于检测件 60 优选整体处于第一颜色（蓝色），外壳 10 优选整体处于不同于第一颜色的第二颜色（黄色），因此无需对上板 24 和检测主体 64 与周围部件进行颜色区别，从而使生产更为容易。

[0146] 由于窗部 69 位于可操作部分 61 附近和连接器外表面或上表面的宽度方向中间部分（优选基本中央部分）中的检测件 60 的易检测或可见位置处，且具有容易看到的形状（环形开口），因此其可视性良好。

[0147] 因此，为了提高连接器的连接检测功能的可靠性，检测件 60 与外壳 10 的锁定臂 12 如此组成，以能够在待用位置 SP 和检测位置 DP 之间移动。当外壳 10 与配合外壳 90 正确连接时，允许检测件 60 从待用位置 SP 移至检测位置 DP，且在外壳 10 与配合外壳 90 部分连接的状态下防止其移至检测位置 DP。检测件 60 形成有至少一个窗部 69。能够在待用位置 SP 处通过窗部 69 至少部分看到或检测到检测件 60 的检测主体 64，而在检测位置 DP 处通过窗部至少部分看到或检测到锁定臂 12 的上板 24。检测件 60 处于第一颜色，外壳处于不同于第一颜色的第二颜色。

[0148] 改进

[0149] 本发明并不限于上述实施例。例如，下述实施例也在本发明的技术范围内。

[0150] (1) 足以在待用位置处和检测位置处通过窗部看到不同的背景色，且这些颜色可以是任意颜色。每个背景色无须限定为单一色，而是可以为颜色的组合。当然，优选将颜色如此组合，从而在待用位置和检测位置之间突出颜色差异。

[0151] (2) 在待用位置处可以通过窗部看到除检测主体之外的背景，在检测位置处可以通过窗部看到除上板之外的背景。

[0152] (3) 检测件可以安装在除锁定臂之外的外壳的可移动部件上（例如杆型连接器中的杆）。

[0153] (4) 窗部可以不是闭合环形孔，且可以通过在检测件的端缘处产生切口而形成。

[0154] (5) 多个窗部可以形成在检测件中。

[0155] (6) 可以安装透明或半透明过滤件，以覆盖窗部。这可以防止诸如灰尘这样的外物进入窗部。

[0156] 第二实施例

[0157] 参看图 11-21 说明本发明的第二优选实施例。该实施例的连接器设置有第一外壳 110 和第二外壳 120，所述第一外壳具有至少部分安装在其中的一个或多个阳性端子接头
111. 所述第二外壳具有至少部分安装在其中的一个或多个阴性端子接头 121。应当注意的
是，在下述说明中，向前和向后方向与平行于两个外壳 110、120 的连接方向以及后述的连
接检测件 133 从起始位置至检测位置的滑动或移动方向的方向相同。

【0158】第一外壳 110 例如由合成树脂制成，且包括向前（与第二外壳 120 的连接方向基
本相同的方向）突出的管状接接收器 112。锁定突出 113 形成为从接收器 112 的横向（上）
壁的横向（上）表面（外表面）突出。

【0159】第二外壳 120 例如由合成树脂制成，且为块状端子保持部分 122 和至少部分围绕
端子保持部分 122 的前部（优选基本前半区域）的（优选基本呈矩形管状）管状装配
部分 123 的整体或一体组件，其中，阴性端子接头 121 借至至少部分容纳在端子保持部分 122
中。基本在向前和后向方向延伸的锁定臂 124 整体或一体形成在端子保持部分 122 的横向
（上）表面（外表面）上。锁定臂 124 为下列部件的整体或一体组件：基本在向前和后向方
向延伸的一个或多个、优选成对的横向（左和/或右）臂部 125；设置在臂部 125 上且优选
连接两个臂部 125 的前部的锁定部 126；联结两个臂部 125 的后部的（优选基本板状）联
结部分 127，从两个臂部 125 的下表面或内表面（优选其基本中央位置）突出的一个或多
个、优选成对的支撑部分 128；联结两个臂部 125 的底端边缘的下板 129，且该锁定臂在支腿
部分 128 处支撑于端子保持部分 122 上。这样的锁定臂 124 处于锁定姿势，其中，两个臂部
125 在锁定臂不发生弹性位移的自由状态下基本沿向前和后向方向（基本平行于两个外壳
110、120 的连接和分隔方向的方向）延伸，且基本以支腿部分 128 为支承点，基本象秋千一
样通过使其前端侧向上或向外（与向前和后向方向成不同与 0°或 180°的角度、优选基本
与之正交的方向）弹性位移至未锁定姿势。基本在臂部 125 的长度方向延伸的一个或多个
导向肋 130 形成在臂部 125 的外侧横向边缘处附近，一个或多个止动件 131 形成在两个
导向肋 130 的下表面上。下板 129 优选形成为从臂部 125 的后端延伸至略后于臂部 125 的
前端（锁定部分 126）之后的位置。在锁定部分 126 和下板 129 的前端边缘之间具有开放
空间，锁定突出 113 能够至少部分装配或插入该空间中。管状装配部分 123 的上壁 132A
优选通过侧切去除了相对左和/或右边缘部分和前端边缘部分之外的区域而形成开口 123B，锁
定臂 124 通过该开口 123B 向上暴露。

【0160】例如由合成树脂制成的连接检测件 133 安装在第二外壳 120 中。连接检测件 133
优选为下列部件的整体或一体组件：基本在向前和后向方向延伸的成对的左和右窄长侧壁
134；联结两个侧壁 134 的后端的可操作部分 135；在相对侧壁 134 之间的空间中向前（平行
于侧壁 134）突出的条形支承部分 136；从支承部分 136 的前端（延伸端）进一步向前（从
初始位置至检测位置延伸的方向）延伸的弹性件 137；以及联结两个侧壁 134 的上边缘的
（优选基本板状）限制部分 138。

【0161】基本平行于侧壁 134 的长度方向的一个或多个导向凹槽 139 形成在（优选两个）
侧壁 134 的内侧表面内，一个或多个保持突出 144 形成为基本沿向前和后向方向从侧壁 134
的内侧表面（优选其基本中央位置）向内突出。弹性件 137 具有小于支承部分 136 的垂直
厚度，弹性件 137 的上表面优选基本与支承部分 136 的上表面相齐平且与之连接，弹性件
137 的下表面位于支承部分 136 的下表面之上。待与锁定臂 124 的锁定部分 126 相接合的
锁定部分 141 形成在弹性件 137 的前端处或附近。锁定部分 141 包括作为弹性件 137 的前
端（延伸端）的突出端 142、从槽谷后突出端 142 的位置向下或向内突出的触模部分 143、
以及由突出端 142 的下表面或内表面和触摸部分 143 的前表面限定或限定在突出端 142 的下表面或内表面和触摸部分 143 的前表面处的切去部分 144。这样的弹性件 137 能够弹性变形，以在基本与支承部分 136 的前端相连续的基端（后端）和锁定部分 141 之间向上或向外弯曲，且能够如此弹性变形，从而锁定部分 141 基本以基端作为支承点向上或向外移位。而且，弹性件 137 的前端位于侧壁 134 的前端之后。

【0162】限制部分 138 与一个或多个、优选成对的侧壁 134 的上端边缘以不同于 0°或 180°的角度、优选基本成直角的方式相连，且形成为从两个侧壁 134 的后端（可操作部分 135 的前端）基本沿向前和向后方向连续延伸至略后于侧壁 134 的前端的位置。限制部分 138 的前端位置略于于弹性件 137 的锁闭部分 141 的前端（突出端 142），且优选基本在向前和向后方向上基本与触摸部分 143 处于相同的位置处。换言之，在从弹性件 137 的基端至限制部分 143 的可弯曲区域中，限制部分 138 基本在向前和向后方向上的形成范围优选包括对应于弹性件 137 的至少宽度方向（向前和向后方向）中央部分的区域，即，该形成区域限制为优选在弹性件 137 的基本该长度内不对应于弹性件 137 的延伸端（锁闭部分 141）的区域范围。因此，弹性件 137 的前端（尤其是包括突出端 142 和锁闭部分 141 的触摸部分 143 的基本前半部的范围）比限制部分 138 的前端更向前突出。由于弹性件 137 的大部分区域排除了从上方（从外侧）由限制部分 138 所覆盖的前端，从而弹性件 137 被限制部分 138 保护为免受外物的干扰。而且，在限制部分 138 的下表面和弹性件 137 的上表面之间优选限定有用于允许弹性件 137 的向上的弹性移位以及弯曲变形的空间。弓形接触部分 145 在与弹性件 137 的延伸端处于基本相同的侧部处形成于限制部分 138 的端部（前端）的下边缘处或附近。限制部分 138 还在靠近后端边缘处的宽度方向中间位置（优选基本宽度方向中央位置）形成有（优选单个）窗部 169（对应于优选的“开口”）。限制部分 138 的窗部 169 优选为环形孔，优选为圆孔。当检测件 133 处于组装前的状态或待用状态（待用位置 SP），则能够通过窗部 169 而看到检测件 133 的一部分，具体而言为支承部分 136 的上表面。当检测件 133 处于检测位置 DP 处时，能够通过窗部 169 看到外壳 110 的一部分，具体而言为联结部分 127 的上表面。

【0163】在导向凹槽 139 与导向肋 130 相接合的情况下，这样的连接检测件 133 通过滑动或移位而与锁定臂 124（优选基本从后侧）相组装。当连接检测件 133 到达初始或待用位置 SP 时，保持突出 140 穿过止动件 131，以从侧端与止动件 131 相接合，如图 16 所示，从而防止连接检测件 133 的向后移动，而且弹性件 137 的前端处的触摸部分 143 从后方与锁定部分 126 相接合，从而防止连接检测件 133 的任何进一步向前移动。从而，连接检测件 133 保持在初始或待用位置 DP（参看图 12 和 17）。换言之，防止连接检测件 133 的向前（朝向检测位置 DP）移动。

【0164】弹性件 137 的突出端 142 放置在锁定部分 126 的外表面或上表面上，切去部分 144 从上后侧倾斜装配到锁定部分 126。在此状态下，支承部分 136 垂直保持在下板 129 和联结部分 127 之间，联结部分 127 垂直保持在支承部分 136 和限制部分 138 之间，从而防止连接检测件 133 相对于锁定臂 124 的垂直移动。

【0165】而且，支承部分 136 至少部分保持在成对的臂部 125 之间，左和右侧壁 134 与管状装配部分 123 的横向（左和/或右）内壁面保持接触，从而防止连接检测件 133 相对于锁定臂 124 和第二外壳 120 的横向移动。而且，在连接检测件 133 位于初始位置 SP 的情况下，
限制部分 138 的上表面优选基本与管状装配部分 123 的上壁 123A 处于相同的高度或者比例略低。因此，外物不可能从上方与限制部分 138 相撞。

[0166] 当弹性件 137 向上或向外弹性移位，以便锁闭部分 141 从锁定部分 126 脱离时，保持或定位在初始位置 SP 处的该连接检测件 133 能够向前（基本平行于两个外壳 110、120 的连接方向）移动，同时被导向凹槽 139 和导向肋 130 所导引。在移动过程中，当触碰部分 143 的底端在锁定部分 126 的上表面上滑动时，防止连接检测件 133 的任何进一步向前移动，且限制部分 138 的前端在管状装配部分 123 的前沿部 123C 上与前止动部分 123D 相接触。同时，触碰部分 143 穿过锁定部分 126，弹性件 137 至少部分弹性回复，触碰部分 143 从前端与锁定部分 126 相接合，从而防止连接检测件 133 的向后（朝向初始位置 SP）移

[0167] 在连接检测件 133 低于检测位置 DP 处的情况下，侧壁 134 的前端优选从下侧（从内侧）与前前端部分 123C 相接触。从而，防止连接检测件 133 的前端的向上或向外移位，即锁定臂朝解锁姿势的弹性移位。即使在连接检测件 133 位于检测位置 DP 处的情况下，由于与初始位置处的情况类似，限制部分 138 的上表面处于与管状装配部分 123 的上壁 123A 基本相同的高度或比例略低，从而外物不可能从上方与限制部分 138 相撞。

[0168] 接下来说，对该实施例的功能进行说明。

[0169] 在连接两个外壳 110、120 的过程中，接收器 112 至少部分装配或插入在端子保持部分 122 上，且至少部分插入管状装配部分 123。然后，如图 13 所示，锁定部分 126 移动到锁定突起 113 上，因此，锁顶臂 124 弹性移位至解锁姿势。此时，连接检测件 133 还倾斜其姿

[0170] 如果在此状态下进行两个外壳 110、120 的连接操作，则两个外壳 110、120 正确连

[0171] 当锁定臂 124 与连接检测件 133 一并至少部分弹性回复时，位于限制部分 138 的前端处的接触部分 145 可从上方或外侧与锁闭部分 141 的上表面相撞。由于该相撞位置位于锁闭部分 141 沿向前和向后方向的厚度（垂直尺寸）最大的部分处，即，形成触碰部分 143 的部分处，因此，不可能使得保持在限制部分 138 和预定突出 113 之间的锁闭部分 141 发生变

[0172] 在两个外壳 110、120 正确连接且连接检测件 133 位于初始位置 SP 的状态下，锁闭部分 141 和预定部分 126 通过触碰部分 143 相对预定部分 126 的向上或向外移动而彼此脱离。因此，允许连接检测件 133 向前移动。而且，由于与锁闭部分 141 相接触的预定突出 113 的上表面和预定部分 126 的上表面位于基本相同的高度处，以彼此基本平齐，从而锁闭部分 141 能够以这样的方式滑动，以从预定突出 113 的外表面移动到预定部分 126 的外表面上。换言之，连接检测件 133 能够从初始位置滑动至检测位置 DP。
在此状态下，如果可操作部件 135 从后方被推动或被操作，以将连接检测件 133 朝检测位置 DP 移动或移动至检测位置 DP，触摸部分 143 如图 15 所示那样穿过锁定部分 126，从而，弹性件 137 弹性回复，且触摸部分 143 与后方与锁定部分 126 相接合。通过该接合作用，防止连接检测件 133 的后向（朝向初始位置 SP）的返回移动，且将连接检测件保持或定位于检测位置 DP 处。

在该实施例中，在两个外壳 110、120 尚未连接的状态下，防止被保持在初始位置 SP 处的连接检测件 133 被推至检测位置 DP。具体而言，如果从后方方向保持在初始位置处的连接检测件 133 的可操作部分 135 施加强有力的推力，则弹性件 137 如此弹性变形，以使其位于基端（前端）和锁闭部分 141 之间，作为向上（相对于锁定突出 113 的方向）与锁定部分 126 相接合的部分发生弯曲，如图 11 所示。如果该弹性变形量增加，则弹性件 127 的前端的向前倾斜角度也增加。因此，接触端 142 的前端基本与锁定部分 126 的上表面相接触，以使触摸部分 143 相对于锁定部分 126 发生（向上或向外）移位，随后，触摸部分 143 从锁定部分 126 脱离。然后，释放利用弹性件 137 的锁闭部分 141 而防止连接检测件 133 向前移动的状态，从而，连接检测件 133 能够移动至检测位置 DP。

然而，在该实施例中，限制部分 138 设置在弹性件 137 上方，优选通过该限制部分 138 防止弹性件 137 的过度弯曲变形。因此，即使弹性件 137 的弯曲变形量最大，锁闭部分 141 与锁定部分 126 保持接合，以防止连接检测件 133 的向前移动。以此方式，在两个外壳 110、120 尚未连接的状态下，防止了连接检测件 133 朝检测位置的移动。

在从弹性件 137 的基端至与锁定部 124 相接合的锁闭部分 141 的可弯曲区域中，当弹性件 137 弯曲时，弹性件 137 的长度方向中间部分（优选基本长度方向中央部分）发生最大移位。就此看来，在该实施例中，限制部分 138 形成在包括对应于弹性件 137 的长度方向中间部分（优选基本为长度方向中心部分）的区域的范围内。因此，能够有效防止弹性件 137 的过度弯曲变形。

在两个外壳 110、120 正确连接且连接检测件 133 位于初始位置 SP 的情况下，与锁定突出 113 相干扰的弹性件 137 倾斜其姿态，且朝限制部分 138 移位。此时，弹性件 137 在其延伸端（前端）处的移位量最大。就此看来，在该实施例中，限制部分 138 的形成范围设定在弹性件 137 的不包括延伸端的区域内。因此，不可能由于弹性件 137 的延伸端与限制部分 138 的干扰而妨碍弹性件 137 的移位。

当弹性件 137 相对移位以靠近限制部分 138 时，弹性件 137 的延伸端（前端）与形成在限制部分 138 的前端边缘（与弹性件 137 的延伸端基本处于相同侧的前端边缘）处的接触部分 145 相接触。如果该接触部分 145 为类似刀刃的角形，则可以形成接触部分 145 和弹性件 137。就此而言，由于在该实施例中，接触部 145 为弓形，因此能够防止接触部分 145 和弹性件 137 的变形。

由于限制部分 138 作为弹性件 137 的形成基部与连接检测件 133 整体或一体形成，因此不可能破坏弹性件 137 和限制部分 138 的位置关系。

而且，由于限制部分 138 基本以直角与形成部的侧壁 134 的上边缘相连接，且成形为连接该对侧壁 134，因此与限制部分呈单向延伸的单个板形式的情况相比，限制部分 138 的挠曲强度更高。因此，能够可靠限制弹性件 137 的弯曲变形。

因此，为了防止在两个外壳尚未连接的状态下，连接检测件从初始位置移动到检
测位置，如果向连接检测件 133 施加外力以使其朝检测位置 DP 移动，弹性件 137 在两个外壳 110、120 尚未连接的状态下发生弯曲和变形，弹性件 137 在与锁定臂 124 脱离之前与限制部分 138 相接触，以防止弹性件 137 的任何进一步的弯曲变形。因此，能够防止由于弹性件 137 的弯曲变形而从锁定臂 124 脱离。因此，能够防止在两个外壳 110、120 尚未连接的状态下连接检测件 133 从初始位置 SP 至检测位置 DP 的移动。

[0182] 改进

[0183] 本发明并不限于上述实施例。例如，下述实施例也被本发明的技术内容所包括。

[0184] （1）尽管在上述实施例中，限制部分形成在连接检测件上，但根据本发明，它可以形成在第二外壳内。

[0185] （2）尽管在上述实施例中，限制部分形成为不对应于弹性件的延伸端，但根据本发明，其可以形成为对应于弹性件的延伸端。

[0186] （3）尽管在上述实施例中，限制部分形成在对应于弹性件的长度方向中间部分的范围内，但其可以形成为不对应于弹性件的长度方向中间部分。在此情况下，在弹性件弯曲变形后，弹性件的除了最大移位的中间部分之外的部分与限制部分相接触。

[0187] （4）尽管在上述实施例中，限制部分通过与成对的壁部相而得以加强，但根据本发明，其可以呈单个悬臂形板的形式。

[0188] （5）尽管在上述实施例中，限制部分为板状，但其可以为具有较大厚度（与弹性件的变形方向基本相同的方向上的尺寸）的块。

[0189] （6）尽管在上述实施例中，接触部分为弓形，但根据本发明，且可以为锥形或角形。

[0190] （7）在上述实施例中，连接检测件滑动安装在锁定臂上，且与锁定臂一同整体倾斜。然而，本发明也可以应用至连接器，其中，连接检测件并未安装在锁定臂上，而是滑动支承在第二外壳的除锁定臂之外的部分上。
图 3
图21