(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(51) Internationale Patenklassifikation:
B41C 1/04, B41M 1/10, 3/14, B41N 1/06

(21) Internationales Aktenzeichen:
PCT/EP01/10286

(22) Internationales Anmeldedatum:
6. September 2001 (06.09.2001)

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
100 44 403.2 8. September 2000 (08.09.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): GIESECKE & DEVRIENT GMBH (DE/DE); Prinzregentenstrasse 159, 81677 München (DE).

(72) Erfinder: und

(74) Anwalt: KLUNKER, SCHMITT-NILSON, Hirsch; Winzererstrasse 106, 80797 München (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: DATA CARRIER COMPRISING A GRAVURE PRINTED IMAGE AND METHODS FOR TRANSPOSING IMAGE MOTIFS INTO LINEAR STRUCTURES AND ONTO A GRAVURE PRINTING PLATE

(54) Bezeichnung: DATENTRÄGER MIT STICHTIEFDRUCKBILD UND VERFAHREN ZUR UMSETZUNG VON BILDMOTIVEN IN LINIENSTRUKTUREN SOWIE IN EINE STICHTIEFDRUCKPLATTE

(57) Abstract: The invention relates to a data carrier printed according to a gravure printing method. Said data carrier comprises a half-tone image represented by irregular linear structures in an engraved manner. Said linear structures are at least partially superimposed by fine structures which are reproduced in a positive and/or a negative representation. The invention also relates to methods for producing and processing the irregular linear structures in the form of digital image data on a computer, according to the individual preconditions of a server. The linear structures are transferred onto a gravure printing plate, the digital image data being used to control an engraving device, or, using other printing methods, said linear structures are at least partially superimposed by fine structures which are reproduced in a positive and/or a negative representation.

[Fortsetzung auf der nächsten Seite]

Veröffentlicht:
— mit internationalem Recherchenbericht

— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Datenträger mit Stichtiefdruckbild und Verfahren zur Umsetzung von Bildmotiven in Linienstrukturen sowie in eine Stichtiefdruckplatte

Die Erfindung betrifft einem im Stichtiefdruckverfahren bedruckten Datenträger sowie ein Verfahren, mit dem beliebige Bildmotive in eine Stichtiefdruckplatte übertragen werden können.

Beim Stichtiefdruck sind die farbübertragenden Vertiefungen der Druckplatte dagegen nicht punktförmig wie beim Rastertiefdruck, sondern üblicherweise linienförmig. Der Stichtiefdruck wird deshalb auch als Linientiefdruck bezeichnet. Der Anpressdruck zwischen Druckplatte bzw. Druckzyylinder

Mittels fotografischer Verfahren kann die Stichzeichnung auf eine transparente Folie übertragen werden, durch die eine Fotolackschicht belichtet wird, die sich auf der Druckplatte befindet. In den den Linien der Zeichnung entsprechenden Bereichen wird die Druckplattenoberfläche freigelegt und dann durch Ätzung die farbaufnehmenden Vertiefungen erzeugt. Die erzeugte Tiefe hängt neben der Ätzdauer auch von der Linienbreite ab, da feine Lini-

In der WO 97/48555 wird ein Verfahren vorgestellt, mit dem eine aus Linien bestehende Zeichnung durch Gravur in die Oberfläche einer Druckplatte übertragen wird. Für jeden Strich der Zeichnung wird eine entlang der Randkontur des Striches verlaufende Bahn für das Gravierwerkzeug berechnet. Bei dieser Vorgehensweise entfallen zwar die sich aus der Druckplattenätzung ergebenden Beschränkungen, die aufwändige und unflexible Anfertigung einer Stichzeichnung, die kaum Möglichkeiten zur nachträglichen Änderung bietet, bleibt jedoch auch für dieses Verfahren eine weiterhin notwendige Voraussetzung.

che, in denen die Geometrie eines einzelnen Rasterelements gut erkennbar und für potentielle Nachahmer zugänglich ist. Da die Struktur des Rasters im gesamten Bildbereich gleich bleibt, sind Reproduktionen und Fälschungen in dieser Art und Weise gerasterter Abbildungen relativ einfach möglich.

Die Aufgabe wird gelöst durch einen Datenträger bzw. ein Verfahren mit den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.

Ein Datenträger gemäß der vorliegenden Erfindung weist ein im Stichtiefdruckverfahren gedrucktes Halbtonbild auf, das in Stichmanier wiedergegeben wird. Das heißt, die Konturen, Kontraste und Tonwerte des darzustellenden Bildmotivs werden durch unregelmäßige Linienstrukturen wiedergegeben, deren Abstand, Linienbreite, Geometrie und Typus im Druckbild gezielt variiert wird, um unterschiedliche visuelle Eindrücke zu erzielen. Das Druckbild weist sich wiederholende gedruckte Strukturelemente, beispielsweise Linien oder sich kreuzende Linien auf, denen zumindest teilweise eine Feinstruktur überlagert ist. Durch die in die Strukturelemente integrierten

Die Feinstrukturen können durch Aussparungen, d.h. unbedruckte Bereiche gebildet werden, die in den gedruckten Strukturelementen vorliegen, die durchgehend und kontinuierlich oder in regelmäßigen oder unregelmäßigen Abständen unterbrochen sein können. Es ist ebenfalls möglich, die gedruckten Strukturelemente durch die Überlagerung mit einer Feinstruktur aufzulösen, d.h. der ursprünglich mit Farbe belegte Bereich der Strukturelemente wird durch einzelne gedruckte, in Positivdarstellung wiedergegebene Zeichen oder Symbole ersetzt. Gleich bleibt lediglich die Umrisskontur der Strukturelemente. Die Feinstrukturen können einen beliebig gestalteten Text, alphanumerische Zeichen, Logos, Symbole, geometrische Figuren oder dergleichen bilden.

Bei entsprechender Gestaltung der Feinstrukturen können diese als visuell sichtbare oder im Druckbild verborgene, nur mittels technischer Hilfsmittel lesbare Zusatzinformationen oder Echtheitsmerkmale herangezogen werden. Eine Ausformung der Feinstrukturen als Antikopierstrukturen ist ebenfalls möglich.

Werden die Feinstrukturen in Negativdarstellung, d.h. als unbedruckte Aussparungen in bedrucktem Umfeld wiedergegeben, können insbesondere Linien oder der Kreuzungsbereiche sich kreuzender Linien vorteilhaft gestaltet

Wird das Strukturelement von sich kreuzende Linien gebildet, so kann insbesondere der gesamte Kreuzungsbereich oder ein parallel zum Kreuzungsbereich verlaufender Bereich einer Linie ausgespart werden. Es ist ebenfalls möglich, im Kreuzungsbereich ein beliebig gestaltetes Zeichen oder Symbol auszusparen und dadurch in Negativdarstellung wiederzugeben.

Für die drucktechnisch sichere Wiedergabe von Feinstrukturen werden für die Positivdarstellung Strichstärken bevorzugt, die größer oder gleich 25 µm

Für die Herstellung des erfindungsgemäßen Halbtonbildes wird nach dem erfindungsgemäßen Verfahren ein Bildmotiv als digitaler Datensatz zur Verfügung gestellt, wobei die Bilddaten als Pixeldaten vorliegen. Das Bildmotiv wird anhand der Pixeldaten visuell dargestellt und kann so als Vorlage für die nachfolgende grafische Umsetzung des Bildmotivs in der Art und Weise einer Stichzeichnung dienen. Dabei werden anhand von Vorgaben eines Bedieners in einer elektronischen Datenverarbeitungsanlage individuelle Linienstrukturen erzeugt, die die Konturen und Halbtöne des Bildmotivs wiedergeben. Für Bildbereiche, die einen unterschiedlichen visuellen Eindruck erzielen sollen, werden unterschiedliche Linienstrukturen erzeugt. Die Linienstrukturen wiedergebenden digitalen Bilddaten werden in einem vektorbasierten Datenformat gespeichert. Falls gewünscht, werden die einzelnen Linien der Linienstrukturen bzw. die entsprechenden Bilddaten in der elektronischen Datenverarbeitungsanlage bearbeitet. Dadurch kann eine detailgetreue Darstellung oder eine nuancierte Veränderung des visuellen

Im Zusammenhang mit der vorliegenden Erfindung, bei der ein Bildmotiv durch unregelmäßige Linienstrukturen wiedergegeben wird, werden darunter nicht nur durchgehende und unterbrochene Linien verstanden, sondern auch strichlierte, strichpunktierte und gepunktete Linien. Auch andere geometrische Symbole, die in regelmäßigen Abständen entlang einer mathematischen Linie angeordnet sind, können im Sinne der Erfindung eine Linienstruktur bilden.

Die Gravur kann im Sinne der Erfindung mittels spanabhebender Verfahren wie Fräsen, Schaben oder Hobeln erfolgen, als auch mittels berührungsloser Materialabtragungsverfahren, wie der Lasergravur. Präzisionsfräsv erfahren werden bevorzugt eingesetzt. Die gravierte Platte kann unmittelbar als Druckplatte verwendet werden oder als Original für gängige Abform- und Vervielfältigungsprozesse dienen, mit denen die beim Stichtieffdruck eingesetzten Druckplatten erst erzeugt werden.

mera eingesetzt. Um die Abfolge der nachfolgenden Verfahrensschritte zeitlich voneinander unabhängig gestalten zu können, werden die als „Pixeldaten“ bezeichneten digitalen Bilddaten gespeichert.

Anhand der Pixelaten erfolgt, vorzugsweise an einem Monitor, die visuelle Darstellung der digitalen Bilddaten. Falls gewünscht oder erforderlich, werden die Pixelaten elektronisch retuschiert, worunter deren Bearbeitung an einer elektronischen Datenverarbeitungsanlage verstanden wird. Bei der Retusche können störende Details entfernt, Konturen verstärkt oder abgeschwächt oder die Kontraste der Abbildung, gegebenenfalls auch nur für einzelne Bildbereiche, verändert werden.

Analog der Vorgehensweise bei der manuellen Anfertigung einer Stichzeichnung werden in einer elektronischen Datenverarbeitungsanlage durch Vorgaben eines Bedieners unregelmäßige Linienstrukturen generiert, die die Konturen und Halbtöne des darzustellenden Bildmotivs wiedergeben. In vorteilhafter Weise dient dabei die anhand der Pixelaten vorgenommene visuelle Darstellung des Bildmotivs als Vorlage. Die Umsetzung des Bildmotivs in Linienstrukturen wird besonders erleichtert, wenn das digitalisierte und durch die Pixelaten wiedergegebene Bildmotiv an einem Monitor im Hintergrund eingeblendet wird, während der Bediener im Vordergrund die gewünschten Linienstrukturen erzeugt. Der Verlauf der erzeugten Linien kann vom Bediener manuell vorgegeben werden, wobei die in einer Ebene liegenden Koordinaten des Linienverlaufs von einem Eingabemedium erfasst und an die Datenverarbeitungsanlage übermittelt werden. Hierfür eignen sich insbesondere ein Zeichentableau oder eine Computermaus, auch ein so genannter Trackball oder ein Joystick kommen als Eingabemedium infrage.
Die digitalen Bilddaten, die die Linienstrukturen wiedergeben, werden in einem vektorbasierten Datenformat gespeichert. Insbesondere bei sehr hoch auflösenden Grafiken wird für ein auf Vektordarstellung basierendem Datenformat weniger Speicherplatz benötigt als für ein pixelbasierendes Datenformat entsprechender Auflösung. Durch die geringere Datenmenge können nachfolgende Bearbeitungsschritte schneller durchgeführt werden.

Die Steuerung der Graviervorrichtung erfolgt in der Weise, dass entsprechend dem Verlauf und der Geometrie der durch die digitalen Bilddaten repräsentierten Linienstrukturen in der Oberfläche einer Stichtiefeindruckplatte Vertiefungen erzeugt werden, die zur Aufnahme von Druckfarbe bestimmt sind.
Mit dem erfindungsgemäßen Verfahren ist es grundsätzlich möglich, für die Gravurtiefe in der Druckplatte einen von der Linienbreite unabhängigen Wert vorzugeben. Dieser Wert kann grundsätzlich für alle oder einen Teil der zu gravierenden Linien konstant sein, er kann aber auch programmgesteuert durch eine vorgegebene mathematische Beziehung in Abhängigkeit von der jeweiligen Linienbreite berechnet werden. Es ist auch möglich, dass der Bediener lediglich für eine einzelne Linie, einen Teilbereich einer Linie oder eine Gruppe von Linien eine beliebige Gravurtiefe vorgibt, solange diese im Rahmen der technologischen Möglichkeiten liegt. Insbesondere bei Linien geringer Linienbreite unterliegt die umsetzbare Gravurtiefe natürlich fertigungstechnischen Beschränkungen.

steht innerhalb der vorgegebenen Linienbreite eine Doppellinie. Weitere neue Gestaltungsmöglichkeiten ergeben sich für Strukturelemente, die aus sich kreuzenden Linien bestehen. Beispielsweise können die digitalen Bilddaten für die Gravur so aufbereitet werden, dass Kreuzungspunkte nicht graviert werden. Mit entsprechenden Druckplatten bedruckte Datenträger weisen im Kreuzungsbereich der Linien dann keine Druckfarbe auf. Eine weitere Variante besteht darin, dass von zwei sich kreuzenden Linien lediglich eine durchgehend graviert wird, während die zweite im Kreuzungsbe-
reich nicht fortgeführt, d.h. unterbrochen wird und die beiden Teile der unterbrochenen Linie die kreuzende, durchgehende Linie nicht berühren. Eine weitere Variante besteht darin, eine Linie nicht nur in eine Doppellinie aufzuspalten, sondern zumindest abschnittsweise gefiedert wiederzugeben.

Die für die Stichtiefdruckplattenherstellung sowie den eigentlichen Druckvorgang erforderlichen Apparaturen stehen ebenso wie das erforderliche Know-how nur sehr begrenzt zur Verfügung und erfordern einen erheblichen materiellen und finanziellen Aufwand. Da der erforderliche Aufwand eine erhebliche Barriere für potentielle Nachahmer und Fälscher darstellt, wird das Stichtiefdruckverfahren vorzugsweise für den Wert- und Sicherheitsdruck, beispielsweise zur Herstellung von Banknoten, Aktien, Pässen, Ausweisen, hochwertigen Eintrittskarten und ähnlichen Dokumenten verwendet. Das erfindungsgemäße Verfahren zur Gestaltung von Stichtiefdruckplatten ermöglicht die Umsetzung der vorstehend beschriebenen Strukturelemente in solcher Präzision und Feinheit, dass sie im Druckbild damit hergestellter Datenträger als visuell sichtbare oder auch erst unter Zuhilfenahme einer Lupe überprüfbarer Sicherheitsmerkmale verwendet werden können.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen.

Es zeigen:

20

Fig. 1 die Darstellung eines Portraits in Stichmanier,

Fig. 2 Ausschnitt einer konventionellen Stichdarstellung ohne Feinstrukturen,

25

Fig. 3 bis 8 Ausschnitt einer Stichdarstellung mit unterschiedlichen Varianten von Feinstrukturen,

Fig. 9 Varianten sich kreuzender Linien mit unterschiedlichen
Feinstrukturen.

Bei der Umsetzung eines solchen Bildmotivs in eine Stichtiefdruckplatte nach dem erfindungsgemäßen Verfahren kann als Vorlage für die Stichdarstellung des Portraits beispielsweise ein Gemälde gedient haben, das mit Hilfe einer Digitalkamera digitalisiert wurde. Die in einem pixelbasierten Datenformat gespeicherten Bilddaten wurden anschließend elektronisch retuschiert, wobei die Kontraste einzelner Bildbereiche verändert wurden. Häufig ist es von Vorteil, die Übergänge ausgeprägter Konturen (beispielsweise von Falten in der Bekleidung oder der Umrisslinie der Nase) hervorzuheben oder abzuschwächen. Es hat sich gezeigt, dass nachfolgende Arbeitsschritte erleichtert werden, wenn die retuschierten Pixeldaten für den Bediener sichtbar, an einem Monitor dargestellt werden. Die Darstellung des auf den Pixeldaten basierenden Abbilds erfolgt im Hintergrund, während im Vordergrund durch Vorgaben des Bedieners die Linienstrukturen erzeugt werden, die die einzelnen Elemente und Details des Portraits wiedergeben. Der Verlauf einer Linie wird vom Bediener beispielsweise an einem Zeichen­tableau vorgegeben, welches die Koordinaten des Verlaufs erfasst und an eine Datenverarbeitungsanlage übermittelt. Sind die Linienbasisgeometrie und die Linienbreite bereits bestimmt, kann die Linie in der gewünschten Gestaltung am Monitor instantan angezeigt werden und dient dem Bediener zur unmittelbaren Kontrolle seines Tuns. Der Vorgang des Linienierzeugens anhand der Vorgaben des Bedieners in Verbindung mit der gleichzeitigen Darstellung der generierten Linie am Monitor entspricht somit weit gehend einem freien manuellen Zeichnen, hat jedoch den Vorteil, dass jede elektronisch generierte Linienstruktur nachträglich beliebig bearbeitet werden kann. So ist es z.B. ohne Probleme möglich, eine bereits generierte Linie nachträglich zu verlängern oder zu verkürzen, die Linienbreite der gesamten Linie oder einzelner Bereiche zu ändern, eine Linie zu verzerren oder die Geometrie der Linienenden zu verändern. So enden in Fig. 1 beispielsweise die meisten der die rechte Seite des Mantels wiedergebenden Linien in einem
rechteckigen Profil, während die meisten der den Bart und das Haupthaar wiedergebenden Linien spitz auslaufende Enden besitzen. Halbkreisförmige Linienenden sind ebenso denkbar wie andere asymmetrische oder benutzer- generierte Geometrien. Die Änderungen und Bearbeitungen können sowohl an einer einzelnen Linie oder gleichzeitig an ganzen Liniengruppen vorgenommen werden, die gemeinsam einen Bildbereich darstellen.

Die Fig. 2 bis 8 zeigen einen Ausschnitt einer Stichdarstellung eines Portraits. Während im oberen linken Bildteil Teile einer Gesichtskontur erkennbar sind, wird im mittleren und unteren rechten Bildteil ein Ausschnitt des Kragens der Bekleidung und der Schulter 1 wiedergegeben. In den Bildausschnitten ist deutlich erkennbar, dass unterschiedliche Bereiche des Bildmotivs durch unterschiedliche, d.h. varierende und damit insgesamt unregelmäßige Linienstrukturen dargestellt werden.

Fig. 2 zeigt einen Portraitausschnitt in einer Darstellungsweise gemäß dem Stand der Technik mit durchgehenden und unterbrochenen, sowie sich teil-
weise kreuzenden Linienstrukturen. Die einzelnen Linien weisen keine zusätzlichen Sub- oder Feinstrukturen auf.

In Fig. 3 wurde den Linienstrukturen, die den rechten Schulterbereich 1 wiedergeben, eine Feinstruktur überlagert. Im vorliegenden Beispiel liegt die Feinstruktur als Aussparung im bedruckten, durch die waagerechten Linien gebildeten Umfeld vor. Die Aussparungen bilden in Negativdarstellung wiedergegebene Linien, die exakt auf der Mittellinie des bedruckten Umfeld bildenden gedruckten Linien liegen. Die feinen Linien der diagonal verlaufenden Nebenlage sind durchgehend ausgeführt, so dass die Aussparungen, d.h. die Negativlinien an den Kreuzungen der Linien der Haupt- und Nebenlage unterbrochen werden.

In dem in Fig. 4 dargestellten Ausführungsbeispiel sind die feinen Linien der diagonal verlaufenden Nebenlage durch die Aussparungen in der waagerechten Hauptlage unterbrochen. Dadurch sind die Aussparungen in der Hauptlage ununterbrochene Negativlinien.

Im Ausführungsbeispiel der Fig. 5 bilden die Aussparungen in den waagerecht verlaufenden Linien der Hauptlage des Schulterbereichs 1 eine sehr feine Doppellinie in Negativdarstellung, die wiederum exakt parallel zur geometrischen Mittellinie verläuft. Die Linien der diagonal verlaufenden Nebenlage sind wiederum nicht durchgehend, sondern werden im Kreuzungsbereich mit den Linien der Hauptlage ebenfalls durch die Aussparungen unterbrochen.

In Fig. 6a) wird die Feinstruktur in den Linien des Schulterbereichs 1 durch Aussparungen mit einfacher, aber unterschiedlicher geometrischer Kontur in Form von Kreisen und kurzen Strichen gebildet. Die Aussparungen in einer
Linie haben jeweils die gleiche Form einer einfachen geometrischen Figur, während aufeinander folgende Linien jeweils unterschiedliche Figuren als Aussparungen aufweisen.

In Fig. 6b) sind in den Linienstrukturen des Schulterbereichs 1 Negativstrukturen eingebracht, die in aufeinander folgenden Linien abwechselnd Zahlen mit mehreren Ziffern und Buchstaben darstellen, wobei die Buchstaben teilweise Wörter bilden. Zusätzlich sind in Fig. 6b) beispielhaft für weitere mögliche Kombinationen Teile der den Kragen darstellenden Linienstrukturen mit unterschiedlichen Feinstrukturen versehen. In dem mittleren Kragenteil 2 sind den Linien in Negativdarstellung wiedergegebene, also ausgesparte Mittellinien überlagert. Den Linien des linken Kragenteils 3 wurde eine Feinstruktur überlagert, die aus voneinander beabstandeten Aussparungen einfacher länglicher Geometrie besteht.

Auch in Fig. 7 wird die Feinstruktur durch Aussparungen in den gedruckten Linien gebildet, wobei in diesem Ausführungsbeispiel ein aus den Buchstaben „G“ und „D“ zusammengesetztes Logo in Negativdarstellung wiedergegeben ist. Das Logo ist entlang den mit der Feinstruktur überlagerten Linien in gleichmäßigen Abständen vielfach wiederholt.

In Fig. 8a) ist in den waagerecht verlaufenden Linien des rechten Schulterbereichs 1 eine Feinstruktur eingebracht, die dasselbe Logo wiedergibt wie in Fig. 7. In Fig. 8a) wurde für das Logo jedoch eine Positivdarstellung gewählt, d.h., das Logo ist durch gedruckte Strukturen vor ungedrucktem Umfeld wiedergegeben. Die mit der Feinstruktur überlagerte Linie wird dadurch weit gehend aufgelöst und es bleibt nur eine schmale Randkontur erhalten. Das Logo ist wiederum exakt auf der geometrischen Mittellinie positioniert und entlang der Mittellinie vielfach wiederholt. Anstatt der in Figur 8a) wie-

Die erfindungsgemäßen Datenträger sind in keiner Weise auf die in den Ausführungsbeispielen dargestellten Feinstrukturen begrenzt. Im Sinne der Erfindung sind beliebige Variationen und Kombinationen unterschiedlicher Typen und Arten von Feinstrukturen möglich.

In Fig. 9 sind schematisch und in vergrößerter Darstellung als Strukturelemente unterschiedliche Varianten sich kreuzender Linien wiedergegeben. Fig. 9a) entspricht dem Stand der Technik, bei der beide Linien vollflächig gedruckt sind. In den Fig. 9b) und 9c) ist der Kreuzungsbereich in anderer Weise gestaltet. In Fig. 9b) besteht die Feinstruktur darin, dass im Kreuzungsbereich nur eine Linie durchgezogen wiedergegeben wird, während
die zweite im Kreuzungsbereich unterbrochen ist und in diesem unterbrochenen Bereich nicht gedruckt wird. Die beiden Teile der unterbrochenen Linie sind so weit voneinander beabstandet, dass sie die erste durchgehende Linie nicht berühren. In der Ausführungsvariante gemäß Fig. 9c) sind beide sich kreuzende Linien im Kreuzungsbereich unterbrochen und exakt die Fläche, die von beiden Linien überstrichen würde, wird ausgespart.

In den Ausführungsvarianten gemäß den Fig. 9d) und 9e) wird eine der beiden sich kreuzenden Linien nicht vollflächig über ihre gesamte Linienbreite wiedergegeben, sondern lediglich entlang ihrer beiden die Linie begrenzenden Ränder, und ein entlang der geometrischen Mittellinie verlaufender Bereich ausgespart. In der Ausführungsform nach Fig. 9e) besitzt der ausgesparte Mittelbereich keine über die gesamte Länge der Linie konstante Breite, sondern verjüngt sich an den Linienenden zu einer Spitze.

In Fig. 9f) ist dargestellt, dass eine Linie in einem Teilabschnitt gefiedert ausgeführt wird. Dabei wird dieser Teilabschnitt nicht vollflächig wiedergegeben, sondern in einzelne feinere Teillinien zerlegt, die eine unterschiedliche Geometrie der Enden der Teillinien aufweisen können. Im in Fig. 9f) wiedergegebenen Beispiel besitzen die Enden der Teillinien rechteckige und spitz zulaufende Geometrien. Die Gesamtbreite der Teillinien sowie der zwischen ihnen liegenden, ausgespannten Abstände entspricht der Linienbreite der ursprünglichen, nicht aufgefeiderten Linie.

Die in den Fig. 9b) bis 9f) dargestellten Varianten sind unterschiedliche Arten von Feinstrukturen, die einzeln oder in unterschiedlichen Kombinationen in das Stichtiefdruckbild der erfindungsgemäßen Datenträger integriert werden können.
Durch das erfindungsgemäße Verfahren zur Herstellung von Stichtiefdruckplatten können die vorstehend beschriebenen Ausführungsformen von Linien bzw. Linienkreuzungen und Feinstrukturen mit solcher Feinheit und Präzision ausgeführt werden, dass sie mit konventionellen, aus dem Stand der Technik bekannten Verfahren nicht reproduzierbar sind.
1. Datenträger mit einem im Stichtiefdruckverfahren gedruckten Halbtonbild, das in Stichmanier, d.h. durch unregelmäßige Linienstrukturen dargestellt ist, und sich wiederholende gedruckte Strukturelemente aufweist, dadurch gekennzeichnet, dass den Strukturelementen zumindest teilweise Feinstrukturen überlagert sind, die als Aussparungen in den Strukturelementen vorliegen.

2. Datenträger nach Anspruch 1, dadurch gekennzeichnet, dass die Strukturelemente Linien sind.

3. Datenträger nach Anspruch 2, dadurch gekennzeichnet, dass die Feinstrukturen durch durchgehende oder unterbrochene Bereiche gebildet werden, die sich entlang der Mittellinie der Linien erstrecken, wobei die Ränder der Linien als kontinuierliche, nicht unterbrochene Kontur weitgehend erhalten bleiben.

4. Datenträger nach Anspruch 2, dadurch gekennzeichnet, dass durch die Feinstruktur Linienenden gefiedert wiedergegeben werden oder eine Linie zumindest abschnittsweise unter Beibehaltung ihrer ursprünglichen Breite in mehrere voneinander beabstandete, im Wesentlichen parallele Teillinien aufgespalten ist.

5. Datenträger nach Anspruch 1, dadurch gekennzeichnet, dass die Strukturelemente sich kreuzende Linien sind.

6. Datenträger nach Anspruch 5, dadurch gekennzeichnet, dass die Feinstrukturen durch nicht gedruckte Linienbereiche gebildet werden.
7. Datenträger nach Anspruch 5, **dadurch gekennzeichnet**, dass die sich kreuzenden Linien im Kreuzungsbereich ausgespart sind.

8. Datenträger mit einem im Stichtiefdruckverfahren gedruckten Halbtontonbild, das in Stichmanier, d.h. durch unregelmäßige Linienstrukturen dargestellt ist, und sich wiederholende, gedruckte Strukturelemente aufweist, **dadurch gekennzeichnet**, dass den Strukturelementen zumindest teilweise Feinstrukturen überlagert sind, die die Strukturelemente in positiv gedruckte Zeichen oder Symbole auflösen.

9. Datenträger nach Anspruch 8, **dadurch gekennzeichnet**, dass die Strukturelemente Linien sind.

10. Datenträger nach einem der Ansprüche 1 oder 8, **dadurch gekennzeichnet**, dass die Feinstrukturen durch Text, alphanumerische Zeichen, Logos, Symbole, geometrische Figuren oder Kombinationen davon gebildet werden.

11. Datenträger nach mindestens einem der voranstehenden Ansprüche, **dadurch gekennzeichnet**, dass die Feinstrukturen sowohl in Negativdarstellung, d.h. als Aussparungen in bedrucktem Umfeld, als auch in Positivdarstellung wiedergegeben werden.

12. Verfahren zur Umsetzung eines Bildmotivs in eine Stichtiefdruckplatte mit den Schritten

a. Bereitstellen von digitalen ersten Bilddaten, die als Pixeldaten vorliegen und ein Bildmotiv repräsentieren,

b. visuelle Darstellung des Bildmotivs anhand der Pixeldaten,
c. Erzeugen von unregelmäßigen Linienstrukturen, wobei anhand von Vorgaben eines Bedieners die Konturen und Halbtöne des Bildmotivs Bereichsweise durch unterschiedliche Linienstrukturen wiedergegeben werden,

d. Speichern der die Linienstrukturen wiedergebenden digitalen zweiten Bilddaten in einem vektorbasierten Datenformat,

e. gegebenenfalls Bearbeiten der einzelnen Linien der Linienstrukturen und Speichern der bearbeiteten zweiten Bilddaten,

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass den Linien bei der Bearbeitung in Schritt e zumindest teilweise eine Feinstruktur überlagert wird, durch die die Linien in einzelne in Positivdarstellung wiedergegebene Zeichen oder Symbole aufgelöst werden.

15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass bei der Steuerung der Gravurmaschine in Schritt f aus einer gegebenen
Linienbreite programmgesteuert eine zugehörige Gravurtiefe berechnet wird.

17. Verfahren nach einem der Ansprüche 14 bis 16, **dadurch gekennzeichnet**, dass mindestens eine Linie nicht vollflächig, sondern mit ausgesparten, nicht graviertem Mittellinie wiedergegeben wird.

18. Verfahren nach einem der Ansprüche 14 bis 17, **dadurch gekennzeichnet**, dass sich kreuzende Linien im Kreuzungsbereich nicht graviert werden.

19. Verfahren nach einem der Ansprüche 14 bis 17, **dadurch gekennzeichnet**, dass von zwei sich kreuzenden Linien im Kreuzungsbereich eine vollständig graviert wird und durchgehend ist, während die andere im Kreuzungsbereich nicht graviert wird und dadurch unterbrochen ist, so dass sich die beiden kreuzenden Linien nicht berühren.

20. Verfahren nach einem der Ansprüche 12 bis 19, **dadurch gekennzeichnet**, dass eine Linie zumindest abschnittsweise gefiedert wiedergegeben wird.

21. Stichtiefdruckplatte, **dadurch gekennzeichnet**, dass sie nach einem Verfahren gemäß einem der Ansprüche 12 bis 20 hergestellt wurde.

22. Verfahren zur Erzeugung eines Bildmotivs mit unregelmäßigen Linienstrukturen mit den Schritten
a. Bereitstellen von digitalen ersten Bilddaten, die als Pixeldaten vorliegen und ein Bildmotiv repräsentieren,

b. visuelle Darstellung des Bildmotivs anhand der Pixeldaten,

c. Erzeugen von unregelmäßigen Linienstrukturen, wobei anhand von Vorgaben eines Bedieners die Konturen und Halbtöne des Bildmotivs bereichsweise durch unterschiedliche Linienstrukturen wiedergegeben werden,

d. Speichern der die Linienstrukturen wiedergebenden digitalen zweiten Bilddaten in einem vektorbasierten Datenformat,

e. gegebenenfalls Bearbeiten der einzelnen Linien der Linienstrukturen,

f. zumindest teilweises Überlagern der Linienstrukturen mit einer Feinstruktur, so dass zumindest eine Linie oder sich kreuzende Linien in Negativdarstellung wiedergegebene Konturen umschließt und Speichern der bearbeiteten zweiten Bilddaten.

23. Verfahren zur Erzeugung eines Bildmotivs mit unregelmäßigen Linienstrukturen mit den Schritten

a. Bereitstellen von digitalen ersten Bilddaten, die als Pixeldaten vorliegen und ein Bildmotiv repräsentieren,

b. visuelle Darstellung des Bildmotivs anhand der Pixeldaten,
c. Erzeugen von unregelmäßigen Linienstrukturen, wobei anhand von Vorgaben eines Bedieners die Konturen und Halbtöne des Bildmotivs bereichsweise durch unterschiedliche Linienstrukturen wiedergegeben werden,

d. Speichern der die Linienstrukturen wiedergebenden digitalen zweiten Bilddaten in einem vektorbasierten Datenformat,

e. gegebenenfalls Bearbeiten der einzelnen Linien der Linienstrukturen,

f. zumindest teilweises Überlagern der Linienstrukturen mit einer Feinstruktur, so dass zumindest eine Linie in Positivdarstellung wiedergegebene Zeichen oder Symbole aufgelöst wird und Speichern der bearbeiteten zweiten Bilddaten.

24. Verfahren nach einem der Ansprüche 13, 14, 22 oder 23, dadurch gekennzeichnet, dass die Feinstruktur einen Text, alphanumerische Zeichen, Logos, Symbole oder geometrische Figuren bildet.

27. Verfahren nach einem der vorangehenden Ansprüche,
da durch gekenn-
zeichnet, dass die Pixeldaten elektronisch retuschiert werden.

28. Verfahren nach einem der vorangehenden Ansprüche,
da durch gekenn-
zeichnet, dass bei der Retusche der Pixeldaten die Kontraste des digitalisier-
ten Bildmotivs zumindest bereichsweise verändert werden.

29. Verfahren nach einem der vorangehenden Ansprüche,
da durch gekenn-
zeichnet, dass die visuelle Darstellung des Bildmotivs in Schritt b an einem
Monitor erfolgt.

30. Verfahren nach einem der vorangehenden Ansprüche,
da durch gekenn-
zeichnet, dass bei der Erzeugung der Linienstrukturen in Schritt c der Ver-
lauf einer Linie vom Bediener manuell mit Hilfe eines Eingabemediums zur
Erfassung zweidimensionaler Koordinaten vorgegeben wird.

31. Verfahren nach Anspruch 30,
da durch gekennzeichnet, dass das Einga-
bemedium eine Computermaus, ein Zeichentableau, ein Trackball oder ein
Joystick ist.

32. Verfahren nach einem der vorangehenden Ansprüche,
da durch gekenn-
zeichnet, dass die Linienstrukturen während ihrer Erzeugung und Bearbei-
tung in den Schritten c und e unmittelbar und ohne Verzögerung visuell
dargestellt werden.

33. Verfahren nach einem der vorangehenden Ansprüche,
da durch gekenn-
zeichnet, dass der visuellen Darstellung der Linienstrukturen im Hinter-
grund das durch die Pixeldaten wiedergegebene Bildmotiv überlagert wird.
34. Verfahren nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, dass bei der Bearbeitung der Linien in Schritt e ihre Linienstärke variert wird oder die Geometrie der Linienenden verändert wird.

5 35. Verfahren nach Anspruch 34, **dadurch gekennzeichnet**, dass Linien halbkreisförmige, rechteckige oder spitz auslaufende Enden erhalten.

36. Verfahren nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, dass die Linien bei der Bearbeitung in Schritt e gestreckt, gestaucht oder verzerrt werden.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>B41C/04</th>
<th>B41M1/10</th>
<th>B41M3/14</th>
<th>B41N1/06</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>B41C</th>
<th>B41M</th>
<th>B41N</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WIPO Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>---</td>
<td>12-24</td>
</tr>
<tr>
<td>A</td>
<td>---</td>
<td>8-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

A - document defining the general state of the art which is not considered to be of particular relevance
E - earlier document published on or after the international filing date
L - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O - document referring to an oral disclosure, use, exhibition or other means
P - document published prior to the international filing date but later than the priority date claimed

"T" - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" - document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" - document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search: 15 February 2002

Date of mailing of the international search report: 22/02/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 3330 HV Delft, Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-5016

Authorized officer

Balsters, E
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | PATENT ABSTRACTS OF JAPAN
vol. 2000, no. 01,
31 January 2000 (2000-01-31)
& JP 11 291609 A (PRINTING BUREAU MINISTRY
OF FINANCE JAPAN).
26 October 1999 (1999-10-26)
abstract | 8-10 |
| A | --- | 12-24 |
| X | US 4 557 596 A (MUELLER HANS ET AL)
10 December 1985 (1985-12-10)
column 17, line 37 -column 21, line 43 | 1,2, 8-14, 21-36 |

| X | US 5 675 420 A (JACKSON KENNETH WILLIAM
ET AL) 7 October 1997 (1997-10-07)
column 6, line 38 -column 9, line 54;
figure 11
column 10, line 18 - line 35
column 11, line 50 -column 12, line 30 | 12, 15-17, 21-23, 25-36 |
| X | EP 0 906 193 A (GIESECKE & DEVRIENT GMBH)
7 April 1999 (1999-04-07)
column 3, line 45 -column 6, line 49
column 9, line 3 -column 50 | 12,13, 21-36 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 11291610 A</td>
<td>26-10-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 11291609 A</td>
<td>26-10-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 22737 T</td>
<td>15-10-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3273665 D1</td>
<td>13-11-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8300570 A1</td>
<td>17-02-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0085066 A1</td>
<td>10-08-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2119961 A</td>
<td>23-11-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4659113 A</td>
<td>21-04-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3228387 A1</td>
<td>24-02-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11500070 T</td>
<td>06-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9623201 A1</td>
<td>01-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5892589 A</td>
<td>06-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6025921 A</td>
<td>15-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 206356 T</td>
<td>15-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3259297 A</td>
<td>07-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 103049 A</td>
<td>30-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2258663 A1</td>
<td>24-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59704798 D1</td>
<td>08-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9748555 A1</td>
<td>24-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0906193 A1</td>
<td>07-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000512231 T</td>
<td>19-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 330529 A1</td>
<td>24-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001043842 A1</td>
<td>22-11-2001</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSESIERUNG DES ANMELDUNGSGEGENSTANDES
IKP 7 B41C1/04 B41M1/10 B41M3/14 B41N1/06

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE
Recherchierter Mindestpräzitationskatalog (Klassifikationssystem und Klassifikationssymbolen)

IPK 7 B41C B41M B41N

Recherchierte aber nicht zum Mindestpräzitationskatalog gehörende Veröffentlichungen, soweit diese unter die rechergierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie: Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

15. Februar 2002

Absenderdatum des internationalen Recherchenberichts

22/02/2002

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5816 Patentdienst 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Balsters, E

Formular PCT/ISA/210 (Blatt 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Zusammenfassung</td>
<td>12-24</td>
</tr>
<tr>
<td>X</td>
<td>US 4 557 596 A (MUELLER HANS ET AL) 10. Dezember 1985 (1985-12-10) Spalte 17, Zeile 37 - Spalte 21, Zeile 43</td>
<td>1,2, 8-14, 21-36</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>JP 11291610 A</td>
<td>26-10-1999</td>
<td>KEINE</td>
</tr>
<tr>
<td>JP 11291609 A</td>
<td>26-10-1999</td>
<td>KEINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 22737 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3273665 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8300570 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0085066 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2119961 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4659113 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3228387 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11500070 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9623201 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5892589 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6025921 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 206356 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3259297 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 103049 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2258663 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59704798 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9748555 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0906193 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000512231 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 330529 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001043842 A1</td>
</tr>
</tbody>
</table>