Title: PHOTOSENSITIVE RESIN COMPOSITION, PHOTOSENSITIVE ELEMENT, AND METHOD FOR MANUFACTURING PRINTED WIRING BOARD

Abstract: Disclosed is a photosensitive resin composition containing (A) a binder polymer, (B) a photopolymerizable compound having a polymerizable ethylenically unsaturated group, and (C) a photopolymerization initiator. The component (B) of this photosensitive resin composition contains a specific bisphenol A (meth)acrylate compound, a specific alkoxyalkyl(meth)acrylate compound, and a specific nonylphenyl polyalkylenglycol (meth)acrylate compound. Also disclosed are a photosensitive resin composition and a method for manufacturing a printed wiring board.
アインダーポリマー、(B) 重合可能なエチレン性不飽和基を有する光重合性化合物及び (C) 光重合開始剤を含有する感光性樹脂組成物であって、
(B) 成分が、特定のビスフェノールA系（メタ）アクリレート化合物、特定のアルコキシ化トリメチロールプロパントリ（メタ）アクリレート化合物、
及び特定のノニルフェニルアルキレングリコール（メタ）アクリレート化合物を含む、感光性樹脂組成物と、これを用いた感光性エレメント及びプリント配線板の製造方法。
明細書

感光性樹脂組成物、感光性エレメント、及びプリント配線板の製造方法
技術分野

[0001] 本発明は、感光性樹脂組成物、感光性エレメント、及びプリント配線板の製造方法
に関する。

背景技術

[0002] 従来、プリント配線板の製造分野では、回路の保護及び接触抵抗の低減等を目的
として、回路上に金属めっき加工が行われている。また、携帯電子機器の普及に伴
い、使用される実装部品の形態は小型化に有利なChip Scale Package (CSP)
やBall Grid Array (BGA) が急速に増えている。このような実装部品は、実装パッ
ド（はんだパッド）等を除いたプリント配線板の回路導体の全面に表面樹脂層（ソルダ
ーレジスト）を形成して、パッドの部分等に金属めっき加工を施し、めっき加工された
パッドとはんだボールによって、配線板と接続される。金属めっき加工には、良好な
金属結合を確保するために、多くの場合、めっきが用いられている。

[0003] そして、上記分野におけるめっきの方法は、電解めっき法から無電解めっき法へ
急速に移行している。これは、プリント配線板の小型化・高密度化が進捗したこと、電
極用リード線が不要で均一なめっき膜厚及び平滑な表面が得られること等に基づくもの
であり、無電解めっきへの移行は携帯電子機器用基板において特に顕著である。

[0004] ところで、近年急速に市場が拡大している携帯電話等の携帯電子機器に用いられ
る基板では、落下衝撃や入力キーを押す力による曲げにより、CSPやBGA等の実
装部品が基板表面から脱落しやすい等の問題が発生しているが、その一因は、無電
解めっき法によるプリント配線板が、電解めっき法によるものよりもはんだボール接続
信頼性が低いためであると考えられている。この問題を解決するために、実装部品を
搭載する部分（鋼回路）には無電解めっきせず、それ以外の部分に無電解めっきを
する方法が提案されている（特許文献1）。

[0005] また、優れた解像度、密着性、光感度及びめっき耐性を有するのみならず、めっき
浴の污染を充分に低減可能な感光性樹脂組成物を提供するため、バインダーポリマ
と、分子内に少なくとも1つの重合可能なエチレン性不飽和結合を有する光重合性化合物と、光重合開始剤と、着色剤とを含有しており、かつ未硬化状態での全光線透過率が60％以上である感光性樹脂組成物が開示されている（例えば特許文献2参照）。
特許文献1：国際公開第98／04407号パンフレット
特許文献2：特開2004－12812号公報
発明の開示
発明が解決しようとする課題

[0006] CSPやBGA等の電子部品の表面実装をより高い信頼性で行うことのできるプリント配線板は、回路形成基板（回路パターンが形成された基板）上に所定のパターンで表面樹脂層（ソルダーレジスト）が形成された積層基板の上に、感光性樹脂組成物の硬化物の層（レジストパターン）を回路パターンが露出するように形成させて、回路パターン上に無電解めっきを行った後に、その硬化物層（レジストパターン）を除去する方法により、製造することができると考えられる。

[0007] しかし、従来、無電解めっき後の硬化物層（レジストパターン）の表面樹脂層からの剥離性が十分でなく、硬化物層の一部が剥がれずに表面樹脂層上に残ってしまうレジスト残りが発生してしまうという問題があった。

[0008] そこで、本発明は、回路形成基板上に形成された表面樹脂層上に硬化物層（レジストパターン）を形成させるために用いられたときに、十分な剥離性を得ることが可能な感光性樹脂組成物を提供することを目的とする。また、本発明は、この感光性樹脂組成物を用いた感光性エレメント及びこれらを用いたプリント配線板の製造方法を提供することを目的とする。
課題を解決するための手段

[0009] 本発明は、(A) バインダーポリマー、(B) 重合可能なエチレン性不飽和基を有する光重合性化合物及び(C) 光重合開始剤を含有する感光性樹脂組成物であって、(B)成分が、下記一般式(1)で表されるビスフェノールA系（メタ）クリレート化合物、下記一般式(2)で表されるアルコキシ化トリメチロールプロパントリアクリレート化合物、及び下記一般式(3)で表されるノールフェニルポリアルキリングリコールアクリレート
化合物を含むものである。

[化1]

\[
O\left(\times^1\cdot O\right)^p\cdot C\cdot C\equiv CH_2 \quad (1)
\]

\[
H_2C\cdot C\cdot CH_3
\]

\[
H_2C\cdot O\left(\times^3\cdot O\right)^k\cdot C\cdot C\equiv CH_2 \quad (2)
\]

\[
H_3C\cdot C\cdot C\cdot O\left(\times^4\cdot O\right)^m\cdot C\cdot C\equiv CH_2
\]

\[
H_2C\cdot O\left(\times^5\cdot O\right)^n\cdot C\cdot C\equiv CH_2
\]

\[
C_9H_{19}\cdot O\left(\times^6\cdot O\right)^r\cdot C\cdot C\equiv CH_2 \quad (3)
\]

[0010] 式(1)中、\(X^1\)及び\(X^2\)はそれぞれ独立に炭素数2～6のアルキレン基を示し、\(R^1\)及び\(R^2\)はそれぞれ独立に水素原子又はメチル基を示し、\(p\)及び\(q\)は\(p+q=4～40\)となる正の整数を示し、式(2)中、\(X^3\)、\(X^4\)及び\(X^5\)はそれぞれ独立に炭素数2～6のアルキ
レン基を示し、R^3, R^4及びR^5はそれぞれ独立に水素原子又はメチル基を示し、k, m及びnは$k + m + n = 3 \sim 30$とする正の整数を示し、式(3)中、X^6は炭素数2～6のアルキレン基を示し、R^9は水素原子又はメチル基を示し、rは1～20の整数を示す。

[0011] 本発明の感光性エレメントは、支持体と、該支持体上に設けられた上記本発明の感光性樹脂組成物からなる感光層と、を備える。

[0012] 本発明の感光性樹脂組成物及び感光性エレメントは、光重合性化合物として上記特定化合物を併用したことにより、回路形成均基板上に形成された表面樹脂層上に硬化物層（レジストパターン）を形成させるために用いられたときに、充分な形状追従性及び剥離性を得ることが可能となった。

[0013] 本発明の感光性樹脂組成物及び感光性エレメントにおいて、(C)成分は2, 4, 5－トリアリールイミダゾール二量体を含むことが好ましい。また、(A)成分及び(B)成分の合計量を100質量部としたときに、(A)成分の量が40～80質量部であり、(B)成分の量が20～60質量部であり、(C)成分の量が0.1～20質量部であることが好ましい。

[0014] 上記本発明の感光性エレメントの感光層は、波長365nmの紫外線に対する透過率が5～75％であることがより好ましい。

[0015] 本発明は、回路形成用基板及び回路形成用基板上に形成されている回路パターンを有する回路形成均基板と回路形成均基板上において回路パターンが露出するように形成されている表面樹脂層とを備える第1の態態層の表面樹脂層側の面上に、上記いずれかの感光性樹脂組成物からなり予め形成された感光層を積層する第1の工程と、感光層の所定部分に活性光線を照射してから現像してパターンニングされた硬化物層を形成させ、回路形成均基板上に表面樹脂層及び硬化物層をこの順に備えた第2の態態層を得る第2の工程と、第2の態態層に対して無電解めっきを行って回路パターン上にめっき層を形成する第3の工程と、を備えるプリント配線板の製造方法である。

[0016] この製造方法においては、硬化物層が、回路パターンの一部が露出するようにパターンニングされ、回路パターンの露出している部分の全面にめっき層を形成することが好ましい。
発明の効果

[0017] 本発明の感光性樹脂組成物及び感光性エレメントは、回路形成基板上に形成された表面樹脂層上に硬化物層（レジストパターン）を形成させるために用いられたときに、十分な剥離性を得ることが可能である。また、本発明の感光性樹脂組成物及び感光性エレメントは、解像度、密着性、めっき耐性及び形状追従性の点でも優れる。

[0018] また、本発明のプリント配線板の製造方法は、感光層（感光性樹脂組成物層）の埋め込み性と硬化物層（レジストパターン）の剥離性が良好であり、更にめっき浴の汚染を十分に低減することができる。

図面の簡単な説明

[0019] [図1]本発明の感光性エレメントの一実施形態を示す断面図である。
[図2]本発明のプリント配線板の製造方法の一実施形態を示す工程図である。
[図3]本発明のプリント配線板の製造方法の他の実施形態（第2の工程まで）を示す工程図である。
[図4]本発明のプリント配線板の製造方法の他の実施形態（第3の工程）を示す工程図である。
[図5]格子状フォトツール（マスクパターン）を示す上面図である。

符号の説明

[0020] 1…感光性エレメント、10…支持体、20…感光層、22…露光部、24…硬化物層（レジストパターン）、30…保護フィルム、40…回路形成基板、50、51…回路パターン、50a、51a…露出部、55…めっき層、55a…Niめっき層、55b…Auめっき層、60…表面樹脂層、70…開口部、80…回路形成基板、90…マスクパターン、90a…遮蔽部、90b…透明部、92…活性光線、100…第1の積層基板、200…第2の積層基板、300…プリント配線板

発明を実施するための最良の形態

[0021] 以下、本発明の好適な実施形態について詳細に説明する。なお、本明細書における（メタ）アクリル酸とはアクリル酸及びそれに対応するメタクリル酸を意味し、（メタ）アクリル
ートとはアクリレート及びそれに対応するメタクリレートを意味し、(メタ)アクリロイル基とはアクリロイル基及びそれに対応するメタクリロイル基を意味する。

[0022] 本発明における(Λ)成分のバインダーポリマーとしては、感光性樹脂組成物のバインダーとして機能するポリマーであれば特に制限なく用いることができる。具体的には、例えば、アクリル系樹脂、ステレン系樹脂、エポキシ系樹脂、アミド系樹脂、アミドエポキシ系樹脂、アルキド系樹脂、フェノール系樹脂が挙げられる。アルカリ現像性の見地からは、アクリル系樹脂が好ましい。これらは単独で又は2種以上を組み合わせて使用される。

[0023] バインダーポリマーは、例えば、重合性単量体をラジカル重合させることにより製造することができる。上記重合性単量体としては、例えば、ステレン、ビニルトルエン、α－メチルステレン等のα－位若しくは芳香族環において置換されている重合可能なスチレン誘導体、ジアセトニトリルアミド等のアクリルアミド、アクリロニトリル、ビニル－n－ブチルエーテル等のビニルアルコールのエステル類、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸テトラヒドロフルオルフルホエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシンジルエステル、2,2,2－トリフルオロエチル(メタ)アクリレート、2,2,3,3－テトラフルオプロピル(メタ)アクリレート、(メタ)アクリル酸、α－プロモ(メタ)アクリル酸、α－クロール(メタ)アクリル酸、β－フリル(メタ)アクリル酸、β－スチルル(メタ)アクリル酸、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル等のマレイン酸モノエステル、フマール酸、ケイ皮酸、α－シアノケイ皮酸、イタコニ酸、クロトン酸、プロピオール酸が挙げられる。

[0024] 上記(メタ)アクリル酸アルキルエステルは、例えば、下記一般式(4)で表される。式(4)中、R^7は水素原子又はメチル基を示し、R^8は置換基を有していてもよい炭素数1～12のアルキル基を示す。R^8が有する置換基としては、水酸基、アモニオニ基、ハロゲン基等がある。

[化2]

\[
R^7
\]

\[
H_2C=CH-COOR^8
\] (4)
[0025] R^8中のアルキル基としては、例えば、メチル基、エチル基、プロピル基、プチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基及びこれらの構造異性体が挙げられる。

[0026] 式(4)で表される(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸プチルエステル、(メタ)アクリル酸ペンチルエステル、(メタ)アクリル酸ヘキシルエステル、(メタ)アクリル酸ヘプチルエステル、(メタ)アクリル酸オクチルエステル、(メタ)アクリル酸2−エチルヘキシルエステル、(メタ)アクリル酸ノニルエステル、(メタ)アクリル酸デシルエステル、(メタ)アクリル酸ウンデシルエステル、(メタ)アクリル酸ドデシルエステルが挙げられる。これらは単独で又は2種以上を組み合わせて使用される。

[0027] バインダーポリマーは、アルカリ像性の見地から、カルボキシル基を有することが好ましい。カルボキシル基を有するバインダーポリマーは、例えば、カルボキシル基を有する重合性単量体とその他の重合性単量体をラジカル重合させることにより製造することができる。

[0028] また、バインダーポリマーは、耐薬品性の見地からスチレン又はスチレン誘導体をモノマー単位として含有することが好ましい。スチレン又はスチレン誘導体を共重合成分として密着性及び剥離性を共に良好にするには、バインダーポリマーがこれらを2～40重量％含むことが好ましく、3～28重量％含むことがより好ましく、5～27重量％含むことが特に好ましい。これらの含有量が未満では密着性が低下する傾向があり、40重量％を超えると剥離片が大きくなり、剥離時間が長くなる傾向がある。

[0029] バインダーポリマーの重量平均分子量は、20000～300000であることが好ましく、40000～150000であることがより好ましい。この重量平均分子量が20000未満では耐現像液性が低下する傾向があり、300000を超えると現像時間が長くなる傾向がある。

[0030] バインダーポリマーの酸価は、30～250mgKOH／gであることが好ましく、50～200mgKOH／gであることがより好ましい。この酸価が30mgKOH／g未満では現像時間が長くなる傾向があり、250mgKOH／gを超えると光硬化したレジストパターン
の耐現像液性が低下する傾向がある。

[0031] これらのバインダーポリマーは、単独で又は2種類以上を組み合わせて使用される。
2種類以上を組み合わせて使用する場合のバインダーポリマーの組み合わせとしては、例えば、異なる共重合成分からなる2種類以上のバインダーポリマー、異なる重量平均分子量の2種類以上のバインダーポリマー、異なる分散度の2種類以上のバインダーポリマーが挙げられる。

[0032] （B）成分である重合可能なエチレン性不飽和基を有する光重合性化合物は、上記一般式（1）で表されるビスフェノールA系（メタ）アクリレート化合物、上記一般式（2）で表されるアルキシ化トリメチロールプロパントリアクリレート化合物、及び上記一般式（3）で表されるノニルフェニルポリアルキレンジグリコールアクリレート化合物を含む。

[0033] 式（1）中、X₁及びX₂はそれぞれ独立に炭素数2〜6のアルキレン基を示し、R₁及びR₂はそれぞれ独立に水素原子又はメチル基を示し、p及びqはp+q=4〜40となる正の整数を示す。X₁又はX₂の炭素数が2〜6の範囲内にないか、又はp+qが4〜40の範囲内にない場合、感光層の密着性が十分に得られにくくなるか、硬化物層（レジストパターン）の剥離時間が長くなる傾向がある。密着性及び剥離性の観点から、X₁及びX₂はエチレン基であることが好ましく、p+qが10〜30であることが好ましい。

[0034] 式（1）の化合物の好適な具体例としては、ビスフェノールAポリオキシエチレンジメタクリレート（2, 2−ビス（4−（（メタ）アクリロキシポリエトキシ）フェニル）プロパン）がある。2, 2−ビス（4−（（メタ）アクリロキシポリエトキシ）フェニル）プロパンとしては、例えば、2, 2−ビス（4−（（メタ）アクリロキシジエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシトリエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシペンタエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシヘキサエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシヘプタエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシオクタエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシナナエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシデカエトキシ）フェニル）プロパン、2, 2−ビス（4−（（メタ）アクリロキシドデカエトキシ）フ
エニル）プロパン、2-ビス（4-（メタ）アクリロキシトリメチレカルテキシン）フェニル）プロパン、2-ビス（4-（メタ）アクリロキシトリメチレカルテキシン）フェニル）プロパン、2-ビス（4-（メタ）アクリロキシベンタメチレカルテキシン）フェニル）プロバンが挙げられる。2-ビス（4-（メタ）アクリロキシベンタメチレカルテキシン）フェニル）プロバンは、BPE＝500（新中村化学工業株式会社製、商品名）として商用的に入手可能であり、2-ビス（4-（メタ）アクリロキシベンタメチレカルテキシン）フェニル）プロバンは、BPE＝1300（新中村化学工業株式会社製、商品名）として商用的に入手可能である。これらは単独で又は2種類以上を組み合わせて使用される。

式（2）中、X^3、X^4及びX^5はそれぞれ独立に炭素数2〜6のアルキレン基を示し、R^3、R^4及びR^5はそれぞれ独立に水素原子又はメチル基を示し、k、m及びnはk+m+n＝3〜30となる正の整数を示す。X^3、X^4又はX^5の炭素数が2〜6の範囲内にないか、又はk+m+n＝3〜30の範囲内にない場合、硬化物層（レジストパターン）の強靭性や剥離性が低下する傾向がある。硬化物層（レジストパターン）の強靭性と剥離性を向上させることが考えられる。127の範囲内であることが好ましく、9〜27の範囲内であることがより好ましい。式（2）の化合物の好適な具体例としては、エトキシ化トリメチロールプロパントリアクリレートがある。

式（3）中、X^6は炭素数2〜6のアルキレン基を示し、R^6は水素原子又はメチル基を示し、rは1〜20の整数を示す。X^6の炭素数が2〜6の範囲内にないか、又はrが1〜20の範囲内にない場合、硬化物層（レジストパターン）の剥離残りが生じたり、剥離時間を長くする傾向がある。硬化物層（レジストパターン）の剥離残りと剥離性を向上させることが考えられる。127の範囲内であることが好ましく、4〜12の範囲内であることがより好ましい。式（3）の化合物の好適な具体例としては、ノニルフェニルポリエチレングリコールアクリレートがある。

（B）成分は、上記以外の光重合性化合物を更に含んでいてもよい。他の光重合性化合物としては、多価アルコールにα、β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα、β-不飽和カルボン酸を反応させて得られる化合物、γ-クロロβ-ヒドロキシプロピルβ’-（メタ）アクリロイルオキシエ
チル－o－フタレート、β－ヒドロキシエチル－β’－(メタ)アクリロイルオキシエチル－o－フタレート、(メタ)アクリル酸アルキルエステル等が挙げられる。

[0038] (C)成分の後重合開始剤としては、例えば、ペンゾフェノン、N、N’－テトラメチル－4、4’－ジアミノペンゾフェノン（ミヒラーアクトン）、N、N’－テトラエチル－4、4’－ジアミノペンゾフェノン、4－メトキシ－4’－ジメチルアミノペンゾフェノン、2－ベンジル－2－ジメチルアミノ－1－(4－モノジメチルアミノベンゾフェノン－1、2－メチル－1－[4－(メチルオキシ)フェニル]－2－モノフィロノ－ブロパン－1等の芳香族ケトン、2－エチルアントラキノン、フェナントレンキノン、2－ tert－ブチルアントラキノン、オクタメチルアントラキノン、1、2－ベンゾアントラキノン、2、3－ベンゾアントラキノン、2－フェニルアントラキノン、2、3－ジフェニルアントラキノン、1－クロロアントラキノン、2－メチルアントラキノン、1、4－ナフトキノン、9、10－フェナントラキノン、2－メチル1、4－ナフトキノン、2、3－ジメチルアントラキノン等のキノン類、ペンゾインメチルエーテル、ペンゾインエチルエーテル、ペンゾインフェニルエーテル等のペンゾインエーテル化合物、ペンゾイン、メチルペンゾイン、エチルペンゾイン等のペンゾイン化合物、ペンジルメチルケタール等のペンジル誘導体、2－(o－クロロフェニル)－4、5－ジフェニルイミダゾール二量体、2－(o－クロロフェニル)－4、5－ジメチルイミダゾール二量体、2－(o－フルオロフェニル)－4、5－ジフェニルイミダゾール二量体、2－(o－メトキシフェニル)－4、5－ジフェニルイミダゾール二量体、2－(p－メトキシフェニル)－4、5－ジフェニルイミダゾール二量体等の2、4、5－トリアリールイミダゾール二量体、9－フェニルアクリジン、1、7－ピス(9、9’－アクリジニルヘプタン等のアクリジン誘導体、N－フェニルグルジン、N－フェニルグルジン誘導体、クマリン系化合物が挙げられる。また、ジェチルオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせても良い。これらは、単独で又は2種類以上を組み合わせて使用される。

[0039] (C)成分は、これらの中でも、2、4、5－トリアリールイミダゾール二量体が特に好ましい。2、4、5－トリアリールイミダゾール二量体は、2つの2、4、5－トリアリールイミダゾールのアリール基の置換基が同一である対称な化合物であってもよいし、置換基が異なる非対称な化合物であってもよい。
(0040) バインダーポリマーの量は、(A)成分及び(B)成分の合計量100質量部中、40～80質量部とすることが好ましく、45～70質量部とすることがより好ましい。この配合量が40質量部未満では光硬化物が脆くなり易く、感光性エレメントとして用いた場合に塗膜性が低下する傾向があり、80質量部を超えると光感度が低下する傾向がある。

(0041) (B)成分の光重合性化合物の量は、(A)成分及び(B)成分の合計量100質量部中、20～60質量部とすることが好ましく、30～55質量部とすることがより好ましい。この量が20質量部未満では光感度が低下する傾向があり、60質量部を超えると光硬化物が脆くなる傾向がある。

(0042) (B)成分の総量中、一般式(1)で表されるビスフェノールA系(メタ)アクリレート化合物の含有割合は、10質量%～50質量%であることが好ましく、15質量%～40質量%であることがより好ましい。10質量%未満では硬化物層(レジストパターン)の剥離残り抑制の効果が小さくなる傾向があり、50質量%を超えると感光層の密着不足によるめつきもぐりが発生する傾向がある。

(0043) (B)成分の総量中、一般式(2)で表されるアルコキシ化トリメチロールプロパントリ(メタ)アクリレート化合物の含有割合は、20質量%～80質量%であることが好ましく、25質量%～75質量%であることがより好ましく、30質量%～65質量%であることが特に好ましい。20質量%未満では感光層の密着不足によるめつきもぐりが発生する傾向があり、80質量%を超えると硬化物層(レジストパターン)の剥離残りが生じたり硬化物層(レジストパターン)が脆くなる傾向がある。

(0044) (B)成分の総量中、一般式(3)で表されるノルフェニアルキレンジビの場合(メタ)アクリレート化合物の含有割合は、10質量%～40質量%であることが好ましく、15質量%～30質量%であることがより好ましい。10質量%未満では硬化物層(レジストパターン)の剥離性が悪化する傾向があり、40質量%を超えると感光層の密着不足が生じる傾向がある。

(0045) (C)成分の光重合開始剤の量は、(A)成分及び(B)成分の合計量100質量部に対して、0.1～20質量部であることが好ましく、0.2～10質量部であることがより好ましく、2～5質量部であることが特に好ましい。この量が0.1質量部未満では光感度が低下する傾向があり、20質量部を超えると露光の際に感光層の表面での吸収が増
大して内部の光硬化が十分でなくなり易くなる傾向がある。

[0046] 感光性樹脂組成物は、以下のようなる成分の他、必要に応じて、マラカイトグリーン等の染料、トリプロモフェニルスルフォン、ロイコクリスタルバイオレット等の光発色剤、熟発色防止剤、p-トルエンスルホンアミド等の可塑剤、顔料、充填剤、消泡剤、難燃剤、安定剤、密着性付与剤、レベリング剤、剥離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤等を含有していともよい。これらの成分の量は、(A)成分及び(B)成分の合計量100質量部に対して各々0.01～20質量部程度であることが好ましい。これらは、単独で又は2種類以上を組み合わせて使用される。

[0047] 本発明の感光性樹脂組成物は、必要に応じて、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N、N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶剤又はこれらの混合溶剤に溶解して固形分30～60質量%程度の溶液の状態で好適に用いられる。

[0048] この感光性樹脂組成物の溶液は、例えば、金属面上に塗布し、乾燥して感光層を形成し、必要に応じて保護フィルムを被覆して硬化物層（レジストパターン）の形成に用いられる。この場合の金属としては、特に制限はないが、銅、鋼系合金、ニッケル、クロム、鉄、ステンレス等の鉄系合金が挙げられ、硬化物層（レジストパターン）との密着性及び電子導電性の観点から銅、鋼系合金、鉄系合金であることが好ましい。

[0049] あるいは、本発明の感光性樹脂組成物は、感光性エレメントの状態で好適に用いられる。図1は、本発明の感光性エレメントの好適な一実施形態を示す模式断面図である。図1に示した感光性エレメント1は、支持体10と、支持体10上に設けられた感光層20と、感光層20上に設けられた保護フィルム30で構成される。

[0050] 感光層20は、上述した本発明の感光性樹脂組成物からなる。感光層20の厚みは、用途により異なるが、1～100μmであることが好ましく、1～50μmであることがより好ましい。この厚みが1μm未満では工業的に塗工困難となる傾向があり、100μmを超えると本発明の効果が小さくなり、接着力、解像度が低下する傾向がある。

[0051] 感光層20は、波長365nmの紫外線に対する通過率が5～75%であることが好ましく、7～60%であることがより好ましく、10～40%であることが特に好ましい。この透過率が5%未満では密着性が低下する傾向があり、75%を超えると解像度が低下す
る傾向がある。この透過率は、UV分光計により測定することができる。UV分光計としては、株式会社日立製作所製228A型Wビーム分光光度計等が挙げられる。

[0052] 感光層20は、上述の感光性樹脂組成物の溶液を調製し、これを支持体10に塗布して形成することが好ましい。塗布は、例えば、ロールコーティング、コンマコーティング、グラビアコーティング、エアーナイフコーティング、ダイコーティング、バーコート等の公知の方法で行うことができる。また、乾燥は、70～150℃、5～30分間程度で行うことができる。

[0053] 支持体10は、厚みが5～25μmであることが好ましく、8～20μmであることがより好ましく、10～16μmであることが特に好ましい。この厚みが5μm未満では現像前の支持体剝離の際に破れやすくなる傾向があり、25μmを超えると解像度が低下する傾向がある。

[0054] 支持体10のヘーズは0.001～5.0であることが好ましく、0.001～2.0であることより好ましく、0.01～1.8であることが特に好ましい。このヘーズが2.0を超えると、解像度が低下する傾向がある。ヘーズはJIS K 7105に準拠して測定したものであり、NDH－1001DP（日本電気工業株式会社製、商品名）等の市販の測定計等で測定が可能である。

[0055] 支持体10及び保護フィルム30としては、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリエステル等の重合体フィルムが、耐熱性及び耐溶剤性の点で優れているため好適に用いられる。

[0056] 保護フィルム30は、厚みが5～30μmであることが好ましく、10～28μmであることがより好ましく、15～25μmであることが特に好ましい。この厚みが5μm未満ではラミネートの際に保護フィルム30が破れ易くなる傾向があり、30μmを超えると廉価性に劣る傾向がある。

[0057] 保護フィルム30の長手方向の引張強さは13MPa以上であることが好ましく、13～100MPaであることがより好ましく、14～100MPaであることが更に好ましく、15～100MPaであることがより一層好ましく、16～100MPaであることが更により一層好ましい。この引張強さが13MPa未満であると、ラミネートの際に保護フィルム30が破れ易くなる傾向がある。

[0058] 保護フィルム30の幅方向の引張強さは9MPa以上であることが好ましく、9～100
MPaであることがより好ましく、10～100MPaであることが更に好ましく、11～100MPaであることがより一層好ましく、12～100MPaであることが更により一層好ましい。この引張強さが9MPa未満ではラミネートの際に保護フィルム30が破れ易くなる傾向がある。

[0059] 上記引張強さはJIS C 2318－1997(5.3.3)に準拠して測定することができ、東洋ボールドウィン株式会社製、商品名テンション等の市販の引張強さ試験機等で測定が可能である。

[0060] 支持体10及び保護フィルム30は、後に感光層20から除去可能でなくてはならないため、除去が不可能となるような表面処理が施されたものであってはならないが、特に制限はなく必要に応じて処理を行ってもよい。支持体10及び保護フィルム30は必要に応じて帯電防止処理が施されていてもよい。

[0061] 本発明の感光性エレメントは上記実施形態に限定されず、感光層、支持体及び保護フィルムの他に、クッション層、接着層、光吸収層、ガスバリア層等の中間層や保護層を有していてもよい。

[0062] 感光性エレメント1は、例えば、そのままで又は感光層20の他の面に保護フィルム30を更に積層して円筒状の巻芯に巻きとって貯蔵される。

[0063] 次に、本発明の感光性樹脂転写物を用いたプリント配線板の製造方法の一実施形態について説明する。本実施形態のプリント配線板の製造方法において、回路形成基板とは、プリント配線板に含まれるものであり、回路形成用基板及び回路パターン（回路導線）を有する。回路形成基板は、スルーホール等を有してもよく、また、多層構造を有してもよい。

[0064] 本実施形態では、レジストを用いる。レジストとは、エッティング、はんだ付け又は膜形成を選択的に行うため、プリント配線板の特定領域をマスク又は保護する被覆材料であり、めっき保護膜としても機能する。通常、フォトレジストを用い、その感光性を利用して、微細かつ正確なパターンを所定の領域に高い精度で被覆形成して、被保護物を保護する。本発明のプリント配線板の製造方法において、レジストは目的により2種類に分けられる。

[0065] その一方は、ソルダーレジスト（表面樹脂層）であり、例えば、はんだ付けにより接合
部分を形成する領域のみが露出するように塗布、露光して、所望の被覆（保護）パターンを有するよう形成したものである。すなわちソルダーレジスト（表面樹脂層）は、回路パターンを除いた回路形成基板の全面を被覆するように形成される。

[0066] もう一つは、めっきレジストである。めっきレジストは、感光性エレメントを用いて感光層を積層し、露光して無電解めっきを行う領域のみが露出するような被覆（保護）パターンを有するように形成した硬化物層（レジストパターン）である。すなわち、この硬化物層（レジストパターン）は、実装パッドの部分等のめっきによる金属の付着が望ましくない回路形成基板の全面を被覆するように形成される。

[0067] 以下に図を用いて本実施形態をより詳細に説明する。図2は、本発明のプリント配線板の製造方法の一実施形態を示す工程図である。図2に示す実施形態では、まず、回路形成用基板40に回路パターン50が形成された回路形成基板80と回路形成基板80上に形成された表面樹脂層（ソルダーレジスト）60とを有する第1の積層基板100を準備する（図2の（a））。表面樹脂層60には、回路パターン50の露出部50aが露出する開口部70が形成されている。そして、第1の積層基板100の表面樹脂層60側の面上に感光性エレメント1を感光層20が表面樹脂層60と密着するように積層する（図2の（b））。

[0068] 次に、回路形成基板80上に積層された感光層20に対して、マスクパターン90を通して活性光線92を画像状に照射する（図2の（c））。マスクパターン90は活性光線92を遮蔽する遮蔽部90aと、活性光線92を透過する透明部90bとを有している。これにより、感光層20の一部（露光部22）を露光し、感光性樹脂組成物の硬化物を形成させる。露光後、支持体10及び未露光部を除去して現像し、パターンニングされた硬化物層（レジストパターン）24を形成させる（図2の（d））。このようにして、回路形成基板80上に表面樹脂層60及び硬化物層（レジストパターン）24を順に積層した第2の積層基板200を得る。硬化物層（レジストパターン）24は、回路パターン50の露出部50aが露出するように、めっきレジストの目的で形成させる。この硬化物層（レジストパターン）24は、その後任意に後硬化させることができる。

[0069] 表面樹脂層60及び硬化物層（レジストパターン）24をマスクとして、第2の積層基板200に対してNi無電解めっきを行い、回路パターン50上にめっき層55を形成する（
図2の(e)）。続いて、無電解めっきがされた第2の積層基板200から硬化物層24を除去してプリント配線板300を得る（図2の(f)）。

[0070] 図3及び図4は、本発明のプリント配線板の製造方法の他の実施形態を示す工程図であり、図3はその第2の工程までを、図4はその第3工程を示す工程図である。図3に示す第1の工程では、まず、回路形成用基板40上に回路パターン50及び51が形成された回路形成基板80と回路形成基板80上に形成された表面樹脂層60とを有する第1の積層基板100を準備する（図3の(a)）。表面樹脂層60には、回路パターン50及び51の露出部50a及び51aが露出する開口部70が形成されている。そして、第1の積層基板100の表面樹脂層60側の面上に感光性エレメント1を感光層20が表面樹脂層60と密着するように積層する（図3の(b)）。

[0071] 第2の工程では、回路形成基板80上に積層された感光層20に対して、マスクパターン90を通して活性光線92を画像状に照射する（図3の(c)）。マスクパターン90は活性光線92を遮蔽する遮蔽部90aと、活性光線92を透過する透明部90bとを有している。これにより、感光層20の一部（露光部22）を露光し、感光性樹脂組成物の硬化物を形成させる。露光後、支持体10及び未露光部を除去して現像し、パターンニングされた硬化物層（レジストパターン）24を形成させる（図3の(d)）。このようにして、回路形成基板80上に表面樹脂層60及び硬化物層（レジストパターン）24をこの順に備えた第2の積層基板200を得る。硬化物層（レジストパターン）24は、無電解めっきを行う回路パターン50のみが露出し、めっきによる金属の付着が好ましくない回路パターン51等の領域を被覆するめっきレジストとして機能する。この硬化物層（レジストパターン）24は、その後任意に後硬化させることができる。

[0072] 図4に示す第3の工程では、表面樹脂層60及び硬化物層（レジストパターン）24をマスクとして、第2の積層基板200に対してNi無電解めっきを行い、マスクされていない回路パターン50の表面にNiめっき層55aを形成する（図4の(e)）。続いて、置換Auめっきを行い、Niめっき層の上にAuめっき層55bを形成する（図4の(f)）。このようにして、所要の部分にのみ金属めっき加工を施し、硬化物層（レジストパターン）24を剥離して、実装部品の信頼性に優れたプリント配線板300（図4の(g)）を得る。

[0073] 図2及び図3に示す第1の積層基板100は、例えば、回路形成用基板40上に感光
性エレメント1をその感光層20が回路形成用基板40と密着するようにして積層し、活性光線を画像状に照射してから現像する方法により、パターニングされた表面樹脂層60を形成させる工程と、表面樹脂層60をマスクとしてエッチング又はめっきして回路パターン50を形成する工程を経て作製される。

[0074] 上記第1の工程においては、保護フィルム30を除去後、感光層20を加熱しながら表面樹脂層60上に圧着することにより感光性エレメント1が積層される。この際、密着性及び追従性の観点から減圧下で積層することが好ましい。より具体的には積層の際、感光層20を70～130℃に加熱することが好ましく、圧着圧力は0.1～1.0MPa程度（1～10kgf/cm²程度）とすることが好ましい。感光層20をこのように70～130℃に加熱すれば、予め回路形成済基板を予熱処理することは必要でないが、積層性をさらに向上させるために、回路形成済基板の予熱処理を行ってもよい。

[0075] 活性光線92の光源としては、公知の光源、例えば、カーボンアーク灯、水銀蒸気アーク灯、高圧水銀灯、キセノンランプ等の紫外線、可視光等を有効に放射するもののが用いられる。マスクパターン90はアートワークと呼ばれるネガ又はポジマスクパターンである。

[0076] 露光後の現像は、アルカリ性水溶液、水系現像液、有機溶剤等の感光性樹脂組成物に対応した現像液によるウエット現像、ドライ現像等で未露光部を除去して行う。現像の方法には、ディップ方式、パドル方式、スプレー方式、ブラッシング、スラッピング等があり、高圧スプレー方式が解像度向上のためには最も適している。

[0077] 現像液としては、安全かつ安定であり、操作性が良好である点から、アルカリ性水溶液等が好ましく用いられる。アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム若しくはアノモンイウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リノ酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ビロリン酸ナトリウム、ビロリン酸カリウム等のアルカリ金属ビロリン酸塩などが用いられる。現像の方法には、ディップ方式、パドル方式、スプレー方式、ブラッシング、スラッピング等があり、高圧スプレー方式が解像度向上のためには最も適している。

[0078] アルカリ性水溶液は、より具体的には、0.1～5質量%炭酸ナトリウムの希薄溶液、
0. 1〜5質量％炭酸カリウムの希薄溶液、0. 1〜5質量％水酸化ナトリウムの希薄溶液、0. 1〜5質量％四塩化ナトリウムの希薄溶液等が好ましい。また、アルカリ性水溶液のpHは9〜11の範囲とすることが好ましく、その温度は感光層の現像性に合わせて調整される。

[0079] アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。この場合に用いられるアルカリ物質としては、前記物質以外に、ホウ砂やメタケイ酸ナトリウム、水酸化ナトリウム、エタノールアミン、エチレンジアミン、ジェチレントリアミン、2−アミノ−2−ヒドロキシメチル−1, 3−プロパンジオール、1, 3−ジアミノプロパノール−2、モルホリン等が挙げられる。現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8〜12とすることが好ましく、pH9〜10とすることがより好ましい。

[0080] 上記有機溶剤としては、例えば、トリクロロエタン、アセトン、酢酸エチル、炭素数1〜4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジェチレングリコールモノメチルエーテル、ジェチレングリコールモノエチルエーテル、ジェチレングリコールモノブチルエーテルが挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。有機溶剤の濃度は、通常、2〜90質量％とすることが好ましく、その温度は、現像性にあわせて調整することができる。また、有機溶剤が混入された水系現像液中には、界面活性剤、消泡剤等を少量添加することもできる。

[0081] 単独で用いる有機溶剤系現像液としては、例えば、1, 1, 1−トリクロロエタン、N−メチルピロリドン、N, N−ジメチルホルムアミド、シクロヘキサンオキサノ、メチルイソブチルケトン、ケープチロラクトンが挙げられる。これらの有機溶剤は、引火防止のため、1〜20質量％の範囲で水を添加することが好ましい。また、必要に応じて2種以上の現像方法を併用してもよい。

[0082] 現像後の処理として、必要に応じて60〜250℃程度の加熱又は0. 2〜10mJ/cm²程度の露光を行うことにより硬化物層（レジストパターン）を更に硬化してもよい。

[0083] 無電解めっきとしては、無電解Niめっきが挙げられる。無電解Niめっき上に、金、銀、バラジウム、白金、ロジウム、銅、ズズ等の金属めっきを行ってもよい。
無電解めっきの後の硬化物層（レジストパターン）の除去は、例えば、現像に用いたアルカリ性水溶液より更に強アルカリ性の水溶液で剥離することにより行うことができる。強アルカリ性の水溶液としては、例えば、1〜10質量％水酸化ナトリウム水溶液、1〜10質量％水酸化カリウム水溶液等が用いられる。剥離方式としては、浸漬方式、スプレー方式等が挙げられる。

実施例

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。

実施例1〜8及比較例1〜4

（バインダーポリマー1の合成）
メタクリル酸、メタクリル酸メチル及びスチレンを質量比28:60:12の割合で共重合させ、重量平均分子量60000、ガラス転移温度124℃、酸価68mgKOH/gの共重合体（バインダーポリマー1）を得た。該バインダーポリマー1を、メチルセルロソルブノトルエン（6:4、質量比）に不揮発成分（固形分）50質量％になるように溶解させ、バインダーポリマー1の溶液を得た。

（バインダーポリマー2の合成）共重合単量体としてメタクリル酸130g、メタクリル酸メチル170g、アクリル酸エチル100g及びスチレン100gと、アソビオピソブチリトリル3.0gとを混合し、溶液αを調製した。攪拌機、還流冷却器、温度計、滴下ロート及び窒素ガス導入管を備えたフラスコに、質量比3:2であるメチルセロソルブ及びトルエンの配合物500gを加え、窒素ガスを吹き込みながら攪拌して、85℃まで加熱した。そこで、溶液αを4時間かけて滴下した後、85℃で攪拌しながら2時間保温した。

更に、質量比3:2であるメチルセロソルブ及びトルエンの配合物150gにアソビオピソブチリトリル0.5gを溶解させた溶液を、10分かけてフラスコ内に滴下した。滴下後の溶液を攪拌しながら85℃で5時間保温した後、冷却してバインダーポリマー2の溶液を得た。バインダーポリマー2の溶液の不揮発成分（固形分）は50.0質量％であり、バインダーポリマー2の重量平均分子量は100000であった。

なお、重量平均分子量は、ゲルパーキュションクロマトグラフィー（GPC）法によって測定し、標準ポリスチレンの検量線を用いて換算することにより導出した。GPCの
測定条件は、以下に示す。

(GPC測定条件)

・ポンプ: 日立L－6000型[(株)日立製作所製]
・カラム: GelpackGL－R420＋GelpackGL－R430＋GelpackGL－R440（計3本）（以上、日立化成工業(株)製、商品名）
・溶媒液: テトラヒドロフラン
・測定温度: 室温
・流量: 2.05mL/分
・検出器: 日立L－3300型RI[(株)日立製作所製]

[0090] 表1及び表2は、(A)成分、(B)成分、(C)成分及びその他の添加成分の混合比を示すものである。表1及び表2に示すように、(A)成分及びその他の添加剤成分を混合し、この混合物に(B)成分及び(C)成分を溶解させて、感光性樹脂組成物の溶液を得た。

[0091] [表1]
<table>
<thead>
<tr>
<th>成分</th>
<th>材料</th>
<th>実施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>（A）成分</td>
<td>バインダーポリマー1</td>
<td>60 60 60 60 - - -</td>
</tr>
<tr>
<td></td>
<td>バインダーポリマー2</td>
<td>- - - - 60 60 1 1</td>
</tr>
<tr>
<td>（B）成分</td>
<td>BPE-500 * 2</td>
<td>15 - - 5 10 - -</td>
</tr>
<tr>
<td></td>
<td>BPE-1300N * 3</td>
<td>- 15 15 10 10 15 5</td>
</tr>
<tr>
<td></td>
<td>SR-454 * 4</td>
<td>15 15 15 15 20 10 30</td>
</tr>
<tr>
<td></td>
<td>M-113 * 5</td>
<td>10 10 - 10 10 15 5</td>
</tr>
<tr>
<td></td>
<td>NP-8EA * 6</td>
<td>- - 10 - - - -</td>
</tr>
<tr>
<td></td>
<td>APG-400 * 7</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td></td>
<td>A-TMPT * 8</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>（C）成分</td>
<td>2-（α-クロロフェニル）-4, 5-ジフェニルイミダゾール二量体</td>
<td>3 3 3 3 3 3 3</td>
</tr>
<tr>
<td></td>
<td>N, N’-テトラエチル-4, 4’-ジアミノベンゾフェノン</td>
<td>0.15 0.15 0.15 0.15 0.15 0.15 0.15</td>
</tr>
<tr>
<td>発色剤</td>
<td>ロイコクリスタルバイオレット</td>
<td>0.5 0.5 0.5 0.5 0.3 0.3 0.3</td>
</tr>
<tr>
<td></td>
<td>トリプロモフェニルスルホン</td>
<td>0.5 0.5 0.5 0.5 0.5 - - -</td>
</tr>
<tr>
<td>染料</td>
<td>マラカイトグリーン</td>
<td>0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03</td>
</tr>
<tr>
<td>溶剤</td>
<td>メチルエチルケトン</td>
<td>10 10 10 10 10 10 10</td>
</tr>
<tr>
<td></td>
<td>トルエン</td>
<td>10 10 10 10 10 10 10</td>
</tr>
<tr>
<td></td>
<td>メタノール</td>
<td>5 5 5 5 5 5 5</td>
</tr>
</tbody>
</table>

[0092] [表2]
<table>
<thead>
<tr>
<th>成分</th>
<th>材料</th>
<th>比較例</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>バインダーポリマー1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>(B)</td>
<td>BPE-500 *2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>BPE-1300N *3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SR-454 *4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M-113 *5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>NP-8EA *6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>APG-400 *7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>A-TMPT *8</td>
<td>-</td>
</tr>
<tr>
<td>(C)</td>
<td>2-(o-クロロフェニル)-4,5-ジェフェニルイミダゾール二量体</td>
<td>3 3 3 3.0</td>
</tr>
<tr>
<td></td>
<td>N,N'-テトラエチル-4,4'-ジアミノベンゾフェノン</td>
<td>0.15 0.15 0.15 0.15</td>
</tr>
<tr>
<td>発色剤</td>
<td>ロイコクリスタルバイオレット</td>
<td>0.5 0.5 0.5 0.3</td>
</tr>
<tr>
<td></td>
<td>トリプロモフェニルスルホン</td>
<td>0.5 0.5 0.5 -</td>
</tr>
<tr>
<td>染料</td>
<td>マラカイトグリーン</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>メチルエチルケトン</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>トルエン</td>
<td>10</td>
</tr>
</tbody>
</table>

[0093] 1: 固形分としての質量
2: ビスフェノールAポリエキシエチレンジメタクリレート: 新中村化学工業（株）製商品名（一般式（1）の化合物において、R²がメチル基、X₁及びX²がエチレン基、p+qの平均値が約10）
3: ビスフェノールAポリエキシエチレンジメタクリレート: 新中村化学工業（株）製商品名（一般式（1）の化合物において、R²がメチル基、X₁及びX²がエチレン基、p+qの平均値が約30）
4: エトキシ化トリメチロールプロパントリアクリレート: 日本化薬（株）製品名（一般式（2）の化合物において、R³、R⁴及びR⁶が水素原子、X³、X⁴及びX⁶がエチレン基、k+m+nの平均値が約9）
5：ノニルフェニルポリエチレンクリアーガクリレート：東亜合成（株）製品名（一般式（3）の化合物において、R³が水素原子、X⁶がエチレン基、rの平均値が約4）
6：ノニルフェニルポリエチレンクリアーガクリレート：新中村化学（株）製品名（一般式（3）の化合物において、R³が水素原子、X⁶がエチレン基、rの平均値が約8）
7：ポリプロピレングリコールジアクリレート：新中村化学（株）製品名：新中村化学（株）
8：トリメチロールプロパントリアクリレート：新中村化学（株）製品名

[0094]（感光性エレメントの作製）
実施例1～8及び比較例1～4の感光性樹脂組成物の溶液を、16μm厚のポリエチレンテレフタレートフィルム（ヘーズ：1.7％、商品名GS－16、帝人（株）製）上に均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥した後、ポリエチレン製保護フィルムで保護し感光性エレメントを得た。感光層の乾燥後の膜厚は、50μmであっ

[0095]（回路形成基板の作製）
縦12.5cm横20cm厚さ1.6mmの両面銅版りエポキシ積層板（日立化成工業（株）製、商品名：MCL－E－61）の片面の銅箔表面に、周縁部1cmを残して、所定のパターンを有するエッチングレジストを形成した。エッチングレジストに覆われていない部分の銅箔をエッチング除去し、金属端子（パッド）や配線を有する回路パターンを形成した。残りのエッチングレジストを剥離して、回路形成基板を得た。裏面は全面エッチングし、ガラスエポキシ表面が露出した状態にした。

[0096]（表面樹脂層の形成）
得られた回路形成基板の回路面に、フォトレジスト（太陽インキ製造（株）製、商品名：PSR－4000）を、周縁部1cmを残して全面に塗布し、80℃で30分間乾燥した。その後、フォトツールを介し、露光機（（株）オーク製作所製、商品名：HMW－590）を用いて、めっきする実装パッド部を除く全面を露光した。未露光部分を1質量%炭酸ナトリウム水溶液（30℃）で60秒間スプレー処理し、パッド部上のフォトレジストを除去して、パターンを形成し、その後、150℃で1時間加熱することにより熱硬化させ、回路形成基板上に表面樹脂層（ソルダーレジスト）を形成した。
(硬化物層（レジストパターン）の形成)
表面樹脂層を備えた回路形成基板の両面に、実施例1～8及び比較例1～4で得られた感光性エレメントの感光層（感光性樹脂組成物層）を、圧力0.4MPa、温度10℃、ラミネート速度1.5m/分でラミネートし、積層した。積層された感光層のうち、無電解めっき加工を行う回路パターンを除く全面を露光し、1質量％炭酸ナトリウム水溶液（30℃）で80秒間スプレー現像して硬化物層（レジストパターン）を形成した。

以上により得られた感光性エレメント及び積層基板について、以下的方法により特性評価を行った。表3及び表4は、その評価結果を示すものである。

(耐めっき性)
実施例1～8及び比較例1～4で得られた積層基板を、Pro Select SF（アトニックジャパン（株）製、商品名）に、50℃にて5分間浸漬し、脱脂処理を行った。室温にて1分間流水で洗浄後、Micro Etch SF（アトニックジャパン（株）製、商品名）に30℃にて1分間浸漬し、ソフトエッチング処理を行った。室温にて1分間流水で洗浄後、5％硫酸溶液にて1分間浸漬し、酸洗処理を行った。

その後、積層基板を、無電解めっき用触媒溶液オーロテック1000（アトニックジャパン（株）製、商品名）にて90秒間浸漬し、活性化させた。室温にて2分間流水で洗浄後、Ni－Pめっき液であるオーロテックHP（アトニックジャパン（株）製、商品名）にて、83℃で、40分間浸漬し、無電解Niめっきを行った。

室温にて2分間流水で洗浄後、オーロテックCS4000（アトニック（株）製、オーロテックCS4000：150mL/L、シアン化金カリウム：1.47g/L、オーロテックSF：1mL/L）にて、85℃にて10分間浸漬し、置換型無電解Auめっきを行った。後処理として、水洗し、85℃にて15分間乾燥した。

こうしてめっき層が形成された積層基板について、目視で硬化物層（レジストパターン）の破れ及び膨れの有無（特にパッケージ周囲）を、以下に示す基準により判定し、耐めっき性を評価した。評価結果を表3及び表4に示す。なお、めっき性の評価は破れ及び膨れが無いほうが良好であることを意味する。
判定基準
A:全面破れ及び膨れなし B:一部破れ及び膨れ有り C:全面破れ及び膨れ有り
[0103]（剥離性）
縦4cm横5cm厚さ1.6mmの両面錶張りエポキシ積層板（日立化成工業（株）製、商品名：MCE－E－61）の片面に、フォトレジスト（太陽インキ製造（株）製、PSR－4000）を全面塗布し、80℃で30分間乾燥した。

[0104]上記フォトレジストを塗布した積層板に対して、図5に示す格子状フォトツール（マスクパターン）90を介して全面露光を行った。格子状フォトツール（マスクパターン）90は、活性光線を遮蔽する複数の遮蔽部90aと、活性光線を透過する透明部90bとを有している。遮蔽部90aは、横（図5のA）が2.6mm、縦（図5のB）が0.8mmであり、0.45mmの間隔（図5のC）をあけて並んでいる。露光には露光機（（株）オーク製作所製、商品名：HMW－590）を用いた。

[0105]露光後、未露光部分を1質量％炭酸ナトリウム水溶液（30℃）で60秒間スプレー現像した。続いて150℃で1時間加熱して熱硬化させ、上記積層板上に表面樹脂層（ソルダーレジスト）を形成した。この表面樹脂層には、上記積層板の一部の鋼が露出する開口部が形成されている。

[0106]上記表面樹脂層を備えた積層板の両面に、実施例1～8及び比較例1～4の感光性エレメントの感光層を、圧力0.4MPa、温度110℃、ラミネート速度1.5m／分の条件でラミネートし、積層した。積層された感光層に対して、ストーブー21段ステッププレートにおける現像後の残存ステップ段数が8.0となるエネルギー露光量で全面露光を行い、硬化物層を形成した。こうして、上記表面樹脂層を備えた積層板の上下両面を硬化物層が覆う評価用積層板を得た。

[0107]この評価用積層板に対し、1質量％炭酸ナトリウム水溶液（30℃）で80秒間スプレーし、上記耐めっき性評価と同様の方法でめっき処理を行った。その後、50℃に加温した3質量％水酸化ナトリウム水溶液に浸漬し、硬化物層が上記表面樹脂層を備えた積層板から剥離するまでの時間を測定することで、剥離性を評価した。評価結果を表3及び表4に示す。剥離性の評価は、時間が短いほど良好であることを意味する。

[0108]（レジスト剝離残り）
剝離性評価後の上記評価用積層板を用いて、表面樹脂層（ソルダーレジスト）の開
口部の側壁（横2.6mm縦0.8mm高さ30μm）に、完全に剥離できずに付着している硬化物層の付着面積を観察した。付着面積の観察には、SEM（日立計測器サービス（株）製SE－2100）を用いた。得られた付着面積を、上記開口部の側壁面積（2.6mm×0.8mm×30μm）で割った値を求め、ランダムに選択した5箇所の上記開口部について得られた値の平均値を、硬化物層の残渣（レジスト残渣）の割合とした。得られたレジスト残渣の割合によって、下記基準のようにレジスト剥離残りを評価した。評価結果を表3及表4に示す。なお、レジスト残渣が少ないほど良好であることを意味する。

基準
A:レジスト残渣が10%未満 B:レジスト残渣が10%以上50%未満 C:レジスト残渣が50%以上

【0109】（めっき浴汚染性）
実施例1～8及び比較例1～4で得られた感光性エレメント0.5m²を、PETフィルム及びポリエチレンフィルムを剥がした後、Ni－Pめっき液オーロテックHP（アトテックジャパン（株）製、商品名）に83℃にて5時間浸漬し、無電解Niめっき処理を行った。

【0110】このめっき処理液を用いて、上記耐めっき性の評価方法と同様の脱脂処理から無電解Niめっきまでの処理をテスト基板に対して行い、基板上に析出したNi－Pめっき膜厚（析出膜厚）を測定した。めっき処理液の代わりに新しいNi－Pめっき液オーロテックHPを用いた場合をプランクとし、プランクの析出膜厚を100としたときにの析出膜厚の相対値によってめっき浴汚染性を評価した。評価結果を表3及表4に示す。なお、めっき浴汚染性は、下式により求められる。
めっき浴汚染性（％）＝各試料の析出膜厚（μm）／プランクの析出膜厚（μm）

【0111】（感度）
実施例1～8及び比較例1～4から得られた感光性エレメントにおける感光層を、圧力0.4MPa、湿度110℃、ラミネート速度1.5m／分の条件で上記鋼張り積層板にラミネートし、積層した。得られた積層体の上に、ネガとしてストーマー（株）製21段ステップタブレットを置いて、高圧水銀灯ランプを有する露光機（（株）オーク製作所製、201GX）を用いて、上記と同様の現像条件において、21段ステップタブレットの8.0段を硬
化させるのに必要な露光エネルギー量（mJ／cm²）によって感度を評価した。評価結果を表3及び表4に示す。なお、露光エネルギー量が低いほど感度が高いことを意味する。

[0112] [表3]

<table>
<thead>
<tr>
<th></th>
<th>実施例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>耐めっき性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>剥離性（秒）</td>
<td>110</td>
<td>100</td>
<td>105</td>
<td>105</td>
<td>110</td>
<td>100</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>レジスト剥離残り</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>めっき浴汚染性（％）</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>感度（mJ／cm²）</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>85</td>
<td>120</td>
<td>60</td>
</tr>
</tbody>
</table>

[0113] [表4]

<table>
<thead>
<tr>
<th></th>
<th>比較例</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>耐めっき性</td>
<td>B～C</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>剥離性（秒）</td>
<td>140</td>
<td>200</td>
<td>160</td>
<td>130</td>
</tr>
<tr>
<td>レジスト剥離残り</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>めっき浴汚染性（％）</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>感度（mJ／cm²）</td>
<td>100</td>
<td>105</td>
<td>105</td>
<td>95</td>
</tr>
</tbody>
</table>

[0114] 表3及び表4より、実施例1～8の感光性樹脂組成物は、硬化物層（レジストパターン）を形成した場合の耐めっき性、剥離性及びめっき浴汚染性が良好であることが明らかとなった。また、これらの感光性エレメントは、表面樹脂層に対する形状追従性も良好であった。
請求の範囲

[1] (A) バインダーポリマー、(B) 重合可能なエチレン性不飽和基を有する光重合性化合物及び(C) 光重合開始剤を含有する感光性樹脂組成物であって、
(B) 成分が、
下記一般式(1)で表されるビスフェノールA系（メタ）アクリレート化合物、
下記一般式(2)で表されるアルコキシ化トリメチロールプロパントリ（メタ）アクリレート化合物、及び
下記一般式(3)で表されるノニルフェニルポリアルキレングリコール（メタ）アクリレート化合物を含む、感光性樹脂組成物。

【化1】
[式(1)中、X^1及びX^2はそれぞれ独立に炭素数2〜6のアルキレン基を示し、R^1及びR^2はそれぞれ独立に水素原子又はメチル基を示し、p及びqはp + q = 4〜40となる正の整数を示し、]

式(2)中、X^3、X^4及びX^5はそれぞれ独立に炭素数2〜6のアルキレン基を示し、R^3、R^4及びR^5はそれぞれ独立に水素原子又はメチル基を示し、k、m及びnはk + m +
n＝3～30となる正の整数を示し、
式(3)中、Xは炭素数2～6のアルキレン基を示し、Rは水素原子又はメチル基を
示し、rは1～20の整数を示す。]

[2] （C）成分が2, 4, 5-トリアリールイミダゾール二量体を含む、請求項1記載の感光
性樹脂組成物。

[3] （A）成分及び（B）成分の合計量を100質量部としたときに、
（A）成分の量が40～80質量部であり、
（B）成分の量が20～60質量部であり、
（C）成分の量が0, 1～20質量部である、請求項1記載の感光性樹脂組成物。

[4] 支持体と、該支持体上に設けられた請求項1～3のいずれか一項に記載の感光性
樹脂組成物からなる感光層と、を備える感光性エレメント。

[5] 前記感光層は、波長365nmの紫外線に対する透過率が5～75％である、請求項
4記載の感光性エレメント。

[6] 回路形成用基板及び該回路形成用基板上に形成されている回路パターンを有する
回路形成基板と該回路形成基板上において前記回路パターンが露出するよう
に形成されている表面樹脂層とを備える第1の積層基板の前記表面樹脂層側の面
上に、請求項1～3のいずれか一項に記載の感光性樹脂組成物からなり予め成形さ
れた感光層を積層する第1の工程と、

前記感光層の所定部分に活性光線を照射してから現像してパターンニングされた硬
化物層を形成させ、前記回路形成基板上に前記表面樹脂層及び前記硬化物層を
この順に備えた第2の積層基板を得る第2の工程と、

前記第2の積層基板に対して無電解めっきを行って前記回路パターン上にめっき層を
形成する第3の工程と、

を備えるプリント配線板の製造方法。

[7] 前記硬化物層が、前記回路パターンの一部が露出するようにパターンニングされ、前
記回路パターンの露出している部分の全面に前記めっき層を形成する、請求項6記
載の製造方法。
[図1]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

G03F7/027 (2006.01)i, G03F7/004 (2006.01)i, G03F7/031 (2006.01)i, G03F7/40 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G03F7/027, G03F7/004, G03F7/031, G03F7/40, H05K3/18, H05K3/22, H05K3/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2004-004546 A (Hitachi Chemical Co., Ltd.), 08 January, 2004 (08.01.04), Examples (Family: none)</td>
<td>1-5 6,7</td>
</tr>
<tr>
<td>X</td>
<td>JP 2004-004294 A (Hitachi Chemical Co., Ltd.), 08 January, 2004 (08.01.04), Examples (Family: none)</td>
<td>1-5 6,7</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means of public knowledge prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

06 November, 2006 (06.11.06)

Date of mailing of the international search report

14 November, 2006 (14.11.06)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>6,7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 2002-040645 A (Hitachi Chemical Co., Ltd.), 06 February, 2002 (06.02.02), Examples (Family: none)</td>
<td>1-5</td>
</tr>
<tr>
<td>Y</td>
<td>6,7</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 05-183259 A (Ibiden Co., Ltd.), 23 July, 1993 (23.07.93), Par. No. [0015]; Figs. 4, 5 (Family: none)</td>
<td>6,7</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. G03F7/027 (2006.01)i, G03F7/004 (2006.01)i, G03F7/031 (2006.01)i, G03F7/40 (2006.01)i

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. G03F7/027, G03F7/004, G03F7/031, G03F7/40, H05K3/18, H05K3/22, H05K3/24

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922－1996年
日本国公開実用新案公報 1971－2006年
日本国実用新案登録公報 1996－2006年
日本国登録実用新案公報 1994－2006年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2004-078245 A（日立化成工業株式会社）2004.03.11、実施例</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>JP 2004-004546 A（日立化成工業株式会社）2004.01.08、実施例</td>
<td>1－5</td>
</tr>
<tr>
<td>Y</td>
<td>（ファミリーなし）</td>
<td>6, 7</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリー
 「A」特に関連のある文献でなく、一般的な技術水準を示すもの
 「E」国際出願日以前の出願も含む特許であるが、国際出願日以前に公表されたもの
 「L」優先権主張に基づいて提出される文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及される文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 06.11.2006
国際調査報告の発送日 14.11.2006

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 2H 3718
倉持 俊輔
電話番号 03－3581－1101 内線 3229

様式PCT／ISA／210（第2ページ）（2005年4月）
<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2004-004294 A（日立化成工業株式会社） 2004.01.08、実施例</td>
<td>1－5</td>
</tr>
<tr>
<td>Y</td>
<td>（ファミリーなし）</td>
<td>6, 7</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-215799 A（日立化成工業株式会社） 2003.07.30、実施例</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>JP 2002-040645 A（日立化成工業株式会社） 2002.02.06、実施例</td>
<td>1－5</td>
</tr>
<tr>
<td>Y</td>
<td>（ファミリーなし）</td>
<td>6, 7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 05-183259 A（イビデン株式会社） 1993.07.23、段落【0015】、【図4】、【図5】 (ファミリーなし)</td>
<td>6, 7</td>
</tr>
</tbody>
</table>