发明名称

冷 - 活跃的 β - 半乳糖苷酶、其生产方法、以及所述酶的用途

摘要

本发明提供了特异于乳糖的新冷 - 活跃的 β - 半乳糖苷酶。酶由此在例如用于在低温催化将乳糖二糖水解成其成分单糖,葡萄糖和半乳糖的食品工业中有用。本发明还提供通过重组 DNA 技术产生冷 - 活跃的 β - 半乳糖苷酶的方法。
1. 纯化的冷－活跃的β－半乳糖苷酶，其由SEQ ID NO:1所示的氨基酸序列构成，所述氨基酸序列选择为在低于8℃的温度具有稳定的酶促活性。
2. 分离的DNA序列，其由编码权利要求1的β－半乳糖苷酶的基因构成。
3. 权利要求2的DNA序列，其中序列如SEQ ID NO:2所示。
4. 重组载体，其包括权利要求2～3中任一项的DNA序列。
5. 权利要求4的载体，其中所述载体是表达载体。
6. 宿主细胞，其经权利要求4的载体转化。
7. 权利要求6的细胞，其中细胞选自：埃希氏菌属(Enterococcus)，芽孢杆菌属(Bacillus)、双歧杆菌属(Bifidobacterium)、乳球菌属(Lactococcus)、乳杆菌属(Lactobacillus)、链霉菌属(Streptomyces)、明串球菌属(Leuconostoc)、酵母菌属(Saccharomyces)、克鲁维酵母属(Klyuyveromyces)、念珠菌属(Candida)、串酵母属(Torula)、球拟酵母属(Torulopsis)和曲霉属(Aspergillus)。
8. 权利要求7的细胞，其中细胞选自：短双歧杆菌(Bifidobacterium breve)、长双歧杆菌(Bifidobacterium longum)、婴儿双歧杆菌(Bifidobacterium infantis)、两歧双歧杆菌(Bifidobacterium bifidum)、动物双歧杆菌(Bifidobacterium animalis)和乳酸乳球菌(Lactococcus lactis)。
9. 权利要求6的细胞用于生产益生菌食品的用途。
10. 权利要求6的细胞用于生产乳酸菌酸的用途。
11. 权利要求6的细胞用于生产发酵的乳产品的用途。
12. 权利要求6的细胞用于生产干酪的用途。
13. 权利要求6的细胞用于生产酸乳的用途。
14. 权利要求6的细胞用于生产选自无乳糖的乳和低－乳糖乳的产品的用途。
15. 权利要求9～14之任一项的用途，其用于生产具有1%或更低乳糖浓度的乳产品。
16. 权利要求15的用途，其中乳糖浓度是0.1%或更低。
17. 权利要求16的用途，其中乳糖浓度是0.01%或更低。
18. 权利要求1的β－半乳糖苷酶用于生产益生菌食品的用途。
19. 权利要求1的β－半乳糖苷酶用于生产乳酸菌酸的用途。
20. 权利要求1的β－半乳糖苷酶用于生产发酵的乳产品的用途。
21. 权利要求1的β－半乳糖苷酶用于生产干酪的用途。
22. 权利要求1的β－半乳糖苷酶用于生产酸乳的用途。
23. 权利要求1的β－半乳糖苷酶用于生产选自无乳糖的乳和低－乳糖乳的产品的用途。
24. 权利要求18～23之任一项的用途，其用于生产具有1%或更低乳糖浓度的乳产品。
25. 权利要求24的用途，其中乳糖浓度是0.1%或更低。
26. 权利要求25的用途，其中乳糖浓度是0.01%或更低。
27. 生产权利要求1的酶的方法，包括：在适宜培养基中，在允许表达所述酶的条件下培养权利要求6～8中任一项的细胞，及从培养物中回收得到的酶。
28. 权利要求27的方法，其中将得到的酶固定。
29. 乳糖的水解方法，包括使权利要求 1 的酶或权利要求 6～8 中任一项的细胞与乳糖溶液接触。
说明 书

冷 - 活跃的 β - 半乳糖苷酶，其生产方法，以及所述酶的用途

【技术领域】
[0001] 本发明涉及特异于乳糖的新冷 - 活跃的 β - 半乳糖苷酶。酶由此在例如用于在低温催化乳糖二糖水解成其成分单糖，葡萄糖和半乳糖的食品工业中有用。本发明还提供通过重组 DNA 技术产生冷 - 活跃的 β - 半乳糖苷酶的方法。

【背景技术】
[0003] β - 半乳糖苷酶的应用可用于产生用于不耐受乳糖的人的无乳糖和低 - 乳糖乳产品。
[0004] 乳糖水解的主要应用如以下所列。
[0005] （a）液体乳。液体乳中的乳糖水解改善乳糖不耐受消费者的可消化性。在香味乳中，乳糖水解增加甜度及增强香味。
[0006] （b）乳粉。乳糖水解的乳粉用于饮食使用，尤其用于具有临时的 β - 半乳糖苷酶缺乏的婴儿。
[0007] （c）发酵的乳产品。在一些情况下中，用于生产干酪及酸乳的乳中乳糖水解可增加酸发展速度和由此减少处理时间。
[0008] （d）浓缩的乳产品。浓缩的乳产品（例如甜炼乳，冰淇淋）中的乳糖水解阻止乳糖结晶化。
[0009] （e）用于动物饲喂的乳清。乳清中的乳糖水解致使给猪和牛饲喂更多的乳清固体，且也阻止乳清浓缩物中的结晶化。
[0010] （f）乳清。将乳糖水解的乳清浓缩，以产生含 70 - 75％固体的糖浆。此糖浆提供有功能的乳清蛋白及甜碳水化合物的来源，并且用作冰淇淋，面包及糖果产品中的食品成分。
[0011] 食品处理中的常规方法是为了于 40℃进行乳糖水解约 4 小时。
[0012] 但是，作为原材料的乳或乳糖溶液是细菌的优选的营养来源。结果，处理期间由腐生生物污染的腐败是食品生产中的严重的问题。由此，实际情况是常规 β - 半乳糖苷酶的使用受限。
[0013] 实际应用中的多数 β - 半乳糖苷酶仅在 20 ～ 30℃以上温度活跃，这是腐败食品的
细菌最旺盛的温度。 [0014] 已使用利用嗜热β-半乳糖苷酶的尝试，但产品由于热处理而香味减少及外观变差，且处理需要高温成本。

的栖鱼肉杆菌（Carnobacterium piscicola）（Coombs and Brenchley，1999）和来自的假
代替单胞菌属（Pseudoalteromonas）（Cieslinski，et al.2005；Fernandes，et al.2002；
Hoyoux，et al.2001；Turkiewicz，et al.2003）的数种冷-活跃的β-半乳糖苷酶。此外，
Nakagawa等人（2006）描述了来自酵母普兰久酵母（Guehomycetes pullulans）的
冷-活跃的β-半乳糖苷酶。但是，迄今描述的冷-活跃的β-半乳糖苷酶的活性在乳品
工业需要的低温下低。来自酵母普兰久酵母（Guehomycetes pullulans）的β-半乳糖苷
酶于0℃具有约17%的活性（Nakagawa et al.2005），来自栖鱼肉杆菌（Carnobacterium
piscicola）BA的β-半乳糖苷酶于10℃显示约24%活性（Coombs和Brenchley，1999），而
来自假代替单胞菌属（Pseudoalteromonas）分离物的酶于10℃显示39%活性（Fernandes
et al.2002），22%活性（Cieslinski et al.2005），及12%活性（Hoyoux et al.2001）。至
今，在低温具有最高活性的β-半乳糖苷酶分离自南极杆菌属（Arthrobacter）分离物。Kar
asové-Lipovcová等人（2003）显示，耐冷节杆菌属（Arthrobacter sp.）C2-2分离物产
生β-半乳糖苷酶，其于10℃显示其最大活性的19%，Coker等人（2003）描述了来自南极
杆菌属（Arthrobacter）分离物的酶，其于0℃具有约50%的活性，而Nakagawa等人（2003，2006）
描述了来自A.psychrolactophilus F2的β-半乳糖苷酶，其于10℃具有最
佳温度。

[0016] 但是，来自南极杆菌属（Arthrobacter）的冷-活跃的β-半乳糖苷酶在天然的细
胞中以低量产生，且在大肠埃希氏菌（E.coli）中重组产生酶的尝试不成功，由于约90%
的酶位于不溶性包含体（Coker et al.2003）。来A.psychrolactophilus F2的冷-活跃
的β-半乳糖苷酶可异源性地产生，但相比其他节杆菌属（Arthrobacter）β-半乳糖苷酶
具有低活活性（Nakagawa et al.2006）。

[0017] 因此，为了开发乳糖的低-温度水解方法，需要新冷-活跃的β-半乳糖苷酶和产
生所述酶的方法。

[0018] 【发明概述】

[0019] 本发明通过使用重组DNA技术首次使以对于生产食品和药物工业上适当的量提
供具有高特异性活性的冷-活跃的β-半乳糖苷酶成为可能。

[0020] 因此，本发明提供纯化的冷-活跃的β-半乳糖苷酶，其特异于乳糖，在低于8℃及
特别在4℃的温度具有稳定的酶促活性，其对应于乳产品的冷冻保存温度。结果，本发明的
酶可水解乳产品中的乳糖，并在所述防止腐生生物增殖的低温乳处理。乳糖的水解可在这
些冷冻条件下，无需对相关乳产品的特定处理而进行。

[0021] 特别是，本发明提供冷活跃的β-半乳糖苷酶，其具有SEQ ID NO:1所示的序列，
或与SEQ ID NO:1所示的氨基酸序列具有至少80%同源性，所述氨基酸序列选择为酶在低
于8℃的温度具有稳定的酶促活性。优选所述氨基酸序列与SEQ ID NO:1所示的氨基酸序
列具有至少90%，及更优选95%同源性。
为了获得本发明的冷-活跃的β-半乳糖苷酶，还提供了DNA序列，其编码具有SEQ ID NO:1所示的氨基酸序列的蛋白质，或者在严格或非常严格条件下与(a)序列杂交，或者(c)是(a)或(b)序列的简并体。

优选DNA序列源于Alkalilactibacillus属，例如物种Alkalilactibacillusikkense，及具有SEQ ID NO:2所示的氨基酸序列。

在进一步实施方式中，本发明提供重组载体，其包括编码具有SEQ ID NO:1所示的氨基酸序列，或与SEQ ID NO:1所示的氨基酸序列具有至少80%同源性的氨基酸序列的蛋白质的DNA序列，所述氨基酸序列选择为酶在低于8°C的温度具有稳定的酶促活性。优选氨基酸序列与SEQ ID NO:1所示的氨基酸序列具有至少90%，及更优选95%同源性。

本发明的另一目的是分离的Alkalilactibacillus属细菌株，其能产生本发明的冷-活跃的β-半乳糖苷酶。优选的株是在2009年3月3日，根据布达佩斯条约以保藏号LMG P-24866保藏在比利时微生物协调保藏中心(Belgian Coordinated Collections of Microorganisms)的Alkalilactibacillusikkense及源于其的变体和突变体。

为了纯化本发明的冷-活跃的β-半乳糖苷酶，将在格陵兰区中生活的细菌分离，并表征，以便研究该酶如何，尤其是，β-半乳糖苷酶如何适应寒冷。这些研究导致β-半乳糖苷酶的纯化，意为使用本领域已知的蛋白纯化步骤得到从其他蛋白基本上游离的此蛋白。

由此，本发明的另一目的是分离的Alkalilactibacillus属细菌株，其能产生本发明的冷-活跃的β-半乳糖苷酶。优选的株是alkalilactibacillusikkense。

本发明的另一目的是重组质粒或载体适合于宿主转化，能诱导本发明的DNA序列以宿主以可恢复的形式表达本发明的冷-活跃的β-半乳糖苷酶的方式表达。

根据本发明，另一目的是如此转化的宿主。各种宿主-表达系统可接受以表达冷-活跃的β-半乳糖苷酶编码序列，例如细菌，酵母，哺乳动物细胞，植物细胞，昆虫细胞等。尤其是，在酵母及细菌中，可使用含组分型或诱导型启动子的许多载体。

本发明还旨在提供从细菌纯化本发明的冷-活跃的β-半乳糖苷酶的方法，以及提供在转化的宿主中产生本发明的冷-活跃的β-半乳糖苷酶的方法。

因此，本发明涉及产生具有冷-活跃的β-半乳糖苷酶活性的多肽的方法，包括：分离编码多肽的DNA片段，将所述DNA片段插入适当的宿主生物，在导致具有冷-活跃的β-半乳糖苷酶活性的多肽表达的条件下培养宿主生物，以及从培养培养基或宿主生物回收所述多肽。

适当的宿主生物优选选自：埃希氏菌属(Enterococci)，芽孢杆菌属(Bacillus)，双歧杆菌属(Bifidobacterium)，乳球菌属(Lactobacillus)，乳球菌属(Lactococcus)，链霉菌属(Streptomyces)，明串球菌属(leuconostoc)，链霉菌属(Streptomyces)，酵母菌属(Saccharomyces)，克鲁维酵母属(Kluyveromyces)，念珠菌属(candida)，串酵母属(Torula)，球拟酵母属(Torulospus)和曲霉属(Aspergillus)。

另一方面，本发明涉及重组DNA分子，其包括编码具有冷-活跃的β-半乳糖苷酶活性的多肽的DNA片段，且涉及包括所述重组DNA分子的微生物细胞。

在另一方面，本发明涉及以上具有冷-活跃的β-半乳糖苷酶活性的多肽或表达
所述多肽的微生物细胞在生产食品或药物产品中的用途。

[0038] 在另一有用的方法，提供了减少食品的乳糖含量的方法，包括向食品添加一定量的如本文所述的多肽或微生物细胞，其足以去除存在于所述食品中的至少部分乳糖。

[0039] 在另一方面，本发明涉及通过适度增加温度的多肽的β-半乳糖苷酶活性的灭活。

[0040] 在另一感兴趣的方面，提供了本发明的具有冷-活跃的β-半乳糖苷酶活性的多肽或微生物细胞用于乳糖水解的方法，其中多肽和/或微生物细胞将应用于含在低温条件下水解的乳糖的反应器。

[0041] 本发明的这些和其他目的将从以下公开内容中显而易见。

【附图说明】

[0043] 图1显示了来自Alkalilactibacillus ikkense 株517和其在种系谱类中的rRNA组1内分类学上定义为芽孢杆菌属(Bacillus)的最接近的相对物的16S rRNA基因序列的系统树。显示了引导(n = 100)值。条0.015置换/核苷酸位置。

[0044] 图2显示天然的Ikka-β-半乳糖苷酶的温度依赖性。Y轴是以最大活性的百分率的相关活性。X轴是温育温度。

[0045] 图3显示天然的Ikka-β-半乳糖苷酶的温度稳定性。Y轴是温育X轴上指定的时间后残留的活性。○, △, ▽, □, ◆, ■表示0, 10, 20, 30, 40和50°C的温育温度。

[0046] 图4显示天然的Ikka-β-半乳糖苷酶的pH依赖性。Y轴是以最大活性的百分率的相对活性。X轴是β-半乳糖苷酶测定中的pH。

[0047] 图5显示来自用1mM IPTG诱导的天然的A. ikkense细胞的(泳道2和3)和来自未诱导的天然的A. ikkense的(泳道4和5)提取物的SDS-PAGE。泳道2和3的箭标表示120kDa β-半乳糖苷酶条带。泳道1是分子量标记物。120kDa处的标记物是来自大肠埃希氏菌(E.coli)的β-半乳糖苷酶。

[0048] 图6显示来自表达Ikka-β-半乳糖苷酶的重组大肠埃希氏菌(E.coli)细胞的3种提取物稀释液的SDS-PAGE(泳道4,5和6)。为了比较，将含有来自乳克鲁维酵母(Kluveromyces lactis)的β-半乳糖苷酶的酶提取物稀释液(泳道7,8和9)和含有天然的大肠埃希氏菌(E.coli)β-半乳糖苷酶的分子量标记物(120kDa的标记物)重组Ikka-β-半乳糖苷酶共-电泳。箭标显示120kDa β-半乳糖苷酶条带的位置。

[0049] 图7显示大肠埃希氏菌(E.coli)中产生的重组Ikka-β-半乳糖苷酶的温度依赖性。Y轴是以最大活性的百分率的相对活性。X轴是温育温度。○, 表示重组Ikka-β-半乳糖苷酶;

[0050] 图8显示大肠埃希氏菌(E.coli)中产生的重组Ikka-β-半乳糖苷酶的特异性活性。Y轴是以nmol释放的ONP/小时/mg酶的特异性活性。X轴是以℃的温度。○是重组Ikka-β-半乳糖苷酶，○是乳克鲁维酵母(Kluveromyces lactis)β-半乳糖苷酶。

[0051] 图9显示重组Ikka-β-半乳糖苷酶的热稳定性。在指定温度温育相等的量的酶，并以不同的时间间隔取样品。Y轴是波长415nm处的吸光度。X轴是以分钟的时间。

【0052】图10也显示重组Ikka-β-半乳糖苷酶的热稳定性，而X轴是以小时的时间。
图11显示重组Ikka−β−半乳糖苷酶的pH依赖性。Y轴是波长415nm处测量的吸光度，X轴是β−半乳糖苷酶测定中的pH。图12显示由大肠埃希氏菌(E.coli)中产生的重组Ikka−β−半乳糖苷酶的乳糖水解。反应混合物以3种浓度含乳糖，1.25mg/ml，2.5mg/ml和5mg/ml。温育15，150和1440分钟后采集样品。将反应于5℃(A)或20℃(B)温育，并通过薄层析(TLC)分析。将TCL板用显色试剂喷射，及乳糖水解通过TLC板上乳糖斑点的消失和伴随的葡萄糖和半乳糖斑点的出现来估计。

图13显示表达A. ikkense β−半乳糖苷酶的大肠埃希氏菌(E.coli)细胞的粗提取物SDS聚丙烯酰胺凝胶电泳，泳道1。粗提取物中的β−半乳糖苷酶还在离子交换层析上纯化，泳道2。在亲和层析上纯化，泳道3。简标表示大肠埃希氏菌(E.coli)120kDa β−半乳糖苷酶条带的位置。左侧的数字表示PageRulerTM Plus Prestained Protein Ladder(Fermentas)中蛋白条带的位置。

图14显示纯化重A. ikkense β−半乳糖苷酶及含重组酶的粗提取物的温度依赖性(A)和pH依赖性(B)。Y轴是以最大活性的百分比的相对活性，X轴是温育温度(A)或pH(B)。通过矩形显示用ONPG作为底物的纯化的，重组酶的相对活性。以一式三份进行测定，及标准误差在0.05以下。

图15显示纯化重A. ikkense β−半乳糖苷酶的热稳定性。在指定温度温育等量的酶，并以不同时间间隔采集样品。Y轴是以最大活性的百分比的残留的活性。酶样品在0℃～60℃度温育，及在指定的时间点(X轴)，采集样品，及于20℃测得活跃的β−半乳糖苷酶。测定以一式三份进行，及标准误差在0.05以下。

图16显示将A. ikkense β−半乳糖苷酶(黑矩形)用商业上可用的乳酸菌活化酵母(K.lactis)的Lactozyme® 33000U(开环)作为基底。将等量的酶(2mg/ml)以ONPG作为底物，以0℃～20℃的温度温育。以不同的时间间隔采集样品，并在A420nm处测量水解的ONP。水解效率计算以A420nm/min/μg活性酶的增加。测定以一式三份进行，及标准误差在0.05以下。

图17显示由A. ikkense β−半乳糖苷酶的乳糖水解的薄层层析(TLC)。泳道4～6：样品经5℃温育21/2h(4:1.25mg/ml乳糖，5:2.5mg/ml乳糖，6:5mg/ml乳糖)。泳道7～9：样品经20℃温育21/2h(7:1.25mg/ml乳糖，8:2.5mg/ml乳糖，9:5mg/ml乳糖)。泳道1～3：对照，0.0125μg的各碳水化合物13乳糖(泳道1)，半乳糖(泳道2)和葡萄糖(泳道3)。

【发明详述】

“β−半乳糖苷酶”(β−D−半乳糖苷半乳糖水解酶，EC 3.2.1.23)定义为能将乳糖水解成单糖 D-葡萄糖和 D-半乳糖的酶。

“冷−活跃的”定义为于15℃及以下，优选于10℃及以下和最优选于5℃及以下温度具有活性。

“宿主细胞”选自一组微生物，包括：真菌，酵母和原核生物。微生物更优选为原核生物，且最优选为细菌。

温育β−半乳糖苷酶与乳糖的条件被定义为在0℃和20℃之间，优选在5℃和15℃之间的温度进行温育。
【实施例】

【实施例1：产生冷活跃的β-半乳糖苷酶的细菌的分离】

【1.1细菌采样】

由潜水员在Ikka Fjord,西南格陵兰 (61° 11′N, 48° 01′W) 从约6～10m的深度收集Ikaite物质。柱长度在36～70cm之间和直径在5和30cm之间。在运输到领域实验室期间柱保持冷。

【1.2筛选β-半乳糖苷酶产生的细菌】

钻出来自于Ikaite柱顶部的15～18cm切片的约3cm3的Ikaite物质,并悬浮在Stoll和Blanchard(1990)所述用的0.2M Na2CO3/NaHCO3缓冲液缓冲到pH10的250mL R2肉汤(Schmidt et al. 2006)中。于5℃温育1个月后，将培养物接种到R2培养基，pH10，无葡萄糖，但补充了乳糖（1% w/v），5-溴-4-氯-3-吲哚基-β-D-吡喃半乳糖苷（X-gal）（40μg/mL），10mM异丙基-β-D-硫代吡喃半乳糖苷（IPTG）和琼脂（1.5%，w/v）。将板于5℃温育1～2周。总17个菌落表明根据到β-半乳糖苷酶的产生。由于17个分离物的16S rRNA基因分析显示仅分离物之一，株517相同的序列，将其选择用于进一步表征。

【实施例2：分离物517的分类学分析和新属和物种,Alkalilactibacillus ikkense的描述】

【2.16S rRNA基因序列的种系发生分析】

G. halotolerans 之间的序列相似性是 93.4%。由此，分离物 517 和最接近相关体之间的
16S rRNA 基因序列相似性的距离在 97% 相似性以下，其常用作物种分离的初步指南。通过
邻接法分析（引导 = 100）使用 TREETON 1.3b 软件（Van de Peer 和 De Wachter, R. 1994）
创建系统树（图 1）。

【0074】2.2DNA-DNA 杂交和基因组 DNA 的碱基组成分析
【0075】在 DSMZ（Braunschweig, 德国）进行 DNA-DNA 杂交和 DNA 碱基组成 (G+C 含量)。
将 DNA 使用弗氏液压器 (Thermo Spectronic) 分离，及通过层析在羟基磷灰石上纯化，
如 Cashion 等人 (1977) 所述。DNA-DNA 杂交如 De Ley 等人 (1970) 所述考虑 Huss 等人
(1983) 描述的修饰，使用配备 Peltier-thermostatted 6×6multicell changer 的模型
Cary 100Bio UV/VIS—分光光度计及具有原位温度探针的温度控制器 (Varian) 进行。基于
16S rRNA 序列相似性 P. ryukyuensis 的分离物 517 和最接近相关体之间的 DNA-DNA 杂
交是 28.8%，及分离物 517 和 H. miurensis 之间是 24.7%。

【0076】为了确定 GC 含量，将 DNA 用 PI 核酸酶水解，并将核苷酸酶用碱性磷酸酶去磷酸
化 (Mesbah et al. 1989)。得到的脱氧核糖核酸通过 HPLC 分析。分离物 517 的 DNA
G+C 含量是 38.4mol%，其相当类似于最接近相关的物种。N. azotifigen 的 G+C 含量是
36.1～38.5mol% (Sorokin et al. 2008, H. halophilus 及 H. miurensis 的 G+C 含量报道
为 38.5～40.7mol% (Ishikawa et al. 2005, P. ryukyuensis 的 G+C 含量是 35.6mol%
(Ishikawa et al. 2002, 及 G. h alotoleran 的 G+C 含量报道为 38mol% (Waino et al.
1999).

【0077】由于 GC 含量的种系发生结果和数据表明分离物 517 代表新属中的新物种，由于
DNA-DNA 杂交以分离 2 个物种的阈值是 70% (Wayne 等人, 1987)。由此，我们建议分离物
517 属于新属 Alkalilactibacillus 属 gen. nov. 包括物种 Alkalilactibacillus ikkense
sp. nov.

【0078】【实施例 3：来自 Alkalilactibacillus ikkense 的天然的 Ikka-β-半乳糖苷酶
的表证】

【0079】3.1 β - 半乳糖苷酶测定
【0080】β - 半乳糖苷酶活性通过 o-硝基苯基 - β -D- 吡喃半乳糖苷 (ONPG) 的水解和用分
光光度计测量在 415nm 处的释放的 o- 硝基苯基 (ONP) 化合物的吸光度来测定。在测定中，
在 415nm 处于 20°C 及 pH7.0 (0.1MNaHPO4/Na2HPO4) 测量通过重组 β - 半乳糖苷酶活性的从
1mmONPG 的 ONP 释放。反应通过添加 300 μ l 0.6M Na2CO3 来停止。测定于 0,5,10,20,30,
40.50 和 60°C 进行 30 分钟。测定开始之前将磷酸钠缓冲液预加热至相应温度。

【0081】通过在温度 0,10,20,30,40 和 50°C 放置等份的酶，并在 t = 0 ~ t = 24 小时取样品
进行酶的热稳定性分析。取样品后立即将它们冷却，并于 20°C 测定，如上所述。

【0082】使用用 HCl 或 NaOH 从 pH4 调整到 pH10 的混合的 pH 缓冲液 (250mM Tris, 250mM
MES, 250mM 乙酸) 研究 pH 活性特征。将样品于 20°C 温育 1 小时，并如上所述测定。

【0083】3.2 天然的 Ikka-β- 半乳糖苷酶的产生
【0084】将 Alkalilactibacillus ikkense 细胞在补充了乳糖和 IPTG 的液体 R2 培养基中于
15°C 在旋转摇床上培养 3 天。将细胞通过用 Sigma® 3-18M 离心机以 4,700rpm 离心
来收获，并将沉淀悬浮于 2ml 的 0.1MNaHPO4/Na2HPO4, pH7。将细胞通过珠敲打在 FastPrep
FP120 仪 (Bio101/Savant) 中以速度 5.5 厘裂解 3 次 25s。然后从玻璃珠去除上清，并于 4℃
以 10,000 × g 离心 15min。然后将无细胞上清用于测定。

【0085】3.3 天然的 Ikkα-β-半乳糖苷酶的最佳温度的表征

天然的 Ikkα-β-半乳糖苷酶于 20°C显示最大活性，于 0°C得到 40%的最大活性，
及于 10°C观察到多于最大活性的 60%（图 2）。在 30°C以上，酶仪中度活跃，并于 60°C实际
上观察不到活性。

【0086】研究 Ikkα-β-半乳糖苷酶的温度稳定性。图 3 显示于 0°C温育 24 小时后观察到
几乎 100%的残留的活性，于 20°C温育 24 小时后残留多于 80%活性。在 20°C以上的温度，
天然的 Ikkα-β-半乳糖苷酶快速丧失活性（图 3）。在高温的灭活显示是不可逆的。

【0087】研究了天然的 Ikkα-β-半乳糖苷酶的 pH 依赖性。图 4 显示在 pH7 观察到天然的
Ikkα-β-半乳糖苷酶的最大活性，及该酶在 pH6 及在 pH8 显示最大活性的约 70%。在 pH9，
观察到约 25%的最大活性。酶在 pH5 和以下或在 pH10 和以上显示无活性（图 4）。

【0088】3.4 天然的 Ikkα-β-半乳糖苷酶的 SDS-PAGE

【0089】SDS-PAGE（十二烷基硫酸钠-聚丙烯酰胺凝胶电泳）中分析来自用 1mM IPTG 诱
导的及未诱导的 A. i.kkense 细胞的提取物（图 5）。通过如上 3.2 所述使用珠-敲打裂解细胞
来制备细胞内提取物。将提取物（0.5 ～ 5 μl）与 12 μl 14 × LDS 样品缓冲液，5 μl 10 ×
DTT 和 0.1MNaHPO4/Na2HPO4 混合至最终体积 50 μl。将样品加热至 70°C 10 分钟，并将 30 μl
装载到 4 ～ 12% SDS 凝胶上。将凝胶在 XCell SureLock™ Mini-Cell（Invitrogen, CA, 美国）
中以 150V 于室温运行 1 小时。电泳后，将凝胶使用考马斯亮蓝 R-250（40% EtOH 和 10%乙
酸中的 0.1%考马斯亮蓝 R-250（Serva, Heidelberg, 德国））染色。图 5 显示在含来自用
IPTG 诱导的 A. i.kkense 细胞的提取物的泳道中观察到强 120kDa 条带，及在含来自非-诱导
的细胞的提取物的泳道中缺失此条带。由此，120kDa 条带推定为天然的 Ikkα-β-半乳糖苷
酶。

【0090】实施例 4：来自 Alkalilactobacillus ikkense 的 Ikkα-β-半乳糖苷酶基因的
分离和表征

【0091】4.1 Ikkα-β-半乳糖苷酶基因的分离

【0092】从 50ml 的培养物分离来自 A. i.kkense 的 DNA。通过离心收获细胞，并将染色体
DNA 使用常规苯酚-氯仿提取方法（Maniatis 等人，1982）分离。将 DNA 使用 Sau3AI（New
England Biolabs, MA, 美国）部分消化，并如生产商所述将具有 3kb 和 10kb 之间的长度的
片段使用 QIAquick 凝胶提取试剂盒（Qiagen, Hilden, 德国）从琼脂糖凝胶纯化。

【0093】用于克隆来自 A. i.kkense 的染色体 DNA 的载体是修饰的 pUC18 质粒（Stratagene,
CA, 美国）。通过 NdeI 和 HindIII 内切核酸酶（New England Biolabs）限制质粒 pUC18。使
用 DNA 聚合酶的 Klenow 片段 (New England Biolabs) 弥补粘端，并将纯端使用 T4DNA
连接酶（New England Biolabs）连接。将修饰的 pUC18 质粒，标识为 pUC18dlacZ，在 GATC
Biotech AG (Konstanz, 德国) 上 DNA 测序，并且用 CLC Workbench 4软件（CLC Bio,Aarhus,
丹麦）的 DNA 序列分析确定，质粒 pUC18dlacZ 中缺失了 pUC18 的 α-亚基序列。由此，质
粒 pUC18dlacZ 在导入到带有 β-半乳糖苷酶 ΔZ15 突变的大肠埃希氏菌 (E.coli) 细胞时
不能介导 α-互补。

【0094】将 Sau 3AI 限制的和凝胶-纯化的来自 A. i.kkense 的染色体 DNA 连接到用限制性
内切酶 BamHI 和南极磷酸酶 (New England Biolabs) 处理的质粒 pUC18dlacZ。将连接混合物转化进化学感受的大肠埃希氏菌 (E.coli) TOP10 细胞。将转化的细胞平铺于含 20 ug/ml X-gal, 0.1 mM IPTG, 及 100 ug/ml 氨苄西林的 LB 培养基 (10g/1 细菌蛋蛋白胨,5g/1 酵母提取物,10g/1 NaCl), 并于 37°C 过夜培养。16 小时过夜培养后, 将板转移到 20°C, 并再过夜另外的 20 小时。筛选出总 580 个集落, 并且检测到 1 个蓝色集落。选择于 20°C 温育期间变蓝色的集落, 并转移到 10ml LB 培养液, 并于 37°C 过夜生长。通过离心收获来自过夜培养物的重组大肠埃希氏菌 (E.coli) 细胞, 将质粒 DNA 使用 QIAprep Spin Miniprep 试剂盒 (Qiagen) 纯化。通过用限制性内切酶 EcoRI 和 PstI (New England Biolabs) 消化来分析质粒 DNA 的插入子。将质粒中的插入子, 标识为 pUCIkka-bgal, 在 GATC Biotech AG (Konstanz, 德国) 中使用与引物 M13 反向并行的引物和自定义制造的特异性 pUCIkka-bgal 中的插入子 (SEQ ID NO :3 ;5’ CCCTATCCCATATAC3’ ;SEQ ID NO :4 ;5’ CTTTGGACAGAAGCC3’ ;SEQ ID NO :5 ;5’ CGTATATCAGCTTTG3’ ;SEQ ID NO :6 ;5’ GTATACATGGTCTACGTTG3’ ;SEQ ID NO :7 ;5’ CGCTAATGTTGGA3’) 和恰好在 pUC18dlacZ 中多克隆位点下游的序列 (SEQ ID NO :8 ;5’ GGCGTCTAATGCG3’) 的引物来测序。DNA 插入子对应的 1kka-β - 半乳糖苷酶基因序列显示为 SEQ ID NO :2。

【0096】4. 2Ikka-β - 半乳糖苷酶基因序列的表征
【0097】使用 CLC Workbench 4 软件 (CLC BIO, Aarhus, 丹麦) 的 DNA 序列, SEQ ID NO :2 的分析显示开放阅读框具有 1,041 个氨基酸, SEQID NO :1 的编码容量。使用 NCBI 检索工具 Blastp 来检索数据库中相关的序列。最近接近的相关的序列是: 来自巨大芽孢杆菌 (Bacillus megaterium) 的 β - 半乳糖苷酶 (登录号 ABN13675) 56.7% 同一性, 类芽孢杆菌属 (Paenibacillus sp.) 的 JDR-2 (登录号 ZP_02849115) 55.3% 同一性, 及土芽孢杆菌属 (Geobacillus sp.) Y412MC10 (登录号 ZP_03036811) 54% 同一性, 全部属于糖基水解酶家族 2。由此, 得出 Ikka-β - 半乳糖苷酶属于此家族。计算的 Ikka-β - 半乳糖苷酶的亚基分子量和 pI 分别是 119kDa 和 pI 5.0, (ExPasy ProteParam 工具)。计算的亚基分子量通过 SDS-PAGE 确认, 图 5 和 6。Ikka-β - 半乳糖苷酶与结构解析的酶的比对显示, 大肠埃希氏菌 (E.coli) 中保守的活性位点区 (ILCEYIAHMGN) (阳性, 534-544) (Gebler et al.1992) 在 Ikka-β - 半乳糖苷酶中良好保守 (ILCEFSHAMGN) (阳性, 547-557) 且活性位点亲核体 Glu-537 可能表现为 Glu-550。

【0098】实施例 5 : 大肠埃希氏菌 (Escherichia coli) 中重组 Ikka-β - 半乳糖苷酶的产生
【0099】天然的 Alkalilactibacillus ikkense 显示产生仅中等量的 Ikka-β - 半乳糖苷酶。因此, 为了产生更大量的 β - 半乳糖苷酶, 进行将 Ikka-β - 半乳糖苷酶基因亚克隆进表达质粒。
【0100】5.1 用于在大肠埃希氏菌 (Escherichia coli) 中重组 Ikka-β - 半乳糖苷酶表达的载体的构建
【0101】将 Ikka-β - 半乳糖苷酶基因进一步使用 DNA 来自 A. ikkense 的染色体作为模板和 PCR 引物 bGa15’;5’ CTGAAGTGCCATGGCAAAAAAATTATTTAACTTCC3’ (有下划线的 EcoRI 限制性位置) (SEQ ID NO :9), 及 bGa13’;5’ CC AAGCTT ATCTGTTTAACTATTCAACATG3’ (有双下划线的 HindIII 位点) (SEQ ID NO :10) 亚克隆。使用的聚合酶是校正聚合酶 Phusion®
高保真度DNA聚合酶（New England BioLabs）。PCR反应通过在0.8%琼脂糖凝胶（Seakem GTG）上凝胶电泳来分析，并将3.9kb片段连接到pJET1.2/ 钝克隆载体（Fermentas, Helsingborg, Sweden），并转化进大肠埃希氏菌（E.coli）TOP10细胞。在含氨苄西林的LB琼脂平板上分离含pJET1.2/ 钝的大肠埃希氏菌（E.coli）转化体，并如上所述制备质粒DNA。将质粒DNA用酶EcoRI和HindIII限制，并如所在0.8%（w/v）琼脂糖凝胶上分析。从凝胶使用QIAquick凝胶提取试剂盒如生产商所述纯化3.9kb DNA片段。将纯化的DNA片段连接到酶EcoRI和HindIII类似限制的质粒pUC18dlacZ，并如上所述纯化凝胶。将连接混合物转化进大肠埃希氏菌（E.coli）TOP10细胞，并在100 μg/ml氨苄西林,1mM IPTG,及40 μg/ml X-gal的LA板上作为蓝色集落选择带有含Ikka-β - 半乳糖苷酶基因的质粒βUC18dlacZ的重组细胞。选择转化体，并且分析质粒和插入子。从10ml培养物制备质粒DNA，并将DNA发送给GATCbiotech（Konstanz, 德国）使用以上4.1中描述的引物测序。测序两条链的整个Ikka-β - 半乳糖苷酶基因，以便确保PCR期间无突变导入。选择含具有Ikka-β - 半乳糖苷酶基因的质粒pUC18dlacZ（标识为质粒pUCIkka-bgal_exp）的重组克隆之一用于进一步表达研究。

【0102】【5.2 大肠埃希氏菌（Escherichia coli）中重组Ikka-β - 半乳糖苷酶的表达】

【0103】将带有质粒pUCIkka-bgal和pUCIkka-bgal_exp的大肠埃希氏菌（E.coli）TOP10细胞在含100 μg/ml氨苄西林的30ml LB肉汤中于37℃培养过夜。过夜后培共, 细胞补0.1mM IPTG, 并且于20℃温育又20小时。迅速以4, 300rpm于10℃离心30min来收获细胞，及悬浮于1ml 0.1M NaH2PO4/Na2HPO4, pH7。将细胞通过在Fast Prep仪（Fast Prep FP120, Bio101/Savant Instruments Inc., Holbrook, NY）中以速度5.5 珠每打3次25秒钟来裂解。敲打/摇动之间将样品在冰上冷却。将裂解物于4℃以10,000g离心15min,及将含Ikka-β - 半乳糖苷酶的上清转移到洁净的管。将此粗提取物用于随后分析。

【0104】【5.3 大肠埃希氏菌（Escherichia coli）中产生的重组Ikka-β - 半乳糖苷酶的性质】

【0105】【5.3.1. 重组Ikka-β - 半乳糖苷酶的SDS-PAGE和产率的确定】

【0106】如上3.4所述的SDS-PAGE（SDS浓度 4~12%, PAGEgel1, CA, 美国）上分析来自带有质粒pUCIkka-bgal的重组大肠埃希氏菌（E.coli）细胞的细胞内提取物。分析用1mM IPTG诱导的培养物和未诱导的对照培养物。

【0107】来自用及不用IPTG生长的培养物的提取物中的蛋白条带与来自用IPTG诱导的培养物中的约120kDa的条带的彼此相同（图6 中的箭标）。由此，由于Ikka-β - 半乳糖苷酶的计算的分子质量是119kDa, 且由于仅在用IPTG诱导的培养物中观察到120kDa的强条带, 由此推定, 120kDa条带代表Ikka-β - 半乳糖苷酶。

【0108】如上所述制备来自带有质粒pUCIkka-bgal的大肠埃希氏菌（E.coli）培养物的提取物,并在SDS-PAGE上电泳之前稀释。将具有已知的分子质量及指定的浓度的来自大肠埃希氏菌（E.coli）(Sigma–Aldrich, MO, 美国) 和乳克鲁维酵母（K.lactis）(Novozymes, Bagsvaerd, 丹麦) 的β - 半乳糖苷酶在相同的凝胶上共电泳用于比较（图6 中的箭标）。通过比较已知的β - 半乳糖苷酶与Ikka-β - 半乳糖苷酶的迁移和考马斯亮蓝染色, 得到估计的量的Ikka-β - 半乳糖苷酶。估计用于随后分析的提取物具有2mg/ml的Ikka-β - 半乳糖苷酶浓度。
【5.3.2 重组 Ikka-β - 半乳糖苷酶的温度依赖性】
如上所述，对于使用 ONG 作为底物的天然酶所述测定重组 Ikka-β - 半乳糖苷酶的最佳温度。对于重组 Ikka-β - 半乳糖苷酶，及作为对照，对于来自大肠埃希氏菌（E. coli）和乳酸菌（K. lactis）的 β - 半乳糖苷酶，于 0, 5, 10, 20, 30, 40, 50 和 60 °C 测定温度特征 30, 60 和 120 分钟。对于重组 Ikka-β - 半乳糖苷酶活性的最佳温度测定为 20 ~ 30 °C （图 7）。但是，Ikka-β - 半乳糖苷酶也在低温显示高活性，于 0 °C 多于 40% 活性，于 5 °C 约 80% 活性及于 10 °C 多于 90% 活性。相比乳酸菌（K. lactis）β - 半乳糖苷酶，Ikka-β - 半乳糖苷酶的特异性活性在 0 °C 和 30 °C 之间的温度乎两倍高（图 8）。两种酶于 40 °C 及以上显示接近 0 的活性（图 9）。

【5.3.3 重组 Ikka-β - 半乳糖苷酶的 pH 依赖性】
使用用 HCl 或 NaOH 调整到 pH4 ~ pH10 的缓冲液 （250mM Tris, 250mM MES, 250mM 乙酸） 研究 pH 值活性特征。将样品于 20 °C 温育 2 小时。Ikka-β - 半乳糖苷酶的最 pH 值显示为大致 pH7.0。在 pH6.0, 酶显示 60% 的最大活性，在 pH8.0, Ikka-酶显示 90% 活性。在 pH9.0, 观察到 15% 活性，然而在 pH6.0 或以下或在 pH10 和以上检测不到活性。

【5.3.3 重组 Ikka-β - 半乳糖苷酶的 pH 依赖性】
于 pH7.0 和 20 °C 使用 9 种不同的发酵底物进行 20 分钟的测定中测定 Ikka-β - 半乳糖苷酶的底物特异性：α- 硝基苯基 - β -D- 吡喃半乳糖苷，p- 硝基苯基 - β -D- 吡喃半乳糖苷，α- 硝基苯基 - β -D- 吡喃葡萄糖苷，β- 硝基苯基 - β -D- 吡喃葡萄糖苷，β- 硝基苯基 - β -D- 吡喃阿拉伯糖苷，β- 硝基苯基 - β -D- 纤维二糖苷，β- 硝基苯基 - β -D- 吡喃果糖苷，β- 硝基苯基 - β -D- 吡喃乳糖苷和 p- 硝基苯基 - β -D- 吡喃甘露糖苷。各底物以 10mM 的浓度使用。测定显示，Ikka-β - 半乳糖苷酶仅能水解 α- 硝基苯基 - β -D- 吡喃半乳糖苷 (ONPG) 和 p- 硝基苯基 - β -D- 吡喃果糖苷 (相对 ONPG 水解，4% 的相对活性)。以检测其底物的利用。

【5.16】在水中乳糖溶液中测定乳糖水解。测量 3 种不同的乳糖浓度：1.25mg/ml, 2.5mg/ml 和 5mg/ml。总反应体积是 0.2ml，且各反应管含 2mg/ml 的底物 Ikka-β - 半乳糖苷酶。酶反应于 5°C 及 20°C 温育，及在 15 分钟, 21/2 小时和 24 小时后收集样品。温育后，通过于 95°C 加热 20 分钟来停止反应。通过薄层层析 (TLC) 在 TLC 氧化硅凝胶 60 (Merck, Darmstadt, 德国）上在含 1- 丁酮, 2- 丙醇和水的溶剂 (3 : 12 : 4) 中进行产物的可视化。在 TLC 上运行含 0.005mg 乳糖的体积。对照是 0.5 µl 乳糖 (2.5%), 0.5 µl 半乳糖 (2.5%) 和 0.5 µl 葡萄糖 (2.5%)。干燥后，将条通过用浓苯酚试剂喷射，然后是于 100°C 温育 5 ~ 10min 来可视化。

【5.17】于 5°C 及于 20°C 观察乳糖水解。于 5°C，在 15 分钟后，1.25mg/ml 反应中约 75 ~ 85% 乳糖水解，以及在 21/2 小时之内 100% 水解，(图 12A)。于 20°C 温育的 1.25mg/ml
反应中观察到类似水解效率（图12B）。在2.5mg/ml乳糖反应中的水解有效性显示在两种温度下21/2小时之内约90～95%水解。24小时后，在两种温度从全部3种乳糖浓度观察到100%水解（图12）。

【5.3.4重组Ikka-β-半乳糖苷酶的纯化】

从粗提取物通过离子交换层析纯化β-半乳糖苷酶。2ml的瓶经过在生物学LP系统上的1ml高Q盒（Bio-Rad）上层析。

【0120】将柱用10ml的50mM磷酸盐缓冲液（pH7）洗涤，通过在50mM磷酸盐缓冲液（pH7）中的NaCl的0～1M的梯度，以0.5ml/min的流速洗脱。收集1ml的级分。粗提取物也在与p-氨基苯基-1-硫代-β-D-吡喃半乳糖苷偶联的2ml琼脂糖柱（PARBG-琼脂糖，Sigma）上经历亲和层析。将柱用10ml的50mM磷酸盐缓冲液（pH7）洗涤，之后其通过50mM磷酸盐缓冲液（pH7）中的100mMNaCl以0.5ml/min的速率洗脱。收集1ml的级分。

【0121】使用BCA蛋白测定试剂盒（Pierce）分析级分中蛋白的存在，及在如上所述的o-硝基苯酚（ONP）-β-D-吡喃半乳糖苷测定中测量β-半乳糖苷酶。通过SDS聚丙烯酰胺凝胶电泳（4～20%，PAGEgel，CA，美国）分析含β-半乳糖苷酶活性的级分。纯化的β-半乳糖苷酶用于随后的稳定性和活性实验。

【0122】图13显示来自大肠埃希氏菌（E.coli）的粗提取物含具有约115～120kDa的单体分子量的重组β-半乳糖苷酶。离子交换层析产生纯β-半乳糖苷酶（图13，泳道2），然而亲和层析（图13，泳道3）仅产生部分纯化的重组酶。由此，为了随后分析，使用来离子交换的纯β-半乳糖苷酶，除非别有指定。

【0123】【5.3.5天然的和重组A.ikkense β-半乳糖苷酶的表征】

【0124】当使用已知的来自大肠埃希氏菌（E.coli）和乳克鲁维酵母（K.lactis）的β-半乳糖苷酶作为参照在SDS-PAGE上分析时，A.ikkense β-半乳糖苷酶的分子量测定为约115～120kDa。此结果与如由DNA测序确定的计算的分子量（119kDa）一致。来自大肠埃希氏菌（E.coli）的粗提取物估计含10mg/ml的A.ikkense β-半乳糖苷酶。

【0125】以ONPG作为底物，基于由离子交换层析纯化的β-半乳糖苷酶计算的特异性活性于20℃是8.4μmol/min/mg蛋白（表1）。

【0126】【表1】

<table>
<thead>
<tr>
<th>纯化</th>
<th>体积 (ml)</th>
<th>蛋白 (mg)</th>
<th>特异性活性 (U/mg)</th>
<th>总活性 (U)</th>
<th>纯化（倍）</th>
<th>恢复 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>细胞提取物</td>
<td>10</td>
<td>30</td>
<td>1.6</td>
<td>48.0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>离子交换</td>
<td>10</td>
<td>2.5</td>
<td>8.4</td>
<td>21.1</td>
<td>12</td>
<td>44</td>
</tr>
</tbody>
</table>

【0128】收获200ml表达重组A.ikkense β-半乳糖苷酶的大肠埃希氏菌（E.coli）细胞培养物，产生280mg湿重细胞沉淀。将细胞在Fast Prep设备中裂解，及使提取物经历离子交换层析。1U是以ONPG作为底物，于20℃的1μmol/min。

【0129】分析表达重组A.ikkense β-半乳糖苷酶的大肠埃希氏菌（E.coli）提取物的β-半乳糖苷酶活性。

【0130】如图15中所示测量纯化的，重组A.ikkense β-半乳糖苷酶的热稳定性。相等的量的酶于指定的温度温育，并且以不同的时间间隔采集样品。Y轴是以最大活性的百分率
的残留的活性。酶样品于0℃～60℃的温度温育，及在指定的时间点（X轴）采取样品及于20℃测定活性的β-半乳糖苷酶。测定以一式三份进行，及标准误差在0.05以下。

于0℃，酶显示多于60%的最大活性，及于10℃，对于两种纯化的重组酶观察到多于70%的最大活性。酶稳定性分析显示，纯化的，重组β-半乳糖苷酶于0℃～20℃100%稳定至少5小时（图15），及储存于0℃～20℃5天后残留的活性是50～60%（数据未显示）。于30℃，纯化的β-半乳糖苷酶在5小时之内丧失多于80%其活性。于50℃5分钟之内及于40℃10分钟之内达到完全，不可逆的灭活（图15）。

测量了纯化的，重组A.ikkenseβ-半乳糖苷酶的温度依赖性（A）和pH依赖性（B）（图14）。Y轴是以最大活性的百分率的相对活性。X轴是温度依赖（A）或pH（B）。以ONPG作为底物的纯化的，重组酶的相对活性通过黑矩形显示。测定以一式三份进行，及标准误差在0.05以下。

在pH8观察到纯化的，重组酶的最大活性（图14B）。在pH7保持约60%的最大活性，及在pH9观察到约90%活性（图14B）。

将重组A.ikkenseβ-半乳糖苷酶以来自乳 Controllers, Lactozyme 3000® 13 为基准。在0℃和20℃之间的温度，A.ikkenseβ-半乳糖苷酶显示转变速率的2倍增加，相比乳 Controllers, Lactozyme (K.lactis)-β-半乳糖苷酶（图16）；A.ikkenseβ-半乳糖苷酶（黑矩形）相比来自乳 Controllers, Lactozyme (K.lactis)的商业上可用的Lactozyme® 3000L（开放）。特别地，实验以以下方式进行：将相等的酶（2mg/ml）以ONPG作为底物于0℃～20℃的温度温育。以不同的时间间隔采集样品，并在A240nm处测量水解的ONP。水解效率计算为A240nm/min/μg活性酶的增加。测定以一式三份进行，及标准误差在0.05以下。

使用9种不同的色谱底物进行A.ikkenseβ-半乳糖苷酶的底物特异性研究。仅用ONPG及用p-硝基苯基-β-D-吡喃果糖苷酶观察到水解（相比ONPG的水解，4%的相对活性）。使用薄层色谱（TLC）来显示由A.ikkenseβ-半乳糖苷酶的乳糖水解（图17）。泳道4～6：样品于5℃温育21/2h（4:1.25mg/ml乳糖,5:2.5mg/ml乳糖,6:5mg/ml乳糖）。泳道7～9：样品于20℃温育21/2h（7:1.25mg/ml乳糖,8:2.5mg/ml乳糖,9:5mg/ml乳糖）。泳道1～3：对照，0.0125mg的各碳水化合物物乳糖（泳道1）,半乳糖 (泳道2)和葡萄糖 (泳道3)。

其余底物的水解在检测限以下。于5℃和20℃观察到乳糖水解（图17）。于5℃，15分钟后在1.25mg/ml反应中约75～85%的乳糖水解，及在21/2小时之内100%的乳糖水解（图17,泳道4）。在20℃温育21/2小时的1.25mg/ml反应中观察到类似水解效率（图17,泳道7）。在2.5mg/ml乳糖反应中的水解有效性显示在两种温度下在21/2小时内约90～95%水解（图17,泳道5和8）。24小时后，两种温度下，从全部3种乳糖浓度观察到100%水解（未显示）。在最高乳糖浓度（27mg/ml），TLC凝胶指示寡糖的形成（图17,泳道6和9）。

【实施例6】枯草芽孢杆菌 (Bacillus subtilis) 中重组Ikka-β-半乳糖苷酶的产生

【实施例8】将Ikka-β-半乳糖苷酶亚克隆进枯草芽孢杆菌 (Bacillus subtilis) 表达载体, pAL10 (MoBiTech, GmbH)。PCR 使用来自Alkalilactibacillus ikkense 的染色体DNA
作为模板和 PCR 引物 Bs_pAL_bGa15':5' GCCCATGGATCCATGGCAAAAAATTAAAAAAAAATCC3'(有下划线的 BamHI 限制性位点)(SEQ ID NO:11) 和 Bs_pAL_bGa13':5' GCCCATTTTTTAACTTATCCATA3'(有下划线的 XmaI 限制性位点)(SEQ ID NO:12) 进行。

PCR, 编码 Ikka-β-半乳糖苷酶的片段的随后分离, 连接到 pUC18d LacZ 和转化大肠埃希氏菌 (E.coli) 如上 5.1 所述。制备含 Ikka-β-半乳糖苷酶基因的质粒 pUC18d LacZ, 并测序, 然后将质粒 DNA 用限制性内切酶 BamHI 和 XmaI 限制。将编码 Ikka-β-半乳糖苷酶的 3.1kb 片段纯化, 插入用 BamHI 和 XmaI 类似的限制的质粒 pAL10, 及如 5.1 中所述转化进大肠埃希氏菌 (E.coli)。在含 100 μg/ml 氨苄西林的 LB 琼脂板上分离带有含 Ikka-β-半乳糖苷酶基因的 pAL10 的重组大肠埃希氏菌 (E.coli)。将质粒 pAL10_Ikka-bGal 纯化, 并使用用于来自 Eppendorf (德国) 的枯草芽孢杆菌 (B. subtilis) 的电穿孔流程转化进枯草芽孢杆菌 (B. subtilis) 细胞 (流程 No. 4308915, 504-08/2003)。在含 5 μg/ml 氯霉素的 LB 琼脂上选择带有质粒 pAL10 的重组细胞。

通过在含 5 μg/ml 的氯霉素的 LB 中于 37°C 生长枯草芽孢杆菌 (B. subtilis) pAL10_Ikka-bGal 细胞 16 小时来进行枯草芽孢杆菌 (B. subtilis) 中重组 Ikka-β-半乳糖苷酶的产生。通过变化温度到 20°C 来进行 Ikka-β-半乳糖苷酶合成的诱导。将枯草芽孢杆菌 (B. subtilis)pAL10_Ikka-bGal 细胞于 20°C 培养额外的 5 小时，然后收获细胞, 及如 5.2 中所述通过 Fast Prep 分离细胞内酶。

如 5.3 中所述, 在 ONPG 测定中分析来自枯草芽孢杆菌 (B. subtilis)pAL10_Ikka-bGal 细胞的粗的, 细胞内提取物。ONPG 测定显示具有类似于天然的酶, 类似于粗大肠埃希氏菌 (E.coli) 提取物中的重组酶, 及类似于大肠埃希氏菌 (E.coli) 细胞中产生的纯酶的活性的冷一活跃的 Ikka-β-半乳糖苷酶的存在。

【参考文献】

<table>
<thead>
<tr>
<th>序列描述 SEQ ID NO:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>Met Ala Lys Lys Leu Lys Lys Phe Asn Tyr Leu Pro Pro Lys Asn</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>Gly Tyr Pro Glu Trp Asn Asn Pro Glu Ile Phe Gln Leu Asn</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>Arg Arg Glu Ala His Ala Thr Leu Val Pro Tyr Ser Asn Leu Glu</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>Leu Ala Leu Lys Gly Glu Arg Thr Ala Ser Ser Phe Tyr Gln Ser</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Leu Asn Gly Ser Trp Gln Phe Ala Phe Ala Gln Glu Pro Thr Lys</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>Arg Val Ile Asp Phe Tyr Arg Lys Asp Phe Asp His Arg Asp Trp</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>Asp Ser Ile Lys Val Pro Ser His Trp Gln Leu Glu Gly Tyr Asp</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>Tyr Pro Gln Tyr Thr Asn Thr Thr Tyr Pro Trp Val Glu Lys Glu</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>Thr Ile Lys Pro Pro Phe Ala Pro Thr Asn Tyr Asn Pro Val Gly</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Gln Tyr Val Arg Thr Phe Glu Leu Pro Thr Asp Trp Asn Gly Ala</td>
</tr>
<tr>
<td>110</td>
</tr>
</tbody>
</table>
[0209] Pro Val Tyr Leu Asn Phe Gln Gly Val Glu Ser Ala Phe Tyr Val
[0210] 160
[0211] 170
[0212] Trp Ile Asn Gly Asp Leu Val Gly Tyr Ser Glu Asp Thr Phe Thr
[0213] 190
[0214] Pro Ala Glu Phe Asp Ile Thr Pro Tyr Leu Ile Glu Gly Glu Asn
[0215] 200
[0216] 210
[0217] Lys Leu Ala Val Glu Val Tyr Arg Trp Ser Asp Ala Ser Trp Leu
[0218] 220
[0219] Glu Asp Gln Asp Phe Trp Arg Leu Ser Gly Ile Phe Arg Asp Val
[0220] 230
[0221] 240
[0222] Tyr Leu Tyr Ala Thr Pro Ala Gln His Ile Asp Asp Phe Phe Val
[0223] 250
[0224] Thr His Glu Leu Asp Ala Asp Tyr Arg Asn Ala Thr Leu Lys Ile
[0225] 260
[0226] 270
[0227] Asp Met Lys Val Arg Asp Tyr Phe Glu Ile Gly Glu Pro Val Thr
[0228] 280
[0229] Val Asn Ala Met Leu Phe Asp Leu Asn Gly Asn Pro Val Leu Lys
[0230] 290
[0231] 300
[0232] Gln Pro Leu Leu Ser Ala Val Asp Phe Ser Gly Lys Glu Val Ala
[0233] 310
[0234] Asp Val Ser Val Ile Thr Thr Ile Asp Asn Pro Leu Lys Trp Ser
[0235] 320
[0236] 330
[0237] Ala Glu Asp Pro Asn Leu Tyr Thr Leu Val Leu Ser Leu Val Asp
[0238] 340
[0239] Gln Asn Gly Lys Leu Leu Glu Thr Glu Ser Cys Arg Val Gly Phe
[0240] 350
[0241] 360
[0242] Arg Lys Phe Glu Arg Lys Asp Gly Leu Met Gln Ile Asn Gly Lys
[0243] 370
[0244] Arg Ile Val Phe Lys Gly Thr Asn Arg His Glu Phe Ala Ser Asp
[0245] 380
[0246] 390
[0247] Lys Gly Arg Ala Ile Thr Ile Asp Asp Met Val Asn Asp Ile Gln
[0248] 400
[0249] Leu Met Lys Gln His Asn Ile Asn Ala Val Arg Thr Ser His Tyr
[0250] 410
[0251] 420
[0252] Pro Asn His Pro Leu Trp Tyr Glu Leu Cys Asp Thr Tyr Gly Leu
[0253] 430
[0254] Tyr Val Ile Asp Glu Thr Asn Leu Glu Thr His Gly Thr Trp Val
[0255] 440
[0256] 450
[0257] 21
Tyr Gly Gln Lys Gly Leu Ala Glu Thr Ile Pro Gly Ser Leu Pro

460

Lys Trp Thr Glu Asn Val Leu Asp Arg Cys Asn Ser Met Phe Gln

470

Arg Asp Lys Asn His Pro Ser Ile Leu Asp Trp Ser Leu Gly Asn

480

Glu Ser Phe Gly Gly Asp Asn Phe Leu Lys Met His Asp Phe Phe

490

Thr Glu Gln Asp Pro Ala Arg Leu Val His Tyr Glu Gly Ile Phe

500

His Tyr Arg Glu Ser Glu Arg Ala Ser Asp Met Glu Ser Thr Met

510

Tyr Ile Ser Pro Glu Gly Ile Glu Asp Tyr Ala Lys Ala Thr

520

Lys Glu Thr Lys Pro Tyr Ile Leu Cys Glu Phe Ser His Ala Met

530

Gly Asn Ser Leu Gly Asn Phe Tyr Lys Tyr Thr Glu Leu Phe Asp

540

Gln Tyr Pro Ile Leu Gln Gly Gly Phe Ile Trp Asp Trp Lys Asp

550

Gln Ser Leu Leu Thr Lys Thr Ala Gly Gly Thr Pro Tyr Leu Ala

560

Tyr Gly Asp Phe Gly Glu Ser Pro His Asp Gly Asn Phe Ala

570

Gly Asn Gly Leu Ile Phe Gly Asp Gly Lys Val Ser Pro Lys Ile

580

Phe Glu Val Lys Arg Cys Tyr Gln Asn Val Asp Phe Lys Ala Ile

590

Asp Leu Val His Gly Gln Ile Glu Leu Thr Asn Lys Tyr Leu Phe

600

Thr Asn Leu Ala Asp Tyr Gln Leu Asn Trp Val Ile Thr Arg Asn

610

Gly Asp Ala Ile Glu Ser Gly Ala Thr Asn Ile Asn Val Leu Pro

620

Gly Glu Lys Arg Glu Val Ile Leu Asp Tyr Thr Phe Pro Thr Gly

630

Val Cys Met Thr Asp Glu Tyr Ile Leu Thr Leu Arg Phe Ser Glu

640

Lys Gly Asp Arg Leu Trp Cys Glu Ala Gly His Glu Val Ala Phe

650
Asn Gln Phe Val Leu Pro Thr Lys Val Thr Lys Leu Arg Glu Lys
Thr Gln Asp Thr Lys Thr Leu Ser Val Glu Val Met Gln Asp Arg
Leu Val Thr Ser Gly Ala Gly Phe Ser Val Gly Phe Asp Thr Lys
Ser Gly Met Leu Val Ser Tyr Gln Val Gly Gly Asn Glu Leu Val
Lys Glu Ala Leu Val Pro Asn Phe Trp Arg Ala Met Thr Asp Asn
Asp Arg Gly Asn Gly Leu Asp Gln Arg Ser Gln Ile Trp Arg Asp
 Ala Asn Glu Val Arg Glu Leu Val Ser Phe Gln Tyr Glu Val Leu
Thr Asn Arg Val Ser Ile Ser Thr Val Phe Leu Tyr Glu Asp Leu
Asn His Ser Arg Val Glu Leu Asn Phe Leu Ile Thr Gly Thr Gly
Glu Ile Lys Val Asp Tyr Val Leu Lys Pro Gly Glu Asp Leu Pro
Glu Ile Pro Glu Ile Gly Leu Met Leu Thr Met Pro Lys Ser Phe
Asp Gln Leu Ser Trp Tyr Gly Lys Gly Pro His Glu Ser Tyr Trp
Asp Lys Gln Lys Gly Ala Lys Ile Gly Leu Tyr Gln Gly Phe Val
Gly Asp Gln Tyr Val Pro Tyr Leu Lys Pro Gln Glu Cys Gly Asn
Lys Val Gly Val Arg Ser Ala Glu Leu Val Asn Asp Val Gly Val
Gly Leu Ile Ile Ser Gly Leu Pro Thr Leu Glu Leu Asn Val Leu
Pro Tyr Thr Pro Val Gln Leu Glu Ser Ala Asp His Ser Tyr Gln
Leu Pro Glu Thr Asp Gln Thr Val Val Arg Ile Asn Leu Gly Gln
Met Gly Val Gly Gly Asp Asp Ser Trp Gly Gln Arg Thr His Gln
[0326] Asp Phe Thr Leu Phe Ala Asn Lys Thr Tyr His Tyr Ser Phe Met
[0327]
[0328] Leu Asn Ser Leu Asn Arg
[0329] 【SEQ ID NO :2】
[0330] 有关 SEQ ID NO :2 的信息
[0331] （i）序列特征：
[0332] （A）长度：3,123 个核苷酸
[0333] （B）类型：核酸
[0334] （C）链：单链
[0335] （D）拓扑学：线性
[0336] （ii）分子类型：基因组 DNA
[0337] （x）序列描述 SEQ ID NO :2
[0338] ATGGCAAAAA ATTAAAAAA ATTCACTAC CTCCCACCAA AAAACGGGTA 50
[0339] CCCAGAGTTG AATAAATATC CGGAAAAATT TCAACTTATT GAAGAGAGG 100
[0340] CGCATTGCAAC ATGGTTGCAA TATCTAATT TGGAATTGTC ACTTAAAGG 150
[0341] GAGCCGCAAG CATCATCATT TTTATCAATCT TTAAATGGTA GTTGGCCAGT 200
[0342] TGCGTTTTCG CAAGACGCAA CAACGCGAGT GATAGATTTTT TATGGGAAAC 250
[0343] ATTTTGATACA TCCTGATTGG GATTAGATTA AAGTGACGAAC TACATCGCAG 300
[0344] TTGAAGGCGT ATTTCTGCTG CGATATACCC AACAAACTCG ACACAGGGTT 350
[0345] AGAAAAAGAA AGATATACAC CTCCATTGTC ACCAACAAGT TAAAACCAG 400
[0346] TGCGAGAATT TGCTCGACAG TTTAATTTAC CGATCTGATTG GAATGGAGCT 450
[0347] CCCGTTTTAC TGAATTTCGCA AGGAGTTGGA TCAGCTTTAC AGGTCTGAGT 500
[0348] AAATGTGATAC TGGTGGCGAT ACGTAGGAGG CACATTCCA ACAAGCTGAAT 550
[0349] TTGAAATATTG GCAGTTATTC ACTATTATCT ATACCAAGGG AAAAAGAATTG 600
[0350] GTCATCATATG GAGTGTACGT GAGGTGTGCTTG GAAGACCAGG ATTTCTGAGG 650
[0351] GTAAAGGGCT ATTTCTGCTG AGTCTATCT ATAGCAAGG ACAGCTACG 700
[0352] ACATTGATGAA TTTCTTTCGCA ACACAGAAGCC TTTAGGCAAG CATTAGAAAT 750
[0353] GCAAACGTGAA AGATATTGATGAA AGAAGTAGCGC GATTATTTTG AGATTGAGGA 800
[0354] GCCCGCGCACT CGAATACGGGT TGTCCTGTTG TTTAATAGGG AATCGGCTTC 850
[0355] TCAGCAACCT GCAGATATCCG CACAGTAGTAA TTTGCGTTAA AAGATGTCGCT 900
[0356] GATGTTAGCC GAGTACCAAC TATTAGAATC CCAATGAAAT GAGTGCGGCA 950
[0357] AGAATCCCAAT CGTACACTT TGTTTTTAAAG TTTGATGATG CAGAATGCGA 1000
[0358] AGTTGCTTGA AACAGAAAGC TGGCGGATGGA ATTTTGCTGA ATTTGAGCAG 1050
[0359] AAGGACGGGAT TGAAGCAAT CAAATGGGAA CGGATTGTTCT TAAAGGGCAC 1100
[0360] AAATCTGACG GAATTCGCTG TGGATAAAGC TGGCGGGATA AGCATAGACTG 1150
[0361] ATATGGTTTAA GTGAGTGTTA GTGAGAAGGC AGCATAACAT TATGCGCTTC 1200
[0362] CGAAGCTGAA TTTATGGGAAG TCGACTCTTGG TGGTAGAGTC TGGTGAGATC 1250
[0363] GTTGTTGTTTAA TATGGATTTG ACGAGCACCA TTGAGAAGG CACAGGAGAT 1300
[0364] GGGTTTATGG TCAAAAAAGG TGGGCTGAGA CAATACCGTG AGTTCTACAC 1350
【SEQ ID NO: 3】
（2）有关 SEQ ID NO:3 的信息
(i) 序列特征：
(A) 长度: 17 个核苷酸
(B) 类型: 核酸
(C) 链: 单链
(D) 拓扑学: 线性
(ii) 分子类型: 合成的 DNA
(xii) 序列描述 SE 序列 NO: 3
cgtcatacatatcacc

【SEQID NO: 4】
(2) 有关 SE 序列 NO: 4 的信息
(i) 序列特征:
(A) 长度: 20 个核苷酸
(B) 类型: 核酸
(C) 链: 单链
(D) 拓扑学: 线性
(ii) 分子类型: 合成的 DNA
(xii) 序列描述 SE 序列 NO: 4
CCTTGCCCAGACCCAACC

【SEQID NO: 5】
(2) 有关 SE 序列 NO: 5 的信息
(i) 序列特征:
(A) 长度: 21 个核苷酸
(B) 类型: 核酸
(C) 链: 单链
(D) 拓扑学: 线性
(ii) 分子类型: 合成的 DNA
(xii) 序列描述 SE 序列 NO: 5
GCTATTATCA GACTTGGCAC C

【SEQID NO: 6】
(2) 有关 SE 序列 NO: 6 的信息
(i) 序列特征:
(A) 长度: 21 个核苷酸
(B) 类型: 核酸
(C) 链: 单链
(D) 拓扑学: 线性
(ii) 分子类型: 合成的 DNA
(xii) 序列描述 SE 序列 NO: 6
GTAATTCAT ATCCTACGTC

【SEQID NO: 7】
(2) 有关 SE 序列 NO: 7 的信息
(i) 序列特征：
(A) 长度：16 个核苷酸
(B) 类型：核酸
(C) 链：单链
(D) 拓扑学：线性
(ii) 分子类型：合成的 DNA
(xi) 序列描述 SEQUENCE ID NO:7
CGCTATGGGT GTGAAG

【SEQUENCE ID NO:8】
(2) 有关 SEQUENCE ID NO:8 的信息
(i) 序列特征：
(A) 长度：20 个核苷酸
(B) 类型：核酸
(C) 链：单链
(D) 拓扑学：线性
(ii) 分子类型：合成的 DNA
(xi) 序列描述 SEQUENCE ID NO:8
GGGCTGGCGT AACTATCGGG

【SEQUENCE ID NO:9】
(2) 有关 SEQUENCE ID NO:9 的信息
(i) 序列特征：
(A) 长度：36 个核苷酸
(B) 类型：核酸
(C) 链：单链
(D) 拓扑学：线性
(ii) 分子类型：合成的 DNA
(xi) 序列描述 SEQUENCE ID NO:9
CTGAATTCCG ATATGGCAMA AAAATTAAA AAATTC

【SEQUENCE ID NO:10】
(2) 有关 SEQUENCE ID NO:10 的信息
(i) 序列特征：
(A) 长度：31 个核苷酸
(B) 类型：核酸
(C) 链：单链
(D) 拓扑学：线性
(ii) 分子类型：合成的 DNA
(xi) 序列描述 SEQUENCE ID NO:10
CCAAGCTTAT CGTTTAAC TATTCACAT G

【SEQUENCE ID NO:11】
(2) 有关 SEQ ID NO:11 的信息

(i) 序列特征:

(A) 长度: 36 个核苷酸
(B) 类型: 核酸
(C) 链: 单链
(D) 拓扑学: 线性

(ii) 分子类型: 合成的 DNA

(xi) 序列描述 SEQ ID NO:11

GGCATGGAT CCACTGCAA AAAAAATA AAATTC

【SEQ ID NO:12】

(2) 有关 SEQ ID NO:12 的信息

(i) 序列特征:

(A) 长度: 37 个核苷酸
(B) 类型: 核酸
(C) 链: 单链
(D) 拓扑学: 线性

(ii) 分子类型: 合成的 DNA

(xi) 序列描述 SEQ ID NO:12

GGCCATCCCC GGTTATCTGT TTAAACTATT CAACATG
Kolenhusen Universitet

Cold active β-lactamase, its production method, and the use thereof

P1089FC00

US 61/151, 208
US 61/176, 956

2009-02-10
2009-05-11

12

PateatIn version 3.3

1

1041

PRT

Alkalilactibacillus ikkense

1

Met Ala Lys Lys Leu Lys Lys Phe Asn Tyr Leu Pro Pro Lys Asn Gly

1 5 10 15

Tyr Pro Glu Trp Asn Asn Pro Glu Ile Phe Glu Leu Asn Arg Arg

20 25 30

Glu Ala His Ala Thr Leu Val Pro Tyr Ser Asn Leu Leu Ala Leu

35 40 45

Lys Gly Glu Arg Thr Ala Ser Ser Phe Tyr Glu Ser Leu Asn Gly Ser

50 55 60

Trp Gln Phe Ala Phe Ala Gln Gln Thr Arg Val Ile Asp Phe

65 70 75 80

Tyr Arg Lys Asp Phe Asp His Arg Asp Trp Asp Ser Ile Lys Val Pro

85 90 95

Ser His Trp Gln Leu Gln Gln Tyr Asp Tyr Pro Gln Thr Thr Asn Thr

100 105 110

Thr Tyr Pro Thr Val Glu Thr Ile Tyr Val Pro Gln Pro Phe Ala Pro

115 120 125

Thr Asn Tyr Asn Pro Val Gln Gln Tyr Arg Thr Phe Glu Leu Pro

130 135 140

Thr Asp Thr Asp Gly Ala Pro Val Tyr Leu Asn Phe Gln Gly Val Glu

145 150 155 160

Ser Ala Phe Tyr Val Trp Ile Asn Gly Asp Leu Val Gly Tyr Ser Glu

165 170 175

Asp Thr Phe Thr Pro Ala Glu Phe Asp Ile Thr Pro Tyr Leu Ile Glu

180 185 190

Glu Gln Asn Lys Leu Ala Val Glu Val Tyr Arg Trp Ser Asp Ala Ser

195 200 205
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trp Leu Glu Asp Glu Asp Phe Trp Arg Leu Ser Gly Ile Phe Arg Asp</td>
<td>210</td>
</tr>
<tr>
<td>Val Tyr Leu Tyr Ala Thr Pro Ala Gln His Ile Asp Asp Phe Phe Val</td>
<td>225</td>
</tr>
<tr>
<td>Thr His Glu Leu Asp Ala Asp Tyr Arg Asn Ala Thr Leu Lys Ile Asp</td>
<td>245</td>
</tr>
<tr>
<td>Met Lys Val Arg Asp Tyr Phe Glu Ile Gly Glu Pro Val Thr Val Asn</td>
<td>260</td>
</tr>
<tr>
<td>Ala Met Leu Phe Asp Leu Asn Gly Asn Pro Val Leu Lys Gln Pro Leu</td>
<td>275</td>
</tr>
<tr>
<td>Leu Ser Ala Val Asp Phe Ser Gly Lys Glu Val Ala Asp Val Ser Val</td>
<td>290</td>
</tr>
<tr>
<td>Ile Thr Thr Ile Asp Asn Pro Leu Thr Ser Ala Glu Asp Pro Asn</td>
<td>305</td>
</tr>
<tr>
<td>Leu Tyr Thr Leu Val Leu Ser Leu Val Asp Gln Asn Gly Lys Leu Leu</td>
<td>325</td>
</tr>
<tr>
<td>Glu Thr Glu Ser Cys Arg Val Gly Phe Arg Lys Phe Glu Arg Lys Asp</td>
<td>340</td>
</tr>
<tr>
<td>Gly Leu Met Gln Ile Asn Gly Lys Arg Ile Val Phe Lys Gly Thr Asn</td>
<td>355</td>
</tr>
<tr>
<td>Arg His Glu Phe Ala Ser Asp Lys Gly Arg Ala Ile Thr Ile Asp Asp</td>
<td>370</td>
</tr>
<tr>
<td>Met Val Asn Asp Ile Gln Leu Met Lys Gln His Asn Ile Asn Ala Val</td>
<td>385</td>
</tr>
<tr>
<td>Arg Thr Ser His Tyr Pro Asn His Pro Leu Trp Tyr Glu Leu Cys Asp</td>
<td>405</td>
</tr>
<tr>
<td>Thr Tyr Gln Leu Tyr Val Ile Asp Glu Thr Asn Leu Glu Thr His Gly</td>
<td>420</td>
</tr>
<tr>
<td>Thr Trp Val Tyr Gly Gln Lys Gly Leu Ala Glu Thr Ile Pro Gly Ser</td>
<td>435</td>
</tr>
<tr>
<td>Leu Pro Lys Trp Thr Glu Asn Val Leu Asp Arg Cys Asn Ser Met Phe</td>
<td>450</td>
</tr>
<tr>
<td>Gln Arg Asp Lys Asn His Pro Ser Ile Leu Asp Trp Ser Leu Gly Asn</td>
<td>465</td>
</tr>
<tr>
<td>Glu Ser Phe Gly Gly Asp Asn Phe Leu Lys Met His Asp Phe Phe Thr</td>
<td>485</td>
</tr>
<tr>
<td>Glu Gln Asp Pro Ala Arg Leu Val His Tyr Glu Gly Ile Phe His Tyr</td>
<td>500</td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>515</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td>530</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Tyr</td>
</tr>
<tr>
<td>545</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Phe</td>
</tr>
<tr>
<td>565</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>595</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td>610</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
</tr>
<tr>
<td>625</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
</tr>
<tr>
<td>645</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Tyr</td>
</tr>
<tr>
<td>660</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
</tr>
<tr>
<td>675</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>690</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>705</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td>725</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Phe</td>
</tr>
<tr>
<td>740</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Thr</td>
</tr>
<tr>
<td>755</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>770</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>785</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Asn</td>
</tr>
<tr>
<td>805</td>
<td></td>
</tr>
</tbody>
</table>

[0004]
<table>
<thead>
<tr>
<th>序列表</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Gln Arg Ser Gln Ile Trp Arg Asp Ala Asn Glu Val Arg Glu Leu</td>
</tr>
<tr>
<td>820 825 830</td>
</tr>
<tr>
<td>Val Ser Phe Gln Tyr Glu Val Leu Thr Asn Arg Val Ser Ile Ser Thr</td>
</tr>
<tr>
<td>835 840 845</td>
</tr>
<tr>
<td>Val Phe Leu Tyr Glu Asp Leu Asn His Ser Arg Val Glu Leu Asn Phe</td>
</tr>
<tr>
<td>850 855 860</td>
</tr>
<tr>
<td>Leu Ile Thr Gly Thr Gly Glu Ile Lys Val Asp Tyr Val Leu Lys Pro</td>
</tr>
<tr>
<td>865 870 875 880</td>
</tr>
<tr>
<td>Gly Glu Asp Leu Pro Glu Ile Pro Glu Ile Gly Leu Met Leu Thr Met</td>
</tr>
<tr>
<td>885 890 895</td>
</tr>
<tr>
<td>Pro Lys Ser Phe Asp Glu Leu Ser Trp Tyr Gly Lys Gly Pro His Glu</td>
</tr>
<tr>
<td>900 905 910</td>
</tr>
<tr>
<td>Ser Tyr Trp Asp Lys Glu Ala Lys G1 Thr Leu Tyr G1a Gly</td>
</tr>
<tr>
<td>915 920 925</td>
</tr>
<tr>
<td>Phe Val Gly Asp Gln Tyr Val Pro Tyr Leu Lys Pro Glu Cys Gly</td>
</tr>
<tr>
<td>930 935 940</td>
</tr>
<tr>
<td>Asn Val Gly Val Arg Ser Ala Glu Val Leu Asa Asp Val Gly Val</td>
</tr>
<tr>
<td>945 950 955 960</td>
</tr>
<tr>
<td>Gly Val Leu Ile Lys Ser Gly Leu Pro Thr Leu Glu Leu Asn Val Leu Pro</td>
</tr>
<tr>
<td>965 970 975</td>
</tr>
<tr>
<td>Tyr Thr Pro Val Glu Leu Gln Ser Ala His Ser Tyr Glu Leu Pro</td>
</tr>
<tr>
<td>980 985 990</td>
</tr>
<tr>
<td>Glu Thr Asp Gln Thr Val Val Arg Ile Asn Leu Gly Gln Met Gly Val</td>
</tr>
<tr>
<td>995 1000 1005</td>
</tr>
<tr>
<td>Gly Gln Asp Asp Ser Thr Gln Gln Arg Thr His Gln Asp Phe Thr</td>
</tr>
<tr>
<td>1010 1015 1020</td>
</tr>
<tr>
<td>Leu Phe Ala Asn Lys Thr Tyr His Tyr Ser Phe Met Leu Asn Ser</td>
</tr>
<tr>
<td>1025 1030 1035</td>
</tr>
<tr>
<td>Leu Asn Arg</td>
</tr>
<tr>
<td>1040</td>
</tr>
</tbody>
</table>

| <(210) 2 |
| <(211) 3123 |
| <(212) DNA |
| <(213) Alkalilactibacillus ikkense |
| <(400) 2 |
| atggccannaa attnaataaa atttcataa ctcccacttaa aaaaacggtta cccagagtgg |
| 60 |
| ataatataatc eggmaaattt tcmaaaaatta ccaagagagg egcatcgcac attggtgcca |
| 120 |
| ttttaaatatt ttggagttgc cacttaaaaagc cagcaggtct atctacatt |
| 180 |
| ttaagctgta gttggcagtt tcgctgtgce caagcgcac cccagcngtt gataagtttt |
| 240 |
| ttaagcagag atttgtcata teggatgag gatagcataa aagtaaccag atcagcag |
| 300 |

[0005]
<table>
<thead>
<tr>
<th>序列表</th>
<th>57页</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>120</td>
</tr>
<tr>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td>190</td>
<td>160</td>
</tr>
<tr>
<td>200</td>
<td>170</td>
</tr>
<tr>
<td>210</td>
<td>180</td>
</tr>
<tr>
<td>220</td>
<td>190</td>
</tr>
<tr>
<td>230</td>
<td>200</td>
</tr>
<tr>
<td>240</td>
<td>210</td>
</tr>
<tr>
<td>250</td>
<td>220</td>
</tr>
<tr>
<td>260</td>
<td>230</td>
</tr>
</tbody>
</table>

根据上下文，这似乎是一个表格，可能涉及某种数据分析或列表。由于内容不完整，具体的解释或翻译可能需要更多的信息。
gaacttaact tttgttattc ttgaaactggt gaataaaggg tggattatgt actgaaacg 2640
ggaagaaagtt taccagaaat accagagata gttttagttc taacgatgccc taagttcgttt 2700
gatcacgttaa gtttgattcgg aaagagccca catgattcgt attgggataa acaaaaaagc 2760
ggg nutsatttcuagg tatgggggtatg ggggcagcatagtttgccgta attggaacca 2820
caaaatagtgc gcaacaagaagttt agggtttgtct tcaagcagaaat tggtaatgta tgggtgtt 2880
gttttgatta taangttgacct tccacggtg agtttaatgg tccattacacta cacaaccagtg 2940
cacattgggattcagctgatc tggattacatcattcgggt aacgctctacg atgattacgc 3000
atttatttgacaaagtggc aagtgggtgtt atggtggtgtt aaggtctggcag aacacccac 3060
gacatttacact tattttgcaca taaaacctat caactatagct tcaagtggaa tagtttacnc 3120
aga 3123

<210> 3
<211> 17
<212> DNA
<213> 人工序列

<220>
<223> 合成的定制引物

<400> 3
cctattcaca tattcaca 17

<210> 4
<211> 20
<212> DNA
<213> 人工序列

<220>
<223> 合成的定制引物

<400> 4
cctttgcaca agagccnaac 20

<210> 5
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 合成的定制引物

<400> 5
gttatttaca gacattgccc c 21

<210> 6
<211> 21
<212> DNA
<213> 人工序列

<220>
<223> 合成的定制引物

<400> 6
gtaatttcaat gttcacaacgt g 21

<210> 7
<211> 16
<212> DNA
<213> 人工序列

<220>
合成的定制引物

cgttatggt gtgaag

8
20
DNA
人工序列
合成的定制引物
ggtggtt aactatcgg

9
36
DNA
人工序列
合成的定制引物
cgtcatttc atatgctaa aaaaattaaa aatucc

10
31
DNA
人工序列
合成的定制引物
cacatgtt ctgattaaac tatcaaacat g

11
36
DNA
人工序列
合成的定制引物
gcattggat ccatgctaa aaaaattaaa aattee

12
37
DNA
人工序列
合成的定制引物
gccatcctcg ggttatgt ttaactatt caacatg

36
37
图 2

图 3
图4
图7

图8
图 9

图 10
图 11
图 12
图14
图 17