The present invention relates to compositions useful in the stimulation of hair growth. These compositions comprise a conditioned medium obtained from a cell culture of human mononuclear cells or a conditioned or extracted medium obtained from a cell culture of mammalian normal or transformed cells or cancer cells.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td>AM</td>
<td>United Kingdom</td>
<td>GB</td>
<td>Malawi</td>
<td>MW</td>
</tr>
<tr>
<td>Austria</td>
<td>AT</td>
<td>Georgia</td>
<td>GE</td>
<td>Mexico</td>
<td>MX</td>
</tr>
<tr>
<td>Australia</td>
<td>AU</td>
<td>Guinea</td>
<td>GN</td>
<td>Niger</td>
<td>NE</td>
</tr>
<tr>
<td>Barbados</td>
<td>BB</td>
<td>Greece</td>
<td>GR</td>
<td>Netherlands</td>
<td>NL</td>
</tr>
<tr>
<td>Belgium</td>
<td>BE</td>
<td>Hungary</td>
<td>HU</td>
<td>Norway</td>
<td>NO</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>BF</td>
<td>Ireland</td>
<td>IE</td>
<td>New Zealand</td>
<td>NZ</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>BG</td>
<td>Italy</td>
<td>IT</td>
<td>Poland</td>
<td>PL</td>
</tr>
<tr>
<td>Benin</td>
<td>BJ</td>
<td>Japan</td>
<td>JP</td>
<td>Portugal</td>
<td>PT</td>
</tr>
<tr>
<td>Brazil</td>
<td>BR</td>
<td>Kenya</td>
<td>KE</td>
<td>Romania</td>
<td>RO</td>
</tr>
<tr>
<td>Belarus</td>
<td>BY</td>
<td>Kyrgyzstan</td>
<td>KG</td>
<td>Russian Federation</td>
<td>RU</td>
</tr>
<tr>
<td>Canada</td>
<td>CA</td>
<td>Democratic People’s Republic</td>
<td>KP</td>
<td>Sudan</td>
<td>SD</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>CF</td>
<td>of Korea</td>
<td>KR</td>
<td>Sweden</td>
<td>SE</td>
</tr>
<tr>
<td>Congo</td>
<td>CG</td>
<td>Republic of Korea</td>
<td>RK</td>
<td>Singapore</td>
<td>SG</td>
</tr>
<tr>
<td>Switzerland</td>
<td>CH</td>
<td>Kazakhstan</td>
<td>KZ</td>
<td>Slovenia</td>
<td>SI</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>CI</td>
<td>Liechtenstein</td>
<td>LI</td>
<td>Slovakia</td>
<td>SK</td>
</tr>
<tr>
<td>Cameroon</td>
<td>CM</td>
<td>Sri Lanka</td>
<td>LS</td>
<td>Senegal</td>
<td>SN</td>
</tr>
<tr>
<td>China</td>
<td>CN</td>
<td>Liberia</td>
<td>LR</td>
<td>Swaziland</td>
<td>SZ</td>
</tr>
<tr>
<td>Czechoslovakia</td>
<td>CS</td>
<td>Lithuania</td>
<td>LT</td>
<td>Chad</td>
<td>TD</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>CZ</td>
<td>Luxembourg</td>
<td>LU</td>
<td>Togo</td>
<td>TG</td>
</tr>
<tr>
<td>Germany</td>
<td>DE</td>
<td>Latvia</td>
<td>LV</td>
<td>Tajikistan</td>
<td>TJ</td>
</tr>
<tr>
<td>Denmark</td>
<td>DK</td>
<td>Monaco</td>
<td>MC</td>
<td>Trinidad and Tobago</td>
<td>TT</td>
</tr>
<tr>
<td>Estonia</td>
<td>EE</td>
<td>Republic of Moldova</td>
<td>MD</td>
<td>Ukraine</td>
<td>UA</td>
</tr>
<tr>
<td>Spain</td>
<td>ES</td>
<td>Madagascar</td>
<td>MG</td>
<td>Uganda</td>
<td>UG</td>
</tr>
<tr>
<td>Finland</td>
<td>FI</td>
<td>Mali</td>
<td>ML</td>
<td>United States of America</td>
<td>US</td>
</tr>
<tr>
<td>France</td>
<td>FR</td>
<td>Mongolia</td>
<td>MN</td>
<td>Uzbekistan</td>
<td>UZ</td>
</tr>
<tr>
<td>Gabon</td>
<td>GA</td>
<td>Mauritania</td>
<td>MR</td>
<td>Viet Nam</td>
<td>VN</td>
</tr>
</tbody>
</table>
HAIR GROWTH STIMULATING COMPOSITION

FIELD OF THE INVENTION

The present invention relates to factors which are capable of stimulating hair growth in a subject.

BACKGROUND OF THE INVENTION

The HF is composed of many cell types, such as epidermal and mesenchymal cells. The mesenchymal cells are known to play a role as "inductive organizers" of both fetal and postnatal follicles (Chase HB. Physiol Rev. 1954; 34:113-126).

The follicular germ cells, which are the bulbar matrix cells, are responsible for the great mitotic proliferation in the HF. During development, the cells in the matrix proliferate with an upward migration and differentiation into hair matrix, inner sheath and outer sheath cells. The hair matrix group, located in the central axis of the HF, further differentiates into the cells forming the medulla, hair cortex, and hair cuticle. These cells show a continuous upward migration with keratinization of the cortical and cuticle cells which are essential for the manufacturing process of hair in a growing follicle (Chase HB. Physiol Rev. 1954; 34:113-126; Hashimoto K. Br J Dermatol 1970; 83:167-176).

Hair cycles are divided into three stages: 1)
Anagen, which is the active growing phase of the HF cycle, 2) Catagen, a regressive stage, 3) Telogen, resting stage. (DeVillez RL: In: Current Concept, a Scope Publication by the Upjohn Co., Kalamazoo, MI, 1986; pp. 4-27.; Takashima I, Kawagishi I: In: Toda K, et al (eds): Biology and Disease of Hair. Baltimore, Univ. Park Press, 1976; pp. 457-471; Chase HB. Physiol Rev. 1954; 34:113-126; Kligman AM. J Invest Dermatol 1959; 33:307-316.) The relative duration of these stages varies with the individuals' age, hormonal factors, nutritional and health status, as well as genetics. Growth factors responsible for the stimulation of hair growth have not yet been elucidated.

Of the 100,000 to 150,000 scalp hairs on a human adult, approximately 90% are in anagen, with the remaining 10% in the telogen phase. Approximately 50 to 100 clubbed hairs are shed each day. The growth rates of human hairs vary slightly depending on the body region, with 0.44 mm/day at the vertex of the scalp then 0.27 mm/day for beard or body hair. (Moretti G, Rampini E, Rebora A: Int J Dermatol 15:277-285, 1976; Orentreich N, Durr NP: Clin Plast Surg 9:197-205, 1982; Katz M, Wheeler KE, Radowsky M. et al. Med biol Eng Comput 17:333-336, 1979.

In animal species such as rats and mice, all hairs are apparently in the same state of activity, where all cyclic changes are synchronized (DeVillez RL: In: Current Concept, A Scope Publication, by the Upjohn Co., Kalamazoo, MI, 1986; pp. 4-27; Takashima I, Kawagishi I: In: Toda K, et al (eds): Biology and Disease of Hair. Baltimore, Univ. Park Press, 1976; pp. 457-471). The first cycle of hair growth in rats starts early after birth and continues through to approximately the 21st day of life. The second cycle starts approximately after day 35.

The young (8-12 days) rat has been previously utilized as a model for chemotherapy-induced alopecia and a number of novel observations have been made (Hussein,

More recently, applicants have used a commercial hair remover, Neet®, on rats during their first cycle of hair growth. This approach makes the rats immediately alopecic, and hair does not regrow until the second cycle. Applicants believe that this long latent period could be used effectively to test various substances for their potential ability to stimulate hair growth and thus shorten the time to recovery.

It is an object of the present invention to determine the possible existence of hair growth-stimulating activity or of hair growth-stimulating factors.

SUMMARY OF THE INVENTION

It has been found that conditioned or extracted medium from mammalian normal, transformed or cancer cells, and preferably from conditioned or extracted medium from human mononuclear cells obtained from buffy coats and conditioned medium from the human pancreatic carcinoma cell line MIA PaCa (Yunis, A.A., Arimura, G.K., and Russin, D.J., Int. J. of Cancer, 19:128, 1977) possess hair growth-stimulating activity. This activity was determined by use of a screening process in which various
compounds and/or cytokines were tested.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 is a photograph of two groups of rats which were all treated with CTX. The top group of rats were treated with a hair growth stimulating composition according to the present invention and the bottom group were treated with control medium.

Fig. 2a is a photograph of a group of rats who were treated with CTX and then with a hair growth stimulating composition according to the present invention.

Fig. 2b shows a second group of rats treated with CTX and then with control medium.

Fig. 3 shows a group of rats treated with CTX. The right hand and left hand groups were treated with compositions according to the invention while the center group were treated with control medium.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates, in general, to compositions for stimulating hair growth and methods for stimulating hair growth. Hair growth stimulation may be desirable, for example, in alopecia conditions induced by chemotherapeutic treatment or in post hair graft treatment. Additionally, hair growth stimulation may be a goal in simply enhancing normal hair growth in a subject or in alleviating the effects of thinning hair.

It should be noted that by stimulation of hair growth as used herein applicants intend to encompass the stimulation of the growth of existing hair or the stimulation of hair growth from the hair follicle.

Hair growth stimulation is a commonly sought goal in various situations. Alopecia is a common and distressing side effect of various chemotherapeutic agent. There is an urgent need in such situations to enhance the growth of hair to restore the original state of a subject suffering from such alopecia. Similarly, hair growth...
stimulation is a requirement after hair graft procedures so that the grafted hairs may quickly grow and provide a fuller hair condition than may have been present prior to the hair graft procedure. Some normal subjects may also desire to have a fuller hair condition and, hence, a hair growth stimulating composition would also be desirable for such subjects.

Compositions suitable for use in the present invention comprise formulations containing the active materials in accordance with the present invention either by themselves or in association with a pharmaceutically acceptable vehicle therefore and optionally other therapeutic ingredient(s). The vehicle (Hashimoto K. Br J. Dermatol 1970; 83:167-176) must be "acceptable" in the sense of being compatible with the other ingredients of the preparation and not deleterious to the recipient thereof.

The instant active materials are normally administered in topical form such as a liniment, a lotion, a cream or a gel. Additionally, the instant active materials may be administered intracutaneously (intradermally). Further therapeutic ingredients which might be present include, for example, vitamin D, and its analogs, derivatives or active metabolites or a potassium channel opener such as minoxidil, cromokalin or pinacidil. The concentration of the active ingredients will generally be between about 1 and 100 μg/g. The instant formulations can be applied from once to several times daily for prolonged periods of time if such is required.

Preparations suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, applicants, oil-in-water or water-in-oil emulsions as creams, ointments, pastes or gels, or solutions or suspensions. Intracutaneous preparations contain the present active material and the known generally accepted intracutaneous excipients, carriers and
additives.

In addition to the aforementioned ingredients, the preparations of this invention may include one or more additional ingredients such as diluents, buffers, flavoring agents, binders, surface active agents, thickeners, lubricants, preservatives, e.g. methyl hydroxybenzoate (including anti-oxidants), emulsifying agents and the like.

The preparations may as mentioned above, contain further therapeutically active compounds usually applied in the above mentioned treatment.

In the topical treatment, ointments, creams, gels, or lotions containing from 1-100 μg/g of the instant active principles are administered.

The present invention further concerns a method for treating subjects suffering from or in risk of getting alopecia, said method consisting of administering topically to a subject in need of treatment to stimulate hair growth an effective amount of instant active materials, alone or in combination with one or more other therapeutically active compounds usually applied in such treatment. The treatment with the present compounds concomitantly with further therapeutically active compounds may be simultaneous or with intervals.

In the instant invention, the existence of a heretofore unknown hair growth-stimulating activity or factors have been found. The hair growth-stimulating activity or factors are produced by mammalian normal or transformed cells including, for example normal or transformed human cells as well as some tumor cells or cell lines. The hair growth-stimulating compositions comprise condition media obtained from cultures such cells and preferably of human mononuclear cells or a human pancreatic cancer cells.

A screening process was conducted in which a number of compositions and/or cytokines were tested. For
the purpose of testing two models were used:

1. Rats which have been rendered alopecic by chemotherapy (Cytoxan).
2. Rats rendered alopecic by depilation using the hair remover Neet®.

From the screening process, it was unexpectedly discovered that conditioned medium from human mononuclear cells (obtained from buffy coats) and conditioned medium from the human pancreatic carcinoma cell line MIA PaCa (Yunis, A.A., Arimura, G.K., and Russin, D.J., Int. J. of Cancer, 19:128, 1977) contained hair growth-stimulating activity (HGSA).

In rats rendered alopecic with either Cytoxan (CTX) or Neet®, treatment with Human Mononuclear Cell Conditioned Medium, HMCC, resulted in more rapid recovery of hair regrowth than controls, i.e. HMCC contains hair growth-stimulating activity or factor. Thus, it can be concluded that human mononuclear cells produce hair growth-stimulating activity or factor.

In rats rendered alopecic with Neet® (Cytoxan model not used), treatment with Human Pancreatic Cancer Cell Conditioned Medium, MPCM, also resulted in more rapid regrowth of hair than in controls. Thus, certain cancer cells can also produce hair growth-stimulating activity or factor.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious to those skilled in the art that certain changes and modifications may be practiced without departing from the spirit and scope thereof as described in the specification and as defined in the appended claims.

EXPERIMENTAL PROCEDURES

Sprague Dawley rats were used. Rats were fed and housed according to NIH guidelines. Cyclophosphamide
or Cytoxan (CTX) was from Adria Laboratories (Columbus, OH). CTX (35 mg/kg) was given for one day only on day 11.

PREPARATION OF CONDITIONED MEDIUM FROM HUMAN MONONUCLEAR CELL PREPARATIONS

Buffy coats were purchased from the American Red Cross (Miami, FL). The buffy coats were diluted 1:4 with Dulbecco's Modified Eagle's Media, DMEM, (GIBCO) with 10% fetal calf serum (Media Facility Cancer Center, Miami, FL). The cell suspension was placed on a gradient (Histopaque-1077, Sigma Diagnostics) and centrifuged for 40 minutes at 1400 rpm. The interface was collected, diluted 1:5 with 10% fetal calf serum (FCS) and centrifuged for 10 minutes at 800 rpm. This procedure was repeated to wash the mononuclear cells.

The cells were resuspended in DMEM with 1% FCS, counted and assessed for morphology. This procedure yielded on an average 35% monocytes and 65% lymphocytes. The cells were then plated at 3x10⁶/ml in DMEM with 1% FCS in tissue culture dishes (Sarstedt) and incubated for 24 hr in a humidified incubator at 37° with 5% CO₂. At the end of the incubation period, the supernatant was collected and centrifuged at 1000 rpm at 5° for 10 minutes.

The conditioned medium, containing the hair growth stimulating activity (human mononuclear cell conditioned medium or HMCCM), was collected and filtered with 0.2 μ filter. Samples were aliquoted and those not used immediately were stored at -70°.

PREPARATION OF MIA PaCa CONDITIONED MEDIUM

MIA PaCa cells were grown to confluence in DMEM with 10% FCS and 2.5% horse serum (HS). Plates were washed x 2 and fresh media was added. The cells were then incubated for 24 hr. in a humidified incubator at 37° with 5% CO₂. At the end of the incubation period, the supernatant was collected and centrifuged at 1000 rpm at 5° for 10 minutes. The conditioned media (MIA PaCa
conditioned medium or MPCM), containing the hair growth stimulating activity, was collected and filtered with 0.2 μ filter. Samples were aliquoted and those not used immediately were stored at -70°C.

Control medium was prepared similarly but without cells. Serum Free MPCM (S.F. MPCM) was prepared as follows: MIA PaCa cells were grown to confluence in DMEM with 10% FCS and 2.5% H.S. Plates were washed x 2 with S.F. media and fresh S.F. media was added. After 48 hrs. of incubation, the supernatant was collected, centrifuged at 1000 rpm at 5°C for 10 minutes, filtered with 0.2 μ filter and used for ultrafiltration.

CONCENTRATION OF MPCM

This was accomplished by ultrafiltration at 5°C. The MPCM was ultrafiltered in 400 ml batches through a filter with molecular weight (MW) cut off of 10 Kd at an operating pressure of 25 p.s.i. The 2-fold concentrated MPCM was collected and the effluent discarded. The S.F. MPCM was similarly concentrated 10 fold. For control rats, serum free DMEM was similarly concentrated 10 fold. Samples were aliquoted and frozen at -70°C until used.

Example I

Six 11-day old rats were given CTX 35 mg/kg i.p. Ten days later, when the rats were totally alopecic, they were randomized in two groups of 3 rats each. Group #1 received 0.3 ml of HMCCM s.c. on the head area daily for 10 days. Group #2 received 0.3 ml of control media s.c. on the head area daily for 10 days and served as control. Rats in group #1 demonstrated increased hair growth five days earlier than rats in group #2. Picture was taken on day 35. (Fig. 1).

Example II

Nineteen 11-day old rats were given CTX 35 mg/kg i.p. Ten days later, when the rats were totally alopecic, they were randomized in two groups of 9 and 10 rats respectively. Group #1 (9 rats) received 0.3 ml of HMCCM
s.c. on the back area daily for 10 days. Group #2 (10 rats) received 0.3 ml of control media s.c. on the back area daily for 10 days and served as control. Rats in group #1 demonstrated increased hair growth five to six days earlier than rats in group #2 (Picture was taken on day 35). (Figs. 2a and 2b).

Example III

Using Neet®, all hair was removed from nine 26-day old rats. Three groups of 3 rats were randomly selected. Group #1 received 0.5 ml of HMCCM s.c. on the back area daily for 6 days. Group #2 received 0.5 ml of MPCM similarly. Group #3 received control media. Six days after the first injection, three independent observers, not involved in the experiments, were asked to select the rats with increased hair growth.

<table>
<thead>
<tr>
<th>HAIR GROWTH STIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMCCM</td>
</tr>
<tr>
<td>Group #1</td>
</tr>
<tr>
<td>Observer #1</td>
</tr>
<tr>
<td>Observer #2</td>
</tr>
<tr>
<td>Observer #3</td>
</tr>
</tbody>
</table>

Example IV

Using Neet®, all hair was removed from nine 23-day old rats. Three groups of 3 rats were randomly selected. Group #1 received 0.5 ml of 10X S.F. MPCM on the back area daily for 7 days. Group #2 received 0.5 ml of 2X MPCM (containing serum). Group #3 received 10X control S.F. media and served as control. Seven days after the first injection pictures were taken (Fig. 3). The pictures clearly demonstrate that rats which received 10X S.F. MPCM or 2X MPCM had increased hair regrowth.
WE CLAIM:

1. A composition useful in the stimulation of hair growth in a subject comprising a conditioned medium obtained from a cell culture of human mononuclear cells.

2. The composition of claim 1, wherein the cultured cells are derived from buffy coats.

3. The composition of claim 2, wherein cells are plated in tissue culture dishes and incubated and supernatant from the cell culture comprising the conditioned medium is collected and filtered.

4. A composition useful in the stimulation of hair growth in a subject comprising a conditioned or extracted medium obtained from a cell culture of mammalian normal or transformed cells or cancer cells.

5. The composition of claim 4, wherein the cells are human pancreatic carcinoma cells.

6. The composition of claim 5, wherein the cells are human pancreatic carcinoma cell line MIA PaCa.

7. The composition of claim 4, wherein cells are plated in tissue culture dishes and incubated and supernatant from the cell culture comprising the conditioned medium is collected and filtered.

8. A method of stimulating hair growth in a subject comprising treating said subject with an effective amount of a composition according to claim 1.

9. A method of stimulating hair growth in a subject comprising treating said subject with an effective amount of a composition according to claim 4.
10. A pharmaceutical composition useful for stimulating hair growth comprising the composition according to claim 1 and a pharmaceutically acceptable carrier.

11. The pharmaceutical composition of claim 10, wherein the carrier is suitable for topical or intracutaneous application.

12. A pharmaceutical composition useful for stimulating hair growth comprising the composition according to claim 4 and a pharmaceutically acceptable carrier.

13. The pharmaceutical composition of claim 12, wherein the carrier is suitable for topical or intracutaneous application.

14. The method of claim 8, wherein the treatment of said subject is a topical or intracutaneous treatment.

15. The method of claim 9, wherein the treatment of said subject is a topical or intracutaneous treatment.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6): A61K 35/14, 35/12
US CL.: 424/195.1, 520, 534, 573
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S.: 424/195.1, 520, 534, 573

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, CA, MEDLINE, BIOSIS, WIPS

search terms: (mononuclear or MIA PaCa) and [culture medi#] and (alopecia)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>NAKAYAMA et al. Decreased TCGF activity in the culture medium of PHA stimulated peripheral mononuclear cells from patients with metastatic cancer. Clinical and Experimental Immunology, 1983. Vol. 51. pages 511-516</td>
<td>1-4, 10-13</td>
</tr>
<tr>
<td>X</td>
<td>US 5,093,479 (FABRICIUS et al.) 03 March 1992, see the entire document.</td>
<td>1-4, 10-13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* See patent family annex.

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search

31 MARCH 1997

Date of mailing of the international search report

24 APR 1997

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

JEAN C. WITZ

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet) (July 1992)*
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>OHMURA et al. Insulin-like Growth Factor I and Transforming Growth Factor alpha as Autocrine Growth Factors in Human</td>
<td>4-7, 12-13</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 492 614 A2 (NAKAMURA et al.) 01 July 1992, see the entire document.</td>
<td>4, 9, 12-13, 15</td>
</tr>
<tr>
<td>Y</td>
<td>WO 93/04164 A1 (THE STATE OF OREGON) 04 March 1993, see the entire document.</td>
<td>4, 9, 12-13, 15</td>
</tr>
</tbody>
</table>