1/84314 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

8 November 2001 (08.11.2001)

PCT

(10) International Publication Number

WO 01/84314 A2

(51) International Patent Classification’: GO6F 11/00

(21) International Application Number: PCT/US01/14250

(22) International Filing Date: 2 May 2001 (02.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/201,092
60/201,099

2 May 2000 (02.05.2000)
2 May 2000 (02.05.2000)

Us
Us

(71) Applicant: SUN MICROSYSTEM, INC. [US/US]; 901
San Antonio Road, MS PALO01-521, Palo Alto, CA 94303
(US).

(72) Inventors: KAMPE, Mark, A.; 6601 Center Drive West,
Los Angeles, CA 90045 (US). HERRMANN, Frederic,
E.; ¢/o Sun Microsystem, Inc., 16 Network Circle, MPK
16-202, Menlo Park, CA 94025 (US). BROSSIER,
Stephane; c/o Sun Microsystem, Inc., 16 Network Circle,
MPK 16-202, Menlo Park, CA 94025 (US).

(74) Agent: BAILEY, Matthew, T.; Hogan & Hartson, LLP,
555 13th Street, NW, Washington, DC 20004 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR PROVIDING CLUSTER REPLICATED CHECKPOINT SERVICES

PCl Back-plane 1
H L L H
g s N N | s
P c H H c c P
S S a a
ACT 106 P P : . STD
BY
107 108 —101
108 108 110 m
I [
PCl Back-plane 1o o2
H 1_ II. H
s H
I§ ¢ c N N c S
H H P
STD v v : : 17
BY d d P P ACT
115 116 118
112 113 114
L L] sl

(57) Abstract: The present invention describes a method and system for providing cluster replicated checkpoint services. In partic-
ular, the method provides cluster replicated checkpoint services for replicas of a checkpoint in a cluster. The cluster includes a first
node and a second node, which are connected to one another via a network. The replicas include a primary replica and a secondary
replica. The method includes managing the checkpoint that contains checkpoint information, and creating the primary replica in a
memory of the first node. The primary replica contains first checkpoint information. The method also includes updating the primary
replica so that the first checkpoint information corresponds to the checkpoint information, creating the secondary replica that contains
second checkpoint information in a memory of the second node, and updating the secondary replica so that the second checkpoint

information corresponds to the checkpoint information.

10

15

20

25

WO 01/84314 PCT/US01/14250
METHOD AND SYSTEM FOR PROVIDING CLUSTER REPLICATED
CHECKPOINT SERVICES

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Nos.
60/201,092 and 60/201,099, which were filed on May 2, 2000, and which are hereby

incorporated by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a method and system for providing cluster
replicated checkpoint services. In particular, the present invention relates to a
cluster replicated checkpoint service ("CRCS"), which provides services for
components to maintain checkpoint and its replicas. In so doing, the CRCS allows
components to recover promptly and seamlessly from failures, and thus ensures
high-availability of services provided by them.

Discussion of the Related Art

Networked computer systems enable users to share resources and services.
One computer can request and use resources or services provided by another
computer. The computer requesting and using the resources or services provided by
another computer is typically known as a client, and the computer providing
resources or services to another computer is known as a server.

A group of independent network servers may be used to form a cluster.
Servers in a cluster are organized so that they operate and appear to clients, as if
they were a single unit. A cluster and its network may be designed to improve
network capacity, by among other things, enabling the servers within a cluster to

shift work in order to balance the load. By enabling one server to take over for

10

15

20

25

WO 01/84314 PCT/US01/14250

another, a cluster may be used to enhance stability and minimize downtime caused
by an application or system failure.

Today, networked computer systems including clusters are used in many
different aspects of our daily lives. They are used, for example, in business,
government, education, entertainment, and communication. As networked
computer systems and clusters become more prevalent and our reliance on them
increases, it has become increasingly more important to achieve the goal of always-
on computer networks, or "high-availability" systems..

High-availability systems need to detect and recover from a failure in a way
transparent to its users. For example, if a server in a high-availability system
fails, the system must detect and recover from the failure with no or little impact on
clients.

Various methods have been devised to achieve high availability in networked
computer systems including clusters. For example, one method known as triple
module redundancy, or "TMR," is used to increase fault tolerance at the hardware
level. Specifically, with TMR, three instances of the same hardware module
concurrently execute and by comparing the results of the three hardware modules
and using the majority results, one can detect a failure of any of the hardware
modules. However, TMR does not detect and recover from a failure of software
modules. Another method for achieving high availability is software replication, in
which a software module that provides a service to a client is replicated on at least
two different nodes in the system. While software replication overcomes some
disadvantages of TMR, it suffers from its own problems, including the need for
complex software protocols to ensure that all of the replicas have the same state.

The use of replication of hardware or software modules to achieve high-
availability raises a number of new problems including management of replicated
hardware and software modules. The management of replicas has become
increasingly difficult and complex, especially if replication is done at the individual

software and hardware level. Further, replication places a significant burden on

10

15

20

25

WO 01/84314 PCT/US01/14250

system resources.

When replication is used to achieve high availability, one needs to manage
redundant components and have an ability to assign work from failing components
to healthy ones. However, telling a primary component to restart or a secondary
component to take over, is not sufficient to ensure continuity of services. To achieve
a seamless fail-over, the successor needs to pick-up where the failing component left
off. This means that secondary components need to know what the last stable state
of the primary component was.

One way of passing information regarding the state of the primary
component is to use checkpoints. A checkpoint may be a file containing information
that describes the state of the primary component at a particular time. Because
checkpoints play a crucial role in achieving high-availability, there is a need for a
system and method for providing reliable and efficient cluster replicated checkpoint

services to achieve high availability.

SUMMARY OF THE INVENTION

The present invention provides a system and method for providing cluster

replicated checkpoint services. In particular, the present invention provides a
cluster replicated checkpoint service for managing a checkpoint and its replicas to
make a cluster highly available.

To achieve these and other advantages and in accordance with the purposes
of the present invention, as embodied and broadly described herein, the present
invention describes a method for providing cluster replicated checkpoint services for
replicas of a checkpoint in a cluster. The cluster includes a first node and a second
node, which are connected to one another via a network. The replicas include a
primary replica and a secondary replica. The method includes managing the
checkpoint that contains checkpoint information, and creating the primary replica
in a memory of the first node. The primary replica contains first checkpoint

information. The method also includes updating the primary replica so that the

10

15

20

25

WO 01/84314 PCT/US01/14250

first checkpoint information corresponds to the checkpoint information, creating the
secondary replica that contains second checkpoint information in a memory of the
second node, and updating the secondary replica so that the second checkpoint
information corresponds to the checkpoint information.

In another aspect, the invention includes a method for providing cluster
replicated checkpoint services for replicas of a checkpoint in a cluster. The cluster
includes a first node and a second node, which are connected to one another via a
network. The replicas include a primary replica and a secondary replica. The
method includes creating the checkpoint, opening the checkpoint from the first node
in a write mode, and creating the primary replica in a memory of the first node. It
also includes updating the checkpoint, updating the primary replica, and
propagating a checkpoint message that includes information regarding the
checkpoint. Further, the method includes opening the checkpoint from the second
node in a read mode, creating the secondary replica in a memory of the second node,
and updating the secondary replica based on the checkpoint message. @

In yet another aspect, the invention includes a computer program product
configured to provide cluster replicated checkpoint services for replicas of a
checkpoint in a cluster. The cluster includes a first node and a second node, which
are connected to one another via a network. The replicas include a primary replica
and a secondary replica. The computer program product includes computer
readable program codes configured to: (1) manage the checkpoint that contains
checkpoint information; (2) create the primary replica with first checkpoint
information in a memory of the first node; (3) update the primary replica so that the
first checkpoint information corresponds to the checkpoint information; (4) create
the secondary replica with second checkpoint information in a memory of the second
node; and (5) update the secondary replica so that the second checkpoint
information corresponds to the checkpoint information. The computer program
product also includes a computer readable medium in which the computer readable

program codes are embodied.

10

15

20

25

WO 01/84314 PCT/US01/14250

In further aspect, the invention includes a computer program product
configured to provide cluster replicated checkpoint services for replicas of a
checkpoint in a cluster. The cluster includes a first node and a second node, which
are connected to one another via a network. The replicas include a primary replica
and a secondary replica. The computer program product includes computer
readable program codes configured to: (1) create the checkpoint; (2) open the
checkpbint from the first node in a write mode; (3) create the primary replica in a
memory of the first node; (4) update the checkpoint; (5) update the primary replica;
and (6) propagate a checkpoint message that includes information regarding the
checkpoint. The computer program product further includes computer readable
program codes configured to: (1) open the checkpoint from the second node in a
read mode; (2) create the secondary replica in a memory of the second node; and (3)
update the secondary replica based on the checkpoint message. It also includes a
computer readable medium in which the computer readable program codes are
embodied.

In yet further aspect, the invention includes a system for providing cluster
replicated checkpoint services for replicas of a checkpoint in a cluster. The cluster
includes a first node and a second node, which are connected to one another via a
network. The replicas include a primary replica and a secondary replica. The
system includes means for: (1) managing the checkpoint with checkpoint
information; (2) creating the primary replica with first checkpoint information in a
memory of the first node; (3) updating the primary replica so that the first
checkpoint information corresponds to the checkpoint information; (4) creating the
secondary replica with second checkpoint information in a memory of the second
node; and (5) updating the secondary replica so that the second checkpoint
information corresponds to the checkpoint information.

In another aspect, the invention includes a system for providing cluster
replicated checkpoint services for replicas of a checkpoint in a cluster. The cluster

includes a first node and a second node, which are connected to one another via a

10

15

20

25

WO 01/84314 PCT/US01/14250

network. The replicas include a first replica and a second replica. The system
includes means for: (1) creating the checkpoint; (2) opening the checkpoint from the
first node in a write mode; (3) creating the primary replica in a memory of the first
node; (4) updating the checkpoint; (5) updating the primary replica; (6) propagating
a checkpoint message with information regarding the checkpoint; (7) opening the
checkpoint from the second node in a read mode; (8) creating the secondary replica
in a memory of the second node; and (9) updating the secondary replica based on the
checkpoint message.

Finally, in another aspect, the invention includes a system for managing a
checkpoint. The system includes a first node running a primary component,
including a primary replica having first checkpoint information in its memory,
having a first checkpoint service, and connected to a network. The system also
includes a second node running a secondary component, including a secondary
replica in its memory, having a second checkpoint service, and connected to the
network. The first checkpoint service and the second checkpoint service are capable
of accessing the checkpoint. The first checkpoint service works with the primary
component to update a checkpoint, issue a checkpoint message containing
information regarding the checkpoint, asynchronously propagate the checkpoint
message, and update the first replica. The second checkpoint service is capable of
updating the secondary replica based on the checkpoint message.

Additional features and advantages of the invention are set forth in the
description that follows, and in part are apparent from the description, or may be
learned by practice of the invention. The objectives and other advantages of the
invention are realized and attained by the structure particularly pointed out in the
written description and claims hereof as well as the appended drawings.

It is to be understood that both the foregoing general description and the following
detailed description are exemplary and explanatory and are intended to provide

further explanation of the invention as claimed.

10

15

20

25

WO 01/84314 PCT/US01/14250

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide further

understanding of the invention and are incorporated in and constitute a part of this
specification, illustrate embodiments of the invention and together with the
description serve to explain the principles of the invention. In the drawings:

FIG. 1 is a simplified representational drawing of a cluster that may serve as
an operating environment for the present invention;

FIG. 2 is a block diagram of a logical view of one operational aspect of a
checkpoint management system of the present invention;

FIG. 3 is a block diagram showing relationships among five checkpoint
replica states in accordance with an embodiment of the present invention; and

FIGS. 4A, 4B, and 4C are flow charts illustrating some of operations involved
in managing a checkpoint and its replicas in accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference is now made in detail to the preferred embodiment of the present

invention, examples of which are illustrated in the accompanying drawings.

FIG. 1 is a simplified representational drawing of a cluster in which the
present invention may be used. It is important to note that the cluster shown in
FIG. 1 is merely an example and that the present invention may be utilized in a
much larger or smaller cluster or networked computer systems. In other words, the
present invention does not depend on the architecture of an underlying cluster or a
networked computer system.

The cluster of FIG. 1 has two independent shelves 101 and 102, which are
interconnected by a network. Each shelf may include: (1) one compact PCI ("cPCI")
back-plane (103 and 104); (2) redundant power supplies and fans; (3) one dual-
ported, hot-swap controller ("HSC") (106 and 117), which manages the power to the
slots, as well as the power supplies, fans, and environment alarms; (4) a bus-switch,

permitting the bus to be managed by one of two host-slot processors; (5) two hot-

10

15

20

25

WO 01/84314 PCT/US01/14250

swap-able host-slot processors ("HSP"), one active (105 and 118) and one standby
(111 and 112); (6) two line cards ("L-cards"), which are hot-swap-able (109, 110, 113,
and 114); and (7) two non-host-slot processors ("NHSPs") (107, 108, 115, and 116).

Nodes within a single shelf would communicate across the cPCI back-plane.
Communication between nodes on different shelves would use a network, which, for
example, can be dual-redundant 100 MB ethernets. The HSP nodes would act as
gateways, relaying packets between their cPCI back-planes and the ethernets.
Further, L-cards may be made 2N-redundant, for example, by making the L-cards
109 and 114 standbys for the L-cards 113 and 110, respectively. NHSPs may be
made N+1 redundant, for example, by making the NHSP 116 act as a standby for
the other three NHSPs 107, 108, and 115.

Turning to FIG. 2, FIG. 2 depicts a logical view of a checkpoint management
system of the present invention. A cluster 200 includes a node_1 201, a node_2 202,
and a node_3 203. The node_1 201, node_2 202, and node_3 203 are connected via a
network 204. Nodes in a cluster typically are peer nodes—that is, nodes fully
participate in intra-cluster services.

The node_1 201 has a cluster replicated checkpoint service, or simply a
checkpoint service 208. The checkpoint service 208 is responsible for managing
checkpoint replicas on the node_1 201. It may also communicate with checkpoint
services on other nodes. In this example, the checkpoint service 208 may
communicate with checkpoint services 209 and 210 on the node_2 202 and the
node_3 208, respectively. Further, client applications or components may access the
checkpoint services 208, 209, and 210 through a CRCS library. The CRCS library
may include function calls and/or operations that may be used by client applications
or components. In other words, client applications or components may be linked to
the CRCS library, and the CRCS library may communicate with the checkpoint
services.

A primary component 205 resides within the node_1 201. A primary

component is a component that is actively doing real work for the system. A

10

15

20

25

WO 01/84314 PCT/US01/14250

component is an encapsulation of a logical aggregation of functions provided by
software, hardware, or both that is designated to behave as a unit of deployment,
redundancy, and manageability within a networked computer system. A component
may be instantiated into one or multiple component instances. A component
instance may be referred to as a component for simplicity.

The node_1 201 further has a primary replica 211, and a control block 214 in
its memory. A control block is a piece of memory that is attached to a corresponding
replica. The control block is typically used for management purposes. In other
words, the control block may be thought of as a scratch pad that a component can
use to annotate information regarding a corresponding replica. A control block may
be used to store data associated with a corresponding application or component.

Data contained in a control block may be independent from data contained in
control blocks of other replicas. Further, information in a control block may include
information regarding checkpoint parameters or attributes. In FIG. 2, the control
block 214 contains information for the primary replica 211.

In one preferred embodiment, control blocks are not replicated. However,
their data may be accessed by any node in a cluster. For example, a primary
component may access control blocks of replicas used by its secondary counterparts
to determine formats that they use for checkpoint information. In FIG. 2, the
primary component 205 may access data in control blocks 215 and 216. Similarly,
data in the control block 214 may be made accessible to secondary components 206
and 207.

The control block may be used to support an upgrade of a checkpoint service
on various nodes. Specifically, a control block may include information regarding a
version of a corresponding application and/or information regarding a format of
checkpoint information in a corresponding replica. Such version and/or format
information may be used to support split-mode and/or rolling upgrades.

A replica is a checkpoint instance that resides on a node where the

checkpoint has been opened. Typically, there are as many replicas as there are

10

15

20

25

WO 01/84314 PCT/US01/14250

different nodes on which components have opened the checkpoint. In FIG. 2, the
three nodes (i.e. the node_1 201, node_2 202, and node_3 203) have opened the
checkpoint and have three checkpoint replicas, namely the primary replica 211, a
secondary replica 212, and a secondary replica 213.

A primary replica typically resides in the same node as a primary component.
In FIG. 2, the primary replica 211 and the primary component 205 reside in the
node_1 201.

The node_2 202 and node_3 203 have the secondary components 206 and 207,
respectively. A secondary component is a component that is not actively doing real
work for the system, but is tracking checkpoints from a primary component so that
it can take over for the primary component if the primary component fails.

The node_2 202 has the checkpoint service 209, the secondary replica 212,
and the control block 215. Similarly, the node_3 203 has the checkpoint service 210,
the secondary replica 212, and the control block 216. In other words, both the
node_2 202 and the node_3 203 have opened the checkpoint and created the
secondary replicas 212 and 213, respectively. The secondary replicas 212 and 213
track the primary replica 211, by updating information to reflect change in the
checkpoint. Information in the secondary replicas 212 and 213 may be used by the
secondary components 206 and 207, respectively, to take over the primary
component 201, in case the primary component 201 fails, for example.

A checkpoint may be thought of as being similar to a file or files. A
checkpoint may be made accessible on any node in a cluster. For example, its name
may be made globally accessible by using a cluster name service. Further, a
checkpoint may have any of the following characteristics: (1) it is accessed through
a global name; (2) it is seen as a linear data segment; (3) it has attributes that can
be specified at creation time and possibly modified later on; (4) it can be opened for
read, write, or read/write access (however, at any given time, only one node may
have processes which have the checkpoint open for a write mode); (5) it can be read

by specifying an offset at which the reading should start and the consecutive

10

10

15

20

25

WO 01/84314 PCT/US01/14250

number of bytes that should be read; (6) it can be updated and/or written by
specifying a number of vectors, each of them representing a continuous range of
bytes that should be written; (7) it can be closed; and (8) it can be deleted.

A checkpoint message may be used to update information in secondary
replicas. Upon receiving a checkpoint message, secondary replicas may be updated.
Typically, operations to update secondary replicas are done asynchronously—i.e.,
information in the first and the secondary replicas are updated asynchronously. As
a result, at any given point, two replicas may not contain the same information.
However, one may choose to synchronize replicas on different nodes to ensure
consistency of all the replicas of a given checkpoint.

Referring back to FIG. 2, checkpoint messages may be used to update
secondary replicas 212 and 213. If they are updated asynchronously, at any given
point, the primary replica 211 and the secondary replicas 212 and 213 may not
contain the same information.

One may associate different states to a checkpoint replica. For example, a
replica may have several different states associated with it. Such states may
include EMPTY, CORRUPTED, CHECKPOINTING, MISSED, and COMPLETED.
These different state values may reflect whether or not certain operation on a
replica is performed successfully. FIG. 3 shows relationships among the five
different state values. One of ordinary skill in the art will appreciate that state
values help manage replicas of a checkpoint, and will modify, delete, and/or add
state values according to their needs.

At checkpoint creation time, when no replica exists in a cluster, a local
replica may be initialized with 0, and its state may be set to an EMPTY 400 state.
A function call crcs_open 405 may be used to perform the creation step.

The function call cres_open 405 may be defined so that it creates and/or opens
a checkpoint and returns a new checkpoint descriptor to access a checkpoint replica
on a local node. It may have several arguments, such as a name of the checkpoint

to be opened or created, an access mode (i.e., read, write, or read/write), a

11

10

15

20

25

WO 01/84314 PCT/US01/14250

permission to be used in creating the checkpoint, if necessary, and checkpoint
attributes if the checkpoint has to be created. Its arguments may also include an
upper bound on the time the call executes, and a location in the caller address space
to return the checkpoint descriptor. As to the upper bound on the time limit, if the
call cannot complete within the upper bound on the time limit, all related resources
may be freed and the call may return with an error. A memory may be allocated for
a new replica. It may be initially filled with 0, for example.

If the checkpoint does not exist prior to the function call crcs_open 405, then
the function call may create a checkpoint and a checkpoint replica. If the
checkpoint exists (i.e., the function call crcs_open 405 merely opens the checkpoint
and creates a checkpoint replica), the new replica may be initialized with another
valid replica. The crcs_open 405 may block until this initialization has been
achieved.

If crcs_pwrite operations (406, 407, and 408) occur during the creation of a
new replica, they may be propagated to the new replica after initialization has
completed. Upon a successful completion of the crcs_pwrite operation (407), the
state may be set to CHECKPOINTING 401 or COMPLETED 402. If the
cres_pwrite operations fail (406 and 408), the state méy go to CORRUPTED 404 or
MISSED 403. The CORRUPTED 404 and MISSED 403 states are invalid states.

The checkpoint replica initially in the EMPTY 400 state may enter into the
CHECKPOINTING 401 state after a first successful crcs_pwrite operation (407).
The cres_pwrite operation may be used to update information in a checkpoint
replica and is discussed in detail below. The checkpoint replica may remain in the
CHECKPOINTING 401 state, until a crcs_pwrite error occurs (409 and 412) or until
the last writer closes the checkpoint using a cres_close (418) function call. Upona
cres_pwrite error (409 and 412), the state of the checkpoint replica may be changed
to MISSED 403 or CORRUPTED 404. When the last writer closes the checkpoint,
the checkpoint replica may go to the COMPLETED 402 state.

If only a part of the data corresponding to a crcs_pwrite operation can be

12

10

15

20

25

WO 01/84314 PCT/US01/14250

written to the replica or if the synchronization of the replica as a result of a
cres_open operation fails (i.e., 406, 409, or 415), the state of the replica may be set to
the CORRUPTED 404 state. A replica in the CORRUPTED 404 state may enter
the CHECKPOINTING 401 state after a successful completion of a cres_valid 410 or
cres_resync 411 function call. Alternatively, it may enter the COMPLETED 402
state after a successful completion of a cres_resync 416 function call. The cres-valid
and crcs_resync function calls are described in detail below.

When a cres_pwrite function call cannot be propagated to a remote replica
because of network congestion or a temporary network failure (i.e., 408, 412 or 419),
for example, the state of the remote replica may be set to MISSED 403. A replica in
the MISSED 403 state may go to the CHECKPOINTING 401 state after a
successful completion of a ércs_valid 413 or crcs_resync 414 function call.
Alternatively, it may go to the COMPLETED 402 state after a successful completion
of a cres_resync 420 function call. In one implementation, a replica in the MISSED
403 state is not updated until its state changes the CHECKPOINTING 401 state.

A replica may enter into the COMPLETED 402 state when one of the
following situation occurs: (1) its previous state was CHECKPOINTING 401, and
the last process which had the checkpoint open for writing has closed it by using a
cres_close 418 function call; or (2) its previous state was CORRUPTED 404 or
MISSED 403, and an explicit cres_resync operation (416 or 420) has been
performed, triggering synchronization with a replica in the COMPLETED 402 state.

Finally, a replica in the COMPLETED 402 state may move to
CHECKPOINTING 401, CORRUPTED 404, or MISSED 403 state. The replica goes
to the CHECKPOINTING 401 state upon a successful cres_pwrite 417 function call.
The replica goes to the CORRUPTED 404 or MISSED 403 state, when an error
occurs in a cres_pwrite (415 or 419) function call.

FIGS. 4A, 4B, and 4C are flow diagrams, illustrating some of the operations
involved in managing a checkpoint in accordance with an embodiment of the

present invention. FIGS. 4A-4C show operations that may be performed to provide

13

10

15

20

25

WO 01/84314 PCT/US01/14250

a prompt and seamless fail-over when a primary component running on a node N1
500 fails. Itis important to note that FIGS. 4A-4C are only examples that illustrate
operations of one embodiment of the present invention. As such, the purpose of this
example is not to cover all possible errors or operations, but instead to explain the
present invention by providing some of the operations involved in a few specific fail-
over scenarios.

In this embodiment, a primary component PC1 resides on a node N1 501 and
a secondary component SC2 resides on a node N2 501. The nodes N1 500 and N2
501 are connected to each other via a network 510.

Referring first to FIG. 4A, on the node N1 500, the primary component PC1
opens and creates a checkpoint at step 502. Typically, the primary component may
create a checkpoint using a global name. Upon creation of the checkpoint, a new
entry may appear in a name space for checkpoints. This entry may be used
subsequently to refer to the newly created checkpoint. The name space may be
managed using the Name Service Application Programming Interface ("Name
Service API"). An example of such Name Service API includes lightweight directory
access protocol ("LDAP") APL

At step 502, the checkpoint is opened in a write mode. At step 503, a cluster
replicated checkpoint service for the node N1 (i.e., CRCS1) creates and initializes a
replica R1. The replica R1 is created in a memory of the node N1 500 and then
initialized. After a successful completion of the initialization step (503), the state of
the replica R1 is set to EMPTY.

The primary component PC1 continuously updates the checkpoint at step
504. At step 505, the replica R1 on the node N1 500 is also continuously updated by
the CRCS1 to reflect information in the checkpoint. Provided that there is no error
in the updating process, the state of the replica R1 goes to and remains in
CHECKPOINTING.

At some point, the secondary component SC2 is initiated on the node N2 501.
At step 506, the secondary component SC2 opens the checkpoint in a read mode.

14

10

15

20

25

WO 01/84314 PCT/US01/14250

This step typically happens after step 500. However, the SC2 may create a
checkpoint before opening it in a read mode, if the checkpoint has not been created
yet.

At step 507, a cluster replicated checkpoint service on the node N2 (i.e.,
CRCS2) creates and initializes a replica R2 on the node N2 501. During this
initialization process, the primary component PC1 may update to the checkpoint
and the CRCS1 may update the replica R1. However, when this initialization step
507 is completed, the replicas R1 and R2 may be made identical, and their states
may correspond to CHECKPOINTING, absent any intervening errorsin a
synchronization step. At step 508, the CRCS2 continuously updates the replica R2
to reflect changes in the corresponding checkpoint.

In this embodiment, it is the responsibility of the checkpoint management to
remember that replicas are on the nodes N1 500 and N2 501. While the primary
component updates the checkpoint, the checkpoint management updates the
replicas R1 on the node N1 500 and the replica R2 on the node N2 501. Checkpoint
messages containing information regarding the checkpoint may be used to notify all
the nodes that have opened the checkpoint.

Turning now to FIGS. 4B and 4C, embodiments of a failure recovery
procedure of the present invention is explained. Specifically, FIGS. 4B and 4C
represent two scenarios that may occur upon a failure of the primary component
PC1. In both scenarios, the checkpoint is used to recreate the last consistent state
of the primary component PC1. In the scenario of FIG. 4B, the primary component
PC1 is restarted using the replica R1. In this scenario, the checkpoint is kept on the
local node and thus the restart operation can be performed very efficiently. In the
scenario of FIG. 4C, the secondary component SC2 takes over the role of primary
using the replica R2. This may occur when an attempt to restart the primary
component PC1 fails or when one decides that the secondary component SC2 should
take over upon failure of the primary component PC1, for example.

As discussed in the previous paragraph, the scenario of FIG. 4B typically

15

10

15

20

25

WO 01/84314 PCT/US01/14250

occurs upon failure of the primary component PC1. In order to restart the failed
primary component PC1, the primary component PC1 reopens the checkpoint in a
read/write mode at step 521. At step 522, the primary component PC1 obtains the
last valid data before its crash from the replica R1. Once this step is completed, the
primary component PC1 resumes its operation—it continuously updates the
checkpoint at step 523. The CRCS1, in turn, continuously updates the replica R1 in
the node N1 at step 524.

Preferably, the retention time for the replica R1 is set to a value greater than
the time needed for the primary component PC1 to restart. The retention time
defines how long a replica remains in memory after the last process which
previously opened it on that node, closes it. This parameter may be specified when
a replica is created and may be modified later on. By assigning the retention time
for the replica R1 a value greater than the time needed for the primary component
PC1 to restuart, the primary component PC1 may be restarted using its local replica
R1, making it unnecessary to copy information from a replica on a remote node after
reopening the checkpoint. If the replica R1 no longer exists at step 522, the CRCS1
may have to access corresponding replicas on other nodes, for example, the replica
R2 on the node N2 to initialize a new replica on the node N1 500.

Once the PC1 resumes its operation, the CRCS2 also updates the replica R2
to reflect changes in the checkpoint at step 525.

FIG. 4C illustrates exemplary operations that may take place if one decides
that the secondary component SC2 on the node N2 501 should take over the role of
primary from the failed primary component PC1 on the node N1 500. In this
scenario, the secondary component SC2 becomes a new primary component by using
the content of the replica R2 on the node N2 501 to recreate the last valid state of
the failed primary component at step 550. Provided that the operation of closing
the checkpoint on the former primary node N1 500 at step 554 completes
successfully, the state of the replica R2 on the node N2 501 at step 550 is
COMPLETED.

16

10

15

20

25

WO 01/84314 PCT/US01/14250

At step 551, the new primary component SC2 reopens the checkpoint to
acquire a write access on it. The state of the replica R2 stays in COMPLETED until
the new primary component SC2 performs a write operation. At step 552, the new
primary component SC2 continuously updates the checkpoint. At step 553, the
replica R2 on the node N2 501 is also continuously updated by the CRCS2.

If one decides to restart the previous primary component PC1 as a new
secondary component, the new secondary component on the node N1 500 reopens
the checkpoint in a read mode at step 555. At step 556, the replica R1 is updated to
reflect changes in the checkpoint made by the new primary component SC2.

Consistency of Replicas on Various Nodes

In an embodiment where primary and secondary components exist on
different nodes, multiple replicas may reside on different nodes. When multiple
cres_pread and/or crcs_pwrite operations occur at the same time, one may impose
certain consistency rules for replicas based on where they reside. For example, one
may impose a strong consistency on a local node and a weak consistency among
remote nodes. Further, in order to guarantee the atomicity of crcs_pread and
crcs_pwrite operations in a cluster, one may put a maximum limit to the size of data
that can be read or written in a single operation.

When multiple cres_pread and crcs_pwrite operations occur on a local replica,
various problems could arise. For example, when a multi-threaded process
attempts to update a checkpoint in a thread, and at the same time attempts to read
some data from the checkpoint in another thread, such operations may need to be
coordinated. One possible rule for coordinating such operations may be to: (1)
maintain atomicity at cres_pread and cres_pwrite operation levels on a local replica;
and (2) maintain the orderings of the crcs_pread and crcs_pwrite operations on a
local replica. This rule ensures that: (1) cres_pread and crcs_pwrite operations on
overlapping ranges of a checkpoint are sequentialized; and (2) if a crcs_pwrite
operation has completed, any following crcs_pread operation returns the data

previously written.

17

10

15

20

25

WO 01/84314 PCT/US01/14250

When multiple cres_pread and/or crcs_pwrite operations occur among remote
replicas, one also needs to be concerned about synchronizing the remote replicas.
Before discussing synchronization of the remote replicas, it is worth making an
analogy with synchronization occurring between a file system buffer cache and a
disk during file updates. In a default mode, when a write call returns, the buffer
cache has been updated but the disk will be updated later in an asynchronous way.
There is also an explicit “fsync” operation associated with this asynchronous mode,
which forces synchronization of all updates in the buffer cache to the disk.

A very similar default mode may be used for the checkpoint mechanism.
Specifically, when a cres_pwrite call returns, a local replica has been updated, but
remote replicas will be updated later, in an asynchronous manner. There may also
be an explicit call, cres_fsync, to force synchronization among various replicas.

At any given time, it may be preferable to have only one node with
components or processes that have a checkpoint open for writing so that no
distributed crcs_pwrite operations occur in parallel. It may also be preferable to
maintain atomicity at the crcs_pread and cres_pwrite operation levels among
remote replicas. For example, if a process P1 on a node N1 performs a crcs_pwrite
operation on a replica R1, and if a process P2 on a node N2 starts a crcs_pread
operation on a replica R2, the system may guarantee that the data read by the
process P2 has not been partially modified by the crecs_pwrite operation on the node
N1. Further, one may need to consider an ordering on crcs_pread and crcs_pwrite
operations among remote replicas. For example, the data read by the process P2
after the process P1 returns from the crcs_pwrite operation, may or may not
correspond to the latest data written by the process P1. However, after explicit
synchronization by using, for example, a crcs_fsync function call, the system may
guarantee that the crcs_pread operation returns the latest data—in other words,
the data read by the process P2 corresponds to the latest data written by the
process P1. Finally, one may impose a rule that crcs_pwrite operations performed

by one thread are propagated to remote nodes in an ordered fashion.

18

10

15

20

25

WO 01/84314 PCT/US01/14250

Checkpoint Characteristics

Checkpoint characteristics include a format, states for replicas, control blocks
for replicas, and attributes. In addition to these characteristics, this section
discusses one embodiment of a checkpoint deletion operation.

The format of a checkpoint, i.e., the way a process stores information, is
typically process specific. For example, one process may decide to rely on an
incremental checkpoint mechanism, whereas another process may prefer a
non-incremental way of storing information. However, in order to allow a secondary
process to take over, different processes that have opened the same checkpoint are
aware of the format of the associated checkpoint.

As discussed above, a replica may be in different states. Such states may
include EMPTY, CHECKPOINTING, CORRUPTED, MISSED, and COMPLETED.
States may be retrieved by a component using a crcs_fstat function call. Function
calls that could modify the state of a replica include crcs_pwrite, cres_valid,
cres_resync, cres_close, cres_reset, and cres_fsync. They are described in detail in
the next section.

Different behaviors may be observed when performing operations that can
change the state of a replica. Such behaviors include: (1) change the state of a
replica whether or not an operation performs successfully; (2) change the state of a
replica only if an operation succeeds; and (3) change the state of a replica only if an
operation does not perform successfully. The first behavior may be appropriate, for
example, in a case where a replica is in the EMPTY state and there is a crcs_pwrite
operation—that is, if everything goes right, the state is set to CHECKPOINTING,
but if an error occurs, its goes to CORRUPTED or MISSED. In either case, the
state of the replica is changed. The second behavior may be used, for example, in a
case where a replica is in the MISSED state and a crcs_resync operation is
performed. In this case, there is an attempt to resynchronize the replica with a
remote replica whose state is CHECKPOINTING or COMPLETED. In this case,
the state changes from MISSED to CHECKPOINTING or COMPLETED, only if the

19

10

15

20

25

WO 01/84314 PCT/US01/14250

cres_resync operation succeeds. Finally, as to the third behavior, it may be
appropriate in a case where a replica is in the CHECKPOINTING state and a
cres_pwrite operation occurs. In this case, if things go wrong, the state of the
replica is changed to CORRUPTED or MISSED. Otherwise, it remains in the
CHECKPOINTING state.

For a given replica, if all the operations on the replica are performed
successfully, the state of the replica is either EMPTY, CHECKPOINTING or
COMPLETED. These three states are considered valid states. The state of the
replica changes from EMPTY to CHECKPOINTING after a first successful
cres_pwrite operation. The state changes from CHECKPOINTING to
COMPLETED after a last process having the checkpoint open for writing closes it.
The state changes from COMPLETED to CHECKPOINTING after a first
successful cres_pwrite operation.

If an operation to write data to a replica, including a crcs_open, crcs_pwrite,
or cres_fsync operation, fails, the state of the replica may either be CORRUPTED or
MISSED. The two states are considered invalid states. Once the replica is in a
CORRUPTED or MISSED state, error recovery procedures, such as crcs_reset,
cres_valid, and cres_resyne, may be performed to change the state of the replica into
a valid one.

A replica may contain a special area called a control block. The size of a
control block is an attribute of a checkpoint and thus may be specified‘ when
creating a checkpoint. Each replica may have a control block associated with it.

Once a checkpoint is opened, operations may be performed on different
control blocks corresponding to different replicas of the checkpoint. Such operations
on control blocks may include: (1) crcs_cb _bread, which allows a component to read
a sequence of bytes in the control block attached to a replica; and (2) crcs_cb_pwrite,
which allows a component to write a sequence of bytes in the control block attached
to a replica. These operations may be defined so that a component does not need to

have a checkpoint open for a write mode to write into the control block associated to

20

10

15

20

25

WO 01/84314 PCT/US01/14250

one of checkpoint replicas in a cluster. Further, one may synchronize cres_cb_pread
and cres_ch_pwrite operations to ensure data consistency. In addition to
cres_cb_pread and cres_cb_pwrite, one may define an operation called crcs_node_list
to allow a component to retrieve a list of nodes that have a checkpoint replica.

Checkpoints may have a set of attributes. They are typically provided when
creating a checkpoint. Some of them may be modified after a checkpoint has been
opened. Examples of checkpoint attributes include size, rtn_time, and cb_size. The
size attribute defines a size in bytes of replicas of the checkpoint. The rtn_time
attribute specifies how long a replica remains on a node after the corresponding
checkpoint is not opened locally anymore and may be used when conducting a
garbage collection. This attribute may be set at checkpoint creation time. However,
one may define it so that its value may be subsequently changed for each replica.
The cb_size attribute specifies the size of a control block. It may be defined so that
for a given checkpoint, replicas associated with the checkpoint have control blocks of
the same size, i.e., the size specified by the cb_size attribute. This attribute may be
specified at checkpoint creation time. Typically, its value remains the same
throughout the life of a checkpoint.

Finally, one embodiment of a checkpoint deletion procéss is explained. The
deletion process preferably needs to account for the situation where different
replicas associated with the checkpoint to be deleted reside on different nodes. One
embodiment of the deletion process may include at least two steps. First, the name
of a checkpoint is removed from the name space. Once deleted, the global name
associated with the deleted checkpoint may no longer be valid. Second, memories
associated to replicas of the checkpoint to be deleted are freed. However, a memory
of a replica is kept if at least one component still has the checkpoint open on that
node or if the retention time for the replica has not expired.

Function Calls

One may define various function calls to implement the present invention.

This section explains in detail some of those functions that may be used in one

21

10

15

20

25

WO 01/84314 PCT/US01/14250

embodiment of the present invention. One of ordinary skill in the art will
appreciate that these functions are given as examples to illustrate one specific
embodiment. In other words, one of ordinary skill in the art will appreciate that the
present invention does not depend on specific implementation of various functions.
One may eliminate or modify functions described in this section and still implement
the present invention. Further, one may add additional functions. The present
invention includes all such equivalent alterations and modifications of functions.

CRCS_OPEN: The crcs_open operation may be defined to open and/or create
a checkpoint and to return a new checkpoint descriptor to access a replica on a local
node. A checkpoint may be globally identified throughout the cluster by its name,
which is specified when the checkpoint is first created. If the call cannot complete
before the expiration of a user-specified time, all resources may be freed and the call
may return with an error. When creating the checkpoint, checkpoint attributes
may be defined. Such attributes may include a size of replicas, a size of a control
block, and a retention time.

The checkpoint, once opened, remains usable by a process that opened it until
it is closed by a successful call to cres_close, or until the process dies. In such a
case, the replica may remain cached on the node until its retention time expires.

A checkpoint may be accessed in a read, write, or read/write mode. Typically,
a process, when opening a checkpoint, requests a desired mode of access. Such
request is granted, for example, if the process would be granted a read or write
access to a file with equivalent permissions. In one embodiment, only one node
may have processes that have a checkpoint open in a write mode. This node is
selected after the first process opens a checkpoint in a write mode. However,
another process may later force this node to give up its write mode by forcing a
replica to be opened with a write mode. When this happens, further attempts to
write to the checkpoint on the first node using a previously opened checkpoint
descriptor may return an error.

If a checkpoint does not exist when a process issues a crcs_open call, a new

22

10

15

20

25

WO 01/84314 PCT/US01/14250

checkpoint may be created. One may allow the process to specify various attributes
of the checkpoint. Once created, the state of the associated replica may be set to
EMPTY. If the size of the checkpoint is set to a value that is greater than 0, a
memory is allocated and initialized, for example, by filing it with O on the node
where this replica is created.

If the checkpoint already exists but there is no replica on the node at the time
the crcs_open call is issued, a replica may be created on the node. There may also
be an attempt to initialize the new replica with another valid replica. The
cres_open call may block until this initialization has been achieved—i.e.,
cres_pwrite operations occurring during the creation of a new replica can still occur,
but they may be propagated to this new replica after the initialization has
completed. If this operation of synchronization succeeds, its state may be set to
EMPTY, CHECKPOINTING, or COMPLETED. Otherwise it may be set to
MISSED or CORRUPTED.

CRCS_CLOSE: The crcs_close operation may be defined to free a previously
allocated checkpoint descriptor. Once the cres_close operation is performed, a
further reference to this checkpoint descriptor may return an error. If there are no
more processes that have the checkpoint open for writing, this operation may also
change the state of the replicas from CHECKPOINTING to COMPLETED. If the
replica was opened for writing, this call may asynchronously trigger a cres_fsync
operation, synchronizing replicas in the cluster.

CRCS_FSTAT: The crcs_fstat call may be used to obtain attributes and/or
status of a designated replica. The call may be defined so that an application
issuing this call is to specify a checkpoint description previously returned by the
cres_open call, identify the node where the replica resides, and specify a location to
which information is to be returned.

CRCS_PREAD: The crcs_pread operation may attempt to read from a local
replica. Specifically, it may attempt to read from the replica referenced by a

checkpoint descriptor previously returned by a crcs_open operation into a buffer.

23

10

15

20

25

WO 01/84314 7 PCT/US01/14250

An error may be returned, for example, if an attempt is made to read beyond the
end of the checkpoint. This operation may block if there are concurrent crcs_pwrite
operations that occur in parallel.

CRCS_PWRITE: The crcs_pwrite operation may be used to write data into a
checkpoint referenced by a checkpoint descriptor previously returned by a crcs_open
call. The crcs_pwrite operation typically returns immediately after the local replica
has been updated. Remote replicas, if any, may or may not already have been
updated after this operation returns.

For example, if there are two replicas R1 and R2, and if two updates Ul and
U2 that correspond to two distinct cres-pwrite operations occur, the ordering is done
in such a way that Ul arrives before U2 to any replica. More specifically, in this
example, various situations can happen, including (1) U1 to R1, U2 to R1, Ul to R2,
and finally U2 to R2 and (2) U1 to R1, Ul to R2, U2 to R1, and finally U2 to R2. In
all situations, however, Ul arrives to R1 before U2 arrives to R1, and U1 arrives to
R2 before U2 arrives to R2.

This operation may modify the state of a local replica. The local replica may
become CORRUPTED, if the process dies while performing the cres_pwrite
operation. If such scenario occurs, the call may not return and the local replica may
go to the CORRUPTED state. Further cres_pwrite operations may not be allowed
and may return with an error.

CRCS_FSYNC: The crcs_fsync operation may be used to synchronize replicas
in the cluster. This call may be defined so that it ensures that previous crcs-pwrite
operations are flushed to remote replicas in the cluster. The use of this call may be
restricted to processes that have the checkpoint open for write mode. This call may
block any further operations until all the remote replicas have been updated.

If one of the remote replicas cannot be updated, for instance, because of
network congestion, for example, it goes to the MISSED state, and an error is
returned. Further crcs_fsync calls may continue updating valid remote replicas, if

any, but replicas in the MISSED states may no longer be updated.

24

10

15

20

25

WO 01/84314 PCT/US01/14250

CRCS_VALID: The cres_valid call may be used to set the state of a replica to
CHECKPOINTING. This call may be used to bring a replica in the CORRUPTED
or MISSED state to the CHECKPOINTING state.

CRCS_RESET: The crcs_reset operation may be used to reset a named
checkpoint. This call may be used to reset all the replicas corresponding to the
named checkpoint. Specifically, this call may reinitialize all the replicas
corresponding to the named checkpoint and set their states to EMPTY. This call
may be limited to a caller with a write permission to the checkpoint.

CRCS_SETRTN: The crcs_setrtn call may be used to set the retention time
of a replica. Specifically, this call may be used to set the retention time of the local
replica referenced by the checkpoint descriptor previously returned by a crcs_open
operation.

CRCS_NODE_LIST: The crcs_node_list operation may be used to obtain a
list of nodes with replicas of a named checkpoint. This call may return, for example,
an array of node identifiers, identifying those nodes where the checkpoint
referenced by the checkpoint descriptor previously returned by a crcs_open
operation, is currently opened, including the local node where this call is performed.

CRCS_RESYNC: The crcs_resync call may be used to resynchronize a
designated replica with a remote valid one. If the designated replica is not in the
MISSED or CORRUPTED state, this call has no effect. Otherwise, and if there is
another replica in the cluster in the CHECKPOINTING or COMPLETED state, this
call causes the designated replica to get resynchronized. If the operation is
successful, the new state of the replica is the same as that of the remote replica that
has been used for resynchronization. If there are several remote replicas in a valid
state, any one of them may be chosen. If the operation fails while in progress, the
state of the designated replica becomes CORRUPTED. One may specify the upper
bound on the time that this operation is to be performed. If the operation cannot
complete within the specified time, the state of the replica becomes MISSED.

CRCS_CB_PREAD: The cres_cb_pread operation may be used to read data

25

10

15

20

25

WO 01/84314 PCT/US01/14250

from the control block of a designated replica. A replica may be designated by
defining a node where the replica resides and a checkpoint descriptor previously
returned by a crcs_open operation. This operation may block if there are concurrent
crcs_cb_pwrite operations that occur in parallel.

CRCS_CB_PWRITE: The crcs_ch_pwrite operation may be used to write
data into the control block of a designated replica. A replica may be designated by
defining a node where the replica resides and a checkpoint descriptor previously

returned by a crcs_open operation. This operation may block if there are concurrent

-cres_ch_pwrite operations that occur in parallel.

CRCS_UNLINK: The cres_unlink operation may be used to delete an
existing checkpoint. Once deleted, the global name associated with the deleted
checkpoint is no longer valid. However, local replicas on different nodes may
remain accessible to processes that have the deleted checkpoint open. After the
checkpoint has been deleted, the retention time may have no effect and local
replicas may be deleted as soon as no process has the deleted checkpoint open.

CRCS_CONF_GET: The crecs_conf_get operation may be used to get
configurable CRCS variables. Examples of configurable CRCS variables may
include a maximum size for cres_pwrite and crcs_pread operations, a maximum
number of vectors per crcs_pwrite operation, a maximum number of checkpoints
open per client, a maximum number of replicas for a checkpoint in a cluster, a
maximum number of clients that can access a CRCS on a given node, and/or default
timeout for implicit-bounded call, for example.

Attachment A includes an example illustrating a very simple application,
which uses the checkpoint services with the functions described in this section to
recover from a fail-over scenario.

One of ordinary skill in the art will now appreciate that the present invention
provides a method and system for providing cluster replicated checkpoint services.
The method and system includes function calls used to manage checkpoints and

their replicas. It will be apparent to those skilled in the art that various

26

WO 01/84314 PCT/US01/14250

modifications and variations can be made in the present invention without
departing from the spirit or scope of the invention. Thus, it is intended that the
present invention covers the modifications and variations of this invention provided

that they come within the scope of any claims and their equivalents.

27

10

15

20

25

30

35

40

WO 01/84314

Attachment A

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include <stdlib.h>

#include "cres.h"

* Checkpoint attributes. */
#define SIZE 0x5000
#define CB_SIZE 0x1000
#define RET_TIME 10

/* Upper bound limit for crcs_open = 1.5 sec. */
#define TV_SEC_OPEN_BOUND 1
#define TNVSE_OPEN_BOUND 0

/* Number of consecutive range to be written per crcs_pwrite
operation. */

#define NB_VEC 1

/* Interaction with HA services. */
typedef enum HAState {
PRIMARY =0,
SECONDARY,
SPARE,
EXIT
} HAState_t;
extern HAState_t hastate;

extern void HAInit ();

/* Application code */

typedef enum status_job {
NOT_INIT =0,
WRITE_ONLY =1,
WRITE_SYNC =2

} status_job_t;

extern void do_spare_job ();

extern void do_secondary_job ();

extern status_job_t do_primary_job (void**, size_t*, off_t*);
extern void init_new_primary (void*, size_t);

28

PCT/US01/14250

10

15

20

25

30

35

40

WO 01/84314 PCT/US01/14250
extern char® ckpt name;
extern cmm_nodeid_t nodeid;
int
main (int arge, char* argv [])
{
status_job_t res_job = NOT_INIT;
void* buf rd = NULL;
void* buf_wr = NULL;
int cur_read =0;
int cur_off =0;
unsigned long max_io =0;
mode_t mode =0;
off t offset = 0;
size_t size =0;
cres_t cdesc = (cres_t) -1;
cres_error_t res = CRCS_EUNEXPECTED;
cres_attr_t cattr =40, 0, {0, 0}};
crcs_stat_t estat = {0, {0, 0, {0, O}}};
cres_io_vec_tvec [NB_VEC] ={0, 0, NULL};
struct timespec tv_bound ={0, 0};
HAInit () ;

tv_bound.tv_sec =TVSEC_OPEN_BOUND;
tv_bound.tv_nsec = TNVSEC_OPEN_BOUND;

/* Retrieve CRCS configurable variables. */
res = cres_conf_get (CRCS_CONF_IO_MAX, & max_io);
if (res != CRCS_OK) {
exit (1);
}

/*

* When notified by some HA entities,

* the application changes, its state (hastate):

* . PRIMARY (does active job, and uses the checkpoint mechanism
to save its state)

* . SECONDARY (opens the checkpoint to create the local copy on the node

where it runs.)
* . SPARE (does nothing)
* . EXIT (application exits and destroys the checkpoint)
*/

29

10

15

20

25

30

35

40

WO 01/84314 PCT/US01/14250

for (;;) {

if (hastate == EXIT) {

res = cres_unlink (ckpt_name);
if (res = CRCS_OK) {

exit (1);
}

exit (0) ;

if (hastate == SPARE) {
do_spare_job ();

if (hfstate == PRIMARY) {

* I/f checkpoint does not exist, set the

* attributes for the creation
*/

cattr.rtn_time.tv_sec = RET TIME;
cattr.rtn_time.tv_nsec = 0;

cattr.size = SIZE;

cattr.cb_size = CB_SIZE;

mode = S_IRWXU | (S_IRGRP | S_IXGRP)| (S_IROTH |
S_IXOTH);
res = crcs_open (ckpt_name, 0_RDWR | O_CREAT, mode,
& cattr, & tv_bound, & cdesc);
if (res !=CRCS_OK) {
exit (1);
}

/*
* If a failover has occurred, this is the new PRIMARY:
* .> Retrieve its state from the checkpoint.
*/
res = cres_fstat (cdesc, nodeid, &cstat);
if (res !'= CRCS_OK) {

exit (1);
}
if ((cstat.state !'= CRCS_EMPTY) &&
(cstat.state !'= CRCS_CORRUPTED) &&
(cstat.state != CRCS_MISSED)) {

buf rd = malloc(SIZE);
if (buf rd == NULL) {

30

10

15

20

25

30

35

WO 01/84314 PCT/US01/14250

}

exit (1);
}
cur_off = 0;
while (cur_off < SIZE) {
if ((cur_read = SIZE — cur_off) >= max_io) {
cur_read = max_io;

}

res = cres_pread (cdesc, cur_read, cur_off,
(char*) buf_rd + cur_off, NULL);
if (res !'= CRCS OK) {
free (buf_rd);
exit (1);
h
cur_off += cur_read;
}
init_new_primary (buf_rd, SIZE);
free (buf_rd);

while (hastate == PRIMARY) {

}

res

/* Perform its job. */
res_job = do_primary_job (&buf_wr, &size, &offset);
/* Write to the checkpoint. */

vec [0].size = gize;
vec [0].offset = offset;
vec [0].buf = buf wr;

res = cres_pwrite (cdesc, vec, NB_VEC);
if (res = CRCS_OK) {

exit (1);
}
if (res_job == WRITE_SYNC) {

res = cres_fsync (cdesc);

if (res != CRCS_OK) {

exit (1);
}

}

= cres_close (cdesc);

if (res = CRCS_OK) {
exit (1);

}

31

10

15

20

WO 01/84314 PCT/US01/14250

* This is the SECONDARY.
* Open the checkpoint so, that a new replica is created on the node.
*/

if (hastate == SECONDARY) {

res = crcs_open (ckpt_name, O_RDONLY, 0, 0, & tv_bound,

& cdesc);
if (res | = CRCS_OK) {
exit (1);
}
while (hastate == SECONDARY) {
do_secondary_job ();
}
res = cres_close (cdesc);
if (res = CRCS_OK) {
exit (1);
}
}
}
return — 1;

32

WO 01/84314 PCT/US01/14250

What is claimed is:

1. A method for providing cluster replicated checkpoint services for
a plurality of replicas of a checkpoint in a cluster, the cluster comprising a first node
and a second node, which are connected to one another via a network, and the
plurality of replicas comprising a primary replica and a secondary replica, the
method comprising:

managing the checkpoint, the checkpoint containing checkpoint
information;

creating the primary replica in a memory of the first node, the primary
replica containing first checkpoint information;

updating the primary replica so that the first checkpoint information
corresponds to the checkpoint information;

creating the secondary replica in a memory of the second node, the
secondary replica containing second checkpoint information; and

updating the secondary replica so that the second checkpoint

information corresponds to the checkpoint information.

2. The method of claim 1, wherein the updating the secondary

replica step uses a checkpoint message.

3. The method of claim 2, further comprising:

formatting the checkpoint message based on version information.

4. The method of claim 1, wherein the two updating steps are

asynchronous.

5. The method of claim 1, wherein both the primary replica and the

secondary replica have states.

6. The method of claim 5, further comprising:

33

WO 01/84314 PCT/US01/14250

maintaining the state of the primary replica; and

maintaining the state of the secondary replica.

7. The method of claim 6, further comprising:
executing an error recovery procedure if either the state of the primary

replica or the state of the secondary replica is invalid.

8. The method of claim 6, wherein the state of the primary replica
and the state of the secondary replica each includes EMPTY, CHECKPOINTING,
MISSED, COMPLETED, and CORRUPTED.

9. The method of claim 8, further comprising:
executing an error recovery procedure if either the state of the primary

replica or the state of the secondary replica is MISSED or CORRUPTED.

10. The method of claim 1, further comprising:
synchronizing the first checkpoint information in the primary replica

and the second checkpoint information in the secondary replica.

11. The method of claim 1, further comprising:

retaining the primary replica in the memory of the first node until a
retention time of the primary replica expires; and

retaining the secondary replica in the memory of the second node until

a retention time of the secondary replica expires.
12. The method of claim 1, further comprising:

conducting a garbage collection based a retention time of the primary

replica and a retention time of the secondary replica.

34

WO 01/84314 PCT/US01/14250

13. The method of claim 1, wherein the checkpoint has a plurality of

checkpoint attributes.

14. The method of claim 1, wherein there is a control block
associated with the primary replica and there is a control block associated with the

secondary replica.

15. The method of claim 14, further comprising:

maintaining first control block information in the control block of the
primary replica; and

maintaining second control block information in the control block of

the secondary replica.

16. The method of claim 15, further comprising:

formatting a checkpoint message using first control block information,
second control block information, or both,

wherein the checkpoint message is used in the updating the secondary

replica step.

17. The method of claim 1, further comprising:

executing a failure recovery procedure.

18. The method of claim 17, wherein the executing step further
comprises: '
when a primary component on the first node fails, restarting the

primary component using the primary replica.

19. The method of claim 17, wherein the executing step further

comprises:

35

WO 01/84314 PCT/US01/14250

when a primary component on the first node fails, starting a secondary
component on the second node as a new primary component using the secondary

replica.

20. A method for providing cluster replicated checkpoint services for
a plurality of replicas of a checkpoint in a cluster, the cluster comprising a first
node and a second node, which are connected to one another via a network, the
plurality of replicas including a primary replica and a secondary replica, the
method comprising:

creating the checkpoint;

opening the checkpoint from the first node in a write mode;

creating the primary replica in a memory of the first node;

updating the checkpoint;

updating the primary replica;

propagating a checkpoint message, the checkpoint message including

information regarding the checkpoint;
opening the checkpoint from the second node in a read mode;
creating the secondary replica in a memory of the second node; and

updating the secondary replica based on the checkpoint message.
21. The method of claim 20, wherein the propagating and the
updating steps are asynchronous. '
22. The method of claim 20, further comprising:
executing a failure recovery procedure.

23. The method of claim 22, wherein the executing step further (

comprises:

36

WO 01/84314 PCT/US01/14250

making a secondary component in the second node a new primary

component using the secondary replica.

24. The method of claim 22, wherein the executing step further
comprises:
restarting a primary component in the first node using the primary

replica.

 25. The method of claim 20, further comprising:

formatting the checkpoint message using version information.

26. The method of claim 20, further comprising:

deleting the primary replica based on a first retention time of the
primary replica; and

deleting the secondary replica based on a second retention time of the

secondary replica.

27. The method of claim 20, further comprising:
conducting a garbage collection using a first retention time of the

primary replica and a second retention time of the secondary replica.

28. The method of claim 20, wherein the memory of the first node
has a first control block for the primary replica and the memory of the second node

has a second control block for the secondary replica.
29. The method of claim 28, further comprising:

maintaining the first control block; and

maintaining the second control block.

37

WO 01/84314 PCT/US01/14250

30. The method of claim 20, wherein the primary component has a

state and the secondary component has a state.

31. The method of claim 30, further comprising:
executing an error recovery procedure if the state of the primary

replica or the state of the secondary replica is invalid.

32. The method of claim 30, wherein the state of the primary replica
and the state of the secondary replica each includes EMPTY, CHECKPOINTING,
MISSED, COMPLETED and CORRUPTED.

33. The method of claim 32, further comprising:
executing an error recovery procedure if the state of the primary

replica or the state of the secondary replica is MISSED or CORRUPTED.

34. The method of claim 20, wherein the checkpoint has checkpoint

attributes.

38

WO 01/84314 PCT/US01/14250

35. A computer program product configured to provide cluster
replicated checkpoint services for a plurality of replicas of a checkpoint in a
cluster, the cluster comprising a first node and a second node, which are
connected to one another via a network, and the pluralitﬁf of replicas comprising
a primary replica and a secondary replica, the computer program product
comprising:
computer readable program code configured to manage the checkpoint,
the checkpoint containing checkpoint information;
computer readable program code configured to create the primary
replica in a memory of the first node, the primary replica containing first checkpoint
information;
computer readable program code configured to update the primary
~ replica so that the first checkpoint informatioﬁ corresponds to the checkpoint
information;
computer readable program code configured to create the secondary
replica in a memory of the second node, the secondary replica containing second
checkpoint information; |
computer readable program code configured to update the secondary
replica so that the second checkpoint information corresponds to the checkpoint
information; and
a cbmputer readable medium having the computer readable program

codes embodied therein.

36. A computer program product configured to provide cluster
replicated checkpoint services for a plurality of replicas for a checkpoint in a
cluster, the cluster comprising a first node and a second node, which are
connected to one another via a network, and the plurality of replicas comprising
a primary replica and a secondary replica, the computer program product
comprising:

computer readable program code configured to create the checkpoint;

39

WO 01/84314 PCT/US01/14250

computer readable program code configured to open the checkpoint
from the first node in a write mode;

computer readable program code configured to create the primary
replica in a memory of the first node;

computer readable program code configured to update the checkpoint;

computer readable program code configured to update the primary
replica;

computer readable program code configured to propagate a checkpoint
message, the checkpoint message including information regarding the checkpoint;

computer readable program code configured to open the checkpoint
- from the second node in a read mode;

computer readable program code configured to create the secondary
replica in a memory of the second node;

computer readable program code configured to update the secondary
replica based on the checkpoint message; and

a computer readable medium having the computer readable program

codes embodied therein.

37. A system for providing cluster replicated checkpoint services for
a plurality of replicas of a checkpoint in a cluster, the cluster comprising a first node
and a second node, which are connected to one another via a network, and the
plurality of replicas comprising a primary replica and a secondary replica, the
method comprising:

means for managing the checkpoint, the checkpoint containing
checkpoint information;

means for creating the primary replica in a memory of the first node,
the primary replica containing first checkpoint information;

means for updating the primary replica so that the first checkpoint

information corresponds to the checkpoint information;

40

WO 01/84314 PCT/US01/14250

means for creating the secondary replica in a memory of the second
node, the secondary replica containing second checkpoint information; and
means for updating the secondary replica so that the second checkpoint

information corresponds to the checkpoint information.

38. The system of claim 37, wherein the means for updating the

secondary replica uses a checkpoint message.

39. The system of claim 38, further comprising:
means for formatting the checkpoint message based on version

information.

40. The system of claim 37, wherein both the primary replica and

the secondary replica have states.

41. The system of claim 40, further comprising:
means for maintaining the state of the primary replica; and

means for maintaining the state of the secondary replica.

42. The system of claim 41, further comprising:
means for executing an error recovery procedure if either the state of

the primary replica or the state of the secondary replica is invalid.

43. The system of claim 37, further comprising:

means for executing a failure recovery procedure.
44. The system of claim 37, further comprising:

means for maintaining a control block of the piimary replica; and

means for maintaining a control block of the secondary replica.

41

WO 01/84314 PCT/US01/14250

45. The system of claim 37, further comprising:
means for conducting a garbage collection based on a retention time of

the primary replica and a retention time of the secondary replica.

46. A system for providing cluster replicated checkpoint services for
a plurality of replicas of a checkpoint in a cluster, the cluster comprising a first
node and a second node, which are connected to one another via a network, the
plurality of replicas including a first replica and a second feplica, the system
comprising:
means for creating the checkpoint;
means for opening the checkpoint from the first node in a write mode;
means for creating the primary replica in a memory of the first node;
means for updating the checkpoint;
means for updating the primary replica;
means for propagating a checkpoint message, the checkpoint message
including information regarding the checkpoint;
means for opening the checkpoint from the second node in a read mode;
means for creating the secondary replica in a'memory of the second
node; and
means for updating the secondary replica based on the checkpoint

message.

47. The system of claim 46, wherein the propagating means and the

updating means operate asynchronously.

48. A system for managing a checkpoint, the system comprising;
a first node running a primary component, including a primary replica
having first checkpoint information in its memory, having a first checkpoint service,

and connected to a network; and

42

WO 01/84314 PCT/US01/14250

a second node running a secondary component, including a secondary
replica in its memory, having a second checkpoint service, and connected to the
network,

wherein the first checkpoint service and the second checkpoint service
are capable of accessing the checkpoint,

wherein the first checkpoint service works with the primary
component to update a checkpoint, issue a checkpoint message containing
information regarding the checkpoint, asynchronously propagate the checkpoint
message, and update the first replica, and

wherein the second checkpoint service is capable of asynchronously

updating the secondary replica based on the checkpoint message.

43

PCT/US01/14250

WO 01/84314

Ty
viL 1492 43’
“ 81 9Ll S1l
p p Ad
e e
d H H
S) N N ° 2 d
1 LS e :
H H
201—
_ o oue[d-yoed [0d
B — T
[o] 60}
HoL— 801 20} s0b
Ad p p r—
_ aits 1 | d d 901 10V
e e S S d
d 0 0 H H 9 | S
s | N N S ¥
_ H 1 1 H
_ w0l _ouejd-joed 10d

PCT/US01/14250

WO 01/84314

2/6

|||

9le
390]g
joJ3u0n

(%4
eolday

Aiepuooag

0F¢ ©d21AeS
jurod29y9

102

(%4
jo0jg
josjuon

zle
eoijday

Aepuodsoag

60Z @92IAI18S
julodyoay)

90¢

vie
j3ooig
jonuon

i
eoljday
Arewiitd

ANCEILVES
JuIgdsoayo

PCT/US01/14250

WO 01/84314

3/6

- -~ -~ " " = = = = = A = 9 T o e R e v e 40 = S - -

lll

cres_resync (414)

| «——
cres_pwrite (412)

cres_valid 413)

-
=)
-

(8T¥) 980[07 €09

DNILNIOIMOHHD

> < (gop) wado sox0

L19).93amd som (L0¥) @1amd s010

_— ~~
o -
(=] o
NS =N
Q 2o
=] - B
= T 5
5| |38
=7 > .
o (]

n v
8 £ &
o [32R3)

qdLdnyy0d

PCT/US01/14250
4/6

WO 01/84314

' L0S 2_5
G0S .
1Y edydey
ajepdn Ajsnoupuo)
] X
80§ .i}-t,..,)_\ i | v0S
2y eayday | Jujodxoay)
ajepdn Ajsnoujuo) ajepdn Ajsnounuon
10S ‘ 1y
A2} eol|day azijeniu)
eoljday azijeniuj .o"m . pue ajeal)
e pue ajeald o i
909 " c0s
SpOoN 1M
apoy peay ui Bej4 uopeard ypm
ul ymodyosayn uadp yuiodyaayg uadQ
¢os ¢SOHID 10d 1SO¥YD
ZN9PON . TN ®PON

gy '9ld
_ LOS 4 00S

PCT/US01/14250

. WO 01/84314

5/6

2 .Ili%,f_

<&
<

2y eofday
ajepdn Ajsnonunuo) ;

N
2]

¢SOHD

¢N 3pON

(0] 3¢]

1Y eoiday
ajepdn Ajsnonunuon

A

€25
yurodyoay
ajepdn Ajsnonuyuo?)
F444

ysea) alojaq ejeq
PlieA 1se uelqo
0} LY eojday asn

3

12s

muos_ ajup/peay ul
jutodyoayn uadoay

10d

ISOuD

IN 8PON

PCT/US01/14250

6/6

WO 01/84314

L0S 00S

|

(32}
n
wn

2y eonday
ajepdn Ajsnonuiuoq

jutodoayn . , g 1y eanday
ajepdn Ajsnonupuon ajepdn Ajsnonujjuon
16S .
9PO 3JHAA Ui SPON peay ui
jutodyoayn uadoay julodyoayn uadoay
—— A 016 ot L
0SS 2y eoyday ves]

Buisn ssaooud
Aiewnnd pajed
JO d)e]s a)ealddy jutodyoayq aso|)

¢S ¢SOUD 10d 1SO¥D

ZN 9pON LN 8PON

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

