Office de la Propriete Canadian CA 2358162 A1 2000/0/7/06

Intellectuell Intellectual P
du Canada Office o opery en 2 358 162
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 1999/12/29 (51) Cl.Int.//Int.Cl.” GOBF 9/44

(87) Date publication PCT/PCT Publication Date: 2000/0/7/06 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2001/06/29 COMPUTER ASSOCIATES THINK, INC., US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 99/31113 CANTRELL. PAUL. US:

(87) N° publication PCT/PCT Publication No.: WO 00/39673 MATSON, KENNETH D., US:

(30) Priorite/Priority: 1998/12/31 (09/224 ,482) US POHLMANN, WILLIAM N., US
(74) Agent: RIDOUT & MAYBEE

(54) Titre : PROCEDE ET APPAREIL DE FILTRAGE ET D'’ACHEMINEMENT DYNAMIQUE D'EVENEMENTS
54) Title: METHOD AND APPARATUS FOR THE DYNAMIC FILTERING AND ROUTING OF EVENTS

PARSE EVENT FILTER INTO L~ 210
AN EVALUATION TREE

INCLUDING ONE OR
MORE SUBEXPRESSIONS

LOCATE EACH SUBEXPRESSION |~ 920
OF THE EVALUATION TREE

DETERMINE IF THE 330
SUBEXPAESSIONS INCLUDE
NODE SPECIFIC FIELDS

CREATE LIST OF AT LEAST L340

ONE OF A NODE AND
EVENT MANAGER
CONTACT INFORMATION

TRANSMIT SUBSCRIPTION 330

REQUEST TO EVENT MANAGERS

(57) Abrége/Abstract:
A method of routing a subscription request defined by an event filter (510). The method includes parsing (610) the event filter

(510) Into an evaluation tree having at least one subexpression, locating the at least one subexpression (520) and determining
(530) If the at least one subexpression includes a node (110) specific field. If the at least one subexpression (520) includes a
node (110) specific field, the method includes creating a list (540) of nodes and event manager (310) contact information and
transmitting the subscription request to at least one event manager (310) located on a node (110) that is included on a list (540)

of nodes (110).

"ﬁk' \ /[/7]
:':‘;‘:‘-';:;‘:': Bt N,
I A e o ; . . w

I*I) . P, 2 BN [[/ [§
(l a na da http://opic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC A0 @ camew o o
SRNENY
S ~:'\'\3:-?* ' ‘-'\-E}:.’{Q

OPIC - CIPO 191

CA 02358162 2001-06-29

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7.

'\ GOG6F 9/44

1

l (11) International Publication Number:
Al

(43) International Publication Date:

WO 00/39673

6 July 2000 (06.07.00)

(21) International Application Number: PCT/US99/31113

(22) International Filing Date: 29 December 1999 (29.12.99)

(30) Priority Data:

09/224,482 31 December 1998 (31.12.98) US

(71) Applicant: COMPUTER ASSOCIATES THINK, INC.
[US/US]; 1 Computer Associates Plaza, Islandia, NY
117887000 (US). |

(72) Inventors: POHLMANN, William, N.; 8 Denford Drive,
Newtown Square, PA 19073 (US). MATSON, Kenneth,
D.; 15610 S.E. 24th Street, Bellevue, WA 98008 (US).
CANTRELL, Paul; 230 Old Sudbury Road, Sudbury, MA
01776 (US).

(74) Agents: DeVITO, Victor et al.; Baker & McKenzie, 805 Third
Avenue, New York, NY 10022 (US).

(57) Abstract

R S

(54) Title: METHOD AND APPARATUS FOR THE DYNAMIC FILTERING AND ROUTING OF EVENTS

A method of routing a subscription request defined by an event filter
(510). The method includes parsing (610) the event filter (510) into an
evaluation tree having at least one subexpression, locating the at least one
subexpression (520) and determining (530) if the at least one subexpression
includes a node (110) specific field. If the at least one subexpression
(520) includes a node (110) specific field, the method includes creating
a list (540) of nodes and event manager (310) contact information and

transmitting the subscription request to at least one event manager (310)
located on a node (110) that is included on a list (540) of nodes (110).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SQG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TGQG).

Published
With international search report.

310

PARSE EVENT FILTER INTO
AN EVALUATION TREE

INCLUDING ONE OR
MORE SUBEXPRESSIONS

LOCATE EACH SUBEXPRESSION{~ 920

OF THE EVALUATION TREE

DETERMINE IF THE 930

SUBEXPRESSIONS INCLUDE
NODE SPECIFIC FIELDS

240

CREATE LIST OF AT LEAST
ONE OF A NODE AND
EVENT MANAGER
CONTACT INFORMATION

TRANSMIT SUBSCRIPTION 950
REQUEST TO EVENT MANAGERS

10

15

20 -

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

METHOD AND APPARATUS FOR THE
DYNAMIC FILTERING AND ROUTING OF EVENTS

Field Of The Invention

The present invention relates to the field of event management systems, 1n
particular to dynamic filtering and routing of events within the event management
system.

Background Information

Information technology (IT) has evolved from mainframe-only computing to
complex, highly distributed computer systems spanning across desktops and
departments through networks. These distributed computing environments provide
benefits, including the flexibility to select any number of platforms, domains, tools,
and network configurations. The distributed environments, however, may be complex.
Further, there may exist a lack of compatibility and integration between software tools
and platforms. For example, conventional point products (e.g., Platinum DBVision
product) are generally directed to a specific function or area of expertise such as a
solution for database monitoring and managemenf, job scheduling, or managing
database reorganizations. Each point product provides a specific capability and each
also includes a distinct interface. On the other hand, utilizing framework technology
provides an integrated solution, although tool functionality is significantly sacrificed.

Further, maintaining the current enterprise environment utilizing either conventional

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

point products or framework technology involves a large amount of resources and
money from IT organizations.

Accordingly, a need exists for an integrated system for providing tools that
utilize a compatible interface dynamic and allow filtering and routing of events
without significantly sacrificing tool functionality.

Summary Of The Invention

An object of the present invention is providing an integrated system for routing
events occurring in point products through a common event management system.

Another object of the present invention is the dynamic filtering of events across
nodes of an enterprise.

An aspect of the present invention provides a method for routing a subscription
request defined by an event filter. The method parses the event filter into an
evaluation tree having at least one subexpression, locates the at least one
subexpression and determines if the at least one subexpression includes a node specific
field. Ifthe at least one subexpression includes a node specific field, the method also
creates a list of nodes and event manager contact information, and transmits the
subscription request to at least one event manager located on a node that 1s included on

the list of nodes.

Brief Description Of The Drawings

FIG. 1 shows an exemplary embodiment of an enterprise of the present invention
including a plurality of nodes.
FIG. 2 shows an exemplary embodiment of a suite of integrated point products of the

present invention.

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

FIG. 3 shows an exemplary embodiment of a block diagram 6f an event management
system of the present invention.

FIG. 4 shows an exemplary embodiment of event information communicated between
a plurality of nodes of the event management system of the present invention.

FIG. 5 shows an exemplary embodiment of a flow diagram of a routing process
according to the present invention.

FIG. 6 shows an exemplary embodiment of a flow diagram of a routing process
according to the present invention.

FIG. 7 shows an exemplary embodiment of a block diagram of a data exchange system

of the present invention.
Detailed Description

The event management system of the present invention manages an enterprise
(e.g., a computer network such as a local area network (LAN) or wide area network
(WAN)), correlates event information occurring in the enterprise, and takes corrective
actions based on predetermined response policies. The event management system
receives, for example, event messages from compatible point products within the
enterprise. As shown in FIG. 1, the enterprise 100 may include a plurality of nodes
110, 120, 130 which may, for example, be connected by a network (not shown). A
node 1s, for example, a physical box such as a personal computer, server, etc. that runs
an operating system. In an exemplary embodiment of the present invention, a node
may be a personal computer having a compatible point product installed on it. In an
exemplary embodiment of the present invention, the event management system 140

manages events on the nodes 110, 120, 130 where the events are generated,

_3-

10

15

20

WO 00/39673

CA 02358162 2001-06-29

PCT/US99/31113

minimizing the movement of data on the network and keeping actions such as
evaluation, reporting and automated correction of data close to the source.

In an exemplary embodiment of the present invention as shown in FIG. 2, the
event management system 270 may be included in a suite 200 of integrated tools
including compatible point products used to, for example, manage applications,
databases, desktops, networks, and systems. The tools 230, 240, 250, 260 may use a
set of common services 210 to share data relating to events. A director 220 is, for
example, a shared, common graphical user interface (GUI) running in a conventional
server computer for compatible point products 230, 240, 250, 260. In an exemplary
embodiment of the present invention, the director 220 runs under Windows NT and
Windows 95, and operates as a single console that allows users to view and interact
with all resources including compatible point products 230, 240, 250, 260 in the
enterprise.

The primary manageable unit of information utilized by the event management
system of the present invention is a structured message called an event. An event
represents information about some significant occurrence by or to a resource in the
enterprise. Events are sent and received by compatible point products and event
managers 1n the event management system. Events are, for example, the basic
building blocks of real-time information processing used to manage the enterprise.
Events define the fundamental element of publishable, sharable information and the
format 1n which the events should be maintained and transmitted. The structure of an
event includes, for example, predefined fields for the fundamental information

necessary for any event record. The predetermined fields fall into two categories:

-4

10

15

20

235

30

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

identifying fields and non-identifying fields. Identifying fields are fields that taken
together form a unique key for the event, distinguishing it from another event. Non-
identifying fields are fields that add additional information about an event but do not
participate in the key of the event. The event management system of the present
invention allows the event structure to be extended by a user by dynamically adding
key value pairs and thus, uniquely defining the respective event structure.
Accordingly, the addition of key value pairs to an event structure enables a point
product to publish the uniquely-defined event that otherwise would not have been
published because 1t would not have been uniquely defined by the predetermined fields

of the event.

An exemplary embodiment of an event structure according to an embodiment

of the present invention is defined below, for example, in the C language.

typedef struct PT EVENT

/
int Version; /* Event structure version */
PT CHAR T *Node, /* Node of event ¥/
PT CHAR' T *Class, /* Event class */
PT CHAR T *Instance;, /* Originating product instance */
PT CHAR T *Name, /* Event name */
PT CHAR T *Time, /* Event time (yyyymmdd hh24miss) */
PT CHAR T *CondIime; /* Condition time (yyyymmdd hh24miss)
PT CHAR T *AgentNode; /* Node where detecting agent is running

*/

PT CHAR T *EvmgrNode; /* Node where responsible event mgr

runs ¥/

PT EVENT TYPE Type; /* Event type (EV_DISCRETE...)

*/
PT RESP TYPE Response; /* Response type (EVRE SILENCE...)
*/
PT CHAR T *RespPolicy; /* Response Policy
*/
PT CHAR' T *Descr; /* Description
¥/

_5.

10

15

20

25

30

35

40

WO 00/39673

PT CHAR T
*/
PT CHAR T
*/
double
*/
int
EV ALARM SET) %/
PT CHAR T
*/
int
*/
PT CHAR T
%/
PT CHAR T
*/
BOOL
*/
PT CHAR T
PT CHAR T
int
used for storm suppression
int
PT CHAR T
*/
int
progress™/
BOOL
*/
PT CHAR T
*/
PT CHAR' T
*/
void

PT CHAR T

PT CHAR T
PT CHAR T
} PT-EVENT:

CA 02358162 2001-06-29

PCT/US99/31113

Descrld; / Message string key for MsgPut
DescrFields, / Field list for substitution in message
Value; /* Value (for condition/alarm events)
Level,; /* Alarm level (for type=

IntKeys, / Application specific internal keys
NumKey;, /* Number of key/value pairs following
**Keys, . Array of other key (attribute) names
**Values; /* Array of other key(attribute) values

Archived,; /* Boolean flag, TRUE if event archived

Id; / Unique event id */

Condld; / Condition id */

RepeatCount; /* Count of duplicate events of this type
*/

HopCount; /* Here comes Peter Cotton Tail... */
GMTOffset;, / GMT Offset

ActionTaken; /* Boolean flag, Response action in
Silenced; /* Boolean flag, Alarm silenced
ProductName,; / Product name of submitting product
Instancelype; / Type of instance in Instance

localParam,; / Hook to allow local
associated data with event
*/
AuthString; / Placeholder for authorization string,
some form of event content signature

*/
TTId; / Trouble ticket 1d */
TTStatus; / Trouble ticket status */

The 1dentifying fields of the exemplary event are node, name, product,

instance, type, condition_time if the type is not discrete, event time if the type is

_6-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

discrete, all key value pairs including the contents of the keys field array and values
field array (with the field, for example NumKeys, including a number indicating the
number of key value pairs 1n their respective field arrays). All of the other predefined
fields are non-identifying fields.

The events may be categorized into a plurality of types including, for example,
discrete events, conditions and alarms. Discrete events are events which indicate that
something occurred at a particular time and are completely self-contained. The
occurrence for a discrete event has no state and does not get updated. A failed logon
attempt, for example, may invoke the generation of a discrete event. Conditions are
events that indicate the state of something that is persistent over a period of time and
may have attributes that are updated. The events declared by a product are owned by
that product. Generally, only the respective point product can update or clear the
condition events generated at the point product. The contents of discrete and condition
events represent real information about the enterprise that cannot be changed without
changing the occurrence that causes the event. An alarm is, for example, an
interpretation of other events based on a user configurable policy. Accordingly, the
user could clear an alarm at anytime without resolving the condition that caus.ed it.
Similarly, the alarm can persist beyond the clearing of an event upon which the alarm
1s based.

As shown 1n FIG. 3, an exemplary embodiment of an event management
system 300 of the present invention includes an event manager 310, event archive 320,
event correlator 330, alarm rule store 340, and a response engine 350. In an exemplary

embodiment of the present invention, an event manager 310, event archive 320, event

_7.

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

correlator 330, and a response engine 350 are included on all nodes of the enterprise
and the alarm rule store 340 1s included on a central node allowing events to be stored
and managed locally.

In an exemplary embodiment of the present invention, an event management
system may, for example, receive event messages from point products, for example,
throughout an enterprise. Events are managed on a node of the enterprise where the
events are received by an event manager 310 located on the respective node. The
event manager 310 may, for example, receive all events, maintain the states of
previously sent events, maintain a list of subscriptions, and route events to the
appropriate subscribers. In an exemplary embodiment of the present invention, the
events and their state and the list of subscriptions may be stored locally.

As shown 1n Fig. 4, the event manager 402 of node a 401 and the event
manager 411 of node b 410 also receive event information from the event correlator
413 of node b 410. The event manager 411 of node b 410 also provides events to the
event correlator 413 on node b. The event manager 411 also receives event
information from point product 415, where events are actually occurring. Event
manager 402, 411 maintain, for example, the events and their associated state and a list
of subscriptions. Each event manager may have a local memory data store,
blackboard, where statefull events are stored. The blackboard may be kept persistent
in a file based storage, for recovery of the information across generations (process
invocation of the event manager). The clients subscribing to events are responsible for

reestablishing the respective subscriptions across new invocations of the event

manager. Accordingly, the subscriptions may be maintained in memory. The local

-8-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

event archive 1s maintained for all the events received by the event manager. The
event management system of the present invention also may correlate events from
multiple nodes. In an exemplary embodiment of the present invention, the event
management system provides views of events consolidated to single management
stations or 1n views/categories that cross node boundaries.

The event management system of the present invention is structured to query or
express outstanding interest in groups of events by criteria other than node through
event subscription. Event subscription allows the specification of criteria on the
contents of the fields of the event. Determining the events of interest to a particular
process can be analogized, for example, to writing a database query that requests
records matching criteria on various fields of the record. The request of the present
invention differs from a normal data base query in that it is not solely a request for data

already 1n existence, but an ongoing request for a collection of events that have yet to

occur or €xist.

When a subscription 1s made for an event such as, for example, an event
occurring at a point product 415, a subscription request is sent to event manager 411
on node b 410. The event manager 411 receives the request and adds this request to its
list of outstanding requests which may be stored, for example, in memory. The event
manager 411 checks outstanding events previously stored, for example, in a
blackboard, to see if it matches the request criteria. Each matching event is forwarded,
e.g., published, to the requestor, e.g., the subscriber of the event. Any new events
which are received and match the subscription criteria are also forwarded. This may

continue until the subscription is canceled.

.0

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

In an exemplary embodiment of the present invention, a subscription 1s
assigned a unique ID when it 1s formed. The unique ID and a datagroup from which
this request came, uniquely defines the subscription. A subscription is canceled, for
example, by calling an API with a returned request handle from the original
subscription. This results in sending a cancel message to the event manager with the
respective request ID. The event manager can then match the cancel request to the
original subscription and remove it from a processing queue of the event manager.

All events published on a node are received by the event manager of the node.
The event manager also receives and maintains all requests sent by processes from its
node and other nodes. Upon receipt of an event, the event manager also assigns an
event ID. The event manager determines if the event i1s a condition and if so, the event
manager checks, for example, a blackboard to determine if the event matches an
existing condition. If so, the condition event is assigned a condition ID of the existing
condition and applied as an update to the existing condition. Further, if archiving is
enabled, the event 1s archived. In an exemplary embodiment of the present invention,
for example, the archiving may include storing the event 1n a database such as a flat
file archive. A separate file may be used for each calendar day. Events may be written
to the archive for the day of the time stamp 1n the event as newline delimited records in
the order 1n which they are received. The event manager also checks all outstanding
subscription requests. For any event other than a condition update, if the feceived
event matches the request, the event manager forwards the event to the requestor. In

the case of an update to a condition, 1t 1s the event as updated that 1s matched against

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

the request. Accordingly, 1t 1s the updated event that the event manager forwards to
the requestor.

Event filters describe identifying criteria for the events of interest and allow
specification of various forms of comparison that can be specified for each of the
fields of an event including key value pairs of the extended event structure. An event
filter 1s, for example, a Boolean expression made up of subexpressions that compare a
field of an event with a user specified value. Event filters are, for example, similar to
the “WHERE” clause in Structured Query Language (SQL). The fundamental
subexpression of an event filter is, for example, a phrase comparing a field of an event
with a value, e.g., node=ptisun20. The subexpression node=ptisun20 means that the
node field of the event must exactly match the string “ptisun20”. Any of the fields of
the event structure can be used as the node field is used in the example, with the

exception of the keys field array and values field array which require a special syntax.
For example, if one of the key value pairs added was:

key value
FileSystem /usr,

an exact match filter for this key value pair would be

keyfield.FileSystem = “/usr”. Further, testing for the existence of a key with any value
could be done by testing that it not match a null value, e.g., keyfield.FileSystem != “il.
The event filters may be stored any place a text string could be stored, for example, in

a configuration file such as a flat text file, in a database, in memory, as C source code

(e.g., hard coded 1n a program), etc.

Filtering 1s also available on the values of key value pairs of the event. As in

the earlier example, there may be a key “FileSystem” with an associated value that is

11-

10

15

20

25

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

the name of a specific file system. The desired events may only be those for a certain
file system, for instance /usr. The filter mechanism for corresponding values of a key
specifies the key and tests the associated value. A special syntax is used to distinguish
keys from other fields of the event that allows a different name space for the keys from
the predefined fields of the event. The syntax 1s “keyfield.[name]”. An example
testing for the value /usr of a key value pair would be, for example,
keyfield. FileSystem = /usr. In an exemplary embodiment of the present invention,
the event filter may include comparison operators such as = and full regular expression
match specified with the operator “like”. A filter, for example, could be
node=ptisun05. A filter matching all node values that follow a pattern of ptisun[#]
would be
node like “ptisun[0-9]+”. The tollowing 1s an exemplary list of event filter
comparison operators: >= (greater than or equal), <= (less than or equal), > (greater
than), < (less than), = (equal), like (matches a regular expression), likeci (case
msensitive string match), and != (not equal).

In an exemplary embodiment of the present invention, the following tokens,
production rules, and event filter definition implemented using yet another compiler

compiler (yacc) may be used.

%token NO MORE TOKENS

%token FILTER

%token <symp> NAME

%token <symp> FUNC PART

%token <keywp> BOOLEAN

%token <keywp> COMPOP

%token <keywp> SEPARATOR

%token <keywp> LEFTPAREN

%token <keywp> RIGHTPAREN

/* get rid of expression grammar shift/reduce conflict */

_12-

10

15

20

25

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

%left BOOLEAN
%type <evalp> filter
%type <evalp> statement

%%
statement: FILTER filter NO MORE TOKENS

filter: NAME COMPOP NAME

| FUNC PART SEPARATOR NAME COMPOP NAME
| NAME COMPOP FUNC PART SEPARATOR NAME
|
|

filter BOOLEAN filter
LEFTPAREN filter RIGHTPAREN

In an exemplary embodiment of the present invention, the event manager 411
may be implemented as a daemon (€.g., an agent program that continuously operates
on a UNIX server and provides resources to client systems on the network). Upon
recelving an event, the event manager 411 determines the disposition of the event,
including whether it has already received the event and whether the event state has
changed. The event manager 411 also writes the event to a local event archive 412 and

routes the event to all clients that subscribe to the event content. For example, the
event manager 411 may provide event information to the event correlator 413 and the
event manager on a node 402. The event archive 412 may include an event archive
service processor. The event archive 412 service processor reads events from the
event archive. Subscribers may include any event correlator 413 instance that has an
alarm rule subscribing to the event and, for example, a director containing a resource
object or a product subscribing to update events about the contents in a central storage
such as a data exchange service (DEX).

The event correlator 413 may include, for example, an event correlator service
processor. The event correlator 413, as described in copending patent application

attorney docket number 22074661/25548, filed on December 31, 1998 and entitled

-13-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

SYSTEM AND METHOD FOR DYNAMIC CORRELATION OF EVENTS which is
herein incorporated by reference in its entirety, implements a user-policy specified in a
correlation rule. An alarm 1s a type of event that provides notification to subscribers of
a significant condition or occurrence. The determination of an alarm may include the
presence of a single event, the presence of a certain existing state(s) when another
event occurs, or the recurrence of a particular event within a fixed time window.
Further, an alarm may be a combination of the recurrence of a particular event within a
fixed time window when certain state or states are present.

The events that determine 1f an alarm occurs may be due to events on the same
node as the event correlator 413 or may come from one or more other nodes 401, 410.
An alarm may also be associated with an automated response policy on declaration
allowing a response engine 414 to handle any automated notification or correction of
the alarm. The event correlator 413 can create, for example, an alarm, a modified
version of a received event, or an entirely new event that can be correlated by another
alarm rule.

Events may be correlated through an alarm rule. The basis of an alarm rule is
the determination of the events that should be analyzed. Alarm rules can be created to
define which single event or set of events represent a significant occurrence to which
to respond. The alarm rule may include a description and logic describing the events
that represent an occurrence and a definition of the response of the event nianagement
system to the occurrence. The result of correlation is the creation of one or more

events. An alarm rule may be defined, for example, through the director 404.

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

The response engine 414 executes a response policy. The response engine 414
includes a plurality of processes. The response policy is, for example, a logical
expression containing a list of actions connected by logic statements that is invoked by
a triggering alarm generated by the event correlator 413. Multiple actions can be
defined and be performed in the response policy. In an exemplary embodiment of the
present invention, the multiple actions may be in a listed sequence, or added with logic
to make each action contingent upon the receipt of a return code of another action or a
specified field sent in the alarm. The response policy may be created by defining a set
of actions and composing an expression that references one or more of these actions in
a logical sequence. The actions may be global and called by multiple response
policies. In an exemplary embodiment of the present invention, the response engine
414 also adds information about the success of each action to the triggering alarm at
the completion of each step. This may be accomplished, for example, by sending an
update alarm event that updates the event with the sequential number of the step just
completed, the type of the step (e.g., email/page), and in the event archive the name of
the action step. This information may be accessed through a director.

In an exemplary embodiment of the present invention, the response engine 414
may include, for example, a first process, a second process, and a third process. The
first process subscribes to events sent by an event correlator 413 running on the same
node 410 as the response engine 414. Upon receipt of an alarm that has an associated
response policy, the first process invokes the second process to perform the policy.
The first process can invoke multiple mnstances of the second process depending upon

the settings in configuration files associated with the respective processes. The second

15

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

process performs an action requiring the sending of events and calls the third process
to perform any other actions. The third process of the response engine 414 may also
perform a response policy action requiring a call to the operating system, such as
sending an email message, invoking a script, sending a page, writing a message to a
file, or forwarding the event as a simple network management protocol (SNMP) trap.

In an exemplary embodiment of the present invention, the event management
system of the present invention may include a routing algorithm. The routing
algorithm may be stored, for example, in random access memory or a disk drive within
a conventional computer system such as an IBM® personal computer. The routing
algorithm analyzes an event filter to determine the event managers that should receive
the subscription request. The respective event managers will be the event managers on
nodes of the enterprise that have point products that could create events that may
‘satisfy the event filter being analyzed.

In an exemplary embodiment of an event structure of the present invention, the
event structure includes, for example, three node specific fields: agent node, node, and
event manager node. In an exemplary embodiment of the present invention, the
routing algorithm determines whether a node specific field is included in the event
filter and 1f so, the event filter should be routed to an event manager on the respective
nodes 1ndicated by the node specific fields. For example, if the event filter was
“node=nodeA or node=nodeB”, then the routing algorithm will determine, for
example, that the event filter may be routed to the event manager on node A as
indicated by the subexpression “node=nodeA” and the event manager on node B as

indicated by the subexpression “node=nodeB”. A subexpression is an expression in an

-16-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

event filter which 1ncludes a field name, comparator and a value. Conjunctives are
used 1n an event filter to combine subexpressions.

In an exemplary embodiment of the present invention as shown in FIG. 5, the
routing algorithm, for example, parses the event filter into an evaluation tree including
one or more subexpressions as shown in 510. In 520, the routing algorithm locates
each of the subexpressions of the evaluation tree and in 530 determines if the
subexpressions mnclude node specific fields (e.g., agent node, node, and event manager
node). In 540, the routing algorithm creates a list, e.g., a full list, of at least one of the
nodes referenced in node specific fields of the evaluation tree and information
necessary to contact a particular process, event manager, on the respective nodes (e.g.,
event manager contact information).

In an exemplary embodiment of the present invention, the routing algorithm
may obtain the event manager contact information by, for example, following a
predetermined algorithmic pattern or accessing contact information stored in a central
data store that may be looked up on demand. Event manager contact information for
each of the respective matching nodes may be provided, for example, by a function. In
550, the routing algorithm transmits the subscription request as defined by the event
filter to, for example, the respective event managers identified on the full list. The
algorithm for the determination of the full node list from a given filter could be
embodied, for example, in the function int SvcLookupSubNode(PT CHAR T*
pzFilter, PT_CHAR T***subArray, int* count). A function, for example,
SvcEventSubRegister(array[1], filter, myCallbackFunction, myCallbackData,

&handleForThisSubscription), may be provided with the respective event manager

17

S

10

15

20

25

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

contact information, for example, by the filter SvcLookupSubNode and transmit the
subscription request to the respective nodes.

As shown 1n the example below, the full list as provided by the function
SvcLookupSubNode(PT CHAR_T* pzFilter, PT CHAR T***subArray, int* count)
may be 1terated making subscriptions through a call to a function
SvcEventSubRegister to each of the respective event managers as determined from the

event filter.

SvcLookupSubNode(filter, &array, &arraySize); for (I=0; I++;
I<arraySize) '

SvcEventSubRegister(array[I], filter, myCallbackFunction, myCallbackData,
&handleForThisSubscription)

In an exemplary embodiment of the present invention, the routing algorithm
may determine the respective nodes which to route a subscription request based on a
“like” operator 1n node specific fields. When a node reference field includes the “like”
operator rather than a fixed node string, the value of the node specific field can not be

used directly as a node reference. Instead, the routing algorithm determines all the

~ event managers which are active. Subsequently, the nodes for each of the active event

managers are determined. In an exemplary embodiment of the present invention, a
communication layer mechanism may determine all processes such as event managers
which have some unique characteristic, such as being registered to a well known
TCP/IP port on a node to receive event messages, and determine the respective nodes
of the processes. Each of the respective nodes are checked to see if any of the nodes
match the like expression provided by the event filter. For example, an expression
may be node like “ptisun.*”. This expression would match nodes that are named

ptisun01, ptisun02, ptisun03, ptisun33, etc. It would not, however, match a node
-18&-

10

15

20)

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

ptiHPO1. The list of active event managers may include, for example, ptisun01 and
ptiHPO1. Of the active event managers, the expression would match ptisunO1 but not
ptiHPO1. Accordingly, the resultant list would only include contact information for
ptisunO1, not ptiHPO1 as it failed to match the filter criteria.

In an exemplary embodiment of the present invention as shown in FIG. 6, the
routing algorithm, for example, parses the event filter into an evaluation tree including
one or more subexpressions of the event filter as shown in 610. In 620, the routing
algorithm determines if a subexpression can be located in the evaluation tree. For
example, the first time the routing algorithm determines if a subexpression exists in the
evaluation tree, 1t will locate the first subexpression. Upon locating a subexpression,
the routing algorithm determines if the subexpression includes a node specific field
(e.g., agent node, node, and event manager node) in 630. If so, at least one of a node
and event manager contact information is provided to a list in 640. This information is
appended to the list 1f the list already exists, otherwise the list will be created and
provided with this information.

In step 630, however, 1f the subexpression 1s not determined to include a node
specific field, in 660 the routing algorithm will determine whether the subexpression
may be converted to a query against at least one of a data table or data store, for
example, that will result in a list of nodes capable of having an event that will match
the subexpression.

If 1t 1s determined in 660 that the subexpression may be converted to a query
against at least one of a data table or data store, a query is created and performed

against the respective data table and/or data store in 670. In 640, the results of the

1%

10

15

20

25

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

query (e.g., at least one of nodes and event manager contact information) are provided
to the list. The results are appended to the list if the list already exists, otherwise the
list will be created and provided with the results.

After the routing algorithm provides information (e.g., at least one of nodes and
event manager contact information) to the list in 640 or a determination that the
subexpression can not be converted into a query against a data store in 660, the routing
algorithm will return to the locating step 620 until no more subexpressions can be
located in the evaluation tree. If another subexpression is located in 620, the routing
algorithm will again proceed with step 630, and so on. In 620, however, if no more
subexpressions are located, the routing algorithm transmits the subscription request in
650 as defined by the event filter to, for example, the respective event managers
1dentified in the full list.

In an exemplary embodiment of the present invention, the implementation of
the routing algorithm may include, for example, a single function that analyzes an
event filter and provides a single opaque data structure that can be accessed to
determine a list of subscription handles that represent individual requests to event

managers to fulfill the subscription request as determined by the routing algorithm

such as

int PtEventSubscribe(PT CHAR T* filter,
void(*EventCallbackHandler)(PT_STATUS status, void*EvCbArg,
PT_EVAR_EVENTS_RES eventRes, PT_IPC_REQUEST request), void*EvCbArg,
vold (*SubscriptionCallbackHandler)(PT_STATUS status, void*SubCbArg,
PT_EVENT_SUBSCRIPTION evSubscription, void*SubCbArg).

In an exemplary embodiment of the present invention, the routing algorithm
includes a plurality of data structures for the encapsulation of individual subscription

requests into a single meta subscription transaction. This may be done, for example,
20-

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

by having a base return of a function be an opaque data structure, such as an
exemplary data structure PT EVENT SUBSCRIPTION as shown below.

PT EVENT SUBSCRIPTION, for example, includes the outstanding individual

subscription requests and provides an acsessor function to expose it, for example, to a
5 client (e.g., director). The data structure allows other methods such as functions acting

on the data structure to reveal the contents of the data structure without the user

accessing the fields of the data structure directly. Accordingly, the internal storage

(e.g., the number of individual entries and contents of the fields of the data structure)

may change without impacting an external user of the data structure.
10 In an exemplary embodiment of the present invention, the routing algorithm

includes, for example, a first data structure (Subscription List)

struct SUBSCRIPTION LIST

d
PT CHAR T*nodeName;

15 PT CHAR T*dataGroup;
PT IPC REQUEST ipcRequest;
struct SUBSCRIPTION LIST* nextSubscription;
f

and a second data structure (PT EVENT SUBSCRIPTION)

20 typedef struct PT EVENT SUBSCRIPTION

d
PT CHAR T* filter;

struct SUBSCRIPTION LIST fullList;
struct SUBSCRIPTION LIST workingList;} PT EVENT SUBSCRIPTION
25 typedef PT EVENT SUBSCRIPTION* PT EVENT SUBSCRIPTION;

PT Event Subscription provides an event filter and a list of all the outstanding
subscription requests, e.g., full list, for the respective event filter.
PT Event Subscription also provides a working list which provides subscription

requests which are being changed. Subscription List is, for example, a basic element
21-

10

15

20

WO 00/39673

CA 02358162 2001-06-29

PCT/US99/31113

of the full Iist, and provides a list of separately defined elements needed to fulfill the
subscription. Subscription_List includes information about each request such as an
individual request handle which uniquely 1dentifies an individual request to an event
manager (€.g., inner process communication (IPC) request), for example, ipcRequest;
the respective event manager contact information, for example, dataGroup; and the
node where the event defined 1n the respective event filter may occur, for example,
nodeName. The individual entries of full list are defined by the structure
Subscription_List. In an exemplary embodiment of the present invention, the full list
18, for example, implemented as a linked list using nextSubscription. For example,
each element of the list points to the next element of the list and the final element of
the list points to nothing. Accordingly, the size of the full list does not have to be
predetermined.

In an exemplary embodiment of the present invention, the event management
system provides a mechanism, for example, a client registered subscription callback
function SubscriptionCallbackFunction(PT STATUS status, void*
SubscriptionCallbackArgument, PT _EVENT SUBCRIPTION evSubscription) for
notifying, for example, a client that a subscription request has changed. Thus, the
subscription callback function allows a client, such as a director, to view the status of
the PT_Event Subscription structure and the changes, e.g., addition and deletion of
requests, that were made. The registered subscription callback function niay also
provide a working list which includes the requests that are being changed as of; for

example, the invocation of the client registered subscription callback function.

2.

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

Further, the client registered subscription callback function may also provide
the outstanding subscription requests, e.g., full list. The registered subscription
callback function may also be used for initial subscription and any subsequent
additions or deletions. For example, a call on deletion will have the working list
populated with subscription__list entries including IPC requests that are to be canceled.
Determining whether the working list includes additions or deletions may be
accomplished through, for example, a value of a minor status in the status structure,
PT STATUS passed to the client registered subscription callback function. On a
complete change to an event filter (e.g., all old requests canceled énd new requests
added), the callback function may be invoked twice, once with the deletions and once
with the additions. In an exemplary embodiment of the present invention, the event
management system also includes a function, int PtEventSubscribeCancel(

PT EVENT SUBSCRIPTION evSubscription), for canceling a group of
subscriptions.

In an exemplary embodiment of the present invention, the routing algorithm
performs a query to one or more data tables or data stores as determined from
analyzing subexpressions of an evaluation tree of a respective event filter. As shown
in FIG. 7, the data tables and data stores may include, for example, an event catalog
720, a software inventory 730, a product table 760, a node table 740, a filter data store
750, and a remote monitoring data store 770. The event catalog 720 may include
fields of an event which are not specific to where the product reporting the event is
installed or to a specific instance that the event is about such as product name, event

name, type of event, description, description ID, instance type, and all of the additional

23

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

extended keys used by this event. In an exemplary embodiment of the present
invention, this information may be provided with the installation of the respective
database such as the DEX 710 or the installation of a point product, which may include
updating the event catalog 720 with the events generated by the point product. In an
exemplary embodiment of the present invention, the GUI, for example, of the director
guides a user through an event filter creation process including populating pick lists of
options for various fields of events which inform the user of the events available in the
enterprise as described 1n Platinum Provision Common Services Reference Guide,
version 1.08 (October 1998 Platinum technology, inc.) which is herein incorporated by
reference 1n its entirety. The lists are populated by, for example, querying the event
catalog 720 that may be, for example, located in the DEX 710 as shown in FIG. 7.

In an exemplary embodiment of the present invention, the event management
system of the present invention may include a software inventory 730. The software
inventory 730 may include records for each copy of a product installed on a node, for
example, mformation indicating the respective nodes where each of the point products
are mstalled and a list of instances being monitored. The software inventory 730 may
use a product 1dentifier (product ID) and a node identifier (node ID) to form the
respective relationships. Further, a given product can be installed on multiple nodes
and a node may have more than one product installed on it. The software inventory
730 may be included, for example, in the DEX 710. Information indicating where a
given product is installed may be useful to determine the nodes that could have a

particular type of event occur on it.

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

In an exemplary embodiment of the present invention, the event catalog 720
and software inventory 730 may be located, for example, in a single relational data
store. Accordingly, an event filter may be effectively translated into a database query
to determine what nodes could have such an event occur on them. For example, a
query may be used for a filter referencing a product name, e.g.,
“productName=PlatPerfMgmtOra”. Accordingly, the routing algorithm will, for
example, perform a query against the event catalog 720, to get from the product name
reference 1n the event catalog 720 an associated product ID. The product ID is, for
example, a generated key that i1s used across all of the database tables when referring
to the product. In an exemplary embodiment of the present invention, the product ID
could be, for example, the name or an integer. This ID can then be used to reference
information (e.g., a record) from the software inventory 730 that associates a physical
node with a product.

An event name field may be used by the routing algorithm to query the event
catalog 720 for products that may generate the respective event. For example, in the
filter “name=DatabaseDown”, the event name is DatabaseDown. A query could be
performed against the event catalog 720 to determine what products can generate
cvents with that name. From the list of products, a query against the software
inventory 730 could be made to determine on what nodes such products are installed.
Based on performance and ease of integration in the dynamic construction of the
query, for example, the query may include multiple queries, nested queries, or a single
query with suitable conjunctives. As was done for the event name, similar queries

may be constructed for the other fields in the event catalog 720, using the event

25

10

15

20

WO 00/39673

CA 02358162 2001-06-29

PCT/US99/31113

catalog 720 to determine the products in the event catalog 720 that are related to the
respective field, and then where those products are installed. In an exemplary
embodiment of the present invention, the other fields in the event catalog 720 may
include type of event, description, description ID, instance type and all of the
additional extended keys used by events. The addition of key value pairs to an event
structure 1s described in copending patent application attorney docket number
22074661/25529, filed on December 31, 1998 and entitled METHOD AND
APPARATUS FOR A USER EXTENSIBLE EVENT STRUCTURE which is herein
incorporated by reference 1n its entirety. This approach may be taken for each
individual subexpression of the filter with the full list being the union of nodes
returned from each subexpression.

The product table 760 may include a description of the product (e.g., version),

files used by the product, description of the files used by the product, and the master

for a unique product ID.

The node table 740 may include, for example, all the nodes of interest in the
managed environment including properties of the node such as the operating system
running, the version of the operating system, hardware type, processor speed, and the
master for a unique node ID specific to the node table 740. In an exemplary
embodiment of the present invention, some of this information may be obtained, for
example, through a discovery process including making OS specific calls fo retrieve
various key attributes of the system and putting that information into a message that
can be sent to the central DEX data store and parsed and inserted into the node table.

As shown 1n FIG. 7, the node table 740, for example, may be included in the DEX

26-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

710. The routing algorithm may query other data tables and data stores related to
fields of the event to be used in routing determination which are not contained in the
event catalog 720. Accordingly, in a filter where instance type and instance were
specified, a query may be performed by the routing algorithm against a respective data
table or data store, for example, using the instance field specified in the filter. The
result of the query may be used to determine the respective nodes to receive the
subscription request.

In an exemplary embodiment of the present invention, a remote monitoring
product registers on configuration the respective node about which it is submitting
events, for example, 1n a remote monitoring data store 770. Remote monitoring is a
product submitting an event about an instance that is located on a different node than
the product 1s located. In an exemplary embodiment of the present invention, the
event management system may also provide the instance, node and event manager to a
remote monitoring data store 770. Since multiple remote monitors may be on different
nodes monitoring instances on a single node, a searchable data store including
instance, node, and event manager node allows the determination of information of a
particular node. This may be used to add the respective nodes to the list to which to
subscribe to receive all events about the node of interest (e.g., those events about
Instances on the respective node which will be reported to event managers on other
nodes due to remote monitoring). Further, multiple remote monitors may be on
different nodes monitoring a single instance. Accordingly, by having the instance and

event manager node 1n the remote monitoring data store 770, additional event

27-

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

managers that need to be contacted to get these events about the instance may be
determined.

The filter data store 750, for example, may include the filters and the respective
symbolic filter names. The symbolic filter name can be used for a subscription instead
of the filter needing to be fully specified. The symbolic name will uniquely reference
a filter defined, for example, in the filter data store 750. As the filters may change
dynamically and subscriptions are ongoing, changes to the definition of the filter
should be automatically handled, for example by the event API. The event API will,
for example, encapsulate registering for notification of the update for the symbolic
filter used 1n the subscription request. The event API may retrieve the new definition,
cancel all of the old IPC requests, rerun the routing algorithm with the new filter
definition and reestablish new IPC requests with the respective event managers using
the new filter definition. Accordingly, the routing algorithm may, for example, query
the filter data store 750 to dyna:mically obtain the respective updated filter 750.

In an exemplary embodiment of the present invention, the event management
system includes registering interest in subject changes. A watch can be established on
any subject changes to an event manager. The watch is, for example, a method
whereby a communication layer will notify a client when new processes are running
on machines that match certain criteria, namely that an event manager is running on
that node. The watch, for example, may be implemented as a function. The results of
the watch may be analyzed to determine if they match the criteria of the original filter.

If 1t does, then a subscription to that node can be formed. Further, the user registered

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

subscription callback function may be invoked to notify the user of the addition of the
subscription to the node.

In an exemplary embodiment of the present invention, the event management
system provides notification if the list of nodes needed to satisfy a filter changes while
the subscriptions are outstanding. The nodes may change, for example, if the “like”
operator was used and another event manager starts running or becomes visible in the
network after an original call; a point product was installed on a new node; or an
external reference (e.g., symbolic name used to reference a respective event filter)
within a filter changed its definition, effectively changing the filter. When the filter is
mapped to a data store query to determine its routing, changes to the respective data
stores that the query runs against could potentially change the results of the query.

Accordingly, the event management system of the present invention includes
notification of when the query results may change. Updates to the respective data
stores, for example, may be controlled by a respective service processor. For example,
the service processor may provide notification of an update through an interprocess
communication message. Further, an event may be published on a subject area basis
within the respective data store, for example, the DEX 710. A subject area is, for
example, the node table 740. It may be, for example, a grouping of tables within the
database. In an exemplary embodiment of the present invention, the event published
indicates what subject area was updated.

The event management system includes a tracking mechanism for query

change. The results of the initial query, for example, rows of data and the subject

areas used 1n running the query, may be stored. Subscriptions for update events for the

29

10

15

20

WO 00/39673

CA 02358162 2001-06-29

PCT/US99/31113

subject areas used would be created. Upon receipt of an update event for one of the
subject areas, the query may be rerun. The results of the rerun would be compared
with the prior query results and suitable additions or deletions of individual event
manager subscription requests could be made.

- In an exemplary embodiment of the present invention, the routing algorithm,
for example, may use conjunction information combining each subexpression of the
evaluation tree of the event filter to narrow the list of nodes where potentially an event
may occur. For example, the event filter “name=DatabaseDown and
name=ServerDown” includes a first subexpression “name=DatabaseDown” and a
second subexpression “‘name=ServerDown’ combined by the conjunctive “and”. The
routing algorithm may, for example, determine the list of nodes which may have the
events occur on it by analyzing each of the subexpressions individually. As a result,
the conjunction 1s treated as an “or”. Accordingly, the list of nodes includes all nodes
that have a produét that can create a DatabaseDown, as well as all the nodes that have
a product that can create a ServerDown. One field, for example, may not have two
different values and thus, an event cannot occur that matches this filter. Accordingly,
the routing algorithm, using the conjunctive “and” between the subexpression, would
determine that no node could exists for the event defined by the filter. Thus, the
routing algorithm will not provide this subscription request to any nodes.

This would be an example of detecting a poorly formed user subscﬁption.
Immediate notification could be given to the user that no such events will ever exist in
the system, and the user would be made aware of this error and be able to correct the

subscription. For other sample filters, the goal is to optimize where the subscription

S30-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

needs to be routed. For example, if conjunction information is not used, such as in a
filter name=ServerDown and node=nodeA, evaluation of the node subexpression
would result in a single node, node A, and the evaluation of the name subexpression
would result in nodeA, nodeB, and nodeC. Therefore the union of the results of the
evaluation of each of the subexpressions (e.g., the full list) would be nodeA, nodeB,
and nodeC. But as the conjunction in this exemplary filter is an and, the full list
should only be nodeA. Accordingly, no additional events will be received if the filter
was routed to all three nodes. Further, there is more inefficiency in the system
subscribing to nodeB and nodeC, as the respective requests will be made and the event
managers located on nodeB and nodeC will evaluate the respective requests even
though they will never find a match for that filter.

The filtering system of the present invention is designed to operate in a
client/server environment where clients and servers could be running using different
code pages. Additionally, the event filters of the present invention, for example, may
be configured so that at least predefined fields of the event structure and the contents
of the fields of the event structure stored in the event catalog can be automatically
translated to provide localized versions of the event filters. In an exemplary
embodiment of the present invention, the messages (e.g., any of the interprocess
communication such as a subscription request to an event manager containing an event
filter) that pass from one process to another when crossing node boundaries (e.g., the
processes are running and communicating on different nodes) are mappable. The

communication layer of the event management system of the present invention, tracks

31-

10

15

20

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

the code page of a message and provides a conversion mapping that may be invoked
by a receiving code of the communication layer.

In an exemplary embodiment of the present invention, fields and keys of the
event such as product name, name, type, condition time, and keynames, are restricted
to a character set that can have unique representations across all code pages, e.g.,
portable character set. Thus, this restriction ensures mappings without loss.
Accordingly, a one to one mapping from a character in one code page to a suitable
character 1n the other code page will exist. In an exemplary embodiment of the present
invention, the portable character set includes, for example, the characters <space>, a,
b,c,d,e, f,g, h1,},k,I,mn,o,p,qrs,t,uv,w,x,v,z2,A,B,C,D,E,F, G, H,LJ,
K,LLM,N,O,P,Q,R,S, T, U, V,W,X,Y,Z,0,1,2,3,4,5,6,7,8,9,\, ,°,1,%#,
8, % & S Gh %t alnn<=>2@, 4]}, and ~.

In an exemplary embodiment of the present invention, the event management
system includes a one to one word translation of the keys of the language.
Accordingly, all of the names of fields in the event, except the extended key names,
and the comparison operators may have catalog lookups for substitutions in the current
language. This allows a filter to be constructed in a native language. Before the filter
1s used 1n a subscription, however, it can be translated to a common format so that a
single format can be used by any remote receiver in the interpretation of the filter. All
of the names of fields in the event (except the extended key names) and the
comparison operators may have catalog lookups for substitutions in the current

language. A bi-directional translation can be applied so that a user can view the event

filter 1n the local language, but have the event filters used and stored by the system in a

37-

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

standard language. The communications between processes need not be converted as
the processes will communicate with the same language. Accordingly, the standard
language provides a single language that all the processes can rely on and translation
may only have to be provided on presentation of the event filter to the user.

The embodiments described above are illustrative examples of the present
invention and it should not be construed that the present invention is limited to these
particular embodiments. Various changes and modifications may be effected by one
skilled 1n the art without departing from the spirit or scope of the invention as defined

1in the appended claims.

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

What 1s claimed 1s:
1. A method for routing a subscription request defined by an event filter
comprising the steps of:
parsing the event filter into an evaluation tree, the evaluation tree including at
least one subexpression,;
locating the at least one subexpression;
determining if the at least one subexpression includes a node specific field; and
if the at least one subexpression includes a node specific field,
creating a list of at least one of a node and event manager contact
information, and
transmitting the subscription request to at least one event manager

located on a node that 1s included in the list.

CA 02358162 2001-06-29

WO 00/39673

110

120

130

Vi

FIG. 1
100

EVENT 140

MANAGEMENT
SYSTEM

EVENT l 140

MANAGEMENT
SYSTEM

EVENT I 140

MANAGEMENT
SYSTEM

SUBSTITUTE SHEET (RULE 26)

PCT/US99/31113

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

21

FIG. 2

220

SUBSTITUTE SHEET (RULE 26)

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113
Y1
FIG. 3
. 300
———— N _
! 330 340 32

- - i &

o wm SR -

EVENT EVENT EVENT
CORRELATOR HANAGER ARCHIVE
0

M i ESPONSE

& SaEEssEEEEEEE—. 4 = samsssssssress 9 @ SSeglEEEgEE.. 44 & Sammmsmsmmm———" e & sssssssihbdver 46 @ G -
& ¢ AEEEEEEEE S S AN W A Sremrlree ity) b EE—— S — - -

SUBSTITUTE SHEET (RULE 25)

CA 02358162 2001-06-29

PCT/US99/31113

WO 00/39673

.. aEmmmmmrareey A 4 SEERAISS———— W -

- S GEEEEEEEEEENY W W et W W SEmmmremmmmmr v B SRl W W wmm— A e — -

HIIYNVM |
INIA3 |

e
0193410

|
_
INTHIN |
. 41 o _
W |
@ _
| 1Jn00Hd |
“ INT0d HIIYNVH _
| 1 - INIA |
| %4 |

INIINS |
4SNOdS3H i | G0¥ 907

v

0

.

SUBSTITUTE SHEET (RULE 26)

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

FIG. 5

PARSE EVENT FILTER INTO L~ 210
AN EVALUATION TREE

INCLUDING ONE OR
MORE SUBEXPRESSIONS

LOCATE EACH SUBEXPRESSION |~ 2¢0
OF THE EVALUATION TREE

DETERMINE IF THE 330
SUBEXPRESSIONS INCLUDE
NODE SPECIFIC FIFLDS

CREATE LIST OF AT LEAST 940
ONE OF A NODE AND

EVENT MANAGER
CONTACT INFORMATION

TRANSMIT SUBSCRIPTION 230
REQUEST TO EVENT MANAGERS

SUBSTITUTE SHEET (RULE 26)

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113

FIG. b

PARSE EVENT FILTER INTO L~ 610
AN EVALUATION TREE

INCLUDING ONE OR
MORE SUBEXPRESSIONS

NO

b20 bb0

- DETERMINE
IF SUBEXPRESSION
CAN BE CONVERTED INTO
A QUERY AGAINST A
DATA STORE

DETERMINE
IF SUBEXPRESSION
INCLUDES A NODE
SPECIFIC
FIELD

LOCATE
SUBEXPRESSION
IN EVALUATION
TREE

YES

NO

TRANSMIT SUBSCRIPTION b3l
REQUEST T0 RESPECTIVE
MANAGERS

CREATE AND PERFORM QUERY

PROVIDE AT LEAST ONE b40
OF NODE(S) AND EVENT

MANAGER CONTACT
INFORMATION TO A LIST

SUBSTITUTE SHEET (RULE 26)

CA 02358162 2001-06-29

WO 00/39673 PCT/US99/31113
/1]
FIG. 7
ﬁo
- e N

REMOTE
MONITORING
DATA STORE

SUBSTITUTE SHEET (RULE 26)

PARSE EVENT FILTER INTO
AN EVALUATION TREE

INCLUDING ONE OR
MORE SUBEXPRESSIONS

LOCATE EACH SUBEXPRESSION
OF THE EVALUATION TREE

DETERMINE IF THE
SUBEXPRESSIONS INCLUDE
NODE SPECIFIC FIELDS

210

220

230

CREATE LIST OF AT LEAST
ONE OF A NODE AND
EVENT MANAGER
CONTACT INFORMATION

TRANSMIT SUBSCRIPTION
REQUEST TO EVENT MANAGERS

40

230

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - abstract drawing

