发明名称
基于纤维素基模板的纺锤形纳米二氧化钛及其制备方法

摘要
一种基于纤维素基模板的纺锤形纳米二氧化钛(TiO_2)及其制备方法。所述方法首先将纤维素基高分子材料分散在水中，然后加入TiO_2前驱体，通过低温水解方法，在纤维素基表面原位生成纺锤形纳米TiO_2。制得的TiO_2纺锤体为金红石矿，分散均匀，长100～200nm，宽30～60nm。本发明的制备方法简单易操作，成本低，原料绿色，廉价易得，在吸附、催化、电子和新能源领域中具有潜在的应用。
1. 一种基于纤维素基模板的纳米二氧化钛，其特征在于，纳米二氧化钛以纺锤体在纤维素基表面原位生长，均匀分散；所述纺锤体为金红石相；所述纺锤体长100-200nm，宽30-60nm。

2. 权利要求1所述纳米二氧化钛的制备方法，包括如下步骤：
 (1) 将纤维素基高分子材料在水中分散，调节分散液的pH值小于5；
 (2) 加入二氧化钛前驱体溶液；
 (3) 50-120℃油浴加热2-12h；
 (4) 反应结束后，冷却，经抽滤、洗涤、干燥即得目标产物。

3. 根据权利要求2所述的制备方法，其特征在于，步骤(2)中所述加入在搅拌下进行。

4. 根据权利要求3所述的制备方法，其特征在于，步骤(2)中所述加入为逐滴加入。

5. 根据权利要求2所述的制备方法，其特征在于，步骤(4)中所述干燥为室温自然干燥或在温度为30-50℃下干燥。

6. 根据权利要求2-5任一项所述的制备方法，其特征在于，所述纤维素基高分子材料为膜或纤维。

7. 根据权利要求2-5任一项所述的制备方法，其特征在于，所述纤维素基高分子材料为纤维素或纤维素衍生物中的一种或两种以上的混合。

8. 根据权利要求2-5任一项所述的制备方法，其特征在于，所述二氧化钛前驱体为钛酸正丁酯、硫酸氧钛、异丙醇钛或四氯化钛中的一种或两种以上的混合。

9. 根据权利要求2-5任一项所述的制备方法，其特征在于，所述纤维素基高分子材料、二氧化钛前驱体与水的质量比为1:0.05-4:50-200。
基于纤维素基模板的纺锤形纳米二氧化钛及其制备方法

技术领域
[0001] 本发明涉及纳米二氧化钛及其制备方法，尤其涉及一种以纤维素基为模板原位合成的纺锤形二氧化钛纳米晶体及其制备方法。

背景技术
[0002] 二氧化钛（TiO₂）具有无毒、稳定、表面活性高、成本低等优点。纳米TiO₂具有非常高的比表面面积，在吸附、光催化、传感器、太阳能电池等环境和能源领域具有广泛的应用。而这些应用与TiO₂的形貌、晶型、大小和结构层次有着直接的关联，因此合成各种不同形貌的TiO₂纳米晶体备受关注。

[0003] TiO₂有三种晶型：锐钛矿、金红石矿、板钛矿和无定形态。其中板钛矿不稳定，锐钛矿型TiO₂晶格中含有较多的缺陷和缺位，从而产生较多的氧空位来捕获电子，所以具有较高的活性；金红石矿TiO₂具有折射率高、着色力好、化学性质稳定、光催化等优异性能，在电子和轻工业领域中广泛应用作透明器件和颜料等。常用的制备方法得到的TiO₂通常为无定形和锐钛矿，需高温煅烧（高于600℃）才能得到金红石矿，并且往往混杂有锐钛矿，纯度不够。尽管近年来发展了水热法和水解法，但是低温下制备纯的金红石矿仍然面临着挑战。

[0004] 纤维素是自然界中储量最丰富的天然高分子，纤维素表面含有大量羟基，这些亲水的羟基可以加速无机颗粒在其上成核和生长，从而控制颗粒的晶型、形貌和大小。因此，纤维素可以作为模板制备各种形貌可控的无机纳米材料，并且已有诸多报道。CN102079542A公开了一种离子液体/水介质中纤维素模板合成介孔TiO₂的方法。该方法以纤维素为模板，以四氯化钛为钛源，采用液相水解法制备了TiO₂/纤维素复合前躯体，然后经过焙烧处理制得介孔TiO₂光催化剂。CN103121712A公开了一种以纤维素纤维为模板制备超长纤维状TiO₂的方法。该方法首先制备纤维素纤维分散液，然后向其中依次加入TiCl₄、(NH₄)₂SO₄和HCl，搅拌一定时间，再加氨水调节pH值，陈化一定时间后，将固相物分离并干燥得到核壳结构的纤维素/TiO₂复合纤维。最后经高温烧结，除去纤维素模板，得到超长纤维状TiO₂。上述两种方法制得的TiO₂纳米颗粒铺满了纤维素的所有表面形成连续的膜，甚至多层TiO₂膜叠加，降低了纳米颗粒的表面积。

发明内容
[0005] 本发明的目的之一在于提供一种以环境友好的生物可再生资源—纤维素为模板，通过简单的低温水解方法，在纤维素基材料表面原位合成金红石矿TiO₂纳米晶体。本发明的方法简单易操作、成本低、原料绿色、廉价易得。

[0006] 为了达到上述目的，本发明采用如下技术方案：

[0007] 一种基于纤维素基模板的纳米二氧化钛，在纤维素基表面原位生长，均匀分散。纤维素基材料表面含有大量的羟基，起到模板的作用，控制TiO₂的成核和晶体生长，达到控制TiO₂晶体的大小和形貌，从而得到纺锤形的纳米TiO₂纳米晶体，并且保证TiO₂在纤维素纤维表面均匀分布而不形成连续的膜或多层膜叠加，以尽可能保
留纳米颗粒的大的表面积优势，有利于提高吸附和催化效果。纳米TiO₂在纤维素基表面原位生长，均匀分散，可以做到尽量不损失TiO₂纳米颗粒的比表面积，保持纳米颗粒的小尺度优势。此外，将纳米颗粒固定化之后应用，解决了纳米颗粒实际应用中的中性流失和由此带来的二次污染问题。

[0008] 现有技术得到的纳米TiO₂较多为球形。纺锤体或其他非纳米结构材料的比表面积会更大，在吸附、催化等领域的应用效果会更好。

[0009] 作为优选技术方案，本发明所述的纳米二氧化钛，所述纺锤体为金红石型。现有技术得到的纳米TiO₂的晶型大多为锐钛矿，而本发明以非常简单而环保的方法便可得到应用范围更广及使用性能更好的金红石型。

[0010] 作为优选技术方案，本发明所述的纳米二氧化钛，所述纺锤体长100-200nm，例如为120nm、140nm、170nm、190nm等，宽30-60nm，例如为40nm、47nm、55nm、59nm等。

[0011] 本发明的目的之一还在于提供所述纳米二氧化钛的制备方法，包括如下步骤：

[0012] (1) 将纤维素基高分子材料在水中分散，调节分散液的pH值；

[0013] (2) 加入二氧化钛前驱体溶液；

[0014] (3) 加热反应；

[0015] (4) 反应结束后，冷却、经抽滤、洗涤、干燥即得目标产物。

[0016] 在反应过程中，纤维素上大量的羟基首先吸附TiO₂前躯体作为成核点，然后通过水解形成TiO₂纳米晶。同时，纤维素上的羟基会优先吸附到TiO₂的某个晶面，限制晶体按该方向上的生长，从而形成纺锤形TiO₂晶体。

[0017] 优选地，步骤(1)中所述的pH值小于5，例如为1.5、3.0、4.5等。如下公式为二氧化钛前驱体水解反应生成TiO₂纳米颗粒的过程：

\[mTi^{4+}(aq) + 4mH₂O(l) \rightarrow mTi(OH)₄(aq) - 4mH⁺(aq) \] \((1) \)

\[mTi(OH)₄(aq) \rightarrow mTiO₂(s) + 2mH₂O(aq) \] \((2) \)

[0018] 控制水解速度，可以更好地控制TiO₂的形态。而从上述公式可以看出：pH值越小，反应越慢，因此将pH值小于5。但是，由于考虑到纤维素在酸中会有降解，酸的浓度也不宜过大，一般不超过0.3mol/L。

[0019] 优选地，步骤(2)中所述加入在搅拌下进行，优选为逐滴加入。

[0020] 优选地，步骤(3)中所述反应的温度为50-120℃，例如为55℃、60℃、80℃、100℃、115℃等，反应的时间为2-12h，例如为3h、4.5h、6h、8h、10h、11.5h等。反应温度对TiO₂的生成和颗粒大小有重要的影响。温度高有利于Ti⁺前驱体的水解反应，并加速纳米颗粒生长。反应温度太低（<50℃），则无TiO₂颗粒生成；反应温度越高，反应越快，生成的颗粒越大；但是反应温度太高，会使反应过快不易控制而导致纳米颗粒过大或聚集，因此反应温度不宜超过120℃。

[0021] 优选地，步骤(4)中所述干燥为室温自然干燥或在温度为30-50℃，例如为33℃、38℃、42℃、46℃、49℃等下干燥。

[0022] 作为优选技术方案，本发明所述的制备方法，所述纤维素基高分子材料为膜或纤维。

[0023] 优选地，所述纤维素基高分子材料为纤维素或纤维素衍生物中的一种或两种以上的混合。
优选地，所述二氧化钛前驱体为钛酸正丁酯、硫酸氧钛、异丙醇钛或四氯化钛中的一种或两种以上的混合。

反应体系中二氧化钛前驱体的含量和浓度对产物中TiO_{2}纳米颗粒的含量、形貌和分布影响很大。保持其他反应条件不变的情况下，随着二氧化钛前驱体浓度增大，TiO_{2}的含量增多，当达到某一平衡值之后趋于稳定。因为当二氧化钛前驱体浓度过饱和之后，多余的量并不能完全与纤维素反应而结合，而是溶解在了反应体系中，最后在后处理中经过过滤而除去。

此外，二氧化钛前驱体浓度越大，反应越快，生成的TiO_{2}颗粒容易不均匀并且易团聚。而我们希望产物中的TiO_{2}纳米颗粒在纤维素纤维表面较均匀分布而不形成连续的膜或多层膜叠加，以尽可能保留TiO_{2}纳米颗粒的表面积。因此，本发明控制纤维素基高分子材料、二氧化钛前驱体与水的质量比为1:0.05-4:50-200。

本发明提供的制备方法以天然高分子为原料，以水为溶剂，在纤维素基材料水提原位合成金红石型TiO_{2}纳米晶体，成本低，并且操作简便，体现了绿色化学意义。

本发明的制备方法简单易操作、成本低，原料绿色、廉价易得，制得的材料吸附效果好，在吸附、催化、电子和新能源领域中具有潜在的应用。

附图说明

图1为实施例1制备的纤维素基纳米TiO_{2}的SEM照片；
图2为实施例1制备的纤维素基纳米TiO_{2}的TEM照片；
图3为实施例1制备的纤维素基纳米TiO_{2}的高倍透射电镜(HRTEM)照片和选区电子衍射(SEAD)图。

具体实施方式

为便于理解本发明，本发明列举实施例如下。本领域技术人员应该明了，所述实施例仅仅是帮助理解本发明，不应视为对本发明的具体限制。

实施例1

1）将市售的纤维素纤维(1g)在150ml水中分散，然后缓慢滴加浓硫酸(2ml)，同时搅拌；

2）在上述纤维分散液中逐滴滴加硫酸氧钛(TiO_{2}SO_{4}·H_{2}SO_{4}·H_{2}O)溶液(1.1g)，同时搅拌；

3）60℃油浴加热7小时，同时搅拌；

4）反应完毕，冷却，然后真空抽滤，滤干后的纤维滤饼用去离子水多次冲洗，干燥，得到纤维素基纳米TiO_{2}。

图1为本实施例制备的纤维素基纳米TiO_{2}的SEM照片，从照片中可以看出；TiO_{2}纳米颗粒在纤维素基表面呈均匀分散，呈纺锤状，这些纺锤状晶体长约180nm，宽约50nm。

图2为本实施例制备的纤维素基纳米TiO_{2}的TEM照片，进一步证实了纺锤形的TiO_{2}
晶体。
[0043] 图3为本实施例制备的纤维素基纳米TiO$_2$的高倍透射电镜(HRTEM)照片和选区电子衍射(SEAD)图，表明TiO$_2$具有良好的结晶，并对应于室温石矿晶体。
[0044] 同时，本发明还对实施例1所得产物对水溶液中重金属铅离子的吸附性能进行了试验，结果如下：本实施例制得产物对水溶液中重金属铅离子浓度为35mg/g的吸附为14.7mg/g，远大于相同质量的纯纤维素纤维的吸附(3.3mg/g)，略低于同样质量的纯纳米TiO$_2$的吸附(20.0mg/g)。
[0045] 但是，经过分析，本发明实施例1产物中TiO$_2$的含量仅为3.1wt%，如此低的TiO$_2$含量却能得到很好的吸附效果，这可能与纤维素纳米TiO$_2$的大的比表面积和特殊晶型有关，同时本发明将TiO$_2$纳米颗粒固定到高分子材料上使用，解决了纳米颗粒在实际应用的流失和由此带来的二次污染问题。
[0046] 实施例2
[0047] 1) 将市售的纤维素纤维(1g)在200ml水中分散，然后缓慢滴加浓硫酸(3ml)，同时搅拌；
[0048] 2) 在上述分散液中逐滴滴加硫酸氢锆溶液(0.8g)，同时继续搅拌；
[0049] 3) 70℃油浴加热5小时，同时搅拌；
[0050] 4) 反应完毕，冷却，然后真空抽滤，滤干后的纤维滤饼用去离子水多次冲洗，干燥，得到纤维素基纳米TiO$_2$。
[0051] 实施例3
[0052] 1) 将市售的滤纸(1g)浸在100ml水中，然后缓慢滴加硫酸(1ml)，同时缓慢搅拌；
[0053] 2) 在上述溶液中逐滴滴加硫酸氢锆溶液(0.5g)，同时继续搅拌；
[0054] 3) 80℃油浴加热6小时，同时搅拌；
[0055] 4) 反应完毕，冷却，然后真空抽滤，反应后的滤纸用去离子水多次冲洗，干燥，得到纤维素基纳米TiO$_2$。
[0056] 实施例4
[0057] 1) 将市售的滤纸(1g)浸在100ml水中，然后缓慢滴加盐酸(1ml)，同时缓慢搅拌；
[0058] 2) 在上述溶液中逐滴滴加硫酸氢锆溶液(0.5g)，同时继续搅拌；
[0059] 3) 90℃油浴加热4小时，同时搅拌；
[0060] 4) 反应完毕，冷却，然后真空抽滤，反应后的滤纸用去离子水多次冲洗，干燥，得到纤维素基纳米TiO$_2$。
[0061] 实施例5
[0062] 1) 将市售的滤纸(1g)浸在200ml水中，然后缓慢滴加硝酸(1ml)，同时缓慢搅拌；
[0063] 2) 在上述溶液中逐滴滴加硝酸氢锆溶液(3.8g)，同时继续搅拌；
[0064] 3) 100℃油浴加热3小时，同时搅拌；
[0065] 4) 反应完毕，冷却，然后真空抽滤，反应后的滤纸用去离子水多次冲洗，干燥，得到纤维素基纳米TiO$_2$。
[0066] 应该注意到并理解，在不脱离后附的权利要求所要求的本发明的精神和范围的情况下，能够对上述详细描述的本发明做出各种修改和改进。因此，要求保护的技术方案的范围不受所给出的任何特定示范教导的限制。
申请人声明，本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程，但本发明并不局限于上述详细工艺设备和工艺流程，即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了，对本发明的任何改进，对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等，均落在本发明的保护范围和公开范围之内。
图1

图2

图3