发明名称
电解电容器电极用铝材料和电解电容器电极
用铝箔的制造方法，以及电解电容器

摘要
本发明的电解电容器电极用铝材料，在化学组成中，Al 纯度：99.9％或以上，含有 Si：2～
50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm。同时，含有 Zr、V
中至少一种在 11ppm 以上且总计含有 11～100ppm，B 含量被限制在 2ppm 或以下，剩余部分
由铝及杂质组成。另外，在上述组成中，可以选择地添加 1～30ppm 的 Ti，总计 1～50ppm 的 Mn 组
元素(Mn、Ga、Mg、Ca 中的一种或以上)、总计 1～30ppm 的 In 组元素(In、Sn、Sb 中的一种或以
上)。本发明的电解电容器电极用铝箔的制造方法，其特征在于，箔轧制上述化学组成铝材料
后，在 430～580℃下进行最终退火。
1.一种电极电容器电极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上，在含有 Si: 2 ～ 50 ppm、Fe: 2 ～ 50 ppm、Cu: 15 ～ 150 ppm、Zn: 1 ～ 80 ppm 和 Pb: 0.1 ～ 3 ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种的含量在 11 ppm 或以上，且 Zr 及 V 的总计含量为 11 ～ 100 ppm，B 含量被限制在 2 ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430 ～ 580 ℃下进行最终退火。

2. 一种电极电容器电极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上，在含有 Si: 2 ～ 50 ppm、Fe: 2 ～ 50 ppm、Cu: 15 ～ 150 ppm、Zn: 1 ～ 80 ppm 和 Pb: 0.1 ～ 3 ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种的含量在 11 ppm 或以上，且 Zr、V 的总计含量为 11 ～ 100 ppm，进一步，含有 Ti: 1 ～ 30 ppm，B 含量被限制在 2 ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430 ～ 580 ℃下进行最终退火。

3. 一种电极电容器电极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上，在含有 Si: 2 ～ 50 ppm、Fe: 2 ～ 50 ppm、Cu: 15 ～ 150 ppm、Zn: 1 ～ 80 ppm 和 Pb: 0.1 ～ 3 ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种的含量在 11 ppm 或以上，且 Zr、V 的总计含量为 11 ～ 100 ppm，进一步，含有 Mn、Ga、Mg、Ca 中的至少一种，Mn、Ga、Mg、Ca 中的至少一种的含量在 1 ppm 或以上，且 Mn、Ga、Mg、Ca 的总计含量为 1 ～ 50 ppm，B 含量被限制在 2 ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430 ～ 580 ℃下进行最终退火。

4. 一种电极电容器电极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上，在含有 Si: 2 ～ 50 ppm、Fe: 2 ～ 50 ppm、Cu: 15 ～ 150 ppm、Zn: 1 ～ 80 ppm 和 Pb: 0.1 ～ 3 ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种在 11 ppm 或以上，且 Zr、V 的总计含量为 11 ～ 100 ppm，进一步，含有 In、Sn、Sb 中的至少一种，In、Sn、Sb 中的至少一种的含量在 1 ppm 或以上，且 In、Sn、Sb 的总计含量为 1 ～
30ppm，B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430～580℃下进行最终退火。

5. 一种电解电容器极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种的含量在 11ppm 或以上，且 Zr、V 的总计含量为 11～100ppm，进一步，含有 Ti：1～30ppm，还含有 Mn、Ga、Mg、Ca 中的至少一种，Mn、Ga、Mg、Ca 中的至少一种的含量在 1ppm 或以上，且 Mn、Ga、Mg、Ca 的总计含量为 1～50ppm，B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430～580℃下进行最终退火。

6. 一种电解电容器极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种的含量在 11ppm 或以上，且 Zr、V 的总计含量为 11～100ppm，进一步，含有 Ti：1～30ppm，还含有 Sn、Sb 中的至少一种，In、Sn、Sb 中的至少一种的含量在 1ppm 或以上，且 In、Sn、Sb 的总计含量为 1～30ppm，B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430～580℃下进行最终退火。

7. 一种电解电容器极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中的至少一种，Zr、V 中的至少一种的含量在 11ppm 或以上，且 Zr、V 的总计含量为 11～100ppm，进一步，含有 Mn、Ga、Mg、Ca 中的至少一种，Mn、Ga、Mg、Ca 中的至少一种的含量在 1ppm 或以上，且 Mn、Ga、Mg、Ca 的总计含量为 1～50ppm，还含有 In、Sn、Sb 中的至少一种，In、Sn、Sb 中的至少一种的含量在 1ppm 或以上，且 In、Sn、Sb 的总计含量为 1～30ppm，B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成的铝材料后，在 430～580℃下进行最终退火。
8. 一种电解电容器电极用铝箔的制造方法，其特征在于，箔轧制在化学组成中，Al纯度: 99.9%或以上。在含有Si: 2～50ppm, Fe: 2～50ppm, Cu: 15～150ppm, Zn: 1～80ppm和Pb: 0.1～3ppm的同时，含有Zr, V中的至少一种，Zr, V中的至少一种的含量在11ppm或以上，且Zr, V的总计含量为11～100ppm。进一步，含有Ti: 1～30ppm，还含有Mn, Ga, Mg, Ca中的至少一种，Mn, Ga, Mg, Ca中的至少一种的含量在1ppm或以上，且Mn, Ga, Mg, Ca的总计含量为1～50ppm，还含有In, Sn, Sb中的至少一种，In, Sn, Sb中的至少一种的含量在1ppm或以上，且In, Sn, Sb的总计含量为1～30ppm，B含量被限制在2ppm或以下，剩余部分由铝及杂质组成的铝材料后，在430～580℃下进行最终退火。

9. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求1所记载的方法制造的。

10. 如权利要求9记载的电解电容器电极用铝箔，
Si含量为5～20ppm, Fe含量为5～20ppm, Cu含量为30～100ppm, Zn含量为10～50ppm, Pb含量为0.3～2ppm, Zr, V中的至少一种的含量在20ppm或以上, Zr和V的总含量为20～70ppm, B含量为1ppm或以下。

11. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求2所记载的方法制造的。

12. 如权利要求11记载的电解电容器电极用铝箔，
Si含量为5～20ppm, Fe含量为5～20ppm, Cu含量为30～100ppm, Zn含量为10～50ppm, Pb含量为0.3～2ppm, Zr, V中的至少一种的含量在20ppm或以上, Zr和V的总含量为20～70ppm, B含量为1ppm或以下。

13. 如权利要求11或12记载的电解电容器电极用铝箔，Ti含量为5～20ppm。

14. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求3所记载的方法制造的。

15. 如权利要求14记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、
Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量
在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm。
B 含量为 1ppm 或以下。

16. 如权利要求 14 或 15 记载的电解电容器电极用铝箔，Mn、Ga、Mg、
Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3～
30ppm。

17. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求 4 所记
载的方法制造的。

18. 如权利要求 17 记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、
Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量
在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm。
B 含量为 1ppm 或以下。

19. 如权利要求 17 或 18 记载的电解电容器电极用铝箔，In、Sn、Sb
中至少一种含量在 2ppm 或以上、In、Sn 及 Sb 的总含量为 2～15ppm。

20. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求 5 所记
载的方法制造的。

21. 如权利要求 20 记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、
Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量
在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm。
B 含量为 1ppm 或以下。

22. 如权利要求 20 或 21 记载的电解电容器电极用铝箔，Ti 含量为 5～
20ppm。

23. 如权利要求 20 或 21 记载的电解电容器电极用铝箔，Mn、Ga、Mg、
Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3～
30ppm。

24. 如权利要求 20 记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm，Fe 含量为 5～20ppm，Cu 含量为 30～100ppm，
Zn 含量为 10～50ppm，Pb 含量为 0.3～2ppm，Zr，V 中至少一种的含量
在 20ppm 或以上，Zr 和 V 的总含量为 20～70ppm。

Ti 含量为 5～20ppm，

Mn，Ga，Mg，Ca 中至少一种的含量在 3ppm 或以上，Mn，Ga，
Mg 和 Ca 的总含量为 3～30ppm，

B 含量为 1ppm 或以下。

25. 一种电解电容器电极用铝箔材料，其特征在于，它是由权利要求 6
所记载的方法制造的。

26. 如权利要求 25 记载的电解电容器电极用铝箔，

Si 含量为 5～20ppm，Fe 含量为 5～20ppm，Cu 含量为 30～100ppm，
Zn 含量为 10～50ppm，Pb 含量为 0.3～2ppm，Zr，V 中至少一种的含量
在 20ppm 或以上，Zr 和 V 的总含量为 20～70ppm，

B 含量为 1ppm 或以下。

27. 如权利要求 25 或 26 记载的电解电容器电极用铝箔，Ti 含量为 5～
20ppm。

28. 如权利要求 25 或 26 记载的电解电容器电极用铝箔，In，Sn，Sb
中至少一种的含量在 2ppm 或以上，In，Sn 和 Sb 的总量为 2～15ppm。

29. 如权利要求 25 记载的电解电容器电极用铝箔，

Si 含量为 5～20ppm，Fe 含量为 5～20ppm，Cu 含量为 30～100ppm，
Zn 含量为 10～50ppm，Pb 含量为 0.3～2ppm，Zr，V 中至少一种的含量
在 20ppm 或以上，Zr 和 V 的总含量为 20～70ppm，

Ti 含量为 5～20ppm，

In，Sn，Sb 中至少一种的含量在 2ppm 或以上，In，Sn 和 Sb 的总量
为 2～15ppm，

B 含量为 1ppm 或以下。

30. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求 7 所记
载的方法制造的。

31. 如权利要求 30 记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、
Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量
在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、
B 含量为 1ppm 或以下。

32. 如权利要求 30 或 31 记载的电解电容器用铝箔，Mn、Ga、Mg、Ca
中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3～
30ppm。

33. 如权利要求 30 或 31 记载的电解电容器电极用铝箔，In、Sn、Sb
中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2～15ppm。

34. 如权利要求 30 记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、
Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量
在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、
Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、
Mg 和 Ca 的总含量为 3～30ppm、
In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含
量为 2～15ppm、
B 含量为 1ppm 或以下。

35. 一种电解电容器电极用铝箔，其特征在于，它是由权利要求 8 所记
载的方法制造的。

36. 如权利要求 35 记载的电解电容器电极用铝箔，
Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、
Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量
在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、
B 含量为 1ppm 或以下。

37. 如权利要求 35 或 36 记载的电解电容器电极用铝箔，Ti 含量为 5～
20ppm。

38. 如权利要求 35 或 36 记载的电解电容器电极用铝箔，Mn、Ga、Mg、
Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3～
30ppm。

39.如权利要求 35 或 36 记载的电解电容器电极用铝箔，In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2 ~ 15ppm。

40.如权利要求 35 记载的电解电容器电极用铝箔，Ti 含量为 5 ~ 20ppm、Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3 ~ 30ppm。

41.如权利要求 35 记载的电解电容器电极用铝箔，Ti 含量为 5 ~ 20ppm、In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2 ~ 15ppm。

42.如权利要求 35 记载的电解电容器电极用铝箔，

Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3 ~ 30ppm。

In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2 ~ 15ppm。

43.如权利要求 35 记载的电解电容器电极用铝箔，

Si 含量为 5 ~ 20ppm、Fe 含量为 5 ~ 20ppm、Cu 含量为 30 ~ 100ppm、Zn 含量为 10 ~ 50ppm、Pb 含量为 0.3 ~ 2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20 ~ 70ppm。

Ti 含量为 5 ~ 20ppm、

Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3 ~ 30ppm。

B 含量为 1ppm 或以下。

44.如权利要求 35 记载的电解电容器电极用铝箔，

Si 含量为 5 ~ 20ppm、Fe 含量为 5 ~ 20ppm、Cu 含量为 30 ~ 100ppm、Zn 含量为 10 ~ 50ppm、Pb 含量为 0.3 ~ 2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20 ~ 70ppm。

Ti 含量为 5 ~ 20ppm、

In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2 ~ 15ppm。
B 含量为 1ppm 或以下。

45. 如权利要求 35 记载的电解电容器电极用铝箔，

Ti 含量为 5 ~ 20ppm，

Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3 ~ 30ppm，

In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2 ~ 15ppm。

46. 如权利要求 35 记载的电解电容器电极用铝箔，

Si 含量为 5 ~ 20ppm、Fe 含量为 5 ~ 20ppm、Cu 含量为 30 ~ 100ppm、
Zn 含量为 10 ~ 50ppm、Pb 含量为 0.3 ~ 2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20 ~ 70ppm、

Ti 含量为 5 ~ 20ppm、

Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、
Mg 和 Ca 的总含量为 3 ~ 30ppm，

In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2 ~ 15ppm、

B 含量为 1ppm 或以下。

47. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求 9 所记载的铝箔构成。

48. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求 11 所记载的铝箔构成。

49. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求 14 所记载的铝箔构成。

50. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求 17 所记载的铝箔构成。

51. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求 20 所记载的铝箔构成。

52. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求 25 所记载的铝箔构成。
53. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求30所记载的铝箔构成。

54. 一种电解电容器，其特征在于，阳极或阴极的至少一方由权利要求35所记载的铝箔构成。
电解电容器电极用铝材料和电解电容器电极用铝箔的制造方法、
以及电解电容器

技术领域

本发明涉及作为电解电容器电极被使用的铝材料和铝箔的制造方法、
以及电解电容器。

背景技术

近年来，随着电子机器的小型化，对于被插入电子机器中的电解电容
器电极用铝箔，也希望提高静电容量。

通常，在电解电容器电极中使用的铝材料，为了提高扩面率使静电容
量提高，进行腐蚀处理。由于通过腐蚀处理形成的蚀坑的深度越深扩面率
越高，为了改善腐蚀特性提出了各种方案。例如，对于制造工序，有方案
指出，最终退火前的脱脂洗涤、最终退火前的水合处理和最终退火时的结
晶性氧化膜的形成处理、最终退火前的氧化处理等（特公昭 58-34925 号、
特开平 3-122260 号）。另外，对于组成，有方案指出，添加 Pb、Bi 等微
量元素，或添加 Ti、Zr、V 等的元素在表层使其浓化的方法（特开平 4-62822
号）。另外，在结晶结构中，有方案指出，调整 (100) 结晶方位。

但是，只简单地加深各蚀坑的深度不能充分提高铝箔的扩面率，为了
提高扩面率，进一步，需要减少局部腐蚀、未腐蚀、表面溶解，而在腐蚀
面上均匀、且高密度地产生蚀坑。在上述的各种方法和组成中，在高密度
且均匀地产生蚀坑方面还不充分，还不能满足不断增大的对静电容量的要
求。

发明的公开

本发明鉴于该技术背景，提供一种能高密度且均匀地产生深度腐蚀、
确实地提高扩面率、可以谋求确实增大静电容量的电解电容器电极用铝材
料和电解电容器电极用铝箔的制造方法，以及电解电容器。

另外，本说明书中，所使用的“铝”的意思包括铝及其合金这两种意思。

为了达到上述目的，本发明指出，具有特定组成的电解电容器电极用铝材料，和具有特定组成的铝作为材料的电解电容器电极用铝箔的制造方法，以及作为电极使用了特定组成的铝箔的电解电容器。

即，权利要求1～2的电解电容器电极用铝材料，基本要点为在化学组成中，Al纯度：99.9%或以上，含有Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm和Pb：0.1～3ppm的同时，含有Zr、V中至少一种在11ppm或以上且总计含有11～100ppm，B含量被限制在2ppm或以下，剩余部分由铝及杂质组成。

另外，在上述电解电容器电极用铝材料中，优选Si含量为5～20ppm、Fe含量为5～20ppm、Cu含量为30～100ppm、Zn含量为10～50ppm、Pb含量为0.3～2ppm、Zr、V中至少一种的含量在20ppm或以上、Zr和V的总含量为20～70ppm、B含量为1ppm或以下。

权利要求3～5的电解电容器电极用铝材料，基本要点为在化学组成中，Al纯度：99.9%或以上，含有Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm和Pb：0.1～3ppm的同时，含有Zr、V中至少一种在11ppm或以上且总计含有11～100ppm，进一步，含有Ti：1～30ppm、B含量被限制在2ppm或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选Si含量为5～20ppm、Fe含量为5～20ppm、Cu含量为30～100ppm、Zn含量为10～50ppm、Pb含量为0.3～2ppm、Zr、V中至少一种的含量在20ppm或以上、Zr和V的总含量为20～70ppm、B含量为1ppm或以下。另外，优选Ti含量为5～20ppm。

权利要求6～8的电解电容器电极用铝材料，基本要点为在化学组成中，Al纯度：99.9%或以上，含有Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm和Pb：0.1～3ppm的同时，含有Zr、V中至少一种在11ppm或以上且总计含有11～100ppm，进一步，含有Mn、
Ga、Mg、Ca 中至少一种在 1ppm 或以上且总计含有 1～50ppm，B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选 Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、B 含量为 1ppm 或以下。另外，优选 Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg、Ca 的总含量为 3～30ppm。

权利要求 9～11 的电解电容器电极用铝材料，基本要求为在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中至少一种在 11ppm 或以上且总计含有 11～100ppm，进一步，含有 In、Sn、Sb 中至少一种在 1ppm 或以上且总计含有 1～30ppm、B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选 Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、B 含量为 1ppm 或以下。另外，优选 In、Sn、Sb 中至少一种含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2～15ppm。

权利要求 12～16 的电解电容器电极用铝材料，基本要求为在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中至少一种在 11ppm 或以上且总计含有 11～100ppm，进一步，含有 Ti：1～30ppm、还含有 Mn、Ga、Mg、Ca 中至少一种在 1ppm 或以上且总计含有 1～50ppm、B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选 Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、B 含量为 1ppm 或以下。另外，优选 Ti 含量为 5～
20ppm。进一步，优选 Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 以上、Mn、Ga、Mg、Ca 的总含量为 3～30ppm。

权利要求 17～21 的电解电容器电极用铝材料，基本要点为在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中至少一种在 11ppm 或以上且总计含有 11～100ppm，进一步，含有 Ti：1～30ppm、还含有 In、Sn、Sb 中至少一种在 1ppm 或以上且总计含有 1～30ppm、B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选 Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、B 含量为 1ppm 或以下。另外，优选 Ti 含量为 5～20ppm。进一步，优选 In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2～15ppm。

权利要求 22～26 的电解电容器电极用铝材料，基本要点为在化学组成中，Al 纯度：99.9%或以上、在含有 Si：2～50ppm、Fe：2～50ppm、Cu：15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中至少一种在 11ppm 或以上且总计含有 11～100ppm，进一步，含有 Mn、Ga、Mg、Ca 中至少一种在 1ppm 或以上且总计含有 1～50ppm，还含有 In、Sn、Sb 中至少一种在 1ppm 或以上且总计含有 1～30ppm、B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选 Si 含量为 5～20ppm、Fe 含量为 5～20ppm、Cu 含量为 30～100ppm、Zn 含量为 10～50ppm、Pb 含量为 0.3～2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的总含量为 20～70ppm、B 含量为 1ppm 或以下。另外，优选 Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以上、Mn、Ga、Mg 和 Ca 的总含量为 3～30ppm。进一步，优选 In、Sn、Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2～15ppm。

权利要求 27～38 的电解电容器电极用铝材料，基本要点为在化学组成
中，Al 纯度：99.9%或以上，在含有 Si：2～50ppm、Fe：2～50ppm、Cu：
15～150ppm、Zn：1～80ppm 和 Pb：0.1～3ppm 的同时，含有 Zr、V 中
至少一种在 11ppm 或以上且总计含有 11～100ppm，进一步，含有 Ti：1～
30ppm、还含有 Mn、Ga、Mg、Ca 中至少一种在 1ppm 或以上且总计含
有 1～50ppm、还含有 In、Sn、Sb 中至少一种在 1ppm 或以上且总计含有
1～30ppm、B 含量被限制在 2ppm 或以下，剩余部分由铝及杂质组成。

在上述电解电容器电极用铝材料中，优选 Si 含量为 5～20ppm、Fe 含
量为 5～20ppm、Cu 含量为 30～100ppm、Zn 含量为 10～50ppm、Pb 含
量为 0.3～2ppm、Zr、V 中至少一种的含量在 20ppm 或以上、Zr 和 V 的
总含量为 20～70ppm、B 含量为 1ppm 或以下。另外，优选 Ti 含量为 5～
20ppm。另外，优选 Mn、Ga、Mg、Ca 中至少一种的含量在 3ppm 或以
上、Mn、Ga、Mg 和 Ca 的总含量为 3～30ppm。进一步，优选 In、Sn、
Sb 中至少一种的含量在 2ppm 或以上、In、Sn 和 Sb 的总含量为 2～15ppm。

另外，权利要求 39～46 的电解电容器用铝箔的制造方法为将对应于权
利要求 ③，③，⑤，⑥，⑦，⑧，⑨，⑩ 的化学组成的铝材料作为材料制造箔
的方法。

即，其特征在于，箔轧制上述各组成的铝材料后，在 430～580℃下进
行最终退火。

进一步，权利要求 47～54 的电解电容器，其特征在于，阳极或阴极的
至少一方由对应于权利要求 ③，③，⑤，⑥，⑦，⑧，⑨，⑩ 的化学组成的铝
箔构成。

在上述电解电容器用铝材料的化学组成中，在高纯度铝中添加的可控
制含量的共同的元素为，作为必须添加元素的 Si、Fe、Cu、Zn 及 Pb，两
者中选择地添加的 Zr 及 V，可抑制含量的 B 这 8 种元素。在权利要求 1～
2 的铝材料中仅添加这些共同元素，在权利要求 3～38 的铝材料中添加这
些共同元素、进一步还添加选自 Ti、Mn 组（Mn、Ga、Mg、Ca）、In
组（In、Sn、Sb）三者中的元素。

上述各元素的添加意义及含量的限定理由如下所示。

作为基础的铝的纯度在 99.9%或以上的原因为，若不到 99.9%时则杂
质量增多、即使控制微量添加元素的含量、在腐蚀时也容易产生过溶解导致腐蚀特性降低。优选铝纯度为 99.98% 或以上。

Si、Fe、Cu、Zn 及 Pb 为必须添加元素，在权利要求 1～38 的所有的材料中都含有。

Si 具有防止重结晶时的结晶粒粗大化的效果。若含量不到 2ppm 则缺乏上述效果，超过 50ppm 时腐蚀的产生分布不均匀，所以规定为 2～50ppm。Si 含量的优选下限值为 5ppm，优选上限值为 20ppm。

Fe 为在铝中不可缺少地含有元素，若含量含则根据最终退火温度形成 Al-Fe 系的析出物，使腐蚀时的溶解减少量过量地增加、同时腐蚀的产生分布不均匀，所以为 2～50ppm。Fe 含量的优选下限值为 5ppm，优选上限值为 20ppm，最优选的上限值为 15ppm。

Cu 为赋予提高腐蚀特性的元素，含量不到 15ppm 时缺乏该效果，若超过 150ppm、在结晶结构中阻碍立方体方位的形成、腐蚀特性性降低，所以规定在 15～150ppm 的范围内。Cu 含量的优选下限值为 30ppm，优选上限值为 100ppm。

Zn 具有均匀地产生蚀坑的效果。若含量不到 1ppm 则缺乏该效果，超过 80ppm 时表面溶解增大、但是静电容量却降低，所以规定在 1～80ppm 的范围内。Zn 含量的优选下限值为 10ppm，优选上限值为 50ppm。

Pb 在最终退火时在箔表面浓化、在腐蚀初期蚀坑的产生均匀化、抑制局部产生蚀坑。Pb 含量不到 0.1ppm 时缺乏上述效果，超过 3ppm 时箔表面的溶解变剧烈、但是静电容量却降低，所以为 0.1～3ppm 的范围。Pb 含量的优选下限值为 0.3ppm，优选上限值为 2ppm。

Zr 和 V 是选择的必须添加元素，在权利要求 1～38 所有的材料中至少含有 1 种。

Zr 和 V 分别具有增大蚀坑产生的效果，若至少含有一种则可以获得上述效果。这些元素的含量、若至少一种单独不到 11ppm 则缺乏上述效果、总计超过 100ppm 则蚀坑的分布不均匀，所以单独在 11ppm 或以上且总计含量为 11～100ppm 的范围。这些元素优选的下限值单独及总计为 20ppm、
优选的上限值总计为 70ppm。

B 若和 Zr 或 V 形成化合物，由于这些化合物有可能在局部集中地产生蚀坑、引起过溶解，优选使其尽可能的少，权利要求 1～38 的所有铝材料中被限制在 2ppm 或以下。B 含量优选的上限值为 1ppm。

因此，通过控制 Al 纯度、Si、Fe、Cu、Zn、Pb、Zr、V、B 各元素的含量，在腐蚀时可以不产生过量溶解、高密度且均匀地产生蚀坑、增大扩散率。然后，通过这种扩散率的增大可以谋求增大静电容量。

Ti 具有增大蚀坑产生的效果，被添加入权利要求 1～5，12～16，17～21，27～38 的铝材料中。Ti 含量若不到 1ppm 则缺乏上述效果，超过 30ppm 时晶粒界腐蚀增强、坑产生不均匀，所以规定为 1～30ppm 的范围。Ti 含量的优选下限值为 5ppm，优选上限值为 20ppm。

因此，在添加了规定量的 Ti 的铝材料中，还可以进一步增大蚀坑的产生、谋求扩散率增大。

Mn 组元素 Mn、Ga、Mg 及 Ca 具有使蚀坑的产生分布均匀化的效果，在权利要求 6～8，12～16，22～26，27～38 的铝材料中添加。这些元素，若至少含有一种可以得到上述效果，至少一种单独使用不到 1ppm 时缺乏上述效果、总计超过 50ppm 时引起表面溶解，降低静电容量，所以单独在 1ppm 或以上且总含量在 1～50ppm 的范围内。这些元素优选的下限值为单独或总计为 3ppm，优选的上限值为总计 30ppm。

因此，在添加了规定量的 Mn 组元素的铝材料中，还可以进一步谋求蚀坑的分布均匀化、扩散率增大。

In 组元素的 In、Sn 及 Sb，具有在最终退火时在箔表面浓化、在腐蚀初期蚀坑的产生均匀化、抑制局部产生蚀坑的效果，在权利要求 9～11，17～21，22～26，27～38 的铝材料中添加。这些元素，若至少含有一种可得到上述效果，至少一种单独使用不到 1ppm 则缺乏上述效果，总计超过 30ppm 时箔表面的溶解变剧烈、但是静电容量却降低，所以总含量为 1～30ppm 的范围。这些元素优选的下限值为单独或总计 2ppm，优选的上限值为总计 15ppm。

因此，在添加了规定量的 In 组元素的铝材料中，箔轧制后的最终退火
时在箔表面浓化，还可以进一步谋求腐蚀初期蚀坑的产生均匀化、扩面率增大。

本发明的电解电容器用铝箔材料，是作为电解电容器电极材料规定化学组成的核心材料，其形状既包括通过轧制得到的箔、也包括轧制前的板坯和轧制的中间过程的材料。

另外，本发明的铝材料为箔时，可以按照本发明的方法进行适合的制造。

即，本发明的电解电容器电极用铝箔的制造方法是在箔轧制后，在430～580℃下进行最终退火。在该条件下，通过最终退火，使箔调整为立方体方位，同时使Pb、In、Sn、Sb在箔表层部分浓化，可以通过腐蚀确实使扩面率增大。最终退火在430～580℃的范围内进行。若不到430℃，则生成Al-Fe系的析出物，由于析出物首先被腐蚀、坑的产生变得不均匀。另一方面，若超过580℃，箔之间粘合。退火温度优选下限值为500℃，优选上限值为560℃。另外，优选退火在真空或在惰性气体中的非氧化氛围气中进行。另外，烧结时间优选为1～24小时，更优选为4～12小时。

本发明到最终退火为止的工序没有特别的限制，这些工序按照常规方法进行。作为到最终退火为止的一般箔制造工序，可以列举所必要的铝板坯的制造、表面加工、恒热处理、热轧、含有中间退火的冷轧、箔轧制、脱脂洗涤。

进一步，本发明的电解电容器，作为电极材料通过使用特定化学组成的铝箔，可以高密度而均匀地形成蚀坑、可以使扩面率增大。通过这种扩面率的增大可以得到高的静电容量。

本发明的电解电容器中，包含阳极、阴极的任意一方为用上述组成的铝箔制成的电容器，两极都用上述组成的铝箔制成的电容器这三者。另外，铝箔的化学组成以外的条件，例如箔的厚度、腐蚀方法、形成被膜组成等没有任何限制。

发明的最佳实施方案

制造箔时，首先，用小型的铰链式铸型，相对于铝浓度99.99%的高浓
度铝添加表 1 和表 2 所示的元素，制造该组成的锭。然后，对这些锭，按照常规方法、经过表面加工、热轧、冷轧、中间退火在轧制厚度 100 μm 的箔，脱脂洗涤后，在惰性气体中，在 520℃、5 小时的条件下进行最终退火。

然后，对各个箔使用 80℃、5wt%盐酸 + 20wt%硫酸的混合浴，在 0.2A/cm²、100 秒直流电解下进行第 1 次腐蚀后，在相同的溶液中进行第 2 次的化学腐蚀。调节时间使化学腐蚀的腐蚀溶解量为 35 ± 1%。

然后，对于这些腐蚀箔，在 5%硼酸浴中、在 350V 下进行化合处理后，测定在 3wt%硼酸中的静电容量。将比较例 1 中的静电容量作为 100%，用相对值在表 1 及表 2 中表示静电容量。
<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ti</th>
<th>V</th>
<th>B</th>
<th>Mg</th>
<th>Ge</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

表1
<table>
<thead>
<tr>
<th>比较例</th>
<th>Si : 10 : 10 : 40</th>
<th>Fe : 1 : 0.5</th>
<th>Cu : 1</th>
<th>Zn : 1</th>
<th>Pb : 1</th>
<th>Zr : 3</th>
<th>V : <1</th>
<th>B : 1</th>
<th>Ti : 1</th>
<th>Mn : 1</th>
<th>Ga : 1</th>
<th>Mg : 1</th>
<th>Ca : <1</th>
<th>In : <1</th>
<th>Sn : <1</th>
<th>Sb : <1</th>
<th>电容容量 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 : 10 : 40 : 1</td>
<td>0.5 : 1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10 : 10 : 40 : 1</td>
<td>0.5 : 50</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10 : 10 : 40 : 1</td>
<td>0.5 : 50</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 : 10 : 40 : 1</td>
<td>0.5 : 5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10 : 10 : 40 : 1</td>
<td>0.5 : 110</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
由表1、2的结果可以确认，通过控制箔的化学组成，可以使扩面率增大，得到高的静电容量。

产业上的可利用性

如上所述，由于本发明的电解电容器电极用铝材料，和根据本发明的方法制造的电解电容器电极用铝箔，通过扩面率的增大而得到高静电容量，所以适合作为在各种电子机器，特别是小型化电子机器中使用的电解电容器的电极材料。

本发明中使用的术语及表达是为了说明而使用的，并不是为了限定的解释而使用的，必须确认不排除这里所表示和叙述的特征事项的任何均等物，也容许本发明权利要求范围内的各种变形。