2-IMINOIMIDAZOLE DERIVATIVES (I)

Abstract

A 2-iminoimidazole derivative represented by the formula:

![Chemical Structure](image)

wherein C represents a benzene ring, a pyridine ring, etc.; \(R^1 \) represents optionally substituted \(C_{1-6} \) alkyl, etc.; \(R \) represents hydrogen, halogen, acyl, etc.; \(R^6 \) represents hydrogen, \(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxyacyl, etc.; \(Y \) represents a single bond, \(-CH_2-\), etc.; \(Y^2 \) represents a single bond, \(-CO-\), etc.; and \(Ar \) represents hydrogen, a group represented by the formula:

![Chemical Structure](image)

wherein \(R^{10}-R^{14} \) represent hydrogen, \(C_{1-6} \) alkyl, hydroxyl, \(C_{1-6} \) alkoxy, etc., and \(R^{11} \) and \(R^{12} \) or \(R^{13} \) and \(R^{14} \) may bond together to form a 5- to 8-membered heterocycle, etc., or salt thereof.
2-IMINOIMIDAZOLE DERIVATIVES (1)

BACKGROUND OF THE INVENTION

A recent approach for thrombosis has involved inhibiting thrombin enzyme activity, and compounds used for this purpose have included heparin, low molecular weight heparin, Hirudin, argatroban, hirulog and the like. All such compounds inhibit the enzyme activity of thrombin, and work by inhibiting fibrin blood clot formation without specifically inhibiting the effect of thrombin on cells. Bleeding tendency is therefore a common side effect encountered in the clinic. The role of thrombin in thrombosis is not limited to its blood clotting activity, as it is believed to also participate in platelet aggregation at sites of vascular injury occurring as a result of the activation of platelet thrombin receptor.

Another approach for thrombosis has been the use of intravenous injection agents such as Abciximab, Eptifibatide and Tirofiban, as GPIb/IIa receptor antagonists. These compounds, while exhibiting powerful anti-thrombotic effects by suppressing platelet aggregation induced by various stimulation such as thrombin, ADP, collagen, PAF or the like, also produce a bleeding tendency as a side effect similarly to thrombin enzyme activity inhibitors. For this reason, no such compounds have yet been marketed, although their development as oral agents continues to progress.

Restenosis is a vascular hyperproliferative response to vascular wall injury induced by invasive treatment such as coronary angioplasty, and this phenomenon may be provoked by the direct or indirect effect of thrombin on cells. Platelets adhere to injured blood vessels, leading to release of growth factors and eliciting proliferation of smooth muscle cells. Smooth muscle cells may also be affected indirectly by the action of thrombin on endothelial cells. Also, platelet adhesion occurs and procoagulant activity increases at sites of vascular injury. Smooth muscle cells can undergo further direct stimulation due to the high local thrombin concentration which is produced at such sites. While recent studies using the powerful thrombin inhibitor Hirudin have suggested that thrombin induces cell proliferation during the process of restenosis, it has not yet been determined whether the thrombin effect is direct or indirect (Sarembock et al., Circulation 1992, 84: 232-243). Despite the implication of the cellular effects of thrombin in a variety of pathological symptoms, no therapeutically active substance is known which specifically blocks such effects.

The thrombin receptor (PAR1) has recently been cloned (Vu et al., Cell, 1991, 64: 1057-1068), opening an important door to development of substances which target cellular thrombin receptors. Detailed examination of the amino acid sequence of this thrombin receptor has revealed a thrombin binding site and hydrolysis site located in the 100 residue amino terminal domain of the receptor. Later research by amino acid mutation in the receptor has established that limited hydrolysis of this portion of the thrombin receptor by thrombin is necessary for receptor activation (Vu et al., Nature, 1991, 353: 674-677). A synthetic peptide corresponding to the amino acid sequence newly generated by hydrolysis of the thrombin receptor (the synthetic peptide is known as “thrombin receptor activating peptide”, or TRAP) can activate receptors which have not been hydrolyzed by thrombin. This suggests that the cleavage of the receptor, the new amino acid sequence generated at the amino terminal (known as the “tethered ligand peptide”) functions as the ligand and interacts with the distal binding site. Further studies of TRAP have confirmed homology of the thrombin receptors present in platelet, endothelial cell, fibroblast and smooth muscle cell (Hung et al, J. Cell. Biol. 1992, 116: 827-832; and Ngaiz, Jaffe, Biochem. Biophys. Res. Commun. 1991, 179: 1656-1661).

Research on the structure activity relationship of TRAP suggests that the pentapeptide Peu-Leu-Leu-Arg-Asn is a weak antagonist for platelet thrombin receptors activated by either thrombin or TRAP (Vassallo et al., J. Biol. Chem., 1992, 267: 6081-6085(1992)). Different approaches to receptor antagonism have also been examined by other groups. One of these approaches has been an attempt to prepare antibodies for the thrombin binding domain of the thrombin receptor. Such antibodies specifically and effectively suppress activation of platelets by thrombin, and act as thrombin receptor antagonists (Hung et al., J. Clin. Invest. 1992, 89: 1350-1353). Another approach has been the development of peptide derivatives from TRAP (Steven M. S., J. Med. Chem. 1996, 39: 4879-4887; William J. H., Bioorg. Med. Chem. Lett. 1998, 8: 1649-1654; and David F. M., Bioorg. Med. Chem. Lett. 1999, 9: 255-260). Yet another approach has been the development of low molecular weight compounds discovered by high throughput screening using various assay systems such as receptor binding (Andrew W. S. et al., Bioorg Med Chem Lett. 1999, 9: 2073-2078; Scherig Plough WO99/26943; and Halord S. et al., ACS meeting in October 2001).

DETAILED DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS OF THE INVENTION

Compounds having antagonistic action on thrombin receptors are expected to exhibit excellent effects for therapy or prevention of diseases associated with thrombin, and therefore offer promise for effective therapy or prevention of, for example, thrombosis, vascular restenosis, deep venous thrombosis, pulmonary embolism, cerebral infarction, heart diseases, disseminated intravascular coagulation, hypertension, inflammatory diseases, rheumatism, asthma, glomerulonephritis, osteoporosis, neurological diseases, malignant tumors, and the like. It has been highly desired to provide thrombin receptor antagonists which are satisfactory in numerous aspects including pharmacological activity, thrombin receptor specificity, safety, dosage and oral efficacy.

However, the conventional thrombin receptor antagonists have been inadequate in terms of receptor specificity and oral efficacy.

It is therefore an object of the present invention to search for and discover compounds having excellent throm-
bin receptor inhibiting activity and being therefore useful as thrombin receptor antagonists.

[0010] The inventors have completed thorough research in light of such circumstances, leading to the synthesis of novel 2-iminoimidazole derivatives represented by the following general formula (I), the results of which have unexpectedly revealed that these compounds or salts thereof have excellent thrombin receptor-inhibiting activity and are useful as thrombin receptor antagonists, which culminated in the present invention.

[0011] In one aspect, the present invention provides a compound represented by the formula:

![Chemical Structure](image1.png)

[0012] wherein ring C represents an optionally substituted aromatic hydrocarbon ring or pyridine ring; R² represents (1) hydrogen, (2) cyano, (3) halogen or (4) a group selected from Substituent Group A below; R²⁻ represents (1) hydrogen or (2) a group selected from Substituent Group B below, R²⁻ represents (1) hydrogen, (2) C₁₋₆ alkyl, (3) acyl, (4) carbamoyl, (5) hydroxyl, (6) C₁₋₆ alkoxy, (7) C₁₋₆ alkoxy carbonyloxy, (8) C₁₋₆ cycloalkyl, (9) C₁₋₆ alkoxy carbonyl optionally substituted with acylxoy or (10) a C₅₋₁₄ aromatic hydrocarbon ring group or a 5- to 14-membered aromatic heterocyclic group (each of the foregoing members being optionally substituted with at least one group selected from Substituent Group E below); Y¹ represents a single bond, (CH₃)m, CR–, CR²–, CH₂–CO–, NR–, SO₂–, SO₂–, CO–, CONR³– or SO₂NR³– wherein m represents an integer of 1 to 3, and R²⁰ and R²¹ are the same or different and each independently represents hydrogen, halogen, C₁₋₆ alkyl, carbonyl or C₁₋₆ alkoxy carbonyl; Y² represents a single bond, O, N, (CH₂)m, CR–, CR²–, CR³–, CO–, SO–, SO₂– or C(=N–OR²)– wherein m, R²⁰ and R²¹ have the same definitions given above; and Ar represents (1) hydrogen, (2) a group represented by the formula:

![Chemical Structure](image2.png)

[0013] wherein R¹₀, R¹₁, R¹₂, R¹₃ and R¹₄ are the same or different and each independently represents (1) hydrogen, (2) cyano, (3) halogen, (4) nitro or (5) a group selected from Substituent Group B below, and R¹₁ and R¹₂ or R¹₂ and R¹₃ may bond together to form a 5- to 8-membered heterocycle optionally having 1 to 4 hetero atoms selected from N, S and O and optionally substituted with at least one group selected from Substituent Group F below or (3) a 5- to 14-membered aromatic heterocyclic group optionally substituted with at least one group selected from Substituent Group G below.

[0014] <Substituent Group A> represents moieties selected from the group consisting of C₁₋₆ alkyl, acylidene, C₂₋₆ alkenyl, C₂₋₆ alkynyl, acyl, carboxyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkanaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₆₋₈ cycloalkyl, amino, C₁₋₆ alkylamino, C₆₋₈ cycloalkylamino, acylamino, sulfonamido, sulfonyl, sulfoxamido, C₆₋₈ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group B below.

[0015] <Substituent Group A> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkynyl, C₂₋₆ alkynyl, cyano, acyl, carbonyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkanaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₆₋₈ cycloalkylamino, amino, C₁₋₆ alkylamino, C₆₋₈ cycloalkylamino, acylamino, ureido, ureylene, sulfonamido, sulfoxamido, halogen, C₆₋₈ cycloalkyl, a heterocyclic alkyl group, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, wherein the C₆₋₁₄ aromatic hydrocarbon ring group and the 5- to 14-membered aromatic heterocyclic group may be substituted with at least one group selected from the group consisting of C₁₋₆ alkyl, cyano, acyl, carbonyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkanaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₆₋₈ cycloalkylamino, nitro, amino, C₁₋₆ alkylamino, C₆₋₈ cycloalkylamino, acylamino, ureido, ureylene, sulfonamido, sulfoxamido, halogen, C₆₋₈ cycloalkyl and C₆₋₈ cycloalkyl.

[0016] <Substituent Group B> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkynyl, C₂₋₆ alkynyl, C₁₋₆ alkynyl, acyl, carboxyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkanaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₆₋₈ cycloalkylamino, amino, C₁₋₆ alkylamino, C₆₋₈ cycloalkylamino, acylamino, ureido, sulfonamido, sulfoxamido, C₆₋₈ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group B below.

[0017] <Substituent Group B> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkynyl, C₂₋₆ alkynyl, oxo, cyano, C₁₋₆ cyanocarbonyl, C₂₋₆ acyl, C₁₋₆ alkanoyl, benzoyl, aralkanoyl, C₁₋₆ alkoxyalky carbonyl, C₁₋₆ hydroxalkyl carbonyl, carbonyl, C₁₋₆ carboxy carbonyl, C₁₋₆ carboxy carbonyl, C₁₋₆ carboxy alkylamino, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkylamino, C₁₋₆ alkylamino, C₁₋₆ alkoxy, C₁₋₆ alkylamino, C₁₋₆ alkoxyalkylamino, C₁₋₆ alkoxyalkylamino, phenylsulfonylamino, C₁₋₆ alkoxy sulfonamido, phenyl sulfonyl, C₁₋₆ monoalkylaminosulfonyl, C₂₋₆ dialkylaminosulfonamido, sulfoxamido, halogen, C₆₋₈ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a
C_{1-14} aromatic hydrocarbon ring group, a 5- to 14-membered aromatic heterocyclic group, a heterocyclic aminocarbonyl group, a heterocyclic aminosulfon group and isoxazolinyl, wherein the 5- to 14-membered non-aromatic heterocyclic group, the C_{6-14} aromatic hydrocarbon ring group, the 5- to 14-membered aromatic heterocyclic group and isoxazolinyl may be independently substituted with at least one group selected from the group consisting of C_{1-6} alkyl, oxo, cyano, acyl, carboxyl, carbamoyl, C_{1-6} alkoxy carbonyl, C_{1-6} alkoxyaminocarbonyl, C_{1-6} alkylaminocarbonyl, hydroxyl, C_{1-6} alkoxy, C_{3-8} cycloalkyloxoy, nitro, amino, C_{1-6} aminomethyl, C_{1-6} alkylaminocarbonyl, C_{1-6} dialkylamino, C_{1-6} cycloalkylaminocarbonyl, acylamino, ureido, ureylene, alkylsulfonilamino, alkylsulfonylamino, carbamoyl, halogeno and C_{3-8} cycloalkyloxyl.

[0018] <Substituent Group D> represents moieties selected from the group consisting of cyano, halogen, C_{1-8} alkenyl, C_{1-8} alkylnyl, acyl, carboxyl, carbamoyl, C_{1-6} alkoxy carbonyl, C_{1-6} alkylaminocarbonyl, hydroxyl, C_{1-6} alkoxy, C_{3-8} cycloalkyloxoy, amino, C_{1-6} alkylnyl, C_{3-8} cycloalkylaminocarbonyl, acylamino, ureido, ureylene, sulfonylamino, sulfonylamino, carbamoyl, halogen and C_{3-8} cycloalkyl.

[0019] <Substituent Group D'> represents moieties selected from the group consisting of carbonyl, carboxyl, C_{1-6} alkoxy carbonyl, C_{1-6} alkylaminocarbonyl, hydroxyl, C_{1-6} alkoxy, C_{3-8} cycloalkyloxoy, amino, C_{1-6} alkylnyl, C_{3-8} cycloalkylaminocarbonyl, acylamino, sulfonylamino, sulfonylamino, carbamoyl, a 5- to 14-membered non-aromatic heterocyclic group, a C_{6-14} aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group;

[0020] <Substituent Group E> represents moieties selected from the group consisting of C_{1-6} alkyl, cyano, acyl, carboxyl, carbamoyl, C_{1-6} alkoxy carbonyl, C_{1-6} alkylaminocarbonyl, hydroxyl, C_{1-6} alkoxy, C_{3-8} cycloalkyloxoy, amino, C_{1-6} alkylnyl, C_{3-8} cycloalkylaminocarbonyl, acylamino, ureido, ureylene, sulfonylamino, sulfonylamino, carbamoyl, halogen and C_{3-8} cycloalkyl;

[0021] <Substituent Group F> represents moieties selected from the group consisting of (1) hydrogen, (2) cyano, (3) halogen, (4) oxo and (5) C_{1-6} alkyl, alkenyl, alkynyl, acyl, C_{1-6} alkanoyl, carboxyl, carbamoyl, C_{1-6} alkoxy carbonyl, C_{1-6} alkylaminocarbonyl, hydroxyl, C_{1-6} alkoxy, C_{3-8} cycloalkyloxoy, amino, imino, C_{1-6} aminomethyl, C_{1-6} alkylnyl, C_{3-8} cycloalkylaminocarbonyl, acylamino, ureido, sulfonylamino, sulfonyl, sulfonylamino, C_{3-8} cycloalkyloxoy, a 5- to 14-membered non-aromatic heterocyclic group, a C_{6-14} aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group (each of the foregoing members being optionally substituted with at least one group selected from Substituent Group F' below);

[0022] <Substituent Group F'> represents moieties selected from the group consisting of C_{1-6} alkyl, oxo, cyano, acyl, carboxyl, carbamoyl, C_{1-6} alkoxy carbonyl, benzoxycarbonyl, C_{1-6} alkylaminocarbonyl, hydroxyl, C_{1-6} alkoxy, C_{3-8} cycloalkyloxoy, amino, C_{1-6} alkylnyl, C_{3-8} cycloalkylaminocarbonyl, acylamino, ureido, ureylene, C_{1-6} alkylsulfonylamino, C_{1-6} alkylsulfonamido, sulfonamido, halogeno, C_{3-8} cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C_{6-14} aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group;

[0023] <Substituent Group G> represents moieties selected from the group consisting of C_{1-6} alkyl, cyano, acyl, carbonyl, carbamoyl, C_{1-6} alkoxy carbonyl, C_{1-6} alkylnamocarbonyl, sulfonyl, sulfonylamido, halogeno and C_{3-8} cycloalkyl;
[0027] <Substituent Group F”> represents moieties selected from the group consisting of C_{1-6} alkyl, oxo, cyano, acyl, carboxyl and C_{1-6} alkoxy.

[0028] <4> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Y¹ is —CH₂—.

[0029] <4> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Y² is —CO—.

[0030] <5> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Y¹ is —CH₂— and Y² is —CO—.

[0031] <6> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Y¹ is a single bond, Y² is a single bond and Ar is hydrogen.

[0032] <7> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Ar is a group represented by the formula:

![Formula](image)

[0033] wherein R¹, R¹1, R¹2, R¹3 and R¹4 have the same definitions given above.

[0034] <8> In certain other embodiments, the invention provides a compound according to <7> or salt thereof, wherein R¹¹ and R¹² are hydrogen.

[0035] <9> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Ar is (1) a group represented by the formula:

![Formula](image)

[0036] wherein R¹, R¹1, R¹2, R¹3 and R¹4 have the same definitions given above) or (2) a 5- to 14-membered aromatic heterocyclic group optionally substituted with at least one group selected from Substituent Group G above.

[0037] <10> In certain other embodiments, the invention provides a compound according to <9> or salt thereof, wherein R¹⁰ and R¹¹ are hydrogen.

[0038] <11> In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Ar is a group represented by the formula:

![Formula](image)

[0039] wherein R¹³ and R¹⁴ have the same definitions given above, and R¹⁵ represents (1) hydrogen or (2) a group selected from Substituent Group H below, and R¹² and R¹³ may bond together to form a 5- to 8-membered heterocyclic group optionally substituted with at least one group selected from Substituent Group F above and optionally having 1 or 2 heteroatoms selected from N, S and O.

[0040] <Substituent Group H> represents moieties selected from the group consisting of C_{1-6} alkyl, C_{2-6} alkenyl, C_{1-6} alkoxy, C_{1-4} alkoxycarbonyl, aminocarbonyl, C_{1-6} alkyaminocarbonyl, C_{3-8} cycloalkyl, C_{1-6} aminoalkyl, sulfonyl, C_{3-8} cycloalkylamino, a 5- to 14-membered non-aromatic heterocyclic group, a C_{6-14} aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group H below;

[0041] <Substituent Group H> represents moieties selected from the group consisting of C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkoxy, C_{1-6} cyano, C_{1-6} cyanoalkyl, C_{2-6} acyl, C_{1-6} alkanoyl, benzoyl, alicyclic, C_{1-4} alkoxycarbonyl, C_{1-6} hydroxalkylcarbonyl, carbonyl, C_{1-6} carboxyl, C_{1-6} carboxyalkoxy, carboxamyl, carbamoylalkoxy, C_{1-6} alkoxy, C_{1-6} alkoxyalkoxycarbonyl, C_{1-6} alkoxyalkoxy, C_{1-6} alkoxyalkyl, C_{1-6} hydroxyl, C_{1-6} cycloalkoxy, amino, C_{1-6} alkylamino, C_{3-8} cycloalkylamino, acylamino, ureido, ureylene, C_{1-6} alkyllsulfonylamino, phenylsulfonlamino, C_{1-6} alkylsulfonamido, phenylsulfonyl, C_{1-6} monoalkylaminosulfonyl, dialkylaminosulfonyl, sulfamoyl, halogeno, C_{3-8} cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C_{6-14} aromatic hydrocarbon ring group, a 5- to 14-membered aromatic heterocyclic group, a heterocyclic aminosulfonyl group and a 5- to 14-membered aromatic heterocyclic group, the C_{6-14} aromatic hydrocarbon ring group, the 5- to 14-membered aromatic heterocyclic group and the aminosulfonyl may be independently substituted with at least one group selected from the group consisting of C_{1-6} alkyl, oxo, cyano, acyl, carboxyl, carbamoyl, C_{1-6} alkoxy, C_{1-6} alkoxyalkoxy, C_{1-6} hydroxyl, C_{1-6} alkylamino, C_{1-6} cycloalkoxy, nitro, amino, C_{1-6} aminoalkyl, C_{1-6} cycloalkylamino, C_{3-8} cycloalkylamino, acylamino, ureido, ureylene, alkylsulfonlamino, alkylsulfonamido, sulfamoyl, halogeno and C_{3-8} cycloalkyl].
[0042] In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Ar is a group represented by the formula:

(V)

\[
\text{R}^{11} \text{OR}^{15}
\]

[0043] wherein \(R^{11} \) and \(R^{15} \) have the same definitions given above, and \(R^{16} \) represents (1) hydrogen or (2) a group selected from Substituent Group H above, and \(R^{11} \) and \(R^{15} \) or \(R^{15} \) and \(R^{16} \) may bond together to form a 5- to 6-membered heterocycle optionally substituted with at least one group selected from Substituent Group F above and optionally having 1 or 2 hetero atoms selected from N, S and O.

[0044] In certain other embodiments, the invention provides a compound according to <1> or salt thereof, wherein Ar is a group represented by the formula:

(VI)

\[
\text{R}^{11} \text{OR}^{15}
\]

[0045] wherein \(R^{11} \) and \(R^{15} \) have the same definitions given above, and \(R^{17} \) and \(R^{18} \) are the same or different and each independently represents (1) hydrogen or (2) a group selected from Substituent Group I below, and \(R^{11} \) and \(R^{15} \) or \(R^{15} \) and \(R^{17} \) or \(R^{15} \) and \(R^{18} \) may bond together to form a 5- to 8-membered heterocycle optionally substituted with at least one group selected from Substituent Group F above and optionally having 1 or 2 hetero atoms selected from N, S and O.

[0046] Substituent Group I represents moiety selected from the group consisting of C alkyl, C alkynyl, C alkynyl, acyl, carboxylic acid, C alkoxy, C alkoxyalkyl, C alkoxycarbonyl, C aminoalkyl, sulfanyl, sulfamoyl, C cycloalkyl, C alkanoyl, benzoyl, aralkanoyl, C alkoxyalkyl, C hydroxyalkyl, carboxyl, C carbonyl, C carboxyalkyl, C carboxyalkoxy, carbamoyl, carbamoylalkoxy, C alkoxycarbonyl, C alkoxycarbonyl-C alkyl, C alkoxycarbonyl-C alkoxy, C monoalkylaminocarbonyl, C dialkylaminocarbonyl, hydroxyl, C alkoxyl, C alkoxycarbonyl, C aralkyloxyl, C alkoxyalkyl, C cycloalkyl, amino, C alkylamino, C cycloalkylamino, acylamin0, ureido, urenylene, C alkenyl, C alkylsulfonylamino, phenyloxylamino, C alkylsulfonyl, phenylsulfonyl, C amine, C monoalkylaminosulfonyl, C dialkylaminosulfonyl, sulfamoyl, halogeno, C cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C aromatic hydrocarbon ring group, a 5- to 14-membered aromatic heterocyclic group, a heterocyclic amine, a heterocyclic sulfonyl group and isoazolinyl, wherein the 5- to 14-membered non-aromatic heterocyclic group, the C aromatic hydrocarbon ring group, the 5- to 14-membered aromatic heterocyclic group and isoazolinyl may be independently substituted with at least one group selected from the group consisting of C alkyl, oxo, cyano, acyl, carboxyl, carbamoyl, C alkoxy, C alkoxycarbonyl, C amino, C monoalkylaminocarbonyl, C dialkylaminocarbonyl, C hydroxyl, C alkoxyl, C cycloalkyl, amino, nitro, C aminoalkyl, C alkylamino, C dialkylaminocarbonyl, C cycloalkylamino, acylamino, ureido, urenylene, alkylsulfonylamino, alkylsulfonyl, sulfamoyl, halogeno and C cycloalkyl.

[0047] Substituent Group I represents moiety selected from the group consisting of C alkyl, C alkyl, C alkynyl, C alkyl, acyl, carboxylic acid, C alkoxy, C alkoxyalkyl, C alkoxycarbonyl, C alkoxycarbonyl, C hydroxyalkyl, carboxyl, C carbonyl, C carboxyalkyl, C carboxyalkoxy, carbamoyl, carbamoylalkoxy, C alkoxycarbonyl, C alkoxycarbonyl-C alkyl, C alkoxycarbonyl-C alkoxy, C monoalkylaminocarbonyl, C dialkylaminocarbonyl, hydroxyl, C alkoxyl, C alkoxycarbonyl, C aralkyloxyl, C alkoxyalkyl, C cycloalkyl, amino, C alkylamino, C cycloalkylamino, acylamin0, ureido, urenylene, C alkenyl, C alkylsulfonylamino, phenyloxylamino, C alkylsulfonyl, phenylsulfonyl, C amine, C monoalkylaminosulfonyl, C dialkylaminosulfonyl, sulfamoyl, halogeno, C cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C aromatic hydrocarbon ring group, a 5- to 14-membered aromatic heterocyclic group, a heterocyclic amine, a heterocyclic sulfonyl group and isoazolinyl, wherein the 5- to 14-membered non-aromatic heterocyclic group, the C aromatic hydrocarbon ring group, the 5- to 14-membered aromatic heterocyclic group and isoazolinyl may be independently substituted with at least one group selected from the group consisting of C alkyl, oxo, cyano, acyl, carboxyl, carbamoyl, C alkoxy, C alkoxycarbonyl, C amino, C monoalkylaminocarbonyl, C dialkylaminocarbonyl, C hydroxyl, C alkoxyl, C cycloalkyl, amino, nitro, C aminoalkyl, C alkylamino, C dialkylaminocarbonyl, C cycloalkylamino, acylamino, ureido, urenylene, alkylsulfonylamino, alkylsulfonyl, sulfamoyl, halogeno and C cycloalkyl.

[0048] In another aspect, the invention provides a pharmaceutical composition comprising a compound according to <1> or salt thereof.

[0049] In certain embodiments, the invention provides a composition according to <1> wherein the composition is useful as a thrombin receptor antagonist.

[0050] In certain embodiments, the invention provides a composition according to <1> wherein the composition is useful as a thrombin receptor PAR1 antagonist.

[0051] In certain embodiments, the invention provides a composition according to <1> wherein the composition is useful as a platelet aggregation inhibitor.

[0052] In certain embodiments, the invention provides a composition according to <1> wherein the composition is useful as a proliferation inhibitor for smooth muscle cells.

[0053] In certain embodiments, the invention provides a composition according to <1> wherein the composition is useful as a proliferation inhibitor for endothelial cells, fibroblasts, nephrocytes, osteosarcoma cells, muscle cells, cancer cells and/or glia cells.

[0054] In certain other embodiments, the invention provides a composition according to <1> wherein the composition is useful as a therapeutic or prophylactic agent for thrombosis, vascular restenosis, deep venous thrombosis, pulmonary embolism, cerebral infarction, heart disease, disseminated intravascular coagulation, hypertension, inflammatory disease, rheumatism, asthma, glomerulonephritis, osteoporosis, neurological disease and/or malignant tumor.

[0055] In yet another aspect, the invention provides the use of a compound according to <1> or salt thereof for the manufacture of a thrombin receptor antagonist.
In certain embodiments, the invention provides the method according to 21, wherein the thrombin receptor antagonist is a PAR1 receptor antagonist.

In certain other embodiments, the invention provides the use of a compound according to 1 or salt thereof for the manufacture of a platelet aggregation inhibitor.

In a further aspect, the invention provides a therapeutic method for treating or preventing a disease associated with thrombin receptors, comprising administering to a patient suffering from the disease, a therapeutically effective dose of a compound according to 1 or salt thereof.

In certain embodiments, the invention provides a therapeutic method for treating or preventing a proliferative disease of endothelial cells, fibroblasts, neutrophyles, osteosarcoma cells, muscle cells, cancer cells and/or glia cells, comprising administering to a patient suffering from the disease, a therapeutically effective dose of a compound according to 1 or salt thereof.

The present invention will now be explained in greater detail.

Several of the structural formulas given for the compounds of the invention throughout the present specification will represent only a specific isomer for convenience, but the invention is not limited to such specific isomers and encompasses all isomers and isomer mixtures, including geometric isomers, asymmetric carbon-derived optical isomers, stereoisomers and tautomers which are implied by the structures of the compounds, and any isomer or mixture thereof may be used. The compounds of the invention therefore include those having asymmetric carbons in their molecules and existing as optically active forms or racemic forms, and all such compounds are encompassed by the invention without restrictions. There are also no restrictions on any crystalline polymorphism of the compounds, and any crystal forms may be used alone or in mixtures. The compounds of the invention and their salts may also be in the form of anhydrides or solvates such as hydrates, and all such forms are included within the scope of the claims of the present specification. Metabolites of the compounds of the invention produced by degradation in the body, as well as prodrugs of the compounds of the invention and their salts, are also encompassed within the scope of the claims of the present specification.

The symbols and terms used throughout the present specification will now be defined, with a more detailed description of the invention.

The term “and/or” as used throughout the present specification carries the meaning of both “and” or “or”.

The term “halogen” used throughout the present specification refers to an atom such as fluorine, chlorine, bromine or iodine, and preferably fluorine, chlorine or bromine.

The term “C_{1-6} alkyl” used throughout the present specification refers to an alkyl group of 1 to 6 carbons, such as, for example, linear or branched alkyl groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, 2-ethylpropyl, n-hexyl, 1-methyl-2-ethylpropyl, 1-ethyl-2-methylpropyl, 1,1,2-trimethylpropyl, 1-propylpropyl, 1-methylbutyl, 2-methylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 2-ethylbutyl, 2-methylpentyl and 3-methylpentyl, and more preferably methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl and n-pentyl.

The term “C_{2-6} alkenyl” used throughout the present specification refers to an alkenyl group of 2 to 6 carbons, such as, for example, vinyl, allyl, 1-propenyl, 2-propenyl, isopropenyl, 2-methyl-1-propenyl, 3-methyl-1-propenyl, 2-methyl-2-propenyl, 3-methyl-2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 1-hexenyl, 1,3-hexadienyl and 1,6-hexadienyl.

The term “C_{2-6} alkynyl” used throughout the present specification refers to an alkylnyl group of 2 to 6 carbons, such as, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 3-methyl-1-propynyl, 1-ethynyl-2-propynyl, 2-methyl-3-propynyl, 1-pentylnyl, 1-hexynyl, 1,3-hexadienynyl and 1,6-hexadienynyl.

The term “C_{3-8} cycloalkyl” used throughout the present specification refers to a cycloalkyl group composed of 3 to 8 carbons, such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.

The term “C_{3-6} cycloalkenyl” used throughout the present specification refers to a C_{3-6} cycloalkenyl group composed of 3 to 8 carbons, such as, for example, cyclopropen-1-yl, cyclopropen-3-yl, cyclobuten-3-yl, 1,3-cyclobutadien-1-yl, cyclopenten-1-yl, cyclopenten-3-yl, cyclopenten-4-yl, 1,3-cyclopentadien-1-yl, 1,3-cyclopentadien-2-yl, 1,3-cyclopentadien-5-yl, cyclohexen-1-yl, cyclohexen-3-yl, cyclohexen-4-yl, 1,3-cyclohexadien-1-yl, 1,3-cyclohexadien-2-yl, 1,3-cyclohexadien-5-yl, 1,4-cyclohexadien-3-yl, 1,4-cyclohexadien-1-yl, cyclohepten-1-yl, cyclohepten-3-yl, cyclohepten-4-yl, cyclohepten-5-yl, 1,3-cycloheptadien-2-yl, 1,3-cycloheptadien-1-yl, 1,3-cycloheptadien-5-yl, 1,4-cycloheptadien-3-yl, 1,4-cycloheptadien-2-yl, 1,4-cycloheptadien-1-yl, 1,4-cycloheptadien-6-yl, 1,3,5-cycloheptatrien-3-yl, 1,3,5-cycloheptatrien-2-yl, 1,3,5-cycloheptatrien-1-yl, 1,3,5-cycloheptatrien-7-yl, cycloocten-1-yl, cycloocten-3-yl, cycloocten-4-yl, cycloocten-5-yl, 1,3-cyclooctadien-2-yl, 1,3-cyclooctadien-1-yl, 1,3-cyclooctadien-5-yl, 1,3-cyclooctadien-6-yl, 1,4-cyclooctadien-3-yl, 1,4-cyclooctadien-2-yl, 1,4-cyclooctadien-1-yl, 1,4-cyclooctadien-6-yl, 1,4-cyclooctadien-7-yl, 1,5-cyclooctadien-3-yl, 1,5-cyclooctadien-2-yl, 1,3,5-cyclooctatrien-3-yl, 1,3,5-cyclooctatrien-2-yl, 1,3,5-cyclooctatrien-1-yl, 1,3,5-cyclooctatrien-7-yl, 1,3,6-cyclooctatrien-2-yl, 1,3,6-cyclooctatrien-1-yl, 1,3,6-cyclooctatrien-5-yl and 1,3,6-cyclooctatrien-6-yl.

The term “C_{1-6} alkoxy” used throughout the present specification refers to an alkoxy group of 1 to 6 carbons, such as, for example, methoxy, ethoxy, n-propoxy, iso-propoxy, sec-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, sec-pentoxy, n-hexoxy, iso-hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 2-ethylpropoxy, 1-methyl-2-ethylpropoxy, 1-ethyl-2-methylpropoxy, 1,1,2-trimethylpropoxy, 1,1,2-trimethylpropoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbuty-
loxy, 1,3-dimethylbutyloxy, 2-ethylbutoxy, 1,3-dimethylbu-
toxy, 2-methylpentoxy, 3-methylpentoxy and hexyloxy.

[0071] The term “C₂ₐ₋₆ alkényloxy” used throughout the presen-
t specification refers to an alkényloxy group of 2 to 6 car-
sbons, such as, for example, vinylloxy, allyloxy, 1-prope-
nloxy, 2-propenloxy, isopropenloxy, 2-methyl-1-propen-
loxy, 3-methyl-1-propenloxy, 2-methyl-2-propenloxy, 3-
methyl-2-propenloxy, 1-butenloxy, 2-butenloxy, 3-
butenloxy, 1-pentenloxy, 1-hexenloxy, 1,3-hexanedi-
enoxyloxy and 1,6-hexanedienoxyloxy.

[0072] The term “acényl” used throughout the present speci-
ification refers to an aromatic group derived by removing the
OH group from a carboxyl group of a carboxylic acid, and
it is preferably a C₅₋₆ acényl group (an aromatic group derived
by removing the OH group from a carboxyl group of a C₅₋₆
carboxylic acid (more preferably fatty acid)), of which examples include acetyl, propionyl, butyroat and benzoyl.

[0073] The term “C₆₋₁₄ aromatic hydrocarbon ring group”
used throughout the present specification refers to an
aromatic hydrocarbon ring group composed of 6 to 14 car-
sbons, and includes monocyclic groups as well as fused rings such as bicyclic and tricyclic groups. Examples include phenyl, indenyl, naphthy1, 2-naphthy1, azuleny1, heptady1, biphenyl, indaceny1, acenaphthy1, fluoreny1, phenanthry1, phenanthrylenyl, anthraceny1, cyclopentacyclooctenyl and benzoycyclooctenyl.

[0074] The term “5- to 14-membered aromatic heterocyclic
group” used throughout the present specification refers
to a monocyclic, bicyclic or tricyclic 5- to 14-membered
aromatic heterocyclic group comprising one or more hetero
atoms selected from the group consisting of nitrogen, sulfur and oxygen. Examples include (i) nitrogen-containing aromatic heterocyclic groups such as pyrrolyl, pyridyl, pyridaziny1, pyrimidy1, pyraziny1, triazolyl, tetrazolyl, benzotriazoly1, pyrazolyl, imidazolyl, benzimidazolyl, indolyl, indoindolyl, indoliny1, puriny1, indazolyl, quinolyl, isoquinolyl, quinoidyl, phthalidiny1, naphthyldiny1, quinox-
aryl, quinazoliny1, cinnolinyl, pteridiny1, imidazotriaziny1, pyrazino[1,4]diazinyl, acridiny1, phenanthridiny1, carbazolyl, carbasolyl, perimidiny1, phenanthroliny1, phenacyny1, imi-
dazopyridiny1, imidazopyrimidy1, pyrazolopyridiny1, pyrazolopyridiny1, etc.; (ii) sulfur-containing aromatic het-
erocyclic groups such as thienyl, benzothienyl, etc.; (iii)
Oxygen-containing aromatic heterocyclic groups such as
furyl, pyranyl, cyclopentapyryl, benzofuryl, isobenzofu-
ryl, etc.; and (iv) aromatic heterocyclic groups containing
2 or more different hetero atoms, such as thiadiazolyl, isothia-
zolyl, benzoazolyl, benzoazadiazolyl, phenothiaziny1, isoaxazolyl, furazany1, phenoxaziny1, oxazolyl, isoxazolyl,
benzoxazolyl, oxazidopyriny1, azidothiazolyl, thienofuranary1, furanopyrrol, pyridaziny1, etc.

[0075] The term “5- to 14-membered non-aromatic het-
erocyclic group” used throughout the present specification refers to a monocyclic, bicyclic or tricyclic 5- to 14-
membered non-aromatic heterocyclic group comprising one or
more hetero atoms selected from the group consisting of
nitrogen, sulfur and oxygen. Examples include pyrrolidiny1, pyrrolyl, pyrididy1, pyridaziny1, imidazolyl, pyrazolyl, imi-
dazolidiny1, morphony1, tetrahydrofury1, tetrahydropyrany1, aziridy1, oxirany1 and oxatioli1. Non-aromatic hetero-
cyclic groups also include a pyridone ring-derived group,
and a non-aromatic fused ring (for example, a pthalimide
ring-derived group and a succinamide ring-derived group).

[0076] The term “5- to 8-membered heterocycle” used
throughout the present specification refers to a 5- to 8-
membered aromatic or non-aromatic heterocycle.

[0077] The term “aryl” used throughout the present speci-
fication refers to an atomic group remaining after elimi-
nation of one hydrogen atom bonded to the ring of the aromatic
hydrocarbon. Examples include phenyl, tolyl, xyly1, biphe-
ny1, naphthyl, anthrny1 and phenanthry1.

[0078] The term “alkylideny1” used throughout the present speci-
fication refers to a divalent group derived by the loss of
two hydrogen atoms from the same carbon of an aliphatic
hydrocarbon (preferably a C₁₋₆ alkane). Examples include
ethylideny1 and the like.

[0079] The expression “optionally substituted” appearing
throughout the present specification has the same mean-
ing as “having one or multiple substituents in any desired
combination at substitutable positions”.

[0080] The term “hetero atom” used throughout the present speci-
fication refers specifically to oxygen, sulfur, nitrogen, phosphorus, arsenic, antimony, silicon, germani-
um, tin, lead, boron, mercury and the like, and preferably
oxygen, sulfur and nitrogen.

[0081] Throughout the present specification, the prefix “i-” signifies a normal type or primary substituent, “sec-” signifies a secondary substituent, “t-” signifies a tertiary
substituent and “i-” signifies an iso type substituent.

[0082] The definitions of ring C, R₁, R₂, R₃, R₄, Y₁, Y₂, and
Ar in the compounds of the invention represented by general
formula (I) above are as explained above. In certain exemplar
embodiments, ring C is preferably a benzene ring or
pyridine ring optionally having an additional substituent (R₂),
with benzene being more preferred. The position of the substituent (R₂) is not particularly restricted, but it is preferably the 5- or 6-position from the nitrogen atom
to which Y₁ is connected.

[0083] In certain embodiments, R₂ is a group selected from
the group consisting of hydrogen, halogen, acyl, car-
boxyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkylaminocar-
bonyl, hydroxyl, C₁₋₆ alkoxy, amino, C₁₋₆ alkylamino, C₁₋₆
cycloalkylamino, sulfonylamino and sulfamoyl.

[0084] In certain other embodiments, R₁ is (i) C₁₋₆ alky1,
(ii) C₂₋₆ alkeny1 or (iii) C₁₋₆ alkoxy, each of the foregoing
members being optionally substituted with at least one group
selected from Substituent Group A” below, with (i) being
more preferred.

[0085] <Substituent Group A”> represents moieties
selected from the group consisting of C₁₋₆ alky1, acyl,
carboxyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkylaminocarbonyl,
hydroxyl, C₁₋₆ alkoxy, C₁₋₆ alkylamino, a C₆₋₁₄ aromatic
hydrocarbon ring group and a 5- to 14-membered aromatic
heterocyclic group, wherein the C₆₋₁₄ aromatic hydrocarbon
ring group and the 5- to 14-membered aromatic heterocyclic
group may be substituted with at least one group selected
from the group consisting of C₁₋₆ alky1, carboxyl, C₁₋₆
alkoxy carbony1, C₁₋₆ alkylaminocarbonyl, hydroxyl, C₁₋₆
alkoxy, nitro, C₁₋₆ alky1amino, acylamino, sulfonylamino
and halogen.
In certain embodiments, R is a group selected from the group consisting of hydrogen, C1-6 alkyl and C1-6 alkoxyalkyloxycarbonyl optionally substituted with aclyoxy.

In certain embodiments, Y1 is a single bond or —(CH2)n—[wherein m represents an integer of 1 to 3] and Y2 is a single bond or —CO—, there being more preferred (i) the combination that Y1 is —CH2— and Y2 is —CO—, and (ii) the combination that Y1 and Y2 are each a single bond.

In certain embodiments, Ar is hydrogen or a group represented by the formula:

![Formula Image]

In certain embodiments, R', R', R, R and R' have the same definitions given above). In certain other embodiments, R'' and R'' are each hydrogen, and Ar is a group represented by the formula:

![Formula Image]

In certain other embodiments, R11 and R13 have the same definitions given above, R33 represents (1) hydrogen or (2) a group selected from Substituent Group H above, and R33 and R35 may bond together to form a 5- to 8-membered heterocycle optionally substituted with at least 1 group selected from Substituent Group F above and optionally having 1 or 2 hetero atoms selected from N, S and O;

a group represented by the formula:

![Formula Image]

In certain other embodiments, R11 and R13 have the same definitions given above, R15 represents (1) hydrogen or (2) a group selected from Substituent Group H above, and R16 and R18 may bond together to form a 5- to 6-membered heterocycle optionally substituted with at least one group selected from Substituent Group F above and optionally having 1 or 2 hetero atoms selected from N, S and O;

and a group represented by the formula:

![Formula Image]

In certain other embodiments, R11 and R15 have the same definitions given above, R17 and R19 are the same or different and each independently represents (1) hydrogen or (2) a group selected from Substituent Group I, and R17 and R19 or R17 and R19 may bond together to form a 5- to 8-membered heterocycle optionally substituted with at least one group selected from Substituent Group F above and optionally having 1 or 2 hetero atoms selected from N, S and O]
[0100] The term “salt” used throughout the present specification is not particularly restrictive so long as the salt is formed with a compound of the invention and is pharmacologically acceptable. Examples include hydrogen halide acid salts (for example, hydrofluoride, hydrochloride, hydrobromide and hydroiodide), inorganic acid salts (for example, sulfate, nitrate, perchlorate, phosphate, carbonate and bicarbonate), organic carboxylate (for example, acetate, trifluoroacetate, oxalate, maleate, tartarate, fumarate and citrate), organosulfonate (for example, methanesulfonate, trifluoromethanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate and camphorsulfonate), amino acid salts (for example, aspartate and glutamate), quaternary amine salts, alkali metal salts (for example, sodium salts and potassium salts) or alkaline earth metal salts (for example, magnesium salts and calcium salts). In certain embodiments, salts of the invention are “pharmacologically acceptable salts” such as hydrochloride, oxalate, trifluoroacetate and the like.

[0101] Production processes for compounds of the invention and salts thereof will now be described. Various processes are possible for production of the compounds of the invention represented by the general formula (I) above and their salts, and the synthesis may be carried out by ordinary organic synthesis methods. The following representative production processes will now be presented.

[0102] [Representative Production Processes]

[0103] An exemplary synthetic method for the preparation of 2-imino benzimidazole derivatives is shown in Production Process M below.

[0104] <Production Process M>

[0105] Production Process M is an exemplary synthetic method for benzimidazole derivatives.

[0106] This scheme represents an exemplary synthetic method for a benzimidazole derivative. In the formulas, Ar has the same definition as that for the compounds represented by formula (I) in claim 1. R1 represents optionally substituted alkyl, optionally substituted alkoxy or optionally substituted amino. R2 has the same definition as R1 in the compounds represented by formula (I) in claim 1.

[0108] Step 2 represents a step of alkylation, wherein compound (M1-c) may be obtained as a hydrobromide by dissolving a compound (M1-b) and a 2-haloethanone derivative in dimethylformamide, acetonitrile, an alcohol or the like and selecting the conditions from room temperature to reflux temperature, depending on the compound. As an alternative method, a compound (M1-b) may be reacted with sodium hydride in tetrahydrofuran or dimethylformamide and then reacted with a 2-haloethanone derivative at room temperature or while cooling on ice to yield a salt-free form of compound (M1-c), prior to treatment with an acid. Preferably, an ammonium salt may be obtained by reaction with a 5 N hydrochloric acid in an organic solvent or with 5 N hydrobromic acid in acetic acid.
This scheme is an exemplary synthetic method for a benzimidazole derivative. In the formulas, Ar has the same definition as that for the compounds represented by formula (I) in claim 1. R1 represents optionally substituted lower alkyl, lower alkoxy or lower amino. R2 has the same definition as R1 in the compounds represented by formula (I) in claim 1.

Step 1 represents a step of alkylation, wherein compound (M2-b) may be obtained by reaction with an amine in ethanol, methanol, acetonitrile or dimethylformamide at room temperature to 120°C, in the presence of sodium carbonate, potassium carbonate, cesium carbonate or potassium tert-butoxide.

Step 2 represents a step of reduction of the nitro group. Reaction is conducted in tetrahydrofuran, ethyl acetate, methanol or ethanol under a hydrogen atmosphere, in the presence of a catalytic amount of palladium-carbon. Alternatively, compound (M2-c) may be obtained by reaction with hydrogen under a hydrogen atmosphere, in the presence of a catalytic amount of palladium-carbon. Alternatively, compound (M2-c) may be obtained by reaction with hydrogen under a hydrogen atmosphere, in the presence of a catalytic amount of palladium-carbon.

Step 3 represents a step of imidazole ring formation, wherein compound (M2-d) may be obtained by reaction with cyanogen bromide in ethanol methanol or ethanolic methanol at room temperature to reflux temperature.

Step 4 represents a step of alkylation, wherein compound (M2-e) may be obtained as hydrobromide by dissolving compound (M2-d) and a 2-haloethanone derivative in dimethylformamide, acetonitrile, an alcohol or the like and selecting the conditions from room temperature to reflux temperature, depending on the compound. As an alternative method, compound (M2-d) may be reacted with sodium hydrate in tetrahydrofuran or dimethylformamide and then reacted with a 2-haloethanone derivative at room temperature or while cooling on ice to yield a salt-free form of compound (M1-e), prior to treatment with an acid. Preferably, an ammonium salt may be obtained by reaction with a 5 N hydrochloric acid in an organic solvent or 5 N hydrobromic acid in acetic acid.

This scheme is an exemplary synthetic method for a benzimidazole derivative. In the formulas, Ar has the same definition as that for the compounds represented by formula (I) in claim 1. R1 represents optionally substituted lower alkyl, lower alkoxy or lower amino. R2 has the same definition as R1 in the compounds represented by formula (I) in claim 1.
alternative method, compound (M3-c) may be reacted with sodium hydride in tetrahydrofuran or dimethylformamide and then reacted with a 2-haloethanone derivative at room temperature or while cooling on ice to yield a salt-free form of compound (M3-d), prior to treatment with an acid. Preferably, an ammonium salt may be obtained by reaction with 5 N hydrochloric acid in an organic solvent or with 5 N hydrobromic acid in acetic acid.

[0118] The following are general synthesis methods for the starting materials used in the production processes described above.

[0119] Production Process AP

[0120] This is an exemplary process for synthesis of intermediates (AP1-c), (AP1-d), (AP1-e), (AP2-b), (AP2-c) and (AP2-d) as common starting materials for synthesis of aminophenol derivatives.

This scheme is an exemplary method for the synthesis of compound (AP1-e) from compound (AP1-a). In the formulas, R1 represents hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl or optionally substituted alkoxy. R2 has the same definition as R6 and R7 in Production Process MO.

[0122] Step 1 represents a step of Friedel-Crafts acylation. Compound (AP1-b) may be obtained by reacting compound (AP1-a) with acetyl chloride in a solvent such as dichloromethane or toluene, in the presence of a Lewis acid such as aluminum chloride, zinc chloride or tin (II) chloride, at −70° C. to room temperature.

[0123] Step 2 represents a step of nitration. Compound (AP1-c) may be obtained by reaction with fuming nitric acid or concentrated nitric acid in a solvent such as toluene, hexane, ether or acetic anhydride. Alternatively, the reaction may be conducted by generating nitric acid from sodium nitrate and hydrochloric acid.

[0124] Step 3 represents a step of introducing a substituent R2 having any of various structures at the hydroxyl group of compound (AP1-c). Compound (AP1-d) may be obtained by reaction with a halide, mesylate or tosylate in a solvent such as dimethylformamide, acetonitrile, tetrahydrofuran, dichloromethane or acetone, in the presence of a base such as potassium carbonate, cesium carbonate, sodium hydantoin, trialkylamine, a pyridine derivative or sodium hydride. In the formulas, R2 has the same definition as R6 in Step 1 of Production Process MO.

[0125] Step 4 represents a step of reduction of the nitro group. Compound (AP1-e) may be obtained by reaction in a solvent such as tetrahydrofuran, ethyl acetate, methanol or ethanol under a hydrogen atmosphere, in the presence of a catalyst such as palladium-carbon. Alternatively, compound (AP1-e) may be obtained by conducting the reaction in a solvent such as hydrated methanol or hydrated ethanol in the presence of ammonium chloride, with addition of iron at the reflux temperature of the solvent.

This scheme is an exemplary method for the synthesis of (AP2-d) from (AP1-a). In the formulas, R1 represents hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl or optionally substituted alkoxy.

[0126] Step 1 represents a step of bromination of the para-position relative to the phenolic hydroxyl group. Reaction with bromine is conducted in a solvent such as methanol, ethanol or chloroform. Alternatively, compound (AP2-
a) may be obtained by reaction with N-bromosuccinimide in a solvent such as acetonitrile or dimethylformamide.

[0128] Step 2 represents a step of nitration. Compound (AP2-b) may be obtained by reaction with fuming nitric acid or concentrated nitric acid in a solvent such as toluene, hexane, ether or acetic anhydride. Alternatively, the reaction may be conducted by generating nitric acid from sodium nitrate and hydrochloric acid.

[0129] Step 3 represents a step of introducing a substituent R2 with any of various structures at the hydroxyl group of compound (AP2-b). Compound (AP2-c) may be obtained by reaction with a halide, mesylate or tosylate in a solvent such as dimethylformamide, acetonitrile, tetrahydrofuran, dichloromethane or acetone, in the presence of a base such as potassium carbonate, cesium carbonate, sodium hydrogen carbonate, trialkylamine, a pyridine derivative or sodium hydride. In the formulas, R2 has the same definition as R6 in Step 1 of Production Process MO.

[0130] Step 4 represents a step of reduction of the nitro group. Compound (AP2-d) may also be obtained by conducting the reaction in a solvent such as hydrated methanol or hydrated ethanol in the presence of ammonium chloride, with addition of iron at the reflux temperature of the solvent.

[0131] The following Production Processes PP to BOL are general production processes for aminophenol derivatives using compounds synthesized by Production Process AP as the starting materials.

[0132] Production Process PP is an exemplary synthetic method for a piperazine derivative.

[0133] Step 1 represents a step of treating the amino group of compound (PP-a) with bis(chloroethyl)amine hydrochloride to form a piperazine ring. Preferably, compound (PP-a) is reacted with bis(chloroethyl)amine hydrochloride in 1,2-dichlorobenzene while heating to reflux, and the reaction is conducted while removing the generated hydrogen chloride gas to yield compound (PP-b).

[0134] In the formulas, R1 represents hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, optionally substituted alkylamino, etc. R2 represents hydrogen, optionally substituted alkyl, etc.

[0135] The formulas in Production Process PP show only a piperazine group, but any 5- to 8-membered ring containing plural nitrogen atoms may be formed, without any restriction to piperazine.

[0136] Step 2 represents a step of introducing substituent R3 at the secondary amine position of the piperazine of compound (PP-b). Compound (PP-b) may be reacted with reagent R3-X1 (X1=halogen) in an appropriate solvent such as dichloromethane or tetrahydrofuran, in the presence of an inorganic base such as potassium carbonate or sodium hydrogen carbonate or in the presence of an organic base such as trialkylamine or a pyridine derivative to yield R3 substituted compound (PP-c). R3 of reagent R3-X1 represents optionally substituted alkyl, optionally substituted alkyl having cyano on the end or a branch, alkyl having protected or substituted carboxylic acid on the end or a branch, alkyl having protected or substituted hydroxyl on the end or a branch, alkyl having protected or substituted amino on the end or a branch, optionally substituted sulfonyl, optionally substituted acyl, or optionally substituted carbamoyl. The reagent used to introduce substituent R3 into compound (PP-b) may be, instead of R3-X1 mentioned above, di-t-butyl dicarbonate or optionally substituted isocyanate. Compound (PP-b) may be subjected to reductive amination using an optionally substituted aldehyde or ketone and sodium triacetoxyborohydride or sodium cyanoborohydride for introduction of substituent R3.

[0137] Compound (PP-c) obtained by this Production Process may be converted to the final target compound by Production Process A.
Production Process MO is an exemplary production process for a heterocyclic amino derivative.

Step 1 represents a step of treating the amino group of compound (MO-a) with a reagent represented by Z1-Y1-Y2-Y3-Z2 to form a nitrogen-containing ring.

Compound (MO-b) may be obtained by reacting compound (MO-a) with reagent Z1-Y1-Y2-Y3-Z2 in an appropriate solvent such as dimethylformamide, tetrahydrofuran or dichloromethane, in the presence of an inorganic base such as potassium carbonate, sodium hydrogen carbonate or cesium carbonate or in the presence of an organic base such as trialkylamine or a pyridine derivative.

Z1 and Z2 in the reagent Z1-Y1-Y2-Y3-Z2 represent leaving groups such as halogen or sulfonate. Y1 and Y3 represent methylene optionally substituted with alkyl, alkoxy or the like, carbonyl, carboxyl, sulfonyl or amide. Elements to form the main chain at the portion represented by —Y2— include carbon, oxygen, nitrogen and sulfur, and there are no particular restrictions on the length of the chain. Where possible, the element forming the —Y2— main chain may also have as a substituent optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkoxy-alkyl, optionally substituted hydroxyalkyl, hydroxy, carboxyl, optionally protected or substituted carboxyl, optionally protected or substituted carbamoyl, optionally protected or substituted aminoalkyl, etc. An oxo group may also be present on the —Y2— main chain to form carbonyl, sulfonyl or sulfinyl together with carbon or sulfur on the main chain.

In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R6 represents optionally substituted alkyl, a protecting group for hydroxyl, such as methoxymethyl, tetrahydropropyran or trialkylsilyl, or alternatively alkyl having cyano at the end or a branch, alkyl having protected or substituted carboxylic acid on the end or a branch, aryalkyl having protected or substituted carboxylic acid on the end or a branch, alkyl having protected or substituted hydroxyl on the end or a branch, aryalkyl having protected or substituted hydroxyl on the end or a branch, alkyl having protected or substituted amino on the end or a branch, aryalkyl having protected or substituted amino on the end or a branch, optionally substituted sulfonyl, optionally substituted acyl, optionally substituted carboxamoyl, etc.

Step 2 represents a step of deprotection when R6 of compound (MO-b) is a protecting group for the phenolic hydroxyl group. For example, compound (MO-c) wherein R6 is methoxymethyl may be obtained by treating compound (MO-b) with an acidic mixed solvent such as 5 N hydrochloric acid/aceton or 10% aqueous perchloric acid/tetrahydrofuran.

Step 3 represents a step of introducing a new substituent R7 at the phenolic hydroxyl group of compound (MO-c).

R7 has the same definition as R6 in Step 1 of Production Process MO.

Compound (MO-d) wherein R7 is methyl may be obtained by reacting compound (MO-c) with reagent R7-X2 in an appropriate solvent such as dimethylformamide, acetonitrile, diethyl ether, tetrahydrofuran or dichloromethane, in the presence of an inorganic base such as potassium carbonate, sodium hydrogen carbonate or cesium carbonate or in the presence of an organic base such as trialkylamine or a pyridine derivative, or in the presence of sodium hydride.

Compound (MO-d) wherein R7 is methyl may be obtained at a high yield by reacting compound (MO-c) with diazomethane in diethyl ether or with trimethylsilyldiazomethane in acetonitrile-diisopropylethylamine-methanol.

Compound (MO-d) wherein X2 in reagent R7-X2 is hydroxyl may be obtained by reacting compound (MO-c) with reagent R7-X2 by the publicly known Mitsunobu reaction in an appropriate solvent such as tetrahydrofuran or toluene.

In Production Process MO, R6 and R7 may sometimes undergo conversion to a structure which is not defined herein by a method easily predictable by a person skilled in the art at an appropriate stage after introduction. Likewise, the —N—Y1-Y2-Y3(—N)— portion obtained by cyclization in Step 1 may sometimes also undergo conversion to a structure which is not defined herein. (Conversion of the —N—Y1-Y2-Y3(—N)— portion is described in some of the following Production Process examples).

Compounds (MO-b), (MO-c) and (MO-d) obtained in this Production Process may be converted to the final target compounds by Production Process A.
Production Process PR is an exemplary synthetic method for pyrrolidine derivatives.

Scheme PR-1 is an exemplary production scheme whereby the —N—Y1-Y2-Y3(—N) portion obtained by cyclization in Step 1 of Production Process MO may undergo additional structural conversion. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R10 and R11 have the same definitions as R6 and R7 in Production Process MO. Although only methoxymethyl is mentioned as a protecting group for the phenolic hydroxyl group of compounds (PR1-a) and (PR1-b), there is no limitation to methoxymethyl.

Step 1 represents a step of introducing a substituent R10 at the hydroxyl group of compound (PR1-a). The reaction is conducted using reagent R10-X3 in an appropriate alkaline hydrated organic solvent, in the presence of a phase transfer catalyst. Preferably, compound (PR1-b) is obtained by reaction of reagent R10-X3 with compound (PR1-a) in a mixture of 50% aqueous sodium hydroxide and toluene in the presence of tetraalkylammonium bromide. Here, X3 is a leaving group such as halogen or sulfonate.

Step 2 represents a step of treating compound (PR1-b) in the same manner as Step 2 of Production Process MO to yield compound (PR1-c).

Step 3 represents a step of introducing a new substitutent R11 at the phenolic hydroxyl group of compound (PR1-c). Compound (PR1-c) may be treated in the same manner as for introduction of R7 in Step 3 of Production Process MO to yield R11 introduced compound (PR1-d).

Step 4 represents a step of treating compound (PR1-a) in the same manner as Step 2 of Production Process MO to yield compound (PR1-e).

Step 5 represents a step of selectively introducing substitutent R11 only at the phenolic hydroxyl group of compound (PR1-e). Utilizing the difference in reactivity between the two hydroxyl groups of compound (PR1-e), treatment may be carried out in the same manner as for introduction of R7 in Step 3 of Production Process MO to yield R11 introduced compound (PR1-f).

Step 6 represents a step of treating compound (PR1-f) in the same manner as Step 1 of this Scheme PR-1 to yield compound (PR1-d).

Compounds (PR1-b) and (PR1-d) obtained in this Scheme PR-1 may be converted to the final target compounds by Production Process A.
Scheme PR-2 is another exemplary production scheme whereby the \(-N-Y1-Y2-Y3(-N)\) portion obtained by cyclization in Step 1 of Production Process MO may undergo additional structural conversion. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R15 and R20 have the same definitions as R6 and R7 in Production Process MO.

Step 1 represents a step of replacing the hydroxyl group of compound (PR1-a) with a substituent R14 (F or CN). When R14 is fluoro, compound (PR1-a) may be treated with diethylaminosulfur trifluoride (DAST) in dichloromethane to yield compound (PR2-a: R14=F). When R14 is cyano, the hydroxyl group of compound (PR1-a) may first be converted to a leaving group with an acyl chloride reagent such as methanesulfonyl chloride in an appropriate solvent such as dichloromethane, in the presence of a base such as triethylamine. A hydrogen cyanide salt may then be reacted with this intermediate to introduce a cyano group. Preferably, the intermediate is added to dimethylformamide and reacted with sodium cyanide in the presence of tetraethylammonium iodide to yield compound (PR2-a: R14=CN).

Step 2 represents a step of treating compound (PR2-a) (R14=F or CN) in the same manner as Step 2 of Production Process MO to yield compound (PR2-b) (R14=F or CN).

Step 3 represents a step of introducing substituent R15 at the phenolic hydroxyl group of compound (PR2-b) (R14=F or CN). Compound (PR2-b) may be treated in the same manner as for introduction of R7 in Step 3 of Production Process MO to yield R15 introduced compound (PR2-c) (R14=F or CN).

Step 4 represents a step of converting compound (PR2-c) wherein R14=CN to compound (PR2-d) wherein cyano may be converted to carboxyl by alkali hydrolysis. Preferably, compound (PR2-c) wherein R14=CN may be reacted by heating to reflux in a mixed solvent of aqueous sodium hydroxide and ethanol to yield compound (PR2-d).

Step 5 represents a step of esterifying or amidating the carboxylic acid group of compound (PR2-d) for introduction of a substituent R18 by common methods. The carboxylic acid group of compound (PR2-d) may be converted to an active species by a common method such as an acid mixing method using a chloroformic acid ester or an acid chloride method using oxalyl chloride, and then reacted with an alcohol or amine for conversion to (PR2-e). Alternatively, (PR2-d) may be esterified by reaction with the corresponding alkyl halide reagent in the presence of an appropriate base or by reaction with di-tert-butyl dicarbonate in the presence of dimethylaminopyridine. Compound (PR2-d) may also be subjected to dehydration reaction using an alcohol or amine and a peptide-forming condensing agent, for conversion to compound (PR2-e). The synthesis may also be carried out by other suitable known reactions. R18 represents amino or alkoxy.

Step 6 represents a step of subjecting compound (PR2-a: R14=CN) to alkali hydrolysis in the same manner as Step 4 followed by treatment in the same manner as the esterification in Step 5, and then ketal protection of the carbonyl group of the acetophenone. After converting compound (PR2-a: R14=CN) to a carboxylic acid ester, it may be reacted with a ketalizing reagent such as methyl orthoformate under acidic conditions to yield compound (PR2-f). Preferably, the methyl orthoformate is reacted with the carbonyl group in methanol in the presence of an acid catalyst such as camphorsulfonic acid or p-toluenesulfonic acid and Molecular Sieve 3A, to yield compound (PR2-f).

Step 7 represents a step of reducing the ester group of compound (PR2-f) for conversion to a hydroxymethyl group, and then selectively deprotecting only the ketal protection of the carbonyl group of the acetophenone. First, compound (PR2-f) is reacted with an ester-reducing reagent such as lithium aluminum hydride in an appropriate solvent such as tetrahydrofuran or diethyl ether, for conversion to a hydroxymethyl group. Next, under mildly acidic conditions, and preferably under conditions with an acetic acid-tetrahydrofuran-water (4:1:1) mixed acid solvent, the ketal protecting group for the carbonyl group is selectively deprotected while leaving the methoxymethyl group for the phenolic hydroxyl, to yield compound (PR2-g).

Step 8 represents a step of converting the hydroxyl group of compound (PR2-g) to substituent R19 (cyano or various alkoxy).

When R19 is cyano, treatment is carried out in the same manner as for conversion in Step 1 when R14 is cyano, to yield compound (PR2-h) wherein hydroxymethyl of compound (PR2-g) may be converted to cyanoethyl, in which case R19 represents cyano. When R19 is alkoxy, compound (PR2-g) is treated in the same manner as Step 1 of Scheme PR-1 to yield compound (PR2-h) for conversion to alkoxy, in which case R19 has the same definition as OR10 in Scheme PR-1.

Step 9 represents a step of deprotecting the methoxymethyl group serving as the protecting group for the phenolic hydroxy group of compound (PR2-h), and then introducing a substituent R20. First, compound (PR2-h) is treated in the same manner as Step 2 of Production Process MO to remove the methoxymethyl group. It is then treated in the same manner as for introduction of R7 in Step 3 of Production Process MO to yield compound R20 introduced (PR2-i).

Compounds (PR2-c), (PR2-e) and (PR2-i) obtained in this Scheme PR-2 may be converted to the final target compounds by Production Process A.
[0173] Scheme PR-3 is an exemplary production scheme whereby the \(-N-Y1-Y2-Y3(-N)\) portion obtained by cyclization in Step 1 of Production Process MO may undergo additional structural conversion. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R23, R24 and R25 have the same definitions as R6 and R7 in Production Process MO.

[0174] Step 1 represents a step of treating compound (PR3-a) in the same manner as Step 1 of Scheme PR-1 to yield compound (PR3-b) having one substituent R24 introduced therein and compound (PR3-c) having two substituents R24 introduced therein. Alternatively, when R24 is methoxymethyl or the like, an excess of methoxymethyl chloride may be reacted with compound (PR3-a) in the presence of diisopropylethylamine to yield compounds (PR3-b) and (PR3-c). Compounds (PR3-b) and (PR3-c) may be separated by silica gel column chromatography.

[0175] Step 2 represents a step of treating compound (PR3-b) in the same manner as Step 1 to yield compound (PR3-d) having a newly introduced substituent R25.

[0176] Step 3 represents a step of stereoisomerization of the hydroxyl group of compound (PR3-b) to yield compound (PR3-e). Compound (PR3-b) is reacted with m-nitrobenzenesulfonyl chloride in dichloromethane in the presence of triethylamine and dimethylaminopyridine. It is then treated with cesium acetate while heating in dimethylsulfoxide to yield a hydroxyl-inverted acetate. This is treated with potassium carbonate in methanol to yield hydroxyl-inverted compound (PR3-e).

[0177] Compounds (PR3-b), (PR3-c) and (PR3-d) obtained in Scheme PR-3 may be converted to the final target compounds by Production Process A. Compound (PR3-e) may also be treated in the same manner as Step 2 of this scheme and then converted to the final target compound by Production Process A.
Scheme PR-4 is an exemplary production scheme whereby the \(\text{N} - \text{Y}_1\text{-Y}_2\text{-Y}_3\text{-}\text{N} \) portion obtained by cyclization in Step 1 of Production Process MO may undergo additional structural conversion. In the formulas, \(\text{R}_1 \) has the same definition as \(\text{R}_1 \) in Step 1 of Production Process PP. \(\text{R}_26 \) has the same definition as \(\text{R}_6 \) and \(\text{R}_7 \) in Production Process MO.

Step 1 represents a step of treating compound (PR4-a) with Lawesson’s reagent while heating in 1,4-dioxane to yield a thioamide (PR4-b).

Step 2 represents a step of treating compound (PR4-b) with ethyl O-trifluoromethanesulfonylhydroxyacetate, triphenylphosphine and triethylamine to yield compound (PR4-c).

Step 3 represents a step of reacting compound (PR4-c) with sodium triacetoxyborohydride in 1,2-dichloroethane in the presence of acetic acid for reduction of the enamine to yield compound (PR4-d).

Step 4 represents a step of converting compound (PR4-d) to a carboxylic acid derivative (PR4-e) under appropriate conditions such that substituent \(\text{R}_{26} \) is not affected. Generally, it is treated with aqueous sodium hydroxide or aqueous lithium hydroxide in an alcohol or an alcoholtetrahydrofuran mixed solvent for alkali hydrolysis to yield compound (PR4-e).

Step 5 represents a step of treating compound (PR4-c) with di-tert-butyl dicarbonate in tert-butanol in the presence of dimethylaminopyridine to yield the tert-butyl esterified compound (PR4-f).

Compounds (PR4-c), (PR4-d) and (PR4-f) obtained in this Scheme (PR-4) may be converted to the final target compounds by Production Process A.
[0185] Scheme PR-5 is an exemplary production scheme whereby the —N—Y1—Y2—Y3 (—N) portion obtained by cyclization in Step 1 of Production Process MO may undergo additional structural conversion. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R27 has the same definition as R6 and R7 in Production Process MO.

[0186] Step 1 represents a step of treating compound (PR5-a) with a catalytic amount of rhodium (II) acetic dimer and the known reagent diethyl diazomalonate while heating in toluene, to yield compound (PR5-b).

[0187] Step 2 represents a step of treating compound (PR5-b) with equivalents of sodium ethoxide and ethyl acrylate while heating in ethanol to yield the cyclized compound (PR5-c).

[0188] Step 3 represents a step of treating compound (PR5-c) with 5N hydrochloric acid while heating in ethanol to yield compound (PR5-d) having the methoxymethyl protecting group removed.

[0189] Step 4 represents a step of converting compound (PR5-d) to compound (PR5-e) having a newly introduced substituent R27. Compound (PR5-e) may be obtained by treatment in the same manner as for introduction of R7 in Step 3 of Production Process MO.

[0190] Step 5 represents a step of treating compound (PR5-e) with 1,2-bis(trimethylsiloxy)ethane and triethylsilyl triflate in dichloromethane to yield compound (PR5-f), wherein the acetyl carbonyl of compound (PR5-e) is ketal-protected.

[0191] Step 6 represents a step of reducing the lactam carbonyl of compound (PR5-f) for conversion to methylene. Compound (PR5-f) may be reacted with carbonyldihydride(triphenylphosphine)rhodium(I) and diphenylsilane in an appropriate solvent such as tetrahydrofuran to yield compound (PR5-g).

[0192] Step 7 represents a step of reacting compound (PR5-g) in 5% hydrochloric acid-tetrahydrofuran to yield the ketal-deprotected compound (PR5-h).

[0193] Compounds (PR5-d), (PR5-e) and (PR5-h) obtained in this Scheme PR-5 may be converted to the final target compounds by Production Process A.
This Production Process PS is an exemplary synthetic method for a piperidine derivative. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R28 and R30 have the same definitions as R6 and R7 in Production Process MO.

Step 1 represents a step of reacting compound (PS-a) with formaldehyde to produce an imine, and then subjecting it to hetero Diels-Alder reaction with a diene having an enol ether structure to form an oxopiperidine ring. Preferably, Compound (PS-a) is reacted with 37% formalin in dichloromethane in the presence of magnesium sulfate to produce an imine, and the reaction mixture is filtered with celite. After adding 2-trimethylsilyloxy-1,3-butadiene and toluene to the filtrate and cooling to −70° C., a 1 M hexane
solution of diethylaluminum chloride is added dropwise and the temperature is raised. After completion of the reaction, the mixture is replaced with a tetrahydrofuran solution and is treated with 1 N hydrochloric acid to yield compound (PS-b) having the silylenol ether converted to a ketone.

[0196] Step 2 represents a step of treating compound (PS-b) with p-toluenesulfonylmethyl isocyanide (TosMIC) in dimethoxyethane-tert-butanol in the presence of potassium tert-butoxide, to yield compound (PS-c) having oxo converted to cyano.

[0197] Step 3 represents a step of reacting the carbonyl group of compound (PS-b) with any of various organometallic reagents to yield a tert-alcohol (PS-d) having an added substituent R29. For example, compound (PS-b) may be reacted with methylmagnesium bromide in diethyl ether to yield compound (PS-d) having an added methyl group. R29 represents alkyl, alkenyl or alkynyl.

[0198] Step 4 represents a step of treating compound (PS-b) with a reducing agent for conversion to an alcohol compound (PS-e). Various reducing agents may be used, and treatment with sodium borohydride in a methanol-dichloromethane mixed solvent is preferred to yield compound (PS-e).

[0199] Step 5 represents a step of treating compound (PS-e) in the same manner as Step 1 of Scheme PR-1 of Production Process PR to yield compound (PS-f) having a newly introduced substituent R30 at the hydroxyl group. Substituent R30 has the same definition as R6 and R7 in Production Process MO.

[0200] Step 6 represents a step of the Horner-Emmons reaction at the carbonyl group of compound (PS-b) to yield the carbon-carbon bond formed unsaturated ester (PS-g). After treating a tert-butyl diethylphosphonooacetate with sodium hydride in 1,2-dimethoxyethane, compound (PS-b) dissolved in 1,2-dimethoxyethane is added to yield Compound (PS-g).

[0201] Step 7 represents a step of 1,4-reduction of the unsaturated ester. Compound (PS-g) may be treated with sodium borohydride in a dichloromethane-methanol mixed solvent in the presence of a catalytic amount of nickel (II) chloride-6 hydrate, or reacted with magnesium in methanol for selective 1,4-reduction of the unsaturated ester to yield compound (PS-h).

[0202] A piperidine derivative may also be synthesized by the following Steps 8 to 10.

[0203] Step 8 represents a step of treating compound (PS-i) in the same manner as Step 1 to yield compound (PS-j), with simultaneous formation of an oxopiperidine ring and protection of the methoxymethyl group serving as the phenolic hydroxyl group-protecting group.

[0204] Step 9 represents a step of treating compound (PS-j) in the same manner as for introduction of R7 in Step 3 of Production Process MO, to yield compound (PS-k) substituted with substituent R28.

[0205] Step 10 represents a step of selectively protecting the carbonyl group of the acetophenone of compound (PS-k). After adding compound (PS-k) to tetrahydrofuran, adding triethylamine and cooling to −70°C, the mixture is treated with tert-butylmethylsilyl trifluoromethanesulfonate. The state of the reaction is periodically examined by thin-layer column chromatography, and the temperature is gradually raised if necessary. Water may be added at low temperature to stop the reaction to yield compound (PS-m).

[0206] Finally, compound (PS-m) may be treated in the same manner as in Steps 2, 3 and 04. Alternatively, it may be converted directly to an acyl bromide according to Production Process A for conversion to the final target compound.

[0207] Compounds (PS-b), (PS-c), (PS-d), (PS-e), (PS-f), (PS-g), (PS-h), (PS-i) and (PS-k) obtained in this Production Process may be converted to the final target compounds by Production Process A.
This scheme is an exemplary synthesis for an aniline derivative. In the formulas, R1 has the same definition as in Step 1 of Production Process PP. R31 and R32 and R33 have the same definitions as R6 and R7 in Production Process MO.

Step 1 represents a step of introducing one or two substituents R31 at the amino group of compound (AN1-a). Compound (AN1-a) may be treated in approximately the same manner as for introduction of R7 at the hydroxyl group in Step 3 of Production Process MO to yield compounds (AN1-b) and (AN1-c). When R31 is bonded to the aniline amino group as simple alkyl and not via acyl or sulfonyl (when R31-I or R31-Br is used as the reagent, etc.), a prolonged reaction with heating may be necessary to introduce the substituent R31. Incidentally, compounds (AN1-b) and (AN1-c) may be easily separated and purified by silica gel column chromatography.

Step 2 represents a step of treating compound (AN1-b) in the same manner as Step 1 to yield compound (AN1-d) having a newly introduced substituent R32.

Step 3 represents a step of treating compounds (AN1-c) and (AN1-d) in the same manner as Step 2 of Production Process MO to yield the respective compounds (AN1-e) and (AN1-f).

Step 4 represents a step of treating compounds (AN1-e) and (AN1-f) in the same manner as for introduction of R7 in Step 3 of Production Process MO to yield the respective compounds (AN1-g) and (AN1-h).

Step 5 represents a step of using compound (AN1-i) as the starting material for treatment in the same manner as Step 1 to yield compound (AN1-j) having substituents R31 and R33. Compound (AN1-g) can also be obtained by this method.

Step 6 represents a step of treating compound (AN1-j) in the same manner as Step 2 to yield compound (AN1-h).

Step 7 represents a step of treating compound (AN1-i) in the same manner as the ketalizing reaction of Step 6 in Scheme PR-2, to yield compound (AN1-k).

Step 8 represents a step of reductive amination of compound (AN1-k) using an aldehyde or ketone (represented by R34—(C=O)—R35) and a reducing agent to obtain compound (AN1-m).

Compound (AN1-k) may be reacted with sodium cyanoborohydride in a methanol-acetic acid mixed solvent or reacted with sodium triacetoxycarbonylhydride in a 1,2-dichloroethane-acetic acid mixed solvent, to directly yield compound (AN1-m) having the ketal protecting group also deprotected. Either R34 and R35 may be hydrogen, or R34 and R35 may together form a ring.

Step 9 represents a step of reductive amination of compound (AN1-i) without ketal protection, using an aldehyde or ketone (represented by R34—(C=O)—R35) and a reducing agent to yield compound (AN1-m). Reaction will usually be conducted with sodium triacetoxycarbonylhydride in a 1,2-dichloroethane-acetic acid mixed solvent.

Compounds (AN1-b), (AN1-c), (AN1-d), (AN1-e), (AN1-f), (AN1-g), (AN1-h), (AN1-i) and (AN1-m) obtained in this Scheme AN-1 may be converted to the final target compounds by Production Process A.
Step 6 in Scheme PR-2 of Production Process PR, to yield compound (AN2-b) having the carbonyl group protected.

Step 2 represents a step of treating compound (AN2-b) with a reducing agent for conversion of amide to methyleneamino (from \(-N\text{--CO--}\) to \(-N\text{--CH2--}\)), or of an ester to an alcohol (from \(-O\text{--CO--}\) to \(-CH2\text{--OH,}\) from \(-O\text{--CO--}\) to \(-OH\). Preferably, compound (AN2-b) is treated with lithium aluminum hydride in diethyl ether to yield compound (AN2-c). Substituents R39 and R40 are defined as the structures resulting after this conversion of R37 and R38.

Step 3 represents a step of treating compound (AN2-c) in the same manner as the ketal deprotection reaction of Step 7 in Scheme PR-2, to yield compound (AN2-d).

Step 4 represents a step carried out only when compound (AN2-d) has a hydroxyl group on substituent R39 or R40, and here a new substituent is introduced at the hydroxyl group to yield compound (AN2-e) by conversion to substituents R41 and R42.

The reaction of this step is conducted in the same manner as Step 1 in Scheme PR-1 of Production Process PR. Compounds (AN2-d) and (AN2-e) obtained in this Scheme (AN-2) may be converted to the final target compounds by Production Process A.

The following Schemes BO-1, 2, 3 and 4 of Production Process BO are general synthesis methods for benzoxazine derivatives.
[0228] In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 represents hydrogen, optionally substituted alkyl or the like. R3 represents hydrogen, halogen, oxo, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted acyl, optionally substituted carboxyl or optionally substituted carbamoyl.

[0229] Step 1 represents a step of acylation of the amino group. Compound (BO1-b) may be obtained either by reaction with an acyl chloride at room temperature in a solvent such as tetrahydrofuran, methylene chloride or acetonitrile in the presence of a base such as pyridine or triethylamine, or by reaction with an acid anhydride in a pyridine solution.

[0230] Step 2 represents a step of deprotection of the methoxymethyl group protecting the alcohol. Compound (BO1-c) may be obtained by reaction with dilute aqueous hydrochloric acid and 10% aqueous perchloric acid in a solvent such as tetrahydrofuran or acetone at room temperature.

[0231] Step 3 represents a step of alkylation of the hydroxyl group and the amino group. Compound (BO1-d) may be obtained by reaction with a dihalide, dimesylate or ditosylate in a dimethylformamide solution in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydride, while heating from room temperature to 150°C.

[0232] Step 4 represents a step of deacylation. Compound (BO1-e) may be obtained either by reaction with an aqueous sodium hydroxide solution in a solvent such as methanol, ethanol or tetrahydrofuran, at room temperature to the reflux temperature of the solvent, or by reaction in an aqueous hydrochloric acid solution at room temperature to the reflux temperature of the solvent.

[0233] Compounds (BO1-d) and (BO1-e) obtained in this Scheme BO-1 may be converted to the final target compounds by Production Process A.

[0234] In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 has the same definition as R3 in Scheme BO-1.

[0235] Step 1 represents a step of alkylation of the hydroxyl group. Compound (BO2-b) may be obtained by reaction with a dihalide, dimesylate or ditosylate in a dimethylformamide solution while heating from room temperature to 150°C.

[0236] Step 2 represents a step of forming an oxazine ring. Reaction is conducted with a dihalide, dimesylate or ditosylate in a dimethylformamide solution in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydride, while heating from room temperature to 150°C. Reaction is then conducted at room temperature in an ethanol or methanol solution in the presence of a catalytic amount of palladium-carbon in a hydrogen atmosphere to yield compound (BO2-c).

[0237] Compound (BO2-c) obtained in this Scheme BO-2 may be converted to the final target compound by Production Process A.
[0238] In the formulas, R1 represents hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl or optionally substituted alkoxy. R2 represents hydrogen, optionally substituted alkyl, alkyl having cyano at the end or a branch, optionally substituted alkoxy, optionally substituted arylalkyl, optionally substituted acyl, optionally substituted sulfonyl, optionally substituted carbamoyl or optionally substituted carboxyl.

[0239] Step 1 represents a step of alkylation, acylation, substituted carbamoylation or urethanation of the amino group, by any of the following methods 1 to 4.

[0240] 1. Compound (BO3-b) may be obtained by reaction with a halide, mesylate or tosylate in a dimethylformamide solution in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydride, while heating from room temperature to 150°C.

[0241] 2. Compound (BO3-b) may be obtained either by reaction with an acyl chloride, sulfonyl chloride or isocyanate at room temperature in a solvent such as tetrahydrofuran, methylene chloride or acetonitrile, in the presence of a base such as pyridine or triethylamine, or by reaction with an acid anhydride in a pyridinic solution.

[0242] 3. Compound (BO3-b) may be obtained by reaction with ethyl N-(1-cyano)iminofomate in methanol or ethanol in the presence of a catalytic amount of 4-dimethylaminopyridine, at room temperature to the reflux temperature of the solvent.

[0243] 4. Compound (BO3-b) may be obtained by reaction with trimethyl orthoformate or triethyl orthoformate in methanol or ethanol in the presence of a catalytic amount of p-toluenesulfonic acid or camphorsulfonic acid, ketal protection of the acetyl group and introduction of different substituents by methods 1 to 3 above, followed by deprotection under acidic conditions.

[0244] Compound (BO3-b) obtained in this Scheme BO-3 may be converted to the final target compound by Production Process A.

[0245] In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 has the same definition as R3 in Scheme BO-I. R3 has the same definition as R2 in Scheme BO-3.

[0246] Step 1 represents a step of alkylation. Compound (BO4-b) may be obtained by the method described in Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y., Meguro, K; Chem. Pharm. Bull., 38(5), 1238-1245(1990), or by reaction with allyl bromide, maleic anhydride or the like in a solvent such as methanol, ethanol or toluene in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydrogen carbonate at room temperature to the reflux temperature of the solvent, followed by reaction in methanol or ethanol in the presence of a base such as potassium carbonate or triethylamine, at room temperature to the reflux temperature of the solvent.

[0247] Step 2 represents a step of alkylation, acylation, substituted carbamoylation or urethanation of the amino group. Compound (BO4-c) may be obtained by treatment in the same manner as Step 1 of Scheme BO-3. Compounds (BO4-b) and (BO4-c) obtained in Scheme BO-4 may be converted to the final target compound by Production Process A.
Production Process BOL is an exemplary synthetic method for a benzoxazole derivative. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 represents hydrogen, optionally substituted alkyl or optionally substituted alkoxy.

Step 1 represents a step of forming an oxazole ring. Compound (BOL-b) may be obtained by reaction with an acid chloride in a solvent such as tetrahydrofuran, methylene chloride or acetonitrile in the presence of a base such as triethylamine, followed by reaction with dilute aqueous hydrochloric acid or p-toluenesulfonic acid in a solvent such as ethanol, methanol, tetrahydrofuran or methyl ethyl ketone.

The benzoxazoleethanone derivative (BOL-b) obtained in Production Process BOL may be converted to the final compound by Production Process A.

Schemes CA-1, 2 and 3 below in Production Process CA are general synthesis methods for catechol derivatives.

In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2, R3 and R4 have the same definitions as R6 and R7 in Production Process MO.

Step 1 represents a step of methoxymethylating the hydroxyl group of compound (CA1-a). Compound (CA1-b) is obtained by reaction of compound (CA1-a) and sodium hydride in dimethylformamide at room temperature, followed by reaction with methoxymethyl chloride (MOM-Cl).

Step 2 represents a step of introducing a formyl group by ortholithiation utilizing the substituent effect of the methoxymethyl group of compound (CA1-b). The orthoformylated compound (CA1-c) is obtained by treatment of compound (CA1-b) with n-butyllithium in diethyl ether while cooling on ice in the presence of tetramethylethylenediamine, followed by treatment with a formylating agent such as dimethylformamide or N-formylmorpholine.

Step 3 represents a step of brominating the para-position relative to the methoxymethyl group of compound (CA1-c). Compound (CA1-d) is obtained by reaction of compound (CA1-c) with bromine in methanol at room temperature, and removal of the methoxymethyl group by the hydrogen bromide generated in the system.

Step 4 represents a step of introducing any of various substituents at the hydroxy group of compound (CA1-d). Compound (CA1-e) is obtained by the same method as for introduction of R7 in Step 3 of Production Process MO.
[0258] Step 5 represents a step of oxidative conversion of the formyl group to a hydroxyl group. Compound (CA1-f) is obtained by reacting compound (CA1-e) with m-chloroperbenzoic acid in dichloromethane at room temperature or with heating, and then hydrolyzing the purified ester using potassium carbonate in methanol.

[0259] Step 6 represents a step of obtaining R3 introduced compound (CA1-g) by the same method as in Step 4 of Scheme CA-1.

[0260] Step 7 represents a step of conversion to substituent R4 when R2 is a hydroxyl-protecting group. Compound (CA1-h) is obtained in the same manner as the continuous treatment in Steps 2 and 3 of Production Process A.

[0261] Compounds (CA1-g) and (CA1-h) obtained in this Scheme CA-1 may be converted to the final target compound by Production Process A.

[0262] Scheme CA-2 is an exemplary synthetic method for a cyclic catechol derivative. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 and R4 have the same definitions as R6 and R7 in Production Process MO.

[0263] Step 8 represents a step of conversion to a catechol when R2 is an eliminable hydroxyl-protecting group. When R2 is methoxymethyl, a diol (catechol) (CA2-a) is obtained by treating compound (CA1-f) with 6 N hydrochloric acid.

[0264] Step 9 represents a step of cyclizing the catechol by alkylation. Compound (CA2-a) is reacted with a 1,2-dibromoethyl derivative in a solvent such as dimethylformamide, acetonitrile or acetone in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydride, to yield a fused dioxane ring (CA2-b). Compound (CA2-a) may also be treated with acetone in the presence of phosphorus pentaoxide to yield a 5-membered cyclic product (CA2-b) as an acetonide.

[0265] Compound (CA2-b) obtained in this Scheme CA-2 may be converted to the final target compound by Production Process A.

[0266] Scheme CA-3 is an exemplary synthetic method for a substituted catechol derivative. In the formulas, R5 and R6 have the same definitions in Step 6 and the R6 in Production Process MO.

[0267] Step 10 represents a step of obtaining compound (CA3-b) by the same method as in Step 4 of Scheme CA-1 using the catechol (CA3-a) as the starting material.

[0268] Step 11 represents a step of treating compound (CA3-b) by the same method as in Step 3 of Scheme CA-1 to yield compound (CA3-c) which is selectively brominated at the para-position relative to the non-substituted hydroxyl group.

[0269] Step 12 represents a step of obtaining R6 introduced compound (CA3-d) by the same method as in Step 4 of Scheme CA-1.

[0270] Compound (CA3-d) obtained by Scheme CA-3 may be converted to the final target compound by Production Process A.

[0271] <Production Process CO>

In the formulas of Scheme CO-1, R1 and R2 have the same definition as R1 in Step 1 of Production Process PP. R3 has the same definition as R6 and R7 in Production Process MO.

Step 1 represents a step of Friedel-Crafts acylation. Compound (CO1-b) is obtained by reaction with acetyl chloride in methylene chloride or toluene in the presence of a Lewis acid such as aluminum chloride, zinc chloride or tin (II) chloride, at −70 °C to room temperature.

Step 2 represents a step of alkylation, carbonation, sulfonylation or the like.

1. Compound (CO1-c) may be obtained by reaction with a halide, mesylate or tosylate in a dimethylformamide solution in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydride, while heating from room temperature to 150 °C.

2. Compound (CO1-c) may be obtained either by reaction with an acyl chloride, sulfonyl chloride or isocyanate in a solvent such as tetrahydrofuran, methylene chloride or acetonitrile in the presence of a base such as pyridine or triethylamine, at −15 °C to room temperature, or by reaction with an acid anhydride in a pyridine solution.

3. Compound (CO1-c) may also be obtained by reaction with phenyl chlorofomate in a solvent such as tetrahydrofuran, methylene chloride or acetonitrile in the presence of a base such as pyridine or triethylamine, followed by reaction with an amine.

Compounds (CO1-b) and (CO1-c) obtained in this Scheme CO-1 may be converted to the final target compounds by Production Process A. Compound (CO1-a) may also be used in the conversion of compound (A4-c) in Scheme A-4 of Production Process A.

Scheme CO-2 is an exemplary synthetic method for an aromatic-substituted benzene derivative. In the formulas, R1 and R3 have the same definition as R1 in Step 1 of Production Process PP. R2 and R3 have the same definitions as R6 and R7 in Production Process MO. R3 represents an aromatic ring.

Step 1 represents a step of introducing an aromatic substituent using the Stille coupling method. Compound (CO2-b) is obtained by reaction with aromatic-substituted tributyltin in a solvent such as toluene or xylene under a nitrogen atmosphere in the presence of a catalytic amount of tetrais(triphenylphosphine)palladium, at the reflux temperature of the solvent.

Compound (CO2-b) obtained in this Scheme CO-2 may be converted to the final target compound by Production Process A.

Scheme CO-3 is an exemplary synthetic method for a benzylamine derivative. In the formulas, R1 and R3 have the same definition as R1 in Step 1 of Production Process PP. R2 and R2' have the same definitions as R6 and R7 in Production Process MO. R4 and R5 have the same definition as R2 in Scheme BO-3. R4 and R5 may also form a ring together. X represents hydroxyl or sulfonylic.

Step 1 represents a step of introducing an alkyl halide. Compound (CO3-b) is obtained by reaction with sodium borohydride in methanol or ethanol, followed by reaction with methanesulfonyl chloride or the like in dimethylformamide, in the presence of a base such as pyridine or triethylamine.

Step 2 represents a step of amination.

1. Compound (CO3-c) may be obtained by reaction with an amine in methanol, ethanol, acetonitrile or tetrahydrofuran.

2. Compound (CO3-c) may be obtained by reaction with an amine in dimethylformamide in the presence of a base such as potassium carbonate or sodium hydride.
3. When X is hydroxyl, compound (CO3-c) may be obtained by reaction with diphenylphosphoryl azide in toluene in the presence of a base such as 1,8-diazabicyclo[5.4.0]undec-7-ene to yield an azide, followed by reaction with a trialkylphosphine or triphenylphosphine in tetrahydrofuran-water.

Step 3 represents a step of converting R2 to substituent R2’ when R2 is a hydroxyl-protecting group. Compound (CO3-d) is obtained in the same manner as the continuous treatment in Steps 2 and 3 of Production Process MO.

Compounds (CO3-c) and (CO3-d) obtained in this Scheme CO-3 may be converted to the final target compounds by Production Process A.

Scheme CO-4 is an exemplary synthetic method for phenol and phenoxy derivatives utilizing Friedel-Crafts reaction. In the formulas, R1 has the same definition as R1 in Production Process PP. R2 and R2’ have the same definitions as R6 and R7 in Production Process MO. R3 represents hydrogen or lower alkyl. R4 represents optionally substituted alkyl, optionally substituted carboxyl, cyano or the like.

Step 1 represents a step of alkylation utilizing Wittig reaction. Reaction is conducted with a phosphorane derivative in methylene chloride or tetrahydrofuran. Alternatively, compound (CO4-b) may be obtained by reaction with a phosphonium salt or phosphonate in tetrahydrofuran or dimethylformamide in the presence of a base such as potassium tert-butoxide or sodium hydride.

Step 2 represents a step of reducing the olefin. Compound (CO4-c) may be obtained by accomplishing reduction by reaction in ethyl acetate, tetrahydrofuran or methanol under a hydrogen atmosphere in the presence of palladium-carbon, or by reaction with magnesium in methanol.

Step 3 represents a step of conversion to substituent R2’ when R2 is a hydroxyl-protecting group. Compound (CO4-d) is obtained in the same manner as the continuous treatment in Steps 2 and 3 of Production Process MO.

Compounds (CO4-b), (CO4-c) and (CO4-d) obtained in this Scheme CO-4 may be converted to the final target compounds by Production Process A.

Scheme CO-5 is an exemplary synthetic method for phenol and phenoxy derivatives utilizing Friedel-Crafts reaction. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 represents hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl. R3 has the same definition as R6 and R7 in Production Process MO.

Step 1 represents a step of bromination at the para-position of phenyl. Reaction may be conducted either with bromine in methanol or ethanol or with N-bromosuccinimide in acetonitrile to yield Compound (CO5-a).

Step 2 represents a step of alkylation by Friedel-Crafts reaction. Compound (CO5-b) is obtained by reaction with alkyl mesylate in benzene or dichloroethane in the presence of scandium triflate, by the method described in H. Katsuki et al., Synthesis 603(1999).

Step 3 represents a step of introducing a substituent R3 at the hydroxyl group. Compound (CO5-c) is obtained by treatment in the same manner as for introduction of R7 in Step 3 of Production Process MO.

Compounds (CO5-b) and (CO5-c) obtained in Scheme CO-5 may be converted to the final target compounds by Production Process A.
Scheme CO-6 is an exemplary synthetic method for carboxylic acid derivatives and benzyl alcohol derivatives. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 represents optionally substituted alkyl and R3 and R4 have the same definitions as R6 and R7 in Production Process MO.

Step 1 represents a step of introducing a carboxyl group by ortholithiation utilizing the substituent effect of the methoxymethyl group of compound (CA1-b). Compound (CO6-a) is obtained by treating compound (CA1-b) with n-butylithium in diethyl ether in the presence of tetramethylethlenediamine while cooling on ice, and then reacting it with an alkyl dicarbonate.

Step 2 represents a step of deprotection of the methoxymethyl group serving as the alcohol-protecting group. Compound (CO6-b) is obtained by reaction with dilute aqueous hydrochloric acid and 10% aqueous perchloric acid in tetrahydrofuran or acetone at room temperature.

Step 3 represents a step of introducing a substituent R3 at the hydroxyl group. Compound (CO6-c) is obtained by treatment in the same manner as for introduction of R7 in Step 3 of Production Process MO.

Step 4 represents a step of reduction and alkylation of the carboxyl group. Compound (CO6-d) is obtained by reaction with lithium aluminum hydride in diethyl ether or tetrahydrofuran while cooling on ice, followed by the same method as in Step 3.

Compounds (CO6-b), (CO6-c) and (CO6-d) obtained in this Scheme CO-6 may be converted to the final target compounds by Production Process A.
Scheme CO-7 is an exemplary synthetic method for phenethyl alcohol derivatives, phenylacetic acid derivatives and benzofuran derivatives. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process PP. R2 and R3 have the same definitions as R6 and R7 in Production Process MO. R4 and R5 represent optionally substituted alkyl.

Step 1 represents a step of introducing a hydroxyl group by Wittig reaction followed by hydroboration reaction. The reaction is conducted with methyltriphenylphosphonium bromide in tetrahydrofuran in the presence of potassium tert-butoxide. Reaction is then conducted with borane-tetrahydrofuran in tetrahydrofuran and with 30% aqueous hydrogen peroxide to yield compound (CO7-a).

Step 2 represents a step of introducing a substituent R3 at the hydroxyl group. Compound (CO7-b) is obtained by treatment in the same manner as for introduction of R7 in Step 3 of Production Process MO.

Step 3 represents a step of carbon-carbon bond formation. Compound (CO7-c) is obtained by reaction with methyl methyliumethyl sulfoxide in tetrahydrofuran in the presence of Triton B, at the reflux temperature of the solvent, followed by reaction with dilute aqueous hydrochloric acid in methanol or ethanol.

Step 5 represents a step of forming a furan ring when R2 is hydrogen. Compound (CO7-d) is obtained by reaction with a bromoacetic acid ester in dimethylformamide in the presence of potassium carbonate, at the reflux temperature of the solvent.

Compounds (CO7-a), (CO7-b), (CO7-c) and (CO7-d) obtained in this Scheme CO-7 may be converted to the final target compounds by Production Process A.
Scheme CO-8 is an exemplary synthetic method for 2,3-dihydrobenzofuran derivatives or 2,3-dihydrobenzothiophene derivatives. In the formulas, R1 has the same definition as R1 in Step 1 of Production Process A. R2 and R3 represent hydrogen, optionally substituted alkyl or optionally substituted alkoxy.

Step 1 represents a step of alkylation of the hydroxyl group. Compound (CO8-b) is obtained by reaction with an allyl halide, allyl mesylate or allyl tosylate in a solvent such as dimethylformamide, acetonitrile or acetone, in the presence of sodium iodide and in the presence of a base such as potassium carbonate, cesium carbonate or sodium hydride, according to the method described in J. M. Janusz et al., J. Med. Chem. 41, 1112 (1998).

Step 2 represents a step of forming a furan or thiophene ring. Compound (CO8-c) is obtained by the method described in J. M. Janusz et al., J. Med. Chem. 41, 1112 (1998), or by reaction at 210°C in magnesium chloride.

Step 3 represents a step of Friedel-Craft acylation. Compound (CO8-d) is obtained by reaction with acetyl chloride in methane chloride or toluene in the presence of a Lewis acid such as aluminum chloride, zinc chloride or tin (II) chloride, at -70°C to room temperature.

Step 4 represents a step of bromination by reaction with bromine in methanol or ethanol. Alternatively, compounds (CO8-e) and (CO8-g) are obtained by reaction with N-bromosuccinimide in acetonitrile or dimethylformamide.

Step 5 represents a step of forming a furan or thiophene ring. Compound (CO8-g) is obtained by reaction with sodium borohydride at 75°C in dimethylacetamide in the presence of cyclopentadienyldichlororutanium, by the method described in J. Schwartz et al., J. Org. Chem. 59, 940 (1994).

Compounds (CO8-d) and (CO8-g) obtained in this Scheme CO-8 may be converted to the final target compounds by Production Process A.

Scheme CO-9 is an exemplary synthetic method for carboxylic acid derivatives. In the formulas, R1, R2, R3 and R4 represent hydrogen or optionally substituted alkyl.

Step 1 represents a step of alkylation. Compound (CO9-b) is obtained by reaction with an alkyl halide, mesylate or tosylate in tetrahydrofuran or dimethylformamide, in the presence of potassium tert-butoxide or sodium hydride.

Step 2 represents a step of reduction. Compound (CO9-c) is obtained by reaction with diisobutylaluminum hydride in tetrahydrofuran.

Step 3 represents a step of carbon-carbon bond formation utilizing Wittig reaction. The reaction is conducted with a phosphorane derivative in methane chloride or tetrahydrofuran. Alternatively, compound (CO9-d) is obtained by reaction with either a phosphonium salt or phosphinate in tetrahydrofuran or dimethylformamide in the presence of a base such as potassium tert-butoxide or sodium hydride.

Compounds (CO9-b) and (CO9-d) obtained in this Scheme CO-9 may be converted to the final target compounds by Production Process A.

Representative production processes for compounds according to the invention and salts thereof have been described above, but the starting compounds and reagents used for production of the compounds of the invention may also form salts or hydrates, and these are not particularly restricted so long as the reaction is not inhibited. When compound (I) of the invention is obtained as a free compound, a common method may be used to convert it to a salt which compound (I) may form. The different isomers (for example, geometric isomers, optical isomers based on asymmetric carbon, stereoisomers, tautomers or the like) obtained for compound (I) according to the invention may be purified and isolated using common separation means such as recrystallization, diastereomer salt methods, enzymatic resolution methods and chromatography methods (for example, thin-layer chromatography, column chromatography, gas chromatography, etc.).

In certain embodiments, compounds of the invention represented by formula (I) and salts thereof exhibit excellent thrombin receptor antagonism and especially...
selective antagonism against PAR1 thrombin receptors. In certain other embodiments, compounds of the invention and their salts also exhibit excellent inhibition against platelet aggregation and smooth muscle cell proliferation, with high oral efficacy. In yet other embodiments, compounds of the invention and salts thereof can therefore inhibit the cellular response to thrombin which includes platelet aggregation, without inhibiting the catalytic activity of thrombin which converts fibrinogen to fibrin, and can also inhibit vascular smooth muscle proliferation occurring as a result of damage to vascular walls by coronary angioplasty and the like, through selective inhibition of PAR1.

Thus, in certain embodiments, compounds of the invention and salts thereof may be used to obtain pharmaceutical compositions (formulations) as (i) thrombin receptor antagonists (especially PAR1 thrombin receptor antagonists), (ii) platelet aggregation inhibitors, (iii) smooth muscle cell proliferation inhibitors, (iv) endothelial cell, fibroblast, nephrocyte, osteosarcoma cell, muscle cell, cancer cell and/or glia cell proliferation inhibitors and (v) therapeutic or prophylactic agents for thrombosis, vascular restenosis, deep venous thrombosis, pulmonary embolism, cerebral infarction, heart diseases, disseminated intravascular coagulation, hypertension, inflammatory diseases, rheumatism, asthma, glomerulonephritis, osteoporosis, neurological diseases and/or malignant tumors.

A compound of the invention represented by formula (I) above, a salt thereof or a hydrate of the foregoing may be formulated by a conventional method. Exemplary dosage forms include tablets, powders, fine particles, granules, coated tablets, capsules, syrups, lozenges, inhalants, suppositories, injections, ointments, eye savles, eye drops, nasal drops, ear drops, paps, lotions and the like. Formulations may be prepared with any commonly used excipients, binders, disintegrators, lubricants, coloring agents, correcive coatings, and if necessary, stabilizers, emulsifiers, absorbefacients, surfactants, pH adjusters, preservatives, antioxidants, or the like, in combination with various components that are ordinarily used as materials for pharmaceutical formulations.

For example, such components include (1) animal and vegetable oils such as soybean oil, beef tallow and synthetic glycerides; (2) hydrocarbons such as liquid paraffin, squalane and solid paraffin; (3) ester oils such as octyldecyl myristate and isopropyl myristate; (4) higher alcohols such as cetoestearl alcohol and behenyl alcohol; (5) silicone resins; (6) silicone oils; (7) surfactants such as polyoxyethylene fatty acid esters, sorbitan fatty acid esters, glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene hydrogenated castor oil and polyoxyethylene-polyoxypropylene block copolymer; (8) water-soluble polymers such as hydroxyethylcellulose, polycrylic acid, carboxyvinyl polymer, polyethylene glycol, polyoxypropylene and methylcellulose; (9) lower alcohols such as ethanol and isopropanol; (10) polyhydric alcohols such as glycerin, propylene glycol, dipropylene glycol and sorbitol; (11) sugars such as glucose and sucrose; (12) inorganic powders such as silicic anhydride, magnesium aluminum silicate and aluminum silicate; (13) purified water, and the like.

Examples of (1) excipients which may be used include lactose, corn starch, white soft sugar, glucose, mannitol, sorbit, crystalline cellulose and silicon dioxide; examples of (2) binders which may be used include polyvinyl alcohol, polyvinyl ether, methylcellulose, ethylcellulose, gum arabic, tragacanth, gelatin, shellac, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polypropylene glycol/polyoxyethylene block polymer, meglumine, calcium citrate, dextrin and pectin; examples of (3) disintegrators which may be used include starch, agar, gelatin powder, crystalline cellulose, calcium carbonate, sodium hydrogen carbonate, calcium citrate, dextrin, pectin and calcium carboxymethylcellulose; examples of (4) lubricants which may be used include magnesium stearate, talc, polyethylene glycol, silica and hydrogenated vegetable oils; examples of (5) coloring agents which may be used include any of those approved for addition to drugs; examples of (6) corrective coatings which may be used include cocoa powder, menthol, aromatic powders, mentha oil, borneol and powdered cinnamon; and examples of (7) antioxidants which may be used include those approved for addition to drugs, such as ascorbic acid, α-tocopherol and the like.

(i) An oral formulation may be prepared by combining a compound of the invention or its salt with an excipient, if necessary adding a binder, disintegrator, lubricant, coloring agent, corrective coating or the like, and forming a powder, fine particles, granules, tablets, coated tablets, capsules, etc. by a common method. (ii) Tablets or granules may, of course, also be coated with a sugar coating, gelatin coating or other type of suitable coating if necessary. (iii) In the case of a liquid formulation such as syrup, injection, eye drops or the like, a common method may be used for formulation with a pH adjustor, solubilizer, isotonizing agent or the like, as well as a solubilizing aid, stabilizer, buffering agent, suspending agent, antioxidant, etc. if necessary. In the case of a liquid formulation, it may also be lyophilized, and an injection may be administered intravenously, subcutaneously or intramuscularly. As preferred examples of suspending agents there may be mentioned methylcellulose, polysorbate 80, hydroxyethylcellulose, gum arabic, tragacanth powder, sodium carboxymethylcellulose, polyoxyethylene sorbitan monolaurate and the like; as preferred examples of solubilizing aids there may be mentioned polyoxyethylene hydrogenated castor oil, polysorbate 80, nicotinamide, polyoxyethylene sorbitan monolaurate and the like; as preferred examples of stabilizing agents there may be mentioned sodium sultite, sodium metasulfite, ether and the like; and as preferred examples of preservatives there may be mentioned methyl p-oxybenzoate, ethyl p-oxybenzoate, sorbic acid, phenol, cresol, chlorocresol, and the like. (iv) There are no particular restrictions on the method of preparing an external application, and any common method may be employed. The base materials used may be any raw materials commonly employed in drugs, quasi drugs, cosmetics and the like, and as examples there may be mentioned raw materials such as animal and vegetable oils, mineral oils, ester oils, waxes, higher alcohols, fatty acids, silicone oils, surfactants, phos-
pholipids, alcohols, polyhydric alcohols, water-soluble polymers, clay minerals, purified water and the like, with addition of pH adjustors, antioxidants, chelating agents, antiseptics and fungicides, coloring agents, aromas and the like if necessary. Also, there may be included differentiation-inducing components, or other components such as circulation promoters, microbicides, antiphlogistic agents, cell activators, vitamins, amino acids, humectants, keratolytic agents and the like, as necessary.

[0334] The dosage of a drug according to the invention will differ depending on the patient’s severity of symptoms, age, gender and body weight, the dosage form and type of salt, drug sensitivity, the specific type of disease, etc. In certain embodiment, the dosage ranges from about 30 µg to 1000 mg, preferably from 100 µg to 500 mg and more preferably from 100 µg to 100 mg per day for adults in the case of oral administration or about 1-3000 µg/kg and preferably 3-1000 µg/kg per day for adults in the case of injection, administered once or divided over several times a day.

EXAMPLES

[0335] Preferred embodiments of the compounds of the invention represented by formula (I) above and salts thereof will now be explained, with the understanding that the following examples and test examples are only representative and are not intended to be restrictive on the compounds of the invention or salts thereof in any way. It will be apparent to those skilled in the art that the present invention can be carried out with various modifications added beyond these examples, and such modifications are also encompassed within the claims of the present specification.

Example 1

[0336] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-phenyl-ethanone hydrobromide

[0337] (Step 1) 1-Benzyl-1H-benzimidazole-2-amine

[0338] After adding benzyl bromide (16.4 g) and potassium hydroxide (7.6 g) to a solution of 1H-benzimidazole-2-amine (12 g) in ethanol, the mixture was stirred at room temperature for 24 hours. The solvent was distilled off under reduced pressure, and then ethyl acetate was added to the residue and washing was performed with water and brine in that order. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. Dichloromethane was added to the residue and the resulting crystals were filtered off to yield the title compound (14.8 g) as white crystals.

[0339] (Example 1: Final Step)

[0340] After adding 2-bromo-1-phenyl-ethanone (2.7 g) to a solution of 1-benzyl-1H-benzimidazole-2-amine (1.54 g) in dimethylformamide, the mixture was stirred at room temperature for 15 hours. The solvent was distilled off under reduced pressure, and then ethyl acetate was added to the residue and the resulting crystals were filtered off to yield the target compound (1.86 g) as light yellow crystals.

[0341] 1H-NMR(DMSO-d6) δ:

[0342] 5.55(2Hs), 6.02(2Hs), 7.36-7.46(7Hm), 7.48-7.5(1Hm), 7.63-7.70(3Hm), 7.77(1H, d,J=7.2 Hz), 8.10(2H, d,J=8.4 Hz), 9.04(2H, brs).

[0343] The compounds of the following examples were synthesized by the same method as the final step of Example 1 above, from various 1H-benzimidazole-2-amine derivatives and various 2-bromo-1-ethanone derivatives.

Example 2

[0344] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-fluoro-phenyl)-ethanone hydrobromide

[0345] 1H-NMR(DMSO-d6) δ:

[0346] 5.54(2Hs), 6.00(2Hs), 7.6-7.55(10Hm), 7.62-7.70(1Hm), 8.17-8.23(2Hm), 9.03(2H, brs).

Example 3

[0347] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-biphenyl-4-yl-ethanone hydrobromide

[0348] 1H-NMR(DMSO-d6) δ:

[0349] 5.55(2Hs), 6.05(2Hs), 7.27-7.57(11Hm), 7.64-7.7(1Hm), 7.81(2H, d,J=8.4 Hz), 7.97(2H, d,J=8.8 Hz), 8.15-8.22(2Hm), 9.05(2H, brs).
Example 4

[0350] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(4-fluoro-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 7

[0359] 1-Benzyl-3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-1,3-dihydro-benzimidazol-2-one

Example 5

[0351] 1H-NMR(DMSO-d6) δ:

[0352] 1.43(18H,s), 5.51(2H,s), 5.96(2H,s), 7.15-7.40(5H,m), 7.52(1H,J=4.8 Hz), 7.63(1H,J=4.8 Hz), 7.84(2H,s), 7.80-7.87(1H,m), 8.11(1H,brs), 8.96(2H,brs).

Example 8

[0360] 1H-NMR(DMSO-d6) δ:

[0361] 1.47(18H,s), 5.15(2H,s), 5.45(2H,s), 6.98(4H,m), 7.23(5H,m), 7.95(2H,s).

Example 6

[0353] 2-(3-Biphenyl-4-ylmethyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone trifluoroacetate

[0354] 1H-NMR(DMSO-d6) δ:

[0355] 1.50(18H,s), 5.56(2H,s), 5.94(2H,s), 7.30-7.48(9H,m), 7.60(2H,d,J=8.4 Hz), 7.67(2H,d,J=8.4 Hz), 8.00(2H,brs).

Example 9

[0356] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-phenyl)-ethanone hydrobromide

[0357] 1H-NMR(DMSO-d6) δ:

[0358] 5.53(2H,s), 5.90(2H,s), 6.96(2H,d,J=8.0 Hz), 7.38-7.42(7H,m), 7.49(1H,J=4.8 Hz), 7.60(1H,J=4.8 Hz), 7.96(2H,d,J=8.0 Hz), 8.99(1H,brs), 10.64(1H,brs).

[0366] 1H-NMR(DMSO-d6) δ:

[0367] 2.25(6H,s), 5.51(2H,s), 5.88(2H,s), 7.22-7.60(9H,m), 7.72(2H,s), 9.48(1H,s).
Example 10

\[\text{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,4-difluoro-phenyl)-ethanone hydrobromide} \]

\[
\begin{align*}
\text{N} & \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

\[\text{N} \quad \text{H} \\
\text{Br}
\]

[0368] 1H-NMR(DMSO-d6) δ:
[0369] 5.53(2H,s), 5.98(2H,s), 7.14-8.42(12H,m), 9.04(2H,brs).

Example 11

\[\text{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-fluoro-phenyl)-ethanone hydrobromide} \]

\[
\begin{align*}
\text{N} & \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

[0370] 5.53(2H,s), 6.00(2H,s), 7.17-7.95(12H,m), 8.79(1H,s), 9.04(2H,brs).

Example 12

\[\text{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-bromo-phenyl)-ethanone hydrobromide} \]

\[
\begin{align*}
\text{N} & \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

[0371] 5.53(2H,s), 6.01(2H,s), 7.25(7H,m), 7.51(1H,dd,\text{J}=8.0 \text{ Hz}, \text{J}=3.2 \text{ Hz}), 7.61(1H,d,\text{J}=8.0 \text{ Hz}), 7.66(1H,dd,\text{J}=8.0 \text{ Hz}, \text{J}=3.2 \text{ Hz}), 7.97(1H,d,\text{J}=8.0 \text{ Hz}), 8.00(1H,dd,\text{J}=8.0 \text{ Hz}), 8.25(1H,s), 9.07(2H,s).

Example 13

\[\text{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-biphenyl-3-yl-ethanone hydrobromide} \]

\[
\begin{align*}
\text{N} & \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

[0372] 1H-NMR(DMSO-d6) δ:
[0373] 5.54(2H,s), 6.10(2H,s), 7.26-7.80(15H,m), 8.02-8.08(2H,m), 8.35(1H,s), 9.03(2H,brs).

Example 14

\[\text{4\{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl\}-benzonitrile hydrobromide} \]

\[
\begin{align*}
\text{N} & \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

[0374] 5.53(2H,s), 6.03(2H,s), 7.17-7.55(9H,m), 8.14(2H, dJ=8.4 Hz), 8.23(2H,dJ=8.4 Hz), 9.04(2H,brs).

Example 15

\[\text{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,4,5-trimethoxy-phenyl)-ethanone hydrobromide} \]

\[
\begin{align*}
\text{N} & \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

[0375] 1H-NMR(DMSO-d6) δ:
[0376] 5.53(2H,s), 6.01(2H,s), 7.25(7H,m), 7.51(1H,dd,\text{J}=8.0 \text{ Hz}, \text{J}=3.2 \text{ Hz}), 7.61(1H,d,\text{J}=8.0 \text{ Hz}), 7.66(1H,dd,\text{J}=8.0 \text{ Hz}, \text{J}=3.2 \text{ Hz}), 7.97(1H,d,\text{J}=8.0 \text{ Hz}), 8.00(1H,dd,\text{J}=8.0 \text{ Hz}), 8.25(1H,s), 9.07(2H,s).

[0377] 1H-NMR(DMSO-d6) δ:
[0378] 5.54(2H,s), 6.10(2H,s), 7.26-7.80(15H,m), 8.02-8.08(2H,m), 8.35(1H,s), 9.03(2H,brs).

[0379] 5.53(2H,s), 6.10(2H,s), 7.26-7.80(15H,m), 8.02-8.08(2H,m), 8.35(1H,s), 9.03(2H,brs).

[0380] 4\{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl\}-benzonitrile hydrobromide

[0381] 1H-NMR(DMSO-d6) δ:
[0382] 5.53(2H,s), 6.03(2H,s), 7.17-7.55(9H,m), 8.14(2H, dJ=8.4 Hz), 8.23(2H,dJ=8.4 Hz), 9.04(2H,brs).

[0383] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,4,5-trimethoxy-phenyl)-ethanone hydrobromide

[0384] 1H-NMR(DMSO-d6) δ:
[0385] 3.77(3H,s), 3.89(6H,s), 5.55(2H,s), 6.05(2H,s), 7.24-7.64(11H,m), 9.06(2H,brs).
Example 16

2-[3-(4-tert-Butyl-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 18

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 19

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-diisopropyl-phenyl)-ethanone hydrobromide

Example 20

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-3,5-diisopropyl-phenyl)-ethanone hydrobromide

Example 17

2-[3-(4-Chloro-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 21

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-3,5-diisopropyl-phenyl)-ethanone hydrobromide

Example 16

1H-NMR(DMSO-d6) δ:

1.23(9H,s), 1.42(18H,s), 5.47(2H,s), 5.95(2H,s), 7.21(9H,d,J=8.72 Hz), 7.22-7.30(2H,m), 3.40(2H,d,J=7.2 Hz), 7.48-7.52(1H,m), 7.56-7.64(1H,m), 7.83(2H,s).

Example 17

1H-NMR(DMSO-d6) δ:

1.42(18H,s), 5.52(2H,s), 5.96(2H,s), 7.15-7.87(10H,m), 8.95(2H,brs).

Example 18

1H-NMR(DMSO-d6) δ:

1.37(9H,s), 5.46(2H,s), 5.84(2H,s), 6.98(1H,d,J=8.0 Hz), 7.15-7.50(10H,m), 7.81-7.88(2H,m).

Example 19

1H-NMR(DMSO-d6) δ:

0.92(6H,t,J=6.5 Hz), 1.25-1.56(8H,m), 3.37(4H,brt), 5.51(2H,s), 5.92(2H,s), 6.75(2H,d,J=9.0 Hz), 7.21-7.58(9H,m), 7.86(2H,d,J=9.0 Hz), 8.96(2H,s).

Example 20

1H-NMR(DMSO-d6) δ:

1.19(12H,d,J=8.0 Hz), 3.25-3.40(2H,m), 5.38(2H,s), 5.78(2H,s), 7.1-7.43(9H,m), 7.73(2H,s).
Example 21

[0401] N,N-Dibenzyl-2-(3-benzyl-2-imino-2,3-dihydropyrimidazol-1-yl)-acetamide hydrobromide

Example 22

[0402] 1H-NMR(DMSO-d6) δ:
[0403] 4.50(2H,s), 4.66(2H,s), 5.40(2H,s), 5.52(2H,s), 7.18-7.50(19H,m), 9.16(2H,s).

Example 24

[0410] Methyl 5-[2-(3-benzyl-2-imino-2,3-dihydropyrimidazol-1-yl)-acetyl]-2-hydroxy-benzoate hydrobromide

Example 23

[0404] 2-(3-Benzyl-2-methylamino-2,3-dihydropyrimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone trifluoroacetate

Example 22

[0405] 1H-NMR(DMSO-d6) δ:
[0406] 1.43(18H,s), 3.02(3H,s), 5.71(2H,s), 6.05(2H,s), 7.20-7.45(7H,m), 7.52-7.58(1H,m), 7.66-7.71(1H,m), 8.13(2H,s).

Example 25

[0413] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-3-pyridin-4-ylmethyl-2,3-dihydropyrimidazol-1-yl)-ethanone hydrobromide

Example 26

[0407] 2-(3-Benzyl-2-imino-2,3-dihydropyrimidazol-1-yl)-1-(5-methoxy-1H-indol-3-yl)-ethanone hydrobromide

Example 26

[0416] Ethyl 4-[(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydropyrimidazol-1-ylmethyl]-benzoate hydrobromide

Example 26

[0408] 1H-NMR(DMSO-d6) δ:
[0409] 3.72(3H,s), 5.54(2H,s), 5.78(2H,s), 6.87(1H,dd,J=8.8 Hz,J=2.0 Hz), 7.25-5.58(11H), 8.56(1H,dd,J=1.6 Hz), 9.02(2H,brs), 12.17(1H,s).
[0417] 1H-NMR(DMSO-d6) δ:

[0418] 1.28(3H, t, J=6.5 Hz), 1.41(18H, s), 4.28(2H, q, J=6.5 Hz), 5.58(2H, s), 5.90(2H, brs), 7.20-8.00(10H, m).

Example 27

[0419] 4-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}-benzoic acid hydrochloride

[0420] 1H-NMR(DMSO-d6) δ:

[0421] 1.429(18H, s), 5.65(2H, s), 6.01(2H, s), 7.22-7.66(6H, m), 7.85(2H, s), 7.86-8.18(3H, m), 9.14(2H, brs).

Example 28

[0422] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(3-phenyl-propyl)-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

[0423] 1H-NMR(DMSO-d6) δ:

[0424] 1.422(18H, s), 1.90-2.08(2H, m), 2.57-2.73(2H, m), 4.27(2H, t, J=7.0 Hz), 5.52(2H, s), 7.10-7.65(9H, m), 7.83(2H, s), 8.80(2H, brs).

Example 29

[0425] 2-(3-Cyclohexylmethyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

[0426] 1H-NMR(DMSO-d6) δ:

[0427] 0.95-1.95(29H, m), 4.05(2H, d, J=8.0 Hz), 5.93(3H, s), 7.22-7.37(2H, m), 7.58(1H, d, J=7.0 Hz), 7.65(1H, d, J=7.0 Hz), 7.81(2H, s), 8.71(2H, brs)

Example 30

[0428] 5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-2-hydroxy-benzoic acid hydrobromide

[0429] 1H-NMR(DMSO-d6) δ:

[0430] 5.52(2H, s), 5.97(2H, s), 7.06(1H, d, J=8.0 Hz), 7.44-7.67(9H, m), 8.08(1H, d, J=8.0 Hz), 8.51(1H, s), 8.99(2H, brs).

Example 31

[0431] 4-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}-benzamide hydrobromide

[0432] 1H-NMR(DMSO-d6) δ:

[0433] 1.434(18H, s), 5.57(2H, s), 5.98(2H, s), 7.24-7.37(4H, m), 7.40(1H, brs), 7.45-7.91(6H, m), 7.90(1H, brs), 8.12(1H, s), 8.99(2H, s).
Example 32

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-3-pyridin-2-ylmethyl-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 33

2-(3-Benzensulfonyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 34

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-3-thiazol-2-ylmethyl-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 35

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-3-pyridin-3-ylmethyl-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 36

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(1-phenyl-ethyl)-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 37

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(2-methyl-benzyl)-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide
[0450] 1H-NMR(DMSO-d6) δ:

[0451] 1.44(18Hs), 2.40(3Hs), 5.57(2H, brs), 5.95-6.03(1H, m), 6.54-6.60(1H, m), 7.09-7.69(10H, m), 7.84(2H, s).

Example 38

[0452] N-Butyl-2-{3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-1-imino-2,3-dihydro-benzimidazol-1-yl]-2-phenyl-acetamide hydrobromide

[0453] 1H-NMR(DMSO-d6) δ:

[0454] 0.86(3H, J=6.8 Hz), 1.20-1.33(2H, m), 1.36-1.53(20H, m), 1.34-1.40(2H, m), 6.39-6.08(2H, m), 6.63(1H, s), 7.13-7.49(8H, m), 7.62(1H, s), 7.84(2H, s), 8.10(1H, brs), 8.77-8.84(1H, m), 8.96-9.05(2H, m).

Example 39

[0455] 2-[3-(2-Amino-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone dihydrochloride

[0456] 1H-NMR(DMSO-d6) δ:

[0457] 1.42(18Hs), 5.62(2Hs), 6.07(2Hs), 7.65-7.68(8H, m), 7.86(2Hs), 8.11(1Hs).

Example 40

[0458] 2-[3-(4-Amino-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone dihydrochloride

[0459] 1H-NMR(DMSO-d6) δ:

[0460] 1.43(18Hs), 5.35(2Hs), 5.94(2Hs), 6.69(2H, d, J=8.0 Hz), 7.10(2H, d, J=6.0 Hz), 7.22-7.64(4H, m), 7.95(2H, s), 8.11(1Hs), 8.91(2H, brs).

Example 41

[0461] Ethyl 3-[3-(2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-1-imino-2,3-dihydro-benzimidazol-1-yl-methyl]-benzoate hydrobromide

[0462] 1H-NMR(DMSO-d6) δ:

[0463] 1.302 (3H, s, J=6.5 Hz), 1.432 (18H, s, 4.30 (2H, q, J=6.5 Hz), 5.62(2Hs), 5.98(2Hs), 7.28(2H, d, J=8.0 Hz), 7.48-7.60(3H, m), 7.65(1H, J=5.5 Hz), 7.86(2Hs), 7.93(1H, d, J=5.5 Hz), 7.96(1Hs), 9.00(2H, brs).

Example 42

[0464] 3-[3-(2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-1-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-benzoic acid hydrochloride
Example 43

3-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}benzamide

Example 44

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(1-phenyl-heptyl)-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 45

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-3-quinolin-2-ylmethyl-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 46

4-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}-benzenesulfonamide hydrobromide

Example 47

1-Benzyl-3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-1H-benzimidazole-5-carboxamide hydrobromide

Example 48

1H-NMR(DMSO-d6) δ:

1.429(18H,s), 5.71(2H,s), 6.14(2H,s), 7.20-7.56(5H,m), 7.59(1H,d, J=9.0 Hz), 7.85(2H,s), 7.89(1H,d, J=9.0 Hz), 7.95(1H,s), 8.09(1H,s), 9.45(2H,brs).
Example 48

1H-NMR (DMSO-d6) δ: 1.43 (18H, s), 5.56 (2H, s), 6.04 (2H, brs), 7.20-7.47 (6H, m), 7.56 (1H, d, J=8.4 Hz), 7.81 (1H, d, J=8.4 Hz), 7.86 (2H, s), 7.93 (1H, brs), 8.12 (2H, brs), 9.06-9.21 (2H, m).

Example 50

2-[3-(Amino-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethane dihydrochloride

[0488]

Example 49

1H-NMR (DMSO-d6) δ: 0.84 (3H, t, J=7.6 Hz), 1.14-1.49 (28H, m), 1.63-1.74 (2H, m), 4.15-4.26 (2H, m), 5.96 (2H, brs), 7.27 (1H, d, J=7.6 and 7.6 Hz), 7.33 (1H, d, J=7.6 and 7.6 Hz), 7.59 (1H, d, J=7.6 Hz), 7.63 (1H, d, J=7.6 Hz), 7.83 (2H, s), 8.03-8.18 (1H, m), 8.69-8.86 (2H, m).

Example 51

2-(1-Benzyl-2-imino-1,2-dihydro-imidazo[4,5-c]pyridin-3-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethane hydrobromide

[0485]

[0489] 1H-NMR (DMSO-d6) δ: 1.428 (18H, s), 5.63 (2H, s), 6.10 (2H, s), 7.08-7.64 (9H, m), 7.85 (2H, s), 8.10 (1H, s), 9.34 (2H, brs).

Example 52

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(4-hydroxy-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethane hydrochloride

[0491]

[0492] 1H-NMR (DMSO-d6) δ: 1.431 (18H, s), 5.36 (2H, s), 5.84 (2H, s), 6.75 (2H, d, J=9.5 Hz), 7.15 (2H, d, J=9.5 Hz), 7.21-7.64 (4H, m), 7.83 (2H, s), 8.12 (2H, s), 8.94 (2H, s).

[0480] 1H-NMR (DMSO-d6) δ: 1.43 (18H, s), 5.56 (2H, s), 6.04 (2H, brs), 7.20-7.47 (6H, m), 7.56 (1H, d, J=8.4 Hz), 7.81 (1H, d, J=8.4 Hz), 7.86 (2H, s), 7.93 (1H, brs), 8.12 (2H, brs), 9.06-9.21 (2H, m).
Example 52

1-Benzyl-3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-1H-benzimidazole-5-carboxylic acid hydrochloride

Example 53

1H-NMR(DMSO-d6) δ:

1.43(18Hs), 6.20(2Hs), 7.25-7.42(5Hm), 7.58(1Hd, J=8.4 Hz), 7.60(2Hs), 8.11(1Hs), 8.20(1Hs), 9.45-9.54(2Hm).

Example 54

Ethyl 4-[3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl]-butyrate hydrobromide

Example 55

1H-NMR(DMSO-d6) δ:

1.22-1.54(2Hm), 1.61-1.74(2Hm), 3.25-3.40(2Hm), 4.14-4.25(2Hm), 4.30-4.38(2Hm), 5.93(2Hs), 7.27(1H, dd, J=8.0 Hz), 7.33(1H, dd, J=8.0 Hz), 7.59(1H, dd, J=8.0 Hz), 7.63(1H, d, J=8.0 Hz), 7.83(2Hs), 8.68-8.82(2Hm).

Example 56

1H-NMR(DMSO-d6) δ:

1.42(18Hs), 1.87-1.97(2Hm), 2.32-2.39(2Hm), 4.20-4.32(2Hm), 5.94-6.05(2Hm), 7.26(1H, dd, J=8.0 Hz), 7.33(1H, dd, J=8.0 Hz), 7.57(1H, dd, J=8.0 Hz), 7.62(1H, d, J=8.0 Hz), 7.83(2Hs), 8.10(1Hs), 8.99-9.17(2Hm).

Example 57

1H-NMR(DMSO-d6) δ:

1.31-1.48(20Hm), 1.49-1.59(2Hm), 1.65-1.74(2Hm), 2.20(2H, J=7.6 Hz), 4.15-4.24(2Hm), 5.96(2Hs), 7.27(1H, dd, J=8.0 Hz), 7.59(1H, dd, J=8.0 Hz), 7.63(1H, d, J=8.0 Hz), 7.83(2Hs), 8.09(1Hs), 8.80-8.93(2Hm).
Example 57

4-{[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl]-N-ethyl-butyramide hydrobromide

Example 60

2-(3-Benzyl-6-hydroxymethyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 58

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-[3-(tetrahydroxy-2-yl-oxo-propyl]-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 61

2-[3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanol-2,6-di-tert-butyl-phenol hydrochloride

Example 59

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(3-hydroxy-propyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 52

1H-NMR(DMSO-d6) δ:

1.43(18H,s), 1.82-1.92(2H,m), 3.40-3.52(2H,m), 4.20-4.34(2H,m), 5.89-6.02(2H,m), 7.18-7.39(2H,m), 7.54-7.65(2H,m), 7.84(2H,s), 8.69-8.87(2H,m).
Example 62

[0524] Benzyl (2-{3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl}-ethyl)-carbamate hydrobromide

[0525] 1H-NMR(DMSO-d6) δ:

[0526] 1.42(18H, s), 3.37-3.47(2H, m), 4.22-4.31(2H, m), 4.86(2H, s), 5.92(2H, brs), 7.12-7.59(9H, m), 7.83(2H, s), 8.10(1H, s), 8.79(2H, brs).

Example 63

[0527] 2-{3-(2-Amino-ethyl)-2-imino-2,3-dihydro-benzimidazol-1-yl}-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

[0528] 1H-NMR(DMSO-d6) δ:

[0529] 1.42(18H, s), 2.94-3.03(2H, m), 4.14-4.26(2H, m), 5.82(2H, s), 7.19-7.32(2H, m), 7.45-7.62(2H, m), 7.77(2H, s).

Example 64

[0530] 3-{3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl}-N-propyl-propionamide hydrobromide

[0531] 1H-NMR(DMSO-d6) δ:

[0532] 0.86(3H, t, J=7.6 Hz), 1.22-1.36(2H, m), 1.42(18H, s), 2.61(2H, t, J=7.2 Hz), 2.90-2.98(2H, m), 4.41(2H, t, J=7.2 Hz), 5.89(2H, brs), 7.22-7.34(2H, m), 7.51-7.62(2H, m), 7.81(2H, s).

Example 65

[0533] 3-{3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl}-propionamide hydrobromide

[0534] 1H-NMR(DMSO-d6) δ:

[0535] 1.43(18H, s), 2.62(2H, t, J=7.2 Hz), 4.38(2H, t, J=7.2 Hz), 5.90(2H, brs), 7.10(1H, brs), 7.22-7.35(2H, m), 7.51-7.66(3H, m), 7.83(2H, s), 8.12(1H, brs), 8.73-8.82(2H, m).

Example 66

[0536] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(4-dimethylamino-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone dihydrochloride

[0537] 1H-NMR(DMSO-d6) δ:

[0538] 1.42(18H, s), 2.86(6H, s), 5.37(2H, s), 5.93(2H, s), 6.72(2H, d, J=8.4 Hz), 7.20(2H, d, J=8.4 Hz), 7.22-7.62(4H, m), 7.83(2H, s), 8.11(1H, brs), 8.93(2H, brs).
Example 67

[0539] 2-[3-(4-Aminomethyl-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone dihydrochloride

Example 68

[0540] 1H-NMR(DMSO-d6) δ:

[0541] 1.430(18H,s), 3.98(2H,brs), 5.62(2H,s), 6.06(2H,s), 7.22-7.30(2H,m), 7.36(2H,d,J=7.7 Hz), 7.43-7.63(4H,m), 7.84(2H,s), 8.12(1H,s), 8.39(3H,brs), 9.51(2H,brs).

Example 69

[0542] Ethyl (4-[3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-phenylamino)-acetate dihydrochloride

Example 70

[0543] 1H-NMR(DMSO-d6) δ:

[0544] 1.15(3H,d,J=6.8 Hz), 1.428(18,s), 3.85(2H,s), 4.07(2H,d,J=6.8 Hz), 5.33(2H,s), 5.97(2H,s), 6.53(2H,d,J=8.2 Hz), 7.10(2H,d,J=8.2 Hz), 7.18-7.60(4H,m), 7.83(2H,s), 8.10(1H,s), 9.02(2H,s).

Example 71

[0545] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(2,2,5,7,8-pentamethyl-chroman-6-yl)-ethanone hydrobromide

[0546] 1H-NMR(DMSO-d6) δ:

[0547] 1.25(6H,s), 1.78(2H,d,J=10 Hz), 2.03(3H,s), 2.10(3H,s), 2.13(3H,s), 2.58(2H,d,J=10 Hz), 5.55(2H,s), 5.70(2H,s), 7.30-7.55(9H,m), 9.05(2H,s).

Example 72

[0548] (4-[3-(2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl)]-phenylamino)-acetic acid hydrochloride

Example 73

[0549] 1H-NMR(DMSO-d6) δ:

[0550] 1.429(18H,s), 3.75(2H,s), 5.31(2H,s), 5.94(2H,brs), 6.53(2H,d,J=8.8 Hz), 7.09(2H,d,J=8.8 Hz), 7.20-7.62(4H,m), 7.835(2H,s), 8.11(1H,s), 8.91(2H,brs).

Example 74

[0551] 2-(4-[3-(2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-phenylamino)-acetamide dihydrochloride

Example 75

[0552] 1H-NMR(DMSO-d6) δ:

[0553] 1.429(18H,s), 5.32(2H,s), 5.94(2H,brs), 6.51(2H,d,J=8.2 Hz), 7.06(1H,brs), 7.11(2H,d,J=8.2 Hz), 7.21-7.30(2H,m), 7.32(1H,brs), 7.51-7.62(2H,m), 7.83(2H,s), 8.11(1H,brs), 8.92(2H,brs).
Example 72

[0554] 2-[3-(4-Amino-cyclohexylmethyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone dihydrochloride

[0555] 1H-NMR(DMSO-d6) δ:

[0556] 1.35-2.14(27H,m), 4.11(2H,d,J=7.3 Hz), 5.94(2H,s), 7.28(1H,d,d,J=8.0 Hz), 7.34(1H,d,d,J=8.0 Hz), 7.58(1H,d,J=8.0 Hz), 7.61(1H,d,J=8.0 Hz), 7.82(2H,s), 7.86(2H,brs), 8.10(1H,s), 8.81(2H,brs).

Example 73

[0557] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(2'-hydroxy-[1,1':3,1'']terphenyl-5'-yl)-ethanone hydrobromide

[0558] 1H-NMR(DMSO-d6) δ:

[0559] 5.33(2H,s), 5.85(2H,s), 6.85-6.93(1H,m), 7.00-7.08(1H,m), 7.12-7.24(7H,m), 7.40-7.60(10H,m), 7.90(2H,s).

Example 74

[0560] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

[0561] 1H-NMR(DMSO-d6) δ:

[0562] 0.80(6H,t,J=9.0 Hz), 1.18(6H,d,J=9.5 Hz), 1.45-1.68(4H,m), 2.75-2.90(2H,m), 3.52(2H,s), 5.85(2H,s), 6.88-7.23(9H,m), 7.65(2H,s).

Example 75

[0563] Ethyl (4-[3-{2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-phenyl)-acetate hydrobromide

[0564] 1H-NMR(DMSO-d6) δ:

[0565] 1.22(3H,t,J=7.1 Hz), 1.482(18H,s), 3.53(2H,s), 4.11(2H,q,J=7.1 Hz), 5.70(2H,s), 5.87(1H,s), 6.32(2H,brs), 7.01(1H,d,d,J=6.2, 3.1 Hz), 7.10-7.30(7H,m), 7.97(2H,s), 9.12(2H,brs)

Example 76

[0566] (4-[3-{2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-phenyl)-acetic acid hydrochloride
Example 77

2-[3-(6-Amino-pyridin-3-ylmethyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone dihydrochloride

Example 78

Ethyl 4-[3-(2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-cyclohexanecarboxylate hydrobromide

Example 79

4-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}-cyclohexanecarboxylic acid hydrochloride

Example 80

4-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}-cyclohexanecarboxamido hydrochloride

Example 81

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrochloride
[0582] 1H-NMR (DMSO-d6) δ:

[0583] 1.42 (18Hs), 5.90 (2Hs), 7.14-7.57 (4Hm), 7.83 (2Hs), 8.07 (1Hbrs), 8.65 (2Hbrs).

Example 82

[0584] Ethyl 2-[3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-benzoate hydrobromide

[0585] 1H-NMR (DMSO-d6) δ:

[0586] 1.38 (3HJ=7.1 Hz), 1.438 (18Hs), 4.39 (2HJ=7.1 Hz), 5.839 (2Hs), 6.007 (2Hbrs), 6.719 (1HJ=8.0 Hz), 7.254 (1HJ=7.2 Hz), 7.304 (1HJ=7.2 Hz), 7.45 (1HJ=7.2 Hz), 7.489 (1HJ=7.2 Hz), 7.544 (1HJ=7.2 Hz), 7.679 (1HJ=8.4 Hz), 7.860 (2Hs), 8.05-8.15 (2Hm), 8.921 (2Hbrs).

Example 83

[0587] 2-[3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-benzoic acid hydrochloride

[0588] 1H-NMR (DMSO-d6) δ:

[0589] 1.42 (18Hs), 5.86 (2Hs), 6.02 (2Hs), 6.69 (1HJ=8.1 Hz), 7.25 (1HJ=7.6 Hz), 7.30 (1HJ=7.6 Hz), 7.40-7.48 (2Hm), 7.53 (1HJ=8.1 Hz), 7.67 (1HJ=7.6 Hz), 7.859 (2Hs), 8.04-8.16 (2Hm), 8.94 (2Hbrs).

Example 84

[0590] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-[3-ethyl-pentyl]-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

[0591] 1H-NMR (DMSO-d6) δ:

[0592] 0.82 (6H, t, J=7.0 Hz), 1.21-1.68 (25H, m), 4.23 (2H, brs, J=7.5 Hz), 5.82 (2Hs), 7.28 (1H, J=7.7 Hz), 7.35 (1H, J=7.7 Hz), 7.50 (1H, J=7.7 Hz), 7.59 (1H, J=7.7 Hz), 7.829 (2Hs), 8.75 (2Hbrs).

Example 85

[0593] Ethyl 3-(4-[3-[2-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-phenyl)-propanoate hydrobromide

[0594] 1H-NMR (DMSO-d6) δ:

[0595] 1.11 (3H, t, J=7.0 Hz), 1.433 (18Hs), 2.57 (2H, J=7.9 Hz), 2.82 (2H, J=7.9 Hz), 2.00 (2H, J=7.9 Hz), 5.46 (2Hs), 6.96 (2Hs), 7.15-7.66 (8H, m), 7.842 (2Hs), 8.12 (1Hbrs), 8.95 (2Hbrs).

Example 86

[0596] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(2-fluoro-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

[0597] 1H-NMR (DMSO-d6) δ:

[0598] 1.43 (18Hs), 5.61 (2Hs), 6.00 (2Hs), 7.12 (1H, J=7.9 Hz), 7.21 (1H, J=7.9 Hz), 7.24-7.68 (8H, m), 7.85 (2Hs), 8.11 (1Hbrs), 8.98 (2Hbrs).
Example 87

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-dichloro-4-hydroxy-phenyl)-ethanone hydrobromide

Example 88

3-(4-{2-[3,5-Di-tert-butyl-4-hydroxy-phenyl]-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl}-phenyl)-propanoic acid hydrochloride

Example 89

1H-NMR(DMSO-d_6) δ:
5.50(2H,s), 5.73(2H,s), 7.15-7.57(9H,m), 7.70(2H,s), 9.03(2H,s).

Example 90

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(2-trifluoromethyl-benzyl)-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 91

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(2,5-dimethoxy-3,4,6-trimethyl-phenyl)-ethanone hydrobromide

Example 92

1-(4-Benzhydryl-piperazin-1-yl)-2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide
Example 93

4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-hydroxy-ethyl]-2,6-di-tert-butyl-phenol trifluoroacetate

Example 94

4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-methoxy-ethyl]-2,6-di-tert-butyl-phenol trifluoroacetate

Example 95

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-3,5-dimethoxy-phenyl)-ethanone hydrobromide

Example 96

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(2,3-dimethoxy-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 97

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(2,6-dimethoxy-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 98

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(2-ethoxy-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide
[0633] 1H-NMR(DMSO-d6) δ:

[0634] 1.33(3H, J=7.0 Hz), 1.43(18H, s), 4.08(2H, d, J=7.0 Hz), 5.41(2H, s), 5.96(2H, s), 6.93(1H, J=7.6 Hz), 7.05(1H, d, J=7.6 Hz), 7.12(1H, d, J=7.6 Hz), 7.17-7.63(4H, m), 7.84(2H, s), 8.09(1H, s), 8.95(2H, brs).

Example 99

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-N-(3,5-di-tert-butyl-4-hydroxy-phenyl)-acetamide hydrochloride

[0635] 1H-NMR(DMSO-d6) δ:

[0636] 1.14(9H, s), 1.56(6H, s), 3.56(3H, s), 3.65(3H, s), 5.54(2H), 6.04(2H), 7.25-7.68(9H, m), 7.99(2H, s), 9.05(2H, brs).

Example 102

2-[3-(2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl)-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-benzenesulfonamide hydrobromide

[0637] 5.19(2H, s), 5.53(2H, s), 6.84(1H, s), 7.26-7.37(7H, m), 7.46(1H,d,J=8.0 Hz), 7.54(1H,d,J=8.0 Hz), 9.18(2H, brs), 10.34(1H, s).

Example 100

5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-7-tert-butyl-3,3-dimethyl-3H-benzofuran-2-one hydrobromide

[0638] 1H-NMR(DMSO-d6) δ:

[0639] 1.41(9H, s), 1.52(6H, s), 5.52(2H, s), 6.00(2H, s), 7.20-7.67(9H, m), 7.94(1H, s), 8.14(1H, s), 8.93(2H, brs).

Example 101

2-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-N,N-dimethyl-isobutylamide trillurooacetate

[0640] 1.41(9H, s), 1.52(6H, s), 5.52(2H, s), 6.00(2H, s), 7.20-7.67(9H, m), 7.94(1H, s), 8.14(1H, s), 8.93(2H, brs).

Example 101

2-[3-(2-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

[0641] 2-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-N,N-dimethyl-isobutylamide trillurooacetate

[0642] 1H-NMR(DMSO-d6) δ:

[0643] 1.41(9H, s), 1.56(6H, s), 3.56(3H, s), 3.65(3H, s), 5.54(2H), 6.04(2H), 7.25-7.68(9H, m), 7.99(2H, s), 9.05(2H, brs).

Example 102

2-[3-(2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl)-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-benzenesulfonamide hydrobromide

[0644] 1.43(18H, s), 5.87(2H, s), 6.03(2H, s), 6.90(1H,d,J=7.8 Hz), 7.13-7.62(5H,m), 7.68(1H,d,J=7.9 Hz), 7.867(2H, s), 7.89(2H, s), 7.97-8.05(1H,m), 8.13(1H, s), 9.06(2H, brs).

Example 103

2-[3-(2-Benoyl-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

[0647] 2-[3-(2-Benoyl-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide
[0648] 1H-NMR(DMSO-d6) δ:

[0649] 0.97(3H, d, J=7.3 Hz), 1.40-1.50(20H, m), 1.57-1.69(2H, m), 2.76(2H, brt, J=8.0 Hz), 5.53(2H, s), 6.01(2H, s), 6.61(1H, d, J=7.8 Hz), 7.13(1H, t, J=7.8 Hz), 7.21-7.35(5H, m), 7.67(1H, d, J=7.8 Hz), 7.862(2H, s).

Example 104

[0650] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-(2,6-dimethoxy-benzylamino)-benzimidazol-1-yl]-ethanone hydrobromide

[0651] 1H-NMR(DMSO-d6) δ:

[0652] 1.38(18H, s), 4.55(2H, d, J=4.3 Hz), 5.82(2H, brs), 6.68(2H, d, J=7.5 Hz), 7.20-7.35(3H, m), 7.51(1H, t, J=7.5 Hz), 7.77(2H, s), 8.05(1H, s), 13.13(1H, brs).

Example 105

[0653] 3-(4-[3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl-ethyl]-phenyl)-2,2-dimethyl-propanoic acid hydrochloride

[0654] 1H-NMR(DMSO-d6) δ:

[0655] 1.03(6H, s), 1.431(18H, s), 2.75(2H, s), 5.48(2H, s), 5.97(2H, s), 7.168(4H, brs), 7.22-7.33(2H, m), 7.42-7.67(2H, m), 7.842(2H, s), 8.12(1H, s), 8.95(2H, brs).

Example 106

[0656] 2-(2-Amino-benzimidazol-1-ylmethyl)-2,5,7,8-tetramethyl-chroman-6-ol hydrobromide

[0657] 1H-NMR(DMSO-d6) δ:

[0658] 1.16(3H, s), 1.60-1.70(1H, m), 1.87(3H, s), 1.97(3H, s), 2.00(3H, s), 1.87-2.08(1H, m), 2.48-2.63(2H, m), 4.33(1H, d, J=15 Hz), 4.45(1H, d, J=15 Hz), 7.18-7.25(2H, m), 7.32-7.38(1H, d, J=8.0 Hz), 7.46(1H, s), 7.50-7.60(1H, m), 8.65(2H, s), 12.70(1H, s).

Example 107

[0659] Ethyl 3-(2-[3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl-ethyl]-phenyl)-propanoic acid hydrobromide

[0660] 1H-NMR(DMSO-d6) δ:

[0661] 1.29(3H, t, J=7.3 Hz), 1.438(18H, s), 2.74(2H, t, J=7.8 Hz), 3.03(2H, t, J=7.8 Hz), 4.11(2H, q, J=7.3 Hz), 5.57(2H, s), 6.02(2H, brs), 6.53(1H, d, J=7.6 Hz), 7.14(1H, t, J=7.6 Hz), 7.22-7.40(5H, m), 7.67(1H, d, J=7.6 Hz), 8.88(2H, brs).

Example 108

[0662] 3-(2-[3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl-ethyl]-phenyl)-propanoic acid hydrochloride
[0663] 1H-NMR(DMSO-d6) δ:

[0664] 1.42(3H, s), 2.68(2H, brt, J=7.6 Hz), 2.99(2H, brt, J=7.6 Hz), 5.60(2H, s), 6.01(2H, s), 6.51(1H, brd, J=7.7 Hz), 7.13(1H, brt, J=7.7 Hz), 7.19-7.39(5H, m), 7.63(1H, d, J=7.7 Hz), 7.83(2H, s).

Example 109

[0665] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(2-hydroxymethyl-benzyl)-2-imino-2,3-dihydro-benimidazol-1-yl]-ethanone hydrochloride

Example 110

[0666] 1H-NMR(DMSO-d6) δ:

[0667] 1.43(1H, s), 4.72(2H, t), 5.56(2H, s), 6.06(2H, s), 6.64(1H, d, J=7.3 Hz), 7.12-7.34(4H, m), 7.37(1H, d, J=7.3 Hz), 7.50(1H, d, J=7.3 Hz), 7.65(1H, d, J=7.3 Hz), 7.86(2H, s), 8.12(1H, s), 9.07(2H, brs).

[0668] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(2-propoxy-benzyl)-2,3-dihydro-benimidazol-1-yl]-ethanone hydrobromide

Example 111

[0671] 1-(4-Amino-3,5-dimethyl-phenyl)-2(3-benzyl-2-imino-2,3-dihydro-benimidazol-1-yl)-ethanone hydrobromide

[0672] 1H-NMR(DMSO-d6) δ:

[0673] 2.15(6H, s), 5.53(2H, s), 5.83(2H, s), 7.20-7.54(9H, m), 7.58(2H, s), 9.03(2H, s).

Example 112

[0674] 2-(3-Benzyl-2-imino-2,3-dihydro-benimidazol-1-ylmethyl)-2,5,7,8-tetramethyl-chroman-6-ol hydrochloride

Example 113

[0675] 1H-NMR(DMSO-d6) δ:

[0676] 1.20(3H, s), 1.62-1.76(1H,m), 1.84(3H, s), 1.98(3H, s), 2.01(3H, s), 2.03-2.10(1H,m), 2.50-2.60(2H,m), 4.48(1H, d, J=15 Hz), 4.61(1H, d, J=15 Hz), 5.55(2H, s), 7.15-7.35(6H, m), 7.41(1H, d, J=10 Hz), 7.49(1H, br), 7.61(1H, br), 9.38(2H, s).

[0677] 2-(3-Benzyl-2-imino-2,3-dihydro-benimidazol-1-yl)-1-phenothiazin-10-yl-ethanone hydrobromide

Example 114

[0678] 1H-NMR(DMSO-d6) δ:

[0679] 5.50(4H, s), 7.10-7.76(17H,m), 9.22(2H, s).

[0680] 1H-NMR(DMSO-d6) δ:

[0681] 0.98(3H, J=7.5 Hz), 1.433(18H, s), 1.68-1.83(2H, m), 3.99(2H, J=7.1 Hz), 5.42(2H, s), 5.97(2H, brs), 6.92(1H, t, J=7.6 Hz), 6.99-7.36(6H, m), 7.61(1H, d, J=7.6 Hz), 7.846(2H, s), 8.12(1H, s), 8.86(2H, s).
Example 114

[0680] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-phenoxazin-10-yl-ethanone hydrobromide

Example 115

[0681] 1H-NMR(DMSO-d6) δ:
5.40-5.53(4H,br), 7.20-7.38(15H,m), 7.43(1H,d,J=9.0 Hz), 7.85(1H,d,J=9.0 Hz), 9.13(1H,s), 9.15(1H,s).

[0683] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(3-furan-3-ylmethyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 116

[0684] 1H-NMR(DMSO-d6) δ:
1.43(18H,s), 5.35(2H,s), 5.94(2H,s), 6.46(1H,s), 7.22-7.37(2H,m), 7.60(1H,d,J=7.9 Hz), 7.65-7.72(2H,m), 7.65-7.88(5H,m), 8.09(1H,brs), 8.96(2H,brs).

[0686] 2-[3-(2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl]-benzonitrile hydrobromide

Example 117

[0687] 1H-NMR(DMSO-d6) δ:
1.43(18H,s), 5.78(2H,s), 6.03(2H,brs), 6.87(1H,d,J=7.2 Hz), 7.23-7.36(2H,m), 7.47-7.73(4H,m), 7.86(2H,s), 7.99(1H,d,J=7.2 Hz), 8.12(1H,brs), 8.99(2H,brs).

[0689] N-[4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetoyl]-2,6-diisopropyl-phenyl]-methanesulfonamide hydrobromide

Example 118

[0690] 1H-NMR(DMSO-d6) δ:
1.22(12H,brs), 3.11(2H,s), 5.52(2H,s), 6.02(2H,brs), 7.15-7.71(9H,m), 7.85(2H,s), 9.02(2H,brs), 9.26(1H,s).

[0692] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(4-ethyl-hexyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 119

[0693] 1H-NMR(DMSO-d6) δ:
0.777(6H,brt,J=7.2 Hz), 1.10-1.73(27H,m), 4.20(2H,brt,J=6.9 Hz), 5.91(2H,s), 7.26(1H,brt,J=7.4 Hz), 7.33(1H,brt,J=7.4 Hz), 7.58(1H,d,J=7.4 Hz), 7.64(1H,d,J=7.4 Hz), 7.82(2H,s), 8.09(1H,brs), 8.75(2H,brs).
Example 119

[0695] 1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-{3-(2-ethyl-butyl)-2-imino-2,3-dihydro-benzimidazol-1-yl}-ethanone hydrobromide

[0696] 1H-NMR(DMSO-d6) δ:

[0697] 0.85(6H, t, J=6.8 Hz), 1.18-1.54(22H, m), 1.82-1.97(1H, m), 4.12(2H, brd, J=7.0 Hz), 5.93(2H, brs), 7.20-7.65(4H, m), 7.82(2H, s), 8.08(1H, brd), 8.71(2H, brs).

Example 120

[0698] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(5-oxo-5H-phenothiazin-10-yl)-ethanone hydrobromide

[0699] 1H-NMR(DMSO-d6) δ:

[0700] 5.20-5.70(4H, br), 7.06-8.20(17H, m), 9.23(2H, s).

Example 121

[0701] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl)-ethanone hydrochloride

[0702] 1H-NMR(DMSO-d6) δ:

[0703] 1.48(3H, s), 1.75-1.88(1H, m), 2.00(3H, s), 2.10(3H, s), 2.21(3H, s), 2.21-2.33(1H, m), 2.33-2.67(2H, m), 5.33(1H, d, J=18 Hz), 5.52(2H, s), 5.82(1H, d, J=18 Hz), 7.00-7.47(9H, m), 9.50(2H, s).

Example 122

[0704] Ethyl 2-{3-[2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl-methyl}-phenoxy-propanoate hydrobromide

[0705] 1H-NMR(DMSO-d6) δ:

[0706] 1.086(3H, t, J=6.9 Hz), 1.429(18H, s), 1.54(3H, d, J=6.4 Hz), 3.97-4.17(2H, m), 5.11(1H, q, J=6.4 Hz), 5.44(1H, d, J=6.5 Hz), 5.52(1H, d, J=6.5 Hz), 5.90-6.05(2H, m), 6.88-7.00(2H, m), 7.13(1H, d, J=6.9 Hz), 7.16-7.63(5H, m), 7.842(2H, s), 8.11(1H, brs), 8.94(2H, brs).

Example 123

[0707] 2-{2-[3-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl-ethyl}-phenoxy-propanoic acid hydrochloride

[0708] 1H-NMR(DMSO-d6) δ:

[0709] 1.42(18H, s), 1.54(3H, d, J=6.7 Hz), 5.02(1H, q, J=6.7 Hz), 5.44(1H, d, J=6.9 Hz), 5.52(1H, d, J=6.9 Hz), 5.97(2H, brs), 6.86-7.32(6H, m), 7.37(1H, d, J=7.8 Hz), 7.60(1H, d, J=7.8 Hz), 7.84(1H, s), 8.12(1H, s), 8.93(2H, brs).

Example 124

[0710] 1-[3-{2-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-oxo-ethyl]-2-imino-2,3-dihydro-benzimidazol-1-yl]-3-ethyl-pentan-2-one hydrobromide

[0711] 1H-NMR(DMSO-d6) δ:

[0712] 0.846(6H, t, J=7.9 Hz), 1.423(18H, s), 1.47-1.77(4H, m), 2.58-2.69(1H, m), 5.43(2H, s), 5.95(2H, s), 7.24-7.64(4H, m), 7.83(2H, s).
Example 125

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(5,5-dioxo-5H-phenothiazin-10-yl)-ethanone hydrobromide

Example 126

3-Benzyl-2-imino-2,3-dihydro-benzimidazole-1-carboxylic acid (3,5-di-tert-butyl-4-hydroxy-phenyl)-amide

Example 127

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[2-imino-3-(2-isobutoxy-benzyl)-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 128

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-[3-(2-ethoxymethyl-benzyl)-2-imino-2,3-dihydro-benzimidazol-1-yl]-ethanone hydrobromide

Example 129

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,3-dimethyl-2,3-dihydro-benzofuran-5-yl)-ethanone hydrobromide

Example 130

1H-NMR(DMSO-d6) δ:

1H, 6.94(2H, m), 7.07(1H, d, J=8.0 Hz), 7.17-7.35(4H, m), 7.61(1H, d, J=7.3 Hz), 7.84(2H, s), 8.11(1H, s), 8.88(2H, brs).

Example 131

1H-NMR(DMSO-d6) δ:

1.22(3H, t, J=7.1 Hz), 1.43(18H, s), 3.61(2H, q, J=7.1 Hz), 4.68(2H, s), 5.50(2H, s), 5.99(2H, s), 6.72(1H, d, J=7.1 Hz), 7.13-7.37(5H, m), 7.47(1H, d, J=6.6 Hz), 7.66 Hz(1H, d, J=7.7 Hz), 7.857(2H, s), 8.12(1H, brs). 8.91(2H, brs).

Example 132

1H-NMR(DMSO-d6) δ:

1H, 1.38(6H, s), 4.39(2H, s), 5.53(2H, s), 5.94(2H, s), 7.00(1H, d, J=8.0 Hz), 7.24-7.42(8H, m), 7.44-7.50(1H, m), 7.58-7.64(1H, m), 7.91(1H, s), 8.99(2H, brs).
Example 130

([0728]) 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-tert-butyl-3,3-dimethyl-2,3-dihydro-benzofuran-5-yl)-ethanone hydrobromide

Example 133

([0737]) 2-(3-Benzyl-2-imino-4-propoxy-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 131

([0731]) N-[4-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-2-bromo-phenyl]-2,2-dimethyl-propionamide hydrobromide

Example 132

([0738]) 1H-NMR(DMSO-d6) δ:

([0739]) 0.78(3H, J=7.2 Hz), 1.42(18H,s), 1.47-1.63(2H, m), 3.87-4.05(2H,m), 5.62(2H,s), 5.94(2H,s), 6.92(1H,J= 8.0 Hz), 7.08-7.44(8H,m), 7.83(2H,s), 8.08(1H,brs), 8.78(2H, brs).

Example 134

([0740]) 2-(3-Benzyl-2-imino-5-propoxy-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

Example 132

([0734]) 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-4-hydroxy-5-methanesulfonyl-phenyl)-ethanone hydrobromide

Example 134

([0741]) 1H-NMR(DMSO-d6) δ:

([0742]) 0.92(3H, J=7.6 Hz), 1.42(18H,s), 1.59-1.72(2H, m), 3.88(2H, J=7.2 Hz), 5.50(2H,s), 5.92(2H,s), 6.85(1H, d,J=8.8 Hz), 7.14(1H,s), 7.20-7.43(5H,m), 7.51(1H,d,J=8.8 Hz), 7.82(2H,s), 8.08(1H,brs), 8.82(2H, brs).
Example 135

[0743] tert-Butyl 5-[2-(3-benzyl-2-imino-2,3-dihydrobenzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-benzoate hydrobromide

Example 138

[0750] 1H-NMR (DMSO-d6) δ:

[0751] 1.29 (12H, d, J=6.0 Hz), 4.55-4.68 (2H, m), 5.52 (2H, s), 5.91 (2H, m), 7.20-7.40 (9H, m), 7.47-7.49 (1H, m), 7.58-7.61 (1H, m), 8.98 (1H, s), 8.99 (1H, s).

Example 139

[0752] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(5-tert-butyl-2-hydroxy-phenyl)-ethanone hydrobromide

Example 136

[0744] 1H-NMR (DMSO-d6) δ:

[0745] 1.43 (9H, s), 1.62 (9H, s), 5.54 (2H, s), 6.04 (2H, s), 7.20-7.68 (9H, m), 8.08 (1H, brs), 8.37 (1H, brs), 8.99 (2H, brs), 12.38 (1H, brs).

Example 137

[0746] 5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-benzoic acid trifluoroacetate

[0753] 1H-NMR (DMSO-d6) δ:

[0754] 1.25 (9H, s), 5.52 (2H, s), 5.78 (2H, s), 7.04 (1H, d, J=8.0 Hz), 7.25-7.35 (3H, m), 7.40 (2H, m), 7.48 (1H, dd, J=4.0 Hz), 7.60 (1H, dd, J=4.0 Hz), 7.64 (1H, dd, J=2.0 Hz), 7.80 (1H, d, J=2.0 Hz), 8.97 (1H, brs), 11.01 (1H, brs).

Example 137

[0749] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-3,5-diisopropoxy-phenyl)-ethanone hydrobromide
[0756] 1H-NMR(DMSO-d6) δ:

[0757] 1.25(9H,s), 5.32(2H,s), 5.57(2H,s), 6.97(1H,d,J=8.0 Hz), 7.07(2H,m), 7.20(1H,m), 7.25-7.35(5H,m), 7.59(1H,d,J=8.0 Hz), 7.72(1H,brs).

Example 140

[0758] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-5-dimethylamino-4-hydroxy-phenyl)-ethanone hydrobromide

Example 141

[0759] 1H-NMR(DMSO-d6) δ:

[0760] 1.40(9H,s), 2.63(6H,s), 5.53(2H,s), 5.95(2H,s), 7.20-7.45(5H,m), 7.49(1H,d,d,J=5.6, 3.4 Hz), 7.62(1H,d,d,J=5.6, 3.0 Hz), 7.72(1H,s), 7.77(1H,s), 8.95(2H,brs).

[0761] 3-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-chromen-2-one hydrobromide

Example 142

[0762] 1H-NMR(DMSO-d6) δ:

[0763] 5.52(2H,s), 5.80(2H,s), 6.76(2H,d,d,J=2.0.8 Hz), 7.09(2H,d,d,J=4.0.8 Hz), 7.24-7.60(9H,m), 8.90(1H,s).

Example 143

[0765] 1H-NMR(DMSO-d6) δ:

[0766] 5.52(2H,s), 5.75(2H,s), 6.94(1H,d,J=8.0 Hz), 7.02(1H,d,d,J=2.0, 8.0 Hz), 7.20(1H,d,d,J=2.0 Hz), 7.25-7.35(5H,m), 7.38(2H,m), 7.48(1H,m), 7.59(1H,m), 8.88(1H,s), 9.22(1H,s), 10.55(1H,s)

Example 144

[0767] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(5-nitro-benzofuran-2-yl)-ethanone hydrobromide

Example 145

[0768] 1H-NMR(DMSO-d6) δ:

[0769] 5.52(2H,s), 5.96(2H,s), 7.29-7.36(5H,m), 7.40(1H,m), 7.53(1H,d,d,J=4.0, 8.0 Hz), 7.72(1H,d,d,J=4.0.8 Hz), 8.02(1d,J=8.0 Hz), 8.24(1H,s), 8.46(1d,d,J=2.0, 8.0 Hz), 9.10(1H,s).

Example 146

[0770] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-4-hydroxy-5-{1-hydroxy-ethyl}-phenyl]-ethanone trifluoroacetate

Example 147

[0771] 1H-NMR(DMSO-d6) δ:

[0772] 1.41(9H,s), 1.44(3H,d,J=6.8 Hz), 5.14(1H,d,J=6.4 Hz), 5.52(2H,s), 5.95(2H,s), 7.22-7.40(7H,m), 7.42-7.51(1H,m), 7.58-7.63(1H,m), 7.76(1H,s), 7.79(1H,s), 8.98(2H,brs), 10.41(1H,brs).
Example 145

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-tert-butyl-2,3-dihydro-benzofuran-5-yl)-ethane hydrobromide

Example 146

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-bromo-1-(2,2-dimethyl-propyl)-1H-indol-5-yl]-ethane hydrobromide

Example 147

N-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-methanesulfonamide hydrochloride

Example 148

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-tert-butyl-2-methyl-benzoxazol-5-yl)-ethane hydrobromide

Example 149

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-bromo-1,2,3-tetramethyl-2,3-dihydro-1H-indol-5-yl)-ethane hydrobromide

1H-NMR(DMSO-d6) δ:

1.47(9H,s), 2.72(3H,s), 5.54(2H,s), 6.09(2H,s), 7.23-7.70(9H,m), 7.87(1H,s), 8.38(1H,s), 9.02(2H,brs).
[0786] 1H-NMR(DMSO-d6) δ:

[0787] 1.05(3H, s), 1.15(3H, d, J=6.0 Hz), 1.28(3H, s), 3.20(3H, s), 5.55(2H, s), 5.84(2H, m), 7.25-7.35(5H, m), 7.38(2H, m), 7.47(1H, dd, J=4.0, 8.0 Hz), 7.56(1H, dd, J=4.0, 8.0 Hz), 7.60(1H, s), 7.96(1H, s).

Example 150

[0788] N-[5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-3-tert-butyl-2-hydroxy-phenyl]-N-methyl-methanesulfonamide hydrobromide

Example 151

[0795] 1H-NMR(DMSO-d6) δ:

[0796] 1.41(9H, d), 1.61(6H, s), 5.54(2H, s), 5.97(3H, t), 7.23-7.42(7H, m), 7.44-7.50(1H, m), 7.57-7.64(1H, m), 7.72(1H, s), 7.80(1H, s), 9.00(2H, brs), 11.70(1H, brs).

Example 153

[0797] 1-Adamantan-1-yl-2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 154

[0798] 1H-NMR(DMSO-d6) δ:

[0799] 1.73(6H, brs), 1.94(6H, brs), 5.47(2H, s), 5.51(2H, t), 7.25-7.35(5H, m), 7.38(2H, m), 7.40-7.46(2H, m).

Example 152

[0800] 5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-7-tert-butyl-3-methyl-3H-benzoazol-2-one hydrobromide

Example 154

[0792] 1H-NMR(DMSO-d6) δ:

[0793] 1.42(18H, s), 5.68(2H, s), 5.98(2H, s), 7.20-7.52(7H, m), 7.83(2H, s), 8.27(2H, d, J=8.0 Hz).

Example 152

[0794] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-4-hydroxy-5-(1-hydroxy-1-methyl-ethyl)-phenyl]-ethanone trifluoroacetate

Example 152

[0801] 1H-NMR(DMSO-d6) δ:

[0802] 1.43(9H, s), 3.42(3H, s), 5.55(2H, s), 6.06(2H, s), 7.21-7.69(9H, m), 7.78(1H, s), 7.88(1H, s), 9.04(2H, brs).
Example 155
2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-ethyl-3,3-dimethyl-2,3-dihydro-benzofuran-5-yl)-ethanone hydrobromide

1H-NMR(DMSO-d6) δ:
1.20(3H, t, J=6.8 Hz), 1.37(6H, s), 2.63(2H, q, J=6.8 Hz), 4.38(2H, s), 5.50(2H, s), 5.91(2H, s), 7.20-7.45(9H, m), 7.80(2H, s).

Example 156
2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(2,3-dihydro-benz[1,4]dioxin-6-yl)-ethanone hydrobromide

1H-NMR(DMSO-d6) δ:
4.32-4.40(4H, m), 5.54(2H, s), 5.93(2H, s), 7.08(1H, d, J=8.0 Hz), 7.14-7.42(7H, m), 7.45-7.52(1H, m), 7.57-7.62(3H, m), 8.99(1H, brs).

Example 157
2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(2,2-dimethyl-benz[1,3]dioxol-5-yl)-ethanone hydrobromide

Example 158
N-[4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-2,6-diisopropyl-phenyl]-N-methylmethanesulfonamide hydrobromide

1H-NMR(DMSO-d6) δ:
1.68(6H, s), 5.52(2H, s), 5.90(2H, s), 7.08-7.11(1H, m), 7.23-7.31(8H, m), 7.57-7.72(3H, m), 8.99(2H, brs).

Example 159
2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(2,2-dimethyl-4H-benzo[1,3]dioxin-6-yl)-ethanone hydrobromide

1H-NMR(DMSO-d6) δ:
1.26(12H, brd), 3.12(3H, s), 3.22(1H, s), 3.24-3.35(2H, m), 5.54(2H, s), 6.06(2H, brs), 7.25-7.73(9H, m), 7.91(2H, s), 9.01(2H, brs).

Example 160
N-[4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-2-tert-butyl-phenyl]-acetamide hydrobromide

1H-NMR(DMSO-d6) δ:
1.53(6H, m), 4.96(2H, s), 5.52(2H, s), 5.91(2H, s), 7.22-7.52(9H, m), 7.57-7.62(1H, m), 7.87-7.98(2H, m).
[0819] 1H-NMR(DMSO-d6) δ:

[0820] 1.38(9H,s), 2.06(3H,s), 5.55(2H,s), 6.00(2H,s), 7.21-7.70(10H,m), 7.96(1H,d,J=8.0 Hz), 8.04(1H,s), 9.00(2H,brs), 9.40(1H,s).

Example 161

[0821] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-tert-butyl-2,2-dimethyl-benzol[1,3]dioxol-5-yl)-ethanone hydrobromide

[0822] 1H-NMR(DMSO-d6) δ:

[0823] 1.37(9H,s), 1.72(6H,s), 5.51(2H,s), 5.92(2H,s), 7.24-7.46(9H,m), 7.53-7.62(2H,m).

Example 162

[0824] 4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3,5-dimethyl-1H-pyrole-2-carboxylic acid dimethylamid hydrobromide

[0825] 1H-NMR(DMSO-d6) δ:

[0826] 2.23(3H, s), 2.55(3H, s), 2.95(6H, s), 5.58(2H, s), 5.61(2H, s), 7.10-7.70(9H, m).

Example 163

[0827] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-methoxy-phenyl)-ethanone hydrobromide

[0828] 1H-NMR(DMSO-d6) δ:

[0829] 1.46(18H,s), 3.72(3H,s), 5.56(2H,s), 6.04(2H,s), 7.28-7.43(7H,m), 7.52(1H,ddJ=2.8 Hz,6.0 Hz), 7.68(1H, dd,2.8 Hz,6.8 Hz), 7.98(2H,s), 9.00(1H,s).

Example 164

[0830] 4-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-y1)-acetyl]-2,6-di-tert-butyl-phenyl phenylcarbamate hydrobromide

[0831] 1H-NMR(DMSO-d6) δ:

[0832] 1.43(18H,s), 5.56(2H, s), 6.09(2H, s), 7.07(1H,d,J= 7.2 Hz), 7.25-7.45(9H,m), 7.52(3H,d,J=7.2 Hz), 7.71(1H, dd, J=2.8 Hz,6.4 Hz), 8.04(2H,s), 9.04(2H,s), 10.48(1H,s).

Example 165

[0833] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4,6-di-tert-butyl-5-hydroxy-pyrimidin-2-yl)-ethanone hydrobromide

[0834] 1H-NMR(DMSO-d6) δ:

[0835] 1.46(18H,s), 5.55(2H,s), 5.93(2H,s), 7.15-7.73(9H, m), 8.98(2H, brs).
Example 166

[0836] 4-{2-[3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl]-acetyl]-2,6-di-tert-butyl-phenyl methylcarbamate hydrobromide

[0837] 1H-NMR(DMSO-d6) δ:

[0838] 1.38(18H,s), 2.69(3H,d,J=4.4 Hz), 5.57(2H,s), 6.08(2H,s), 7.25-7.45(5H,s), 7.52(1H,d,d,J=3.2 Hz, 5.6 Hz), 7.70(1H,dd,J=2.0 Hz, 6.0 Hz), 7.95(1H,d,J=4.4 Hz), 7.99(2H, s), 9.05(2H,s).

Example 167

[0839] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-3,5,5-trimethyl-piperidin-1-yl)-ethane hydrobromide

[0840] 1H-NMR(DMSO-d6) δ:

[0841] 0.74(3H,s), 0.87(3H,s), 0.96(3H,s), 1.02(3H,s), 2.43(1H,d,J=12.8 Hz), 2.94(1H,d,J=14.0 Hz), 3.31(1H,d,J= 5.6 Hz), 3.61(1H,d,J=13.6 Hz), 3.98(1H,d,J=14.8 Hz), 4.83(1H,brs), 5.16(2H,dd,J=18.0 Hz, 17.6 Hz), 5.45(1H,s), 7.18-7.42(9H,m).

Example 168

[0842] N-[5-{2-[3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl]-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-N-methyl-acetamide hydrochloride

[0843] 1H-NMR(DMSO-d6) δ:

[0844] 1.37(9H,s), 1.72(3H,s), 3.02(3H,s), 5.50(2H,s), 5.82(2H,brs), 7.10-7.90(10H,m).

Example 169

[0845] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,4-bis-tert-butoxymethyl-pyrrolidin-1-yl)-ethane hydrobromide

[0846] 1H-NMR(DMSO-d6) δ:

[0847] 1.12(9H,s), 1.17(9H,s), 2.28-2.36(2H,m), 2.45-2.56(2H,m), 3.20-3.78(6H,m), 5.05(2H,s), 5.42(2H,s), 7.14-7.42(9H,m).

Example 170

[0848] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-tert-butyl-2,2-dimethyl-2,3-dihydro-benzofuran-5-yl)-ethane hydrobromide
Example 173

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-tert-butyl-3,3-dimethyl-2,3-dihydro-benz[\text{b}] thiophen-5-yl)-ethanone hydrobromide

Example 172

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(8-tert-butyl-4,4-dimethyl-thiochroman-6-yl)-ethanone hydrochloride

Example 174

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-4-(2,2-dimethyl-propoxy)-phenyl]-ethanone hydrobromide

Example 175

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(8-tert-butyl-4,4-dimethyl-chroman-6-yl)-ethanone hydrobromide
[0864] 1H-NMR(DMSO-d6) δ:

1.38(15H,s), 1.84-1.91(2H,m), 4.29-4.37(2H,m), 5.55(2H,s), 6.00(2H,s), 7.27-7.38(5H,m), 7.39-7.45(2H,m), 7.48-7.53(1H,m), 7.61-7.66(1H,m), 7.73-7.77(1H,m), 7.99-8.02(1H,m), 8.99(2H,brs).

Example 176

[0866] N-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3,3-dimethyl-2,3-dihydro-benzofuran-7-yl]-N-methyl-acetamide hydrobromide

[0867] 1H-NMR(DMSO-d6) δ:

1.39(6H,s), 1.82(3H,s), 3.14(3H,s), 4.48(2H,s), 5.53(2H,s), 5.95(2H,s), 7.27-7.43(7H,m), 7.48-7.52(1H,m), 7.60-7.66(1H,m), 7.95(1H,s), 7.98(1H,s).

Example 177

[0869] 1-[3-(1-Acetoxy-1-methyl-ethyl)-5-[2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-2-hydroxy-phenyl]-1-methyl-ethyl acetate hydrobromide

[0870] 1H-NMR(DMSO-d6) δ:

1.86(12H,s), 2.05(6H,s), 3.82(3H,s), 5.65(2H,s), 6.34(2H,s), 7.03-7.31(9H,m), 8.07(2H,s), 9.56(9H,brs).

Example 178

[0872] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-bromo-5-tert-butyl-4-hydroxy-phenyl)-ethanone hydrobromide

[0873] 1H-NMR(DMSO-d6) δ:

1.41(9H,s), 5.56(2H,s), 5.98(2H,s), 7.25-7.45(7H,m), 7.48-7.54(1H,m), 7.62-7.68(1H,m), 7.83-7.88(1H,m), 8.20-8.23(1H,m), 9.02(2H,brs).

Example 179

[0875] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(8-tert-butyl-4,4-dimethyl-1-oxo-thiochroman-6-yl)-ethanone hydrobromide

[0876] 1H-NMR(DMSO-d6) δ:

1.39(3H,s), 1.56(3H,s), 1.62(9H,s), 1.73-1.80(1H,m), 2.81-2.91(1H,m), 3.09-3.27(2H,m), 5.56(2H,s), 6.01-6.20(2H,m), 7.26-7.46(7H,m), 7.48-7.54(1H,m), 7.64-7.71(1H,m), 7.90-7.95(1H,m), 8.19-8.24(1H,m), 9.04(2H,brs).

Example 180

[0878] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(8-tert-butyl-4,4-dimethyl-1,1-dioxo-thiochroman-6-yl)-ethanone hydrobromide
[0879] 1H-NMR(DMSO-d6) δ:

[0880] 1.50(6H,s), 1.63(9H,s), 2.29-2.35(2H,m), 3.54-3.59(2H,m), 5.55(2H,s), 6.09(1H,s), 7.26-7.45(7H,m), 7.48-7.53(1H,m), 7.64-7.70(1H,m), 8.13-8.19(2H,m), 9.02(2H, brs).

Example 181

[0881] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-{3,5-bis-(1-hydroxy-1-methyl-ethyl)-4-methoxy-phenyl}-ethane hydrochloride

[0882] 1H-NMR(DMSO-d6) δ:

[0883] 1.65(12H,s), 3.96(3H,s), 5.62(2H,s), 6.23(2H,s), 7.09-7.28(9H,m), 8.25(2H,s), 9.25(2H,brs).

Example 182

[0884] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-5-chloro-4-hydroxy-phenyl)-ethane hydrobromide

[0885] 1H-NMR(DMSO-d6) δ:

[0886] 1.42(9H,s), 5.42(1H,s), 5.56(2H,s), 5.98(2H,s), 7.26-7.44(7H,m), 7.48-7.54(1H,m), 7.61-7.67(1H,m), 7.82-7.86(1H,m), 8.07-8.10(1H,m), 9.04(2H,brs).

Example 183

[0887] 2-(1-Benzyl-1H-benzimidazol-2-ylamino)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propan-1-one hydrochloride

[0888] 1H-NMR(DMSO-d6) δ:

[0889] 1.41(18H,s), 1.61(3H,d,J=8 Hz), 5.48-5.71(2H,m), 5.77-5.86(1H,m), 7.20-7.47(9H,m), 7.81-7.87(2H,m), 8.01-8.07(1H,m).

Example 184

[0890] 5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-7-tert-butyl-1,3-dihydro-indol-2-one hydrobromide

[0891] 1H-NMR(DMSO-d6) δ:

[0892] 1.36(9H,s), 3.63(2H,s), 5.52(2H,s), 5.95(2H,s), 7.20-7.62(9H,m), 7.84(2H,s), 8.96(1H,s), 10.68(1H,s).

Example 185

[0893] 5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-7-tert-butyl-3,3-dimethyl-1,3-dihydro-indol-2-one hydrobromide
Example 186

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[7-(1-methoxy-1-methyl-ethyl)-3,3-dimethyl-2,3-dihydro-benzofuran-5-yl]-ethanone hydrobromide

Example 187

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(8-tert-butyl-chroman-6-yl)-ethanone hydrobromide

Example 188

4-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-ylmethyl)-2,6-di-tert-butyl-phenol hydrobromide

Example 189

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-ethanone O-methyl-oxime hydrobromide

Example 190

N-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-N-ethyl-methanesulfonamide hydrobromide
[0090] 1H-NMR(DMSO-d6) δ:

[0091] 1.02(3H, J=6.8 Hz), 1.41(9H, s), 2.47-2.54(2H, m), 3.17(3H, s), 5.56(2H, s), 5.92(2H, s), 7.24-7.52(8H, m), 7.63-7.68(1H, m), 7.88(1H, s), 7.98(1H, s).

Example 191

N- {5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl}-N-(2-methoxy-ethyl)-methanesulfonamide hydrobromide

[0092] 1H-NMR(DMSO-d6) δ:

[0093] 1.40(9H, s), 3.19(3H, s), 3.22(3H, s), 3.62-3.88(4H, m), 5.54(2H, s), 5.96(2H, s), 7.26-7.52(8H, m), 7.64-7.69(1H, m), 7.91(1H, s), 7.99(1H, s), 8.98(2H, brs).

Example 192

N- {5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl}-N-(2-hydroxy-ethyl)-methanesulfonamide hydrobromide

[0094] 1H-NMR(DMSO-d6) δ:

[0095] 1.24(6H, s), 1.37(9H, s), 2.24(3H, s), 3.83(2H, s), 5.54(2H, s), 6.01(2H, s), 7.24-7.36(5H, m), 7.37-7.43(2H, m), 7.45-7.52(1H, m), 7.62-7.68(1H, m), 7.74(1H, d, J=1.6 Hz), 8.02(1H, d, J=1.6 Hz), 9.05(1H, s).

Example 195

Butane-1-sulfonic acid [5-[2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-amide hydrobromide

[0096] 1H-NMR(DMSO-d6) δ:

[0097] 1.39(9H, s), 3.19(3H, s), 5.57(2H, s), 5.98(2H, s), 7.24-7.52(8H, m), 7.60-7.69(1H, m), 7.88(1H, s), 8.02(1H, s).

Example 193

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-5-ethyl-4-hydroxy-phenyl)-ethanone hydrobromide
[0924] 1H-NMR(DMSO-d6) δ:

[0925] 0.77(3H, J=6.8 Hz), 1.17-1.32(2H, m), 1.50-1.62(2H, m), 2.83(2H, J=6.8 Hz), 5.42(2H, s), 5.64(2H, s), 7.12(2H, m), 7.26-7.58(7H, m), 7.45(1H, s), 7.60(1H, s).

Example 196

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-5-(2-ethoxy-ethyl)-4-hydroxy-phenyl]-ethanone hydrobromide

[0933] 1H-NMR(DMSO-d6) δ:

[0934] 3.08(3H, s), 3.21(3H, s), 5.66(2H, s), 6.09(2H, s), 7.23-7.43(8H, m), 7.47-7.57(3H, m), 7.57-7.63(1H, m), 7.93-7.98(1H, m), 9.52(2H, brs), 11.68(1H, s).

Example 199

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-4-hydroxy-5-methyl-phenyl)-ethanone hydrobromide

[0927] 1H-NMR(DMSO-d6) δ:

[0928] 1.11(3H, J=6.8 Hz), 1.40(9H, s), 2.92-2.98(2H, m), 3.58-3.64(m,2H), 5.49(2H, s), 5.88(2H, s), 7.25-7.46(7H, m), 7.52-7.58(1H, m), 7.74(3H, m).

Example 197

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-4-hydroxy-5-(2-methoxyethyl)-phenyl]-ethanone hydrobromide

[0936] 1H-NMR(DMSO-d6) δ:

[0937] 1.40(9H, s), 2.30(3H, s), 5.54(2H, s), 5.93(2H, s), 7.23-7.50(8H, m), 7.56-7.72(2H, m), 7.72-7.82(2H, m).

Example 200

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-4-hydroxy-5-methoxymethyl-phenyl)-ethanone hydrobromide

[0930] 1H-NMR(DMSO-d6) δ:

[0931] 1.41(9H, s), 2.96(2H, J=6.4 Hz), 3.28(3H, s), 3.57(2H, J=6.4 Hz), 5.53(2H, s), 5.94(2H, s), 7.24-7.35(5H, m), 7.37-7.42(2H, m), 7.46-7.50(1H, m), 7.58-7.62(1H, m), 7.79(2H, s).

Example 198

N-[5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-2-hydroxy-phenyl]-N-methyl-methanesulfonamide hydrochloride

[0932] 1H-NMR(DMSO-d6) δ:

[0939] N-[5-{2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl}-2-hydroxy-phenyl]-N-methyl-methanesulfonamide hydrochloride

[0939] 1H-NMR(DMSO-d6) δ:
Example 201

[0941] N-5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-ethyl-2-hydroxy-phenyl]-N-methyl-methanesulfonamide hydrobromide

[0942] 1H-NMR(DMSO-d6) δ:

[0943] 1.22(3H,t, J=6.8 Hz), 2.72(2H,q, J=6.8 Hz),
3.01(3H,s), 3.34(3H,s), 5.60(2H,s), 6.24(2H,s),
7.08-7.37(9H,m), 7.82(1H,s), 8.24(1H,s), 9.12(2H,brs).

Example 202

[0944] N-5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-2-hydroxy-3-isopropyl-phenyl]-N-methyl-methanesulfonamide hydrobromide

Example 203

[0945] 1H-NMR(DMSO-d6) δ:

[0946] 1.08(6H,d, J=7.2 Hz), 2.98(3H,s), 3.27(3H,s), 3.25-3.34(1H,m), 5.57(2H,s), 6.22(2H,s), 7.01-7.32(9H,m),
7.80(1H,s), 8.23(1H,s), 9.03(2H,brs).

Example 204

[0948] 1H-NMR(DMSO-d6) δ:

[0949] 1.46(9H,s), 5.05(2H,s), 5.52(2H,s),
5.35-5.43(2H,m), 7.28-7.50(11H,m), 7.19-7.22(1H,m).

Example 205

[0950] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-y1)-1-(8-tert-butyl-4-methanesulfonyl-3,4-dihydro-2H-benz[1,4]oxazin-6-yl)-ethane hydrobromide

[0951] 1H-NMR(DMSO-d6) δ:

[0952] 1.41(9H,s), 3.21(3H,s), 3.84-3.92(2H,m),
4.44-4.51(2H,m), 5.53(2H,s), 5.97(2H,s), 7.18-7.45(7H,m), 7.46-7.52(1H,m), 7.60-7.66(1H,m), 7.73-7.78(1H,m),
8.19-8.24(1H,m), 9.01(2H,brs).

Example 206

[0953] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-y1)-1-(5-tert-butyl-1-methyl-2,2-dioxo-2,3-dihydro-1H-benz[1,3,4]oxathiazin-7-yl)-ethane hydrobromide
Example 206

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-4-hydroxy-5-(2-hydroxy-ethyl)-phenyl]-ethanone hydrobromide

![Chemical Structure](image)

Example 207

N-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-benzyl]-acetamide hydrobromide

![Chemical Structure](image)

Example 208

N-[5-[2-(Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-benzyl]-N-methyl-acetamide hydrobromide

![Chemical Structure](image)

Example 209

N-[5-[2-(Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-benzyl]-methanesulfonamide hydrobromide

![Chemical Structure](image)
Example 210

[0968] Ethanesulfonic acid {5-[2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl}-methyl-amide hydrobromide

[0970] 1H-NMR(DMSO-d6) δ:
1.30(3H, t, J=7 Hz), 1.42(9H, s), 3.19(9H, s), 3.26-3.38(2H, m), 5.55(2H, s), 5.93(2H, brs), 7.22-7.37(6H, m), 7.39-7.45(2H, m), 7.47-7.53(1H, m), 7.61-7.67(1H, m), 7.83-7.88(1H, m), 7.95-8.01(1H, m), 9.00(2H, brs).

Example 211

[0971] N-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-N-methyl-C-phenyl-methanesulfonamide hydrobromide

[0972] 1H-NMR(DMSO-d6) δ:
1.43(9H, s), 3.26(3H, s), 4.70(2H, brs), 5.55(2H, s), 5.99(2H, brs), 7.26-7.47(13H, m), 7.48-7.53(1H, m), 7.63-7.69(1H, m), 7.89-7.94(1H, m), 8.10-8.14(1H, m), 9.02(2H, brs).

Example 212

[0974] 5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-N,N-dimethyl-benzamide hydrobromide

[0975] 1H-NMR(DMSO-d6) δ:
1.40(9H, s), 3.00(6H, s), 5.53(2H, s), 5.96(2H, s), 7.24-7.42(7H, m), 7.46-7.51(1H, m), 7.58-7.64(1H, m), 7.88(2H, s).

Example 213

[0977] 5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-N-ethyl-2-hydroxy-N-methyl-benzamide hydrobromide

[0978] 1H-NMR(DMSO-d6) δ:
1.13(3H, t, J=6.8 Hz), 1.42(9H, s), 2.98(3H, s), 3.32-3.48(2H, m), 5.53(2H, s), 5.98(2H, s), 7.25-7.52(8H, m), 7.60-7.66(1H, m), 7.84(1H, s), 7.92(1H, s), 9.02(2H, brs).

Example 214

[0980] 5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-N-methyl-benzamide hydrobromide
[0981] 1H-NMR(DMSO-d6) δ:

[0982] 1.41(9H,s), 2.87(3H,d,J=4.0 Hz), 5.54(2H,s), 5.97(2H,s), 7.44-7.65(11H,m), 8.58(1H,brs).

Example 215

[0983] 2,2,2-Trifluoro-ethanesulfonic acid \{5-[2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl\}-methyl-amide hydrobromide

[0984] 1H-NMR(DMSO-d6) δ:

[0985] 1.42(9H,s), 3.27(3H,s), 4.50-5.90(2H,m), 5.55(2H,s), 5.38-5.47(2H,m), 7.26-7.37(5H,m), 7.39-7.45(2H,m),
7.48-7.53(1H,m), 7.62-7.68(1H,m), 7.87-7.93(1H,m), 8.02-8.09(1H,m), 9.00(2H,brs), 10.37(1H,brs).

Example 216

[0986] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-5-(1,1-dioxo-isothiazolidin-2-yl)-4-hydroxy-phenyl]ethanone hydrobromide

[0987] 1H-NMR(DMSO-d6) δ:

[0988] 1.38(9H,s), 2.45-2.56(2H,m), 3.46(2H,t,J=7 Hz), 3.85(2H,t,J=7 Hz), 5.60(2H,s), 6.22(2H,s), 7.06-7.38(7H,m), 7.58-7.60(1H,m), 7.92-7.95(1H,m), 8.07-8.11(2H,m), 9.21(2H,brs).

Example 217

[0989] 1-[5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-pyrrolidin-2-one hydrobromide

[0990] 1H-NMR(DMSO-d6) δ:

[0991] 1.41(9H,s), 2.11-2.22(2H,m), 2.40-2.47(2H,m), 3.65-3.71(2H,m), 5.52(2H,s), 5.91(2H,s), 7.23-7.35(5H,m), 7.36-7.42(2H,m), 7.45-7.51(1H,m), 7.58-7.63(1H,m), 7.79-7.86(2H,m).

Example 218

[0992] 5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-N,N-dimethyl-benzesulphonamide hydrobromide

[0993] 1H-NMR(DMSO-d6) δ:

[0994] 1.42(9H,s), 2.79(6H,s), 5.41(2H,s), 5.93(2H,s), 7.08-7.15(1H,m), 7.20-7.40(8H,m), 8.12(1H,s), 8.15(1H,s), 10.09(1H,s).

Example 219

[0995] 5-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-N-butyl-3-tert-butyl-2-hydroxy-benzamide hydrobromide
[0996] 1H-NMR(DMSO-d6) δ:

[0997] 0.82(3H, t, J=6.8 Hz), 1.32-1.40(2H,m), 1.47(9H,s), 1.60-1.68(2H,m), 3.88-3.95(2H,m), 5.51(2H,s), 6.08(2H,s), 7.22-7.48(9H,m), 8.19(1H,s), 8.58(1H,s).

Example 220

[0998] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(5-tert-butyl-4-hydroxy-2-methyl-phenyl)ethanone hydrobromide

[1005] 1H-NMR(DMSO-d6) δ:

[1006] 1.44(9H,s), 3.30(3H,s), 3.42(3H,s), 5.53(2H,s), 6.04(2H,s), 7.23-7.43(7H,m), 7.45-7.52(1H,m), 7.58-7.65(1H,m), 7.76-7.79(1H,m), 7.85-7.90(1H,m).

Example 223

[1007] 2-[5-[[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-N,N-dimethyl-acetamide hydrobromide

[0999] 1H-NMR(DMSO-d6) δ:

[1000] 1.42(9H,s), 2.36(3H,s), 5.55(2H,s), 5.91(2H,s), 6.76(1H,s), 7.24-7.35(5H,m), 7.36-7.42(2H,m), 7.46-7.52(1H,m), 7.60-7.66(1H,m), 7.88(1H,s), 9.00(2H,s), 10.45(1H,s).

Example 221

[1001] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(7-hydroxy-indan-4-yl)ethanone hydrobromide

[1008] 1H-NMR(DMSO-d6) δ:

[1009] 1.40(9H,s), 2.52(6H,s), 3.88(2H,s), 5.54(2H,s), 5.93(2H,s), 7.22-7.62(9H,m), 7.81(1H,s), 7.89(1H,s).

Example 224

[1010] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(3-tert-butyl-4-hydroxy-5-nitro-phenyl)ethanone hydrobromide

[1002] 1H-NMR(DMSO-d6) δ:

[1003] 1.94-2.03(2H,m), 2.76(2H,t, J=7.6 Hz), 3.13(2H,t, J=7.6 Hz), 5.55(2H,s), 5.85(2H,s), 6.84(1H,d,J=8.4 Hz), 7.24-7.43(7H,m), 7.46-7.52(1H,m), 7.55-7.60(1H,m), 7.91(1H,d,J=8.4 Hz), 9.05(2H,s), 11.13(1H,s).

Example 222

[1004] Methyl [5-[[2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl]-methylcarbamate hydrobromide
[1011] 1H-NMR(DMSO-d6) δ:
[1012] 1.40(9H,s), 5.54(2H,s), 5.96(2H,s), 7.25-7.46(7H,m), 7.50(1H,m), 7.63(1H,m), 7.91(1H,d,J=2.4 Hz), 8.54(1H, d,J=2.4 Hz), 8.97(2H,s).

Example 225

[1013] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-tert-butyl-4-hydroxy-5-methoxy-phenyl)-ethanone hydrobromide

[1014] 1H-NMR(DMSO-d6) δ:
[1015] 1.39(9H,s), 3.87(3H,s), 5.48(2H,s), 5.91(2H,s), 7.21-7.45(8H,m), 7.48-7.55(2H,m), 7.58-7.62(1H,m).

Example 226

[1016] Methyl 3-{5-[2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenyl}-propanoate hydrobromide

[1017] 1H-NMR(DMSO-d6) δ:
[1018] 1.40(9H,s), 2.63(2H,J=6.8 Hz), 2.98(2H,J=6.8 Hz), 3.61(3H,s), 5.53(2H,s), 5.92(2H,s), 7.24-7.50(8H,m), 7.56-7.62(1H,m), 7.78(2H,s).

[1019] 2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-(4-hydroxy-naphthalen-1-yl)-ethanone hydrobromide

[1020] 1H-NMR(DMSO-d6) δ:
[1021] 2.05(2H,s), 5.57(2H,s), 6.01(2H,s), 7.05(1H,d,J=8.0 Hz), 7.21-7.65(11H,m), 8.28(1H,d,J=8.4 Hz), 8.45(1H, d,J=8.0 Hz), 8.96(1H,d,J=8.4 Hz).

Example 228

[1022] Methyl 5-{2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-3-tert-butyl-2-hydroxy-phenoxo} - acetate hydrobromide

[1023] 1H-NMR(DMSO-d6) δ:
[1024] 1.41(9H,s), 3.71(3H,s), 4.94(2H,s), 5.52(2H,s), 5.96(2H,s), 7.44-7.72(11H,m).

Example 229

[1025] 1-(4-Acetyl-8-tert-butyl-3,4-dihydro-2H-benzo[1,4] oxazin-6-yl)-2-(3-benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide
Example 230

6-[2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-acetyl]-8-tert-butyl-4-methyl-4H-benz[1,4]oxazin-3-one hydrobromide

Example 231

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-tert-butyl-4-hydroxy-5-{(2-methoxy-ethyl)-methyl-amino}-phenyl]-ethane hydrobromide

Example 232

1H-NMR (DMSO-d6) δ:

1.43(9Hs, 2.73(3Hs), 2.98(2H, J=5.2 Hz), 3.32(3Hs), 3.45(2H, J=5.2 Hz), 5.55(2Hs), 5.96(2Hs), 7.27-7.45(7Hm), 7.51(1Hm), 7.64(1Hm), 7.75(1H, J=2.0 Hz), 7.86(1H, J=2.0 Hz), 8.96(2Hs), 9.20(1Hs).

Example 233

1H-NMR (DMSO-d6) δ:

1.28(9Hs), 2.93(3Hs), 5.52(2Hs), 7.30-7.44(2Hm), 7.45-7.49(1Hm), 7.52-7.59(2Hm), 7.93-7.98(1Hm), 8.08-8.15(2Hbs).

Example 234

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-[3-{(2-benzyloxy-ethyl)-methyl-amino}-5-tert-butyl-4-hydroxy-phenyl]-ethane hydrobromide

Example 235

1H-NMR (DMSO-d6) δ:

1.38(9Hs), 2.95(3Hs), 3.34(2H, J=4.4 Hz), 4.37(2H, J=4.4 Hz), 5.55(2Hs), 5.97(2Hs), 7.25-7.47(9Hm), 7.50(1Hm), 7.61(1Hm), 8.97(2Hs).

Example 236

1H-NMR (DMSO-d6) δ:

1.42(9Hs), 2.72(3Hs), 3.05(2H, J=5.2 Hz), 3.57(2H, J=5.2 Hz), 4.54(2Hs), 5.55(2Hs), 5.96(2Hs), 7.27-7.47(12Hm), 7.50(1Hm), 7.62(1Hm), 7.75(1H, J=2.0 Hz), 7.87(1H, J=2.0 Hz), 8.97(2Hs), 9.27(1Hs).
Example 235

2-(3-Benzyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-1-{3-tert-butyl-4-hydroxy-5-{(2-hydroxy-ethyl)-methyl-amino]-phenyl}-ethanone hydrobromide

1H-NMR(DMSO-d6) δ:
1.43(9H,s), 2.71(3H,s), 2.87(2H, J=4.8 Hz), 3.60(2H,m), 4.54(2H,s), 5.55(3H,s), 5.98(2H,s), 7.27-7.47(7H,m), 7.50(1H,m), 7.63(1H,m), 7.73(1H,d, J=2.0 Hz), 7.78(1H,d,J=2.0 Hz), 9.00(2H,s), 9.76(1H,s).

Example 236

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(2-imino-3-methyl-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

1H-NMR(DMSO-d6) δ:
1.45(18H,s), 3.73(3H,s), 5.94(2H,s), 7.29(1H,dt,J=1.2, 7.6 Hz), 7.36(1H,dt,J=1.2, 7.6 Hz), 7.61(2H,t,J=7.6 Hz), 7.85(2H,s), 8.10(1H,brs), 8.78(1H,brs).

Example 237

1-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-2-(3-ethyl-2-imino-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

1H-NMR(DMSO-d6) δ:
1.42(9H,s), 2.02(2H,quintet,J=6.8 Hz), 2.31(2H,t, J=6.8 Hz), 3.73(3H,s), 4.10(2H,t,J=6.8 Hz), 5.92(2H,s), 6.85(1H,s), 7.27-7.40(2H,m), 7.50-7.65(3H,m), 8.80(1H,brs), 8.78(1H,s), 9.48(1H,s).
Example 240

1-(3-tert-Butyl-5-dimethylamino-phenyl)-2-(2-imino-3-methyl-2,3-dihydro-benzimidazol-1-yl)-ethanone hydrobromide

Example 241

1H-NMR(DMSO-d6) δ:

1.35(9Hs), 3.00(6Hs), 3.74(3Hs), 5.98(2Hs), 7.08(1Hd,J=2.0 Hz), 7.19(1Ht,J=2.0 Hz), 7.28-7.42(3H,m), 7.56-7.64(2H,m), 8.83(1H,s)

Example 242

1H-NMR(DMSO-d6) δ:

1.38(9Hs), 2.94(3Hs), 3.34(2Hd,dd,J=4.4, 4.8 Hz), 3.73(3Hs), 4.37(2Hd,dd,J=3.6, 4.8 Hz), 5.92(2Hs), 7.23-7.40(4H,m), 7.55(1Hd,J=7.2 Hz), 7.61(1Hd,J=7.2 Hz), 8.79(1H,bs).

Example 243

1H-NMR(DMSO-d6) δ:

1.43(9Hs), 2.11(2Hq,quintet,J=6.0 Hz), 2.85(2Ht, J=6.0 Hz), 3.73(3Hs), 4.14(2Ht,J=6.0 Hz), 5.92(2Hs), 7.30(1Ht,J=7.2 Hz), 7.37(1Ht,J=7.2 Hz), 7.51(1Hd,J=1.0 Hz), 7.56(1Hd,J=8.0 Hz), 7.58-7.65(2H,m), 8.78(1H,s), 8.80(1H,s), 9.52(1H,s).

Example 244

1H-NMR(DMSO-d6) δ:

1.42(9Hs), 1.91(4Hm), 3.15(4Hm), 3.73(3Hs), 4.44(2Hs), 5.95(2Hs), 7.30(1Hd,J=7.2 Hz), 7.37(1Hd,J=7.2 Hz), 7.50(1Hd,J=2.0 Hz), 7.57(1Hd,J=2.0 Hz), 7.61(2Ht,J=7.2 Hz), 8.78(1H,s).

Example 245

1H-NMR(DMSO-d6) δ:

1.41(9Hs), 1.92(4Hm), 2.05(2Hm), 2.44(2Ht,J=7.2 Hz), 3.16(4Hm), 3.73(3Hs), 3.89(2Hd,J=7.2 Hz), 5.93(2Hs), 7.30(1Ht,J=7.2 Hz), 7.37(1Hd,J=7.2 Hz), 7.45(1Hd,J=2.0 Hz), 7.54(1Hd,J=2.0 Hz), 7.61(2Ht,J=7.2 Hz), 8.78(1H,s).

Test Examples

The biochemical activities of compounds of the invention and salts thereof and their actions and effects as medicines (thrombin receptor binding capacity, and platelet aggregation inhibitory action) were evaluated by the following methods.
Test Example 1

[1074] [Receptor Binding Assay]

[1075] Blood was sampled from a healthy adult who had taken no drugs for one week, and 3.8% citric acid (a ratio of 1:9 with respect to the blood) was added as an anticoagulant. The mixture was then centrifuged at 100 g for 10 minutes at room temperature to yield platelet rich plasma (PRP). The platelet precipitate obtained by centrifuging the PRP was homogenized with a Dounce homogenizer, and then centrifuged at 40,000 g for 60 minutes to yield platelet membrane. The platelet membrane was suspended in a solution prepared by adding DMSO (dimethyl sulfoxide) at 1% concentration to Buffer 1; a 50 mM Tris-HCl buffer containing 10 mM MgCl₂ and 1 mM EGTA (ethylene glycol tetraacetic acid), and the suspension was stored at −80 °C. Bovine albumin and DMSO were added to Buffer 1 at 0.1% and 20%, respectively, to make a preparation solution for the test compound. The test compounds (20 μl) diluted at various concentrations with the preparation solution were added to a 96-well multiscreen plate. Next, 80 μl of 25 mM [3H]Ala-(4-fluoro)Phe-Arg-(cyclohexyl)Ala-(homo)Arg-Tyr-NH₂ (high affinity TRAP) diluted with Buffer 1 was added and thoroughly mixed therewith. After then adding 100 μl of the previously prepared platelet membrane suspension (0.4 mg/ml) and mixing, incubation was performed at 37 °C for 1 hour. The reaction mixture was suction filtered and then rinsed 3 times with 200 μl of Buffer 1. Next, 30 μl of liquid scintillator was added for measurement of the radioactivity of the plate using a Top Counter (Packard), the value of the radioactivity in the presence of the test compound minus non-specific binding portion was divided by the specific binding value (the value of the binding in the absence of the compound minus the non-specific binding portion) to determine the binding ratio, from which the IC₅₀ value was calculated. The non-specific binding was the value obtained with addition of 10 μM of high affinity TRAP. The results are shown in Table 1.

![Table 1](image)

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Compound</th>
<th>RBA IC₅₀ (nM)</th>
<th>Thr IC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 40</td>
<td></td>
<td>0.26</td>
<td>1.3</td>
</tr>
</tbody>
</table>

1078 The compounds of the present invention and salts thereof exhibited excellent thrombin receptor binding capacity in Test Example 1, and especially selective binding capacity with PAR1 thrombin receptor. In addition, the compounds of the invention and salts thereof exhibited excellent platelet aggregation inhibitory action in Test Example 2.

INDUSTRIAL APPLICABILITY

[1079] The present invention provides novel 2-iminoimidazole derivatives represented by the formula (I) and salts thereof. The compounds of the invention represented by the formula (I) and salts thereof exhibit excellent thrombin receptor antagonism and especially selective antagonism for PAR1 thrombin receptors. The compounds of the invention and salts thereof can therefore inhibit cellular response to thrombin which includes platelet aggregation, without inhibiting the catalytic activity of thrombin which converts fibrinogen to fibrin, and can also inhibit vascular smooth muscle proliferation occurring as a result of damage to
vascular walls by coronary angioplasty and the like, based on selective inhibition of PAR1.

[1080] Thus the compounds of the invention and salts thereof are useful as thrombin receptor antagonists (especially PAR1 thrombin receptor antagonists), platelet aggregation inhibitors (thrombogenic agents) and smooth muscle cell proliferation inhibitors, while also being useful as therapeutic or prophylactic agents for restenosis during or following angioplasty, unstable angina, stable angina, myocardial infarction, cerebral infarction, peripheral arterial occlusion and the like, as therapeutic or prophylactic agents for venous thromboses such as deep venous thrombosis, pulmonary embolism and cerebral embolism accompanying atrial fibrillation, glomerulonephritis and the like, as anti-inflammatory agents or as anti-restenosis agents.

I. A compound represented by the formula:

![Chemical Structure](image)

(wherein ring C represents an optionally substituted aromatic hydrocarbon ring or pyridine ring; R¹ represents (1) hydrogen, (2) cyano, (3) halogen or (4) a group selected from Substituent Group A below; R²⁰¹ represents (1) hydrogen or (2) a group selected from Substituent Group D below; R²¹ represents (1) hydrogen, (2) C₁₋₆ alkyl, (3) acyl, (4) carboxamoyl, (5) hydroxyl, (6) C₁₋₆ alkoxy, (7) C₁₋₆ alkoxycarbonyloxy, (8) C₁₋₆ cycloalkyl, (9) C₁₋₆ alkoxy carbonyloxy optionally substituted with acetyl or (10) a C₆₋₁₄ aromatic hydrocarbon ring group or a 5- to 14-membered aromatic heterocyclic group (each of the foregoing members being optionally substituted with at least one group selected from Substituent Group E below); Y¹ represents a single bond, −(CH₂)ₘ−, −CRₚ−, −CRₚRₚ−, −CH₃CO−, −NRₚ−, −SO₂−, −SO₃−, −CO−, −CONRₚ− or −SO₂NRₚ− [wherein m represents an integer of 1 to 3, and Rₚ and Rₚ' are the same or different and each independently represents hydrogen, halogen, C₁₋₆ alkyl, carbonyl or C₁₋₆ alkoxy carbonyl]; Y² represents a single bond, O, N, −(CH₂)ₘ−, −CRₚ−, −CRₚRₚ−, −CO−, −SO₃− or −C(═N−ORₚ)− [wherein m, Rₚ and Rₚ' have the same definitions given above]; and Ar represents (1) hydrogen, (2) a group represented by the formula:

![Chemical Structure](image)

(wherein R¹₀, R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each independently represents (1) hydrogen, (2) cyano, (3) halogen, (4) nitro or (5) a group selected from Substituent Group B below, and R³ and R¹² or R¹² and R¹³ may bond together to form a 5- to 8-membered heterocyclic optionally having 1 to 4 hetero atoms selected from N, S and O and optionally substituted with at least one group selected from Substituent Group F below) or (3) a 5- to 14-membered aromatic heterocyclic group optionally substituted with at least one group selected from Substituent Group G below; wherein

<Substituent Group A> represents moieties selected from the group consisting of C₁₋₆ alkyl, alkylidene, C₂₋₆ alkylene, C₂₋₆ alkynyl, acyl, carbonyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkenylaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₃₋₆ cycloalkyloxy, amino, C₁₋₆ alkylamino, C₃₋₆ cycloalkylamino, acylamino, sulfonamido, sulfonyl, sulfamoyl, C₃₋₆ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group A' below;

<Substituent Group A'> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, cyano, acyl, carbonyl, carbamoyl, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkenylaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₃₋₆ cycloalkyloxy, amino, C₁₋₆ alkylamino, C₃₋₆ cycloalkylamino, acylamino, ureido, ureylene, sulfonylamido, sulfonamido, halogen, C₃₋₆ cycloalkyl, a heterocyclic alkyl group, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, wherein the C₆₋₁₄ aromatic hydrocarbon ring group and the 5- to 14-membered aromatic heterocyclic group may be substituted with at least one group selected from the group consisting of C₁₋₆ alkyl, cyano, acyl, carbonyl, carbamoyl, C₁₋₆ alkoxy carbonyl, C₁₋₆ alkenylaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₃₋₆ cycloalkyloxy, nitro, amino, C₁₋₆ alkylamino, C₃₋₆ cycloalkylamino, acylamino, ureido, ureylene, sulfonylamido, sulfonamido, sulfamoyl, halogen and C₃₋₆ cycloalkyl;

<Substituent Group B> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, acyl, carbonyl, carbamoyl, C₃₋₆ alkoxy carbonyl, C₁₋₆ alkenylaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₃₋₆ cycloalkyloxy, amino, C₁₋₆ alkylamino, C₃₋₆ cycloalkylamino, acylamino, ureido, sulfonamido, sulfonamido, C₃₋₆ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group B' below;

<Substituent Group B'> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, oxo, cyano, C₁₋₆ cyanoacetyl, C₂₋₆ acyl, C₁₋₆ alkanoyl, benzoyl, aralkanoyl, C₁₋₁₀ alkoxyalkylcarbonyl, C₁₋₆ hydroxyalkylcarbonyl, carbonyl, C₁₋₆ carboxyalkyl, C₁₋₆ carboxyalkoxy, carbamoyl, carbam-
oyalkyloxy, \(C_{1-6} \) alkoxyalkyl, \(C_{1-10} \) alkoxyalkoxyalkyl, \(C_{1-6} \) alkoxy carboxyl, \(C_{1-6} \) alkoxy carbonyl, \(C_{1-6} \) alkoxy carbonyl, \(C_{1-6} \) monoalkoxyaminocarbonyl, \(C_{1-6} \) dialky-

laminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{1-10} \) alkoxy-

alkyl, \(C_{1-6} \) aralkoxyalkyl, \(C_{1-10} \) hydroxyalkyl, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, amino, acylamino, ureido, ureylene, \(C_{1-6} \) alkyllamino, phenylsulfonamido, \(C_{1-6} \) alkylsulfonyl, phenylsulfonamido, \(C_{1-6} \) monoalkylaminocarbonyl, \(C_{3-8} \) dialkyaminosulfonamide, sulfonyl, halogeno, \(C_{3-8} \) cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a \(C_{5-14} \) aromatic hydrocarbon ring group, a 5- to 14-membered aromatic heterocyclic group, a heterocyclic aminocarbonyl group, a heterocyclic aminosulfonyl group and isoxazolinyl, wherein the 5- to 10-membered non-aromatic heterocyclic group, the \(C_{5-14} \) aromatic hydrocarbon ring group, the 5- to 14-membered aromatic heterocyclic group and isoxazolinyl may be independently substituted with at least one group selected from the group consisting of \(C_{1-6} \) alkyl, oxo, cyano, acyl, carbonyl, \(C_{1-6} \) alkoxyalkyl, \(C_{1-6} \) alkylationaminocarbonyl, hydroxyl, \(C_{1-6} \) alkyl, \(C_{3-8} \) cycloalkyloxy, nitro, amino, \(C_{1-6} \) alko-

ylaminocarbonyl, \(C_{1-6} \) alkylaminocarbonyl, \(C_{1-6} \) diacylacetonyl, acylamino, ureido, ureylene, sulfon-

ylamino, sulfonyl, sulfonylamid, and \(C_{1-6} \) alkyl optionally substituted with at least one group selected from Substituent Group D below:

\(<\text{Substituent Group D}>\) represents moieties selected from the group consisting of cyano, halogen, \(C_{3-8} \) alkyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkoxyalkyl, \(C_{1-6} \) alkylationaminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, acylamino, sulfonylamino, sulfonyl, sulfonylamid, and \(C_{3-8} \) cycloalkyl.

\(<\text{Substituent Group D}>\) represents moieties selected from the group consisting of carbonyl, carbamoyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkoxyaminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, acylamino, sulfonylamino, sulfonyl, sulfonylamid, and \(C_{3-8} \) cycloalkyl.

\(<\text{Substituent Group D}>\) represents moieties selected from the group consisting of cyano, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkoxyaminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, acylamino, sulfonylamino, sulfonyl, sulfonylamid, and \(C_{3-8} \) cycloalkyl.

\(<\text{Substituent Group D}>\) represents moieties selected from the group consisting of carbonyl, carbamoyl, \(C_{1-6} \) alkoxyaminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, acylamino, sulfonylamino, sulfonyl, sulfonylamid, and \(C_{3-8} \) cycloalkyl.

\(<\text{Substituent Group D}>\) represents moieties selected from the group consisting of carbonyl, carbamoyl, \(C_{1-6} \) alkoxyaminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, acylamino, sulfonylamino, sulfonyl, sulfonylamid, and \(C_{3-8} \) cycloalkyl.

2. A compound according to claim 1 or salt thereof, wherein ring C represents a further optionally substituted benzene ring or a further optionally substituted pyridine ring; \(R^2 \) represents \(C_{1-6} \) alkyl or \(C_{1-6} \) alkoxy, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group A below:

\(<\text{Substituent Group A}>\) represents moieties selected from the group consisting of \(C_{1-6} \) alkyl, acyl, carbonyl, \(C_{1-6} \) alkoxyaminocarbonyl, \(C_{1-6} \) alkoxyaminocarbonyl, hydroxyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkyllamino, \(C_{6-14} \) aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, wherein the \(C_{6-14} \) aromatic hydrocarbon ring group and the 5- to 14-membered aromatic heterocyclic group may be substituted with at least one group selected from the group consisting of \(C_{1-6} \) alkyl, carbonyl, \(C_{1-6} \) alkoxyaminocarbonyl, \(C_{1-6} \) alkyllamino, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, amino, \(C_{1-6} \) alkyllamino, \(C_{3-8} \) cycloalkyloxy, acylamino, sulfonylamino, sulfonyl, sulfonylamid, and \(C_{3-8} \) cycloalkyl.

\(<\text{Substituent Group A}>\) represents moieties selected from the group consisting of hydrogen, \(C_{1-6} \) alkyl and \(C_{1-6} \) alkoxyaminocarbonyl optionally substituted with acyloxy; \(Y^1 \) represents a single bond or \(\text{---(CH}_2\text{)}_m\text{---} \) wherein \(m \) represents an integer of 1 to 3; \(Y^2 \) represents a single bond or \(\text{---CO--} \) and \(\text{Ar} \) represents hydrogen or a group represented by the formula:
selected from the group consisting of hydrogen, C₁₋₆ alkyl, hydroxyl, C₁₋₆ alkoxy, C₁₋₆ alkylamino, C₃₋₈ cycloalkylaminocarbonyl, acylamino, a 5- to 14-membered non-aromatic heterocyclic group and C₁₋₆ alkoxycarbonyloxy, wherein R¹¹ and R¹² or R¹¹ and R¹³ may bond together to form a 5- to 8-membered heterocycle (i) optionally having 1 to 4 hetero atoms selected from N, S and O and (ii) optionally substituted with at least one group selected from the group consisting of cyano, oxo, and C₁₋₆ alkyl, acyl, C₁₋₆ alkoxy carbonyl, carbamoyl, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylaminocarbonyl, hydroxyl, C₁₋₆ alkoxy, C₃₋₈ cycloalkoxyloxy, amino, C₁₋₆ alkylamino, sulfonyl and a 5- to 14-membered non-aromatic heterocyclic group (each of the foregoing members being optionally substituted with at least one group selected from Substituent Group F”) below; wherein

<Substituent Group F”> represents moieties selected from the group consisting of C₁₋₆ alkyl, oxo, cyano, acyl, carboxyl and C₁₋₆ alkoxy).

3. A compound according to claim 1 or salt thereof, wherein Y¹ is —CH₂—.
4. A compound according to claim 1 or salt thereof, wherein Y² is —CO—.
5. A compound according to claim 1 or salt thereof, wherein Y¹ is —CH₂— and Y² is —CO—.
6. A compound according to claim 1 or salt thereof, wherein Y¹ is a single bond, Y² is a single bond and Ar is hydrogen.
7. A compound according to claim 1 or salt thereof, wherein Ar is a group represented by the formula:

![Diagram](image1)

[wherein R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ have the same definitions given above are as defined in claim 1].
8. A compound according to claim 7 or salt thereof, wherein R¹¹ and R¹² are hydrogen.
9. A compound according to claim 1 or salt thereof, wherein Ar is (1) a group represented by the formula:

![Diagram](image2)

[wherein R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 1] or (2) a 5- to 14-membered aromatic heterocyclic group optionally substituted with at least one group selected from Substituent Group G; wherein Substituent Group G is as defined in claim 1.
10. A compound according to claim 9 or salt thereof, wherein R¹⁰ and R¹¹ are hydrogen.
11. A compound according to claim 1 or salt thereof, wherein Ar is a group represented by the formula:

![Diagram](image3)

[wherein R¹¹ and R¹² are as defined in claim 1, and R¹⁴ represents (1) hydrogen or (2) a group selected from Substituent Group H below, and R¹¹ and R¹² may bond together to form a 5- to 8-membered heterocycle optionally substituted with at least one group selected from Substituent Group F and optionally having 1 or 2 hetero atoms selected from N, S and O; wherein

Substituent Group F is as defined in claim 1;]

<Substituent Group H> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkenylox, acyl, C₁₋₆ alkoxy carbonyl, amino carbonyl, C₆₋₈ cycloalkyl carbonyl, C₁₋₆ aminocarbonyl, sulfonym, C₆₋₈ cycloalkyl amino, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group H’ below;

<Substituent Group H’> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, acyl, C₁₋₆ alkoxy, oxo, cyano, C₁₋₆ cyano alkyl, C₂₋₇ acyl, C₁₋₆ alkanoyl, benzoxy, aralkanoyl, C₁₋₆ alkoxyalkyl carbonyl, C₁₋₆ hydroxylalkyl carbonyl, C₁₋₆ carboxyalkyl, C₁₋₆ carboxyalkoxy, C₁₋₆ carboxyalkoxyloxy, C₁₋₆ oxycarbonyl, C₁₋₆ alkoxy carbonyl-C₁₋₆ alkyl, C₁₋₆ alkoxy carbonyl-C₁₋₆ alkyl, C₁₋₆ alkoxy carbonyl-C₁₋₆ alkyl, C₁₋₆ monooalkylaminocarbonyl, C₂₋₆ dialkylaminocarbonyl, hydroxyl, C₁₋₆ alkyl, C₁₋₆ alkoxalkyl, C₁₋₆ hydroxylalkyl, C₂₋₈ cycloalkyl alkylamino, C₁₋₆ cycloalkyl amino, acylamino, ureido, ureylene, C₁₋₆ alylsulfonfylamino, phenylsulfonfylamino, C₁₋₆ alylsulfonfyl, phenylsulfonfyl, C₁₋₆ monoalkylaminosulfonfyl, C₂₋₆ dialkylaminosulfonfyl, sulfonyl, halogen, C₃₋₈ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group, a C₆₋₁₄ aromatic hydrocarbon ring group, a 5- to 14-membered aromatic heterocyclic group, a heterocyclic aminocarbonyl group, a heterocyclic aminosulfonfyl group and isoxazolyl, wherein the 5- to 14-membered non-aromatic heterocyclic group, the C₆₋₁₄ aromatic hydrocarbon ring group, the 5- to 14-membered aromatic heterocyclic group and isoxazolyl may be independently substituted with at least one group selected from the group consisting of C₁₋₆ alkyl, oxo, cyano, acyl, carboxyl, carboxamyl, C₁₋₆
alkoxycarbonyl, C₈₋₁₆ alkylaminocarbonyl, hydroxyl, C₄₋₁₆ alkoxy, C₃₋₈ cycloalkyloxy, nitro, amino, C₁₋₆ amminalkyl, C₆₋₁₆ alkylamino, C₁₋₆ dialkylamino, C₃₋₈ cycloalkylaminocarbonyl, acylamino, ureido, ureylene, alkylsulfonlamido, alkylsulfonyl, sulfamoyl, halogeno and C₃₋₈ cycloalkyl).

12. A compound according to claim 1 or salt thereof, wherein Ar is a group represented by the formula:

\[\text{Chemical Structure} \]

wherein R¹⁻ and R¹⁰ are as defined in claim 1, and R¹⁶ represents (1) hydrogen or (2) a group selected from Substituent Group H and R¹⁷ or R¹⁵ and R¹⁶ may bond together to form a 5- to 6-membered heterocycle optionally substituted with at least one group selected from Substituent Group F and optionally having 1 or 2 hetero atoms selected from N, S and O; wherein

Substituent Groups F and H are as defined in claim 1.

13. A compound according to claim 1 or salt thereof, wherein Ar is a group represented by the formula:

\[\text{Chemical Structure} \]

wherein R¹¹ and R¹⁵ are as defined in claim 1, and R¹⁸ and R¹⁰ are the same or different and each independently represents (1) hydrogen or (2) a group selected from Substituent Group I below, and R¹² and R¹⁵, R¹⁷ and R¹⁵, R¹⁷ and R¹⁸ or R¹⁰ and R¹⁶ may bond together to form a 5- to 8-membered heterocycle optionally substituted with at least one group selected from Substituent Group F and optionally having 1 or 2 hetero atoms selected from N, S and O; wherein

Substituent Group F is as defined in claim 1;

<Substituent Group I> represents moieties selected from the group consisting of C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, acyl, carbamoyl, C₁₋₆ alkoxy, C₁₋₆ alkoxyalkynyl, C₁₋₆ alkylaminocarbonyl, C₁₋₆ aminoalcohol, sulfonyl, sulfamoyl, C₆₋₁₆ cycloalkyl, a 5- to 14-membered non-aromatic heterocyclic group and a 5- to 14-membered aromatic heterocyclic group, each of the foregoing members being optionally substituted with at least one group selected from Substituent Group I below;

14. A pharmaceutical composition comprising a compound according to claim 1 or salt thereof.

15. A composition according to claim 14, wherein the composition is useful as a thrombin receptor antagonist.

16. A composition according to claim 14, wherein the composition is useful as a thrombin receptor PAR1 antagonist.

17. A composition according to claim 14, wherein the composition is useful as a platelet aggregation inhibitor.

18. A composition according to claim 14, wherein the composition is useful as a proliferation inhibitor for smooth muscle cells.

19. A composition according to claim 14, wherein the composition is useful as a proliferation inhibitor for endothelial cells, fibroblasts, nephrocytes, osteosarcoma cells, muscle cells, cancer cells and/or glia cells.

20. A composition according to claim 14, wherein the composition is useful as a therapeutic or prophylactic agent for thrombosis, vascular restenosis, deep venous thrombosis, pulmonary embolism, cerebral infarction, heart disease, disseminated intravascular coagulation, hypertension, inflammatory disease, rheumatism, asthma, glomerulonephritis, osteoporosis, neurological disease and/or malignant tumor.

21. Use of a compound according to claim 1 or salt thereof for the manufacture of a thrombin receptor antagonist.

22. Use according to claim 21 wherein the thrombin receptor antagonist is a PAR1 receptor antagonist.
22. Use of a compound according to claim 1 or salt thereof for the manufacture of a platelet aggregation inhibitor.

24. A therapeutic method for treating or preventing a disease associated with thrombin receptors, comprising administering to a patient suffering from the disease, a therapeutically effective dose of a compound according to claim 1 or salt thereof.

25. A therapeutic method for treating or preventing a proliferative disease of endothelial cells, fibroblasts, nephrocytes, osteosarcoma cells, muscle cells, cancer cells and/or glia cells, comprising administering to a patient suffering from the disease, a therapeutically effective dose of a compound according to claim 1 or salt thereof.